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ABSTRACT

We introduce OmniRe, a comprehensive system for efficiently creating high-
fidelity digital twins of dynamic real-world scenes from on-device logs. Recent
methods using neural fields or Gaussian Splatting primarily focus on vehicles, hin-
dering a holistic framework for all dynamic foregrounds demanded by downstream
applications, e.g., the simulation of human behavior. OmniRe extends beyond
vehicle modeling to enable accurate, full-length reconstruction of diverse dynamic
objects in urban scenes. Our approach builds scene graphs on 3DGS and con-
structs multiple Gaussian representations in canonical spaces that model various
dynamic actors, including vehicles, pedestrians, cyclists, and others. OmniRe
allows holistically reconstructing any dynamic object in the scene, enabling ad-
vanced simulations (~60 Hz) that include human-participated scenarios, such as
pedestrian behavior simulation and human-vehicle interaction. This comprehensive
simulation capability is unmatched by existing methods. Extensive evaluations
on the Waymo dataset show that our approach outperforms prior state-of-the-art
methods quantitatively and qualitatively by a large margin. We further extend our
results to 5 additional popular driving datasets to demonstrate its generalizability
on common urban scenes. We will make the code and data publicly available. Code
and video results see: Anonymous project page.

1 INTRODUCTION

Creating photorealistic digital twins of 4D real-world is valuable for enabling high-fidelity simulation,
robust algorithm training and evaluation. As autonomous driving algorithms increasingly adopt
end-to-end models, the need for scalable and domain-gap-free simulation environments, where these
systems can be evaluated in closed-loop, is becoming more evident. While traditional artist-generated
assets are reaching their limits in scale, diversity, and realism, recent advances in data-driven methods
offer a strong alternative by creating realistic digital twins directly from real-world sensor data.
Indeed, neural radiance fields (NeRFs) (Mildenhall et al., 2020; Barron et al., 2021; Yang et al.,
2023b; Guo et al., 2023; Yang et al., 2023a; Wu et al., 2023b) and Gaussian Splatting (GS) (Kerbl
et al., 2023; Yan et al., 2024) have emerged as powerful tools for reconstructing 3D scenes with high
levels of visual and geometric fidelity. However, accurately and holistically reconstructing dynamic
urban scenes remains a significant challenge, especially due to the diverse dynamic actors and their
complex rigid and non-rigid motions in real-world environments.

Several works have already tried to tackle this challenge. Early methods typically ignore dynamic
actors and reconstruct only static parts of the scene (Tancik et al., 2022; Martin-Brualla et al., 2021;
Rematas et al., 2022; Guo et al., 2023). Subsequent works aim to reconstruct the dynamic scenes
by either (i) modeling the scenes as a combination of a static and time-dependent dynamic neural
field, where the static-dynamic decomposition is an emergent property (Yang et al., 2023a; Turki
et al., 2023), or (ii) building a scene graph, in which dynamic actors and the static background
are represented as nodes and reconstructed in their canonical frame. The nodes of the scene graph
are connected with edges that encode relative transformation representing the motion of each actor
through time (Ost et al., 2021; Kundu et al., 2022; Yang et al., 2023b; Wu et al., 2023b; Tonderski
et al., 2024; Fischer et al., 2024b). But both approaches fall short of meeting the requirements for
comprehensive and interactive digital twins: while providing a more general formulation, methods
of (i) lack editability and cannot be directly controlled with classical behavior models. Previous
methods following (ii) still focus primarily on vehicles, which can be represented as rigid bodies,
thereby largely neglecting other vulnerable road users (VRUs) such as pedestrians and cyclists that
are fundamental and critical in urban scene simulation.
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Figure 1: (a) Decomposition of different parts of a scene. (b) Out-of-distribution categories that are
overlooked by previous methods can be accurately handled by OmniRe. (c) OmniRe enables diverse
applications including vehicle editing (c1, c2), human-vehicle interaction (c3), human behavior
simulation (c4), etc.

To fill this critical gap, our work aims to model all dynamic actors , including vehicles, pedestrians,
and cyclists, and many others, in a manner that allows for interactive simulation. This leads to
two primary challenges: (i) developing a unified approach for modeling diverse non-rigid dynamic
actors, given the wide range of non-rigid categories in real-world scenes; (ii) giving specific focus on
humans, as their behavior is critical for decision-making in scenarios like driving, where pedestrian
actions directly impact safety. Thus, precise joint-level reconstruction (Lei et al., 2023; Jiang et al.,
2022; Kocabas et al., 2024) is crucial for fine control of human behavior in the simulator. To address
the specific challenge of modeling human actors, we must consider several additional complexities.
First, in-the-wild scenarios present significant challenges for capturing human motion dynamics
due to unfavorable sensor observations and cluttered environments with frequent occlusions (Wang
et al., 2024; Yang et al., 2021; Wang et al., 2023). Furthermore, reconstructing high-fidelity human
appearance from sparse sensor data beyond mere geometry dynamics adds additional complexity.
Lastly, interactions with large equipment, such as wheelchairs or strollers, which cannot be represented
by explicit templates (e.g., SMPL), further complicate both appearance and geometry modeling.

To address these challenges, we propose an “omni” system capable of handling diverse actors for
urban digital twins. Our method OmniRe efficiently reconstructs high-fidelity urban scenes that
include static backgrounds, driving vehicles, and non-rigidly moving dynamic actors (see Fig. 1).
Specifically, we construct a dynamic neural scene graph (Ost et al., 2021) based on 3D Gaussian
Splatting (Kerbl et al., 2023), with dedicated Gaussian representations for different kinds of dynamic
actors in their local canonical spaces. In our framework, backgrounds and vehicles are represented
as static Gaussians, while vehicles undergo rigid body transformations to simulate their motion
over time. For non-rigid actors, we incorporate the SMPL model to enable joint-level control for
pedestrians using dynamic Gaussians, as SMPL provides a prior template geometry for 3DGS
initialization and explicit control for modeling desired human behaviors, which is advantageous for
downstream simulation applications. To extract SMPL parameters for human motion modeling, we
designed a novel human body pose estimation pipeline dedicated to driving logs with multi-camera
setups and severe in-the-wild occlusions. For other template-less dynamic actors, we propose a
shared deformation field approach in a self-supervised manner. This framework enables a unified
representation of all non-rigid categories and achieves specialized joint-level control for pedestrians.
Thus, OmniRe allows for accurate representation and controllable reconstruction of most objects
of interest in the scene. Notably, our representation is directly amenable to behavior and animation
models that are commonly used in AV simulation (e.g., Fig. 1-(c)).
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To summarize, we make the following contributions:

• We introduce OmniRe, a holistic framework for dynamic urban scene reconstruction that embodies
the “omni” principle of dynamic category coverage and representation flexibility. OmniRe lever-
ages dynamic neural scene graphs based on Gaussian representations to unify the reconstruction
of static backgrounds, driving vehicles, and non-rigidly moving dynamic actors (§ 4). It enables
high-fidelity scene reconstruction and human-centered simulations, such as pedestrian behavior
and human-vehicle interaction—capabilities unmatched by existing methods. (§ 5).

• We address the challenges of modeling humans and other dynamic actors from driving logs such as
occlusion, cluttered environments, and the limitations of existing human pose prediction models
(§ 4.2). We demonstrate our method on six popular driving datasets to show its generalizability in
urban driving scenes (Anonymous page). While our findings are based on AV scenarios, they can
generalize to other domains.

• We perform extensive experiments and ablations to demonstrate the benefits of our holistic frame-
work. OmniRe achieves state-of-the-art performance in scene reconstruction and novel view
synthesis (NVS), significantly outperforming previous methods in terms of full image metrics
(+1.88 PSNR for reconstruction and +2.38 PNSR for NVS). The differences are pronounced for
dynamic actors, such as vehicles (+1.18 PSNR), and humans (+4.09 PSNR for reconstruction and
+3.06 PSNR for NVS) (Tab. 1).

2 RELATED WORK

Dynamic Scene Modeling. Neural representations are dominating novel view synthesis (Mildenhall
et al., 2020; Barron et al., 2022; 2021; Müller et al., 2022; Fridovich-Keil et al., 2022; Kerbl
et al., 2023). These have been extended in different ways to enable dynamic scene reconstruction.
Deformation-based approaches (Pumarola et al., 2020; Park et al., 2021a; Tretschk et al., 2021; Park
et al., 2021b; Cai et al., 2022) and recently DeformableGS (Yang et al., 2023c) and (Wu et al., 2023a)
propose to model dynamic scenes using a 3D neural representation for the canonical space, coupled
with a deformation network mapping time-dependent observations to canonical deformations. These
are generally limited to small scenes with limited movement, making them inadequate for challenging
urban dynamic scenes. Modulation-based techniques operate by directly feeding the image time-
stamps (or latent codes) as an additional input to a neural representation (Xian et al., 2021; Li et al.,
2021; 2022; Luiten et al., 2024). However, this generally results in an underconstrained formulation,
therefore requiring additional supervision, such as depth (Li et al., 2021) and optical flow (Xian et al.,
2021), or multi-view inputs captured from synchronized cameras (Li et al., 2022; Luiten et al., 2024).
D2NeRF (Wu et al., 2022) proposed to expand on this formulation by partitioning the scene into static
and dynamic fields. Following this, SUDS (Turki et al., 2023) and EmerNeRF (Yang et al., 2023a)
have shown impressive reconstruction ability for dynamic autonomous driving scenes. However, they
model all dynamic elements using a single dynamic field, rather than modeling each separately, thus
they lack controllability, limiting their practicality as sensor simulators. Explicit decomposition of the
scene into separate agents enables controlling them individually. These agents can be represented as
bounding boxes in a scene graph as in Neural Scene Graphs (NSG) (Ost et al., 2021) that is widely
adopted in UniSim (Yang et al., 2023b), MARS (Wu et al., 2023b), NeuRAD (Tonderski et al., 2024),
ML-NSG (Fischer et al., 2024b) and recent Gaussian-based works StreetGaussians (Yan et al., 2024),
DrivingGaussians (Zhou et al., 2023), and HUGS (Zhou et al., 2024). However, these approaches
handle only rigid objects due to limitations of time-independent representations (Ost et al., 2021; Wu
et al., 2023b; Yang et al., 2023b; Zhou et al., 2023; 2024; Yan et al., 2024; Tonderski et al., 2024;
Fischer et al., 2024b) or limitations of deformation-based techniques (Yang et al., 2023c; Huang et al.,
2023). A recent concurrent work Fischer et al. (2024a) also considers non-rigid modeling using a
deformation field, addressing a subset of the challenges in modeling holistic dynamics, but does not
address fine-grained human models that allow flexible control. To address them, OmniRe proposes a
Gaussian scene graph that incorporates various Gaussian representations for both rigid and non-rigid
objects, providing extra flexibility and controllability for diverse actors.

Human Modeling. Human bodies have variable appearance and complex motions, calling for
dedicated modeling techniques. NeuMan (Jiang et al., 2022) proposes to employ the SMPL body
model (Loper et al., 2015) to warp ray points to a canonical space. This approach enables the
reconstruction of non-rigid human bodies and warrants fine control. Similarly, recent works such
as GART (Lei et al., 2023), GauHuman (Hu & Liu, 2023) and HumanGaussians (Kocabas et al.,
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2024) have combined the Gaussian representation and the SMPL model. However, these methods
are not directly applicable in-the-wild. As for recovering human dynamics in driving scenes, Yang
et al. (2021) focuses on shape and pose reconstruction for LiDAR simulation, while Wang et al.
(2023; 2024) aim to recreate natural and accurate human motion from partial observations. However,
these methods focus solely on shape and pose estimation and are limited in appearance modeling.
In contrast, our method not only models human appearance but also integrates this modeling within
a holistic scene framework, to achieve a comprehensive solution. Urban scenes typically involve
numerous pedestrians, with sparse observation, often accompanied by severe occlusion. We analyze
these challenges in detail and address them in § 4.2.

3 PRELIMINARIES

3D Gaussian Splatting. First introduced in Kerbl et al. (2023), 3D Gaussian Splatting (3DGS)
represents scenes via a set of colored blobs G = {g} whose intensity distribution is a Gaussian.
Each Gaussian (blob) g = (o,µ,q, s, c) contains the following attributes: opacity o ∈ (0, 1), mean
position µ ∈ R3, rotation q ∈ R4 represented as a quaternion, anisotropic scaling factors s ∈ R3

+,
and view-dependent colors c ∈ RF represented as spherical harmonics (SH) coefficients. To compute
the color C of a pixel, Gaussians overlapping with this pixel are sorted by their distance to the camera
center (sorted by i ∈ N ) and α-blended: C =

∑
i∈N ciαi

∏i−1
j=1(1 − αj), where αi is computed

as αi = oi exp(− 1
2 (p− µi)

TΣ−1
i (p− µi)), Σi is the 2D projection covariance. We further define

the application of a rigid (affine) transformation T = (R, t) ∈ SE(3) to all Gaussians in the set as:
T⊗G = (o,Rµ+ t,Rot(R,q), s, c), where Rot(·) denotes rotating the quaternion by the rotation
matrix.

Skinned Multi-Person Linear (SMPL) Model. SMPL (Loper et al., 2015) is a parametric human
body model that combines the advantages of a parametric mesh with linear blending skinning (LBS)
to manipulate body shape and pose. At its core, SMPL uses a template mesh Mh = (V,F) defined
in a canonical rest pose, parameterized by nv vertices V ∈ Rnv×3. The template mesh can be shaped
and transformed using shape parameters β and pose parameters θ: VS = V + BS(β) + BP (θ),
where BS(β) ∈ Rnv×3 and BP (θ) ∈ Rnv×3 are the xyz offsets to individual vertices (Kocabas
et al., 2024) and VS are the vertex locations in the shaped space.

To further deform the vertices VS to achieve the desired pose θ′, SMPL utilizes pre-defined LBS
weights W ∈ Rnk×nv and the joint transformations G to define the deformation of each vertex
vi: vi

′ = (
∑

k Wk,iGk)vi, where nk is the number of joints, and the joint transformations G are
derived from the source pose θ, the target pose θ′ and shape β. The pose parameters include the
body pose component θb ∈ R23×3×3 and the global orientation component θg ∈ R3×3. For more
details of SMPL, we refer readers to Loper et al. (2015). Our method obtains pose parameters θ for
each pedestrian across all frames, as well as their individual shape parameters β ∈ R10, these pose
sequences initialize the non-rigid dynamics of pedestrians. The detailed process is described in § 4.2.

4 METHOD

As overviewed in Fig. 2, we build a comprehensive 3DGS framework that holistically reconstructs
both the static background and diverse movable entities. We discuss our systematic approach that
represents different semantic classes with diverse Gaussian representations in § 4.1, highlighting that
this complex yet efficient system-level framework is one of our primary contributions. Modeling
humans in unconstrained environments is particularly challenging due to the complexity of human
motions and the difficulty of accurately modeling geometry and appearance due to severe occlusions
in the wild. We present our approach to this problem in § 4.2, which significantly expands our
effectiveness in common driving scenes. Lastly, we show how the scene representation is end-to-end
optimized to obtain faithful and controllable reconstructions in § 4.3.

4.1 DYNAMIC GAUSSIAN SCENE GRAPH MODELING

Gaussian Scene Graph. To allow for flexible control of diverse movable objects in the scene without
sacrificing reconstruction quality, we opt for a Gaussian Scene Graph representation. Our scene
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Figure 2: Method Overview. Gaussians of all foreground models are defined in their local or
canonical spaces. At a given time t, the Gaussians are deformed and transformed into the world
space, forming a Gaussian scene graph together with background Gaussians to model the entire
scene. The Gaussians in the scene graph are rasterized to render images and depth, and are jointly
optimized using reconstruction losses. We utilize SMPL Gaussians to model non-rigid human bodies
and deformable Gaussians to handle out-of-distribution non-rigid categories.

graph is composed of the following nodes: (1) a Sky Node representing the sky that is far away
from the ego-car, (2) a Background Node representing the static scene background such as buildings,
roads, and vegetation, (3) a set of Rigid Nodes, each representing a rigidly movable object such as a
vehicle, (4) a set of Non-rigid Nodes that model non-rigid individuals, e.g. pedestrians and cyclists.
Nodes of type (2,3,4) can be converted directly into world-space Gaussians which we will introduce
next. These Gaussians are concatenated and rendered using the rasterizer proposed in Kerbl et al.
(2023). The Sky Node is represented by an optimizable environment texture map, similar to Chen
et al. (2023), rendered separately, and composited with the rasterized Gaussian image with simple
alpha blending.

Background Node. The background node is represented by a set of static Gaussians Gbg. These
Gaussians are initialized by accumulating the LiDAR points and additional points generated randomly
in accordance with the strategy described in Chen et al. (2023).

Rigid Nodes. Gaussians representing the vehicles (e.g. cars or trucks) are defined as Ḡrigid
v in the

object’s local space (denoted by the upper bar), where v is the index of the vehicle/node. While the
Gaussians within a vehicle will not change over time in the local space, the positions of Gaussians
in world space will change according to the vehicle’s pose Tv ∈ SE(3). At a given time t ∈ R, the
Gaussians are transformed into world space by simply applying the pose transformation:

Grigid
v (t) = Tv(t)⊗ Ḡrigid

v . (1)

Non-Rigid Nodes. Non-rigid individuals are often overlooked by previous methods (Zhou et al.,
2024; Yan et al., 2024; Zhou et al., 2023; Fischer et al., 2024b) due to the modeling complexity,
despite their importance for human-centered simulation. Unlike rigid vehicles, non-rigid dynamic
classes such as pedestrians and cyclists, require extra consideration of both their global movements in
world space and their continuous deformations in local space to accurately reconstruct their dynamics.
To enable a reconstruction that fully explains the underlying geometry, we further subdivide the
non-rigid nodes into two categories: SMPL Nodes for walking or running pedestrians with SMPL
templates that enable joint-level control and Deformable Nodes for out-of-distribution non-rigid
instances (such as cyclists and other template-less dynamic entities).

Non-Rigid SMPL Nodes. As introduced in § 3, SMPL provides a parametric way of representing
human poses and deformations, and we hence use the model parameters (θ(t),β) to drive the 3D
Gaussians within the nodes. Here θ(t) ∈ R24×3×3 represents the human posture that changes over
time t. For each node indexed by h, We tessellate the SMPL template mesh Mh instantiated from
the resting pose (the ‘Da’ pose) with 3D Gaussians ḠSMPL

h using a strategy similar to Lei et al. (2023),
where each Gaussian is binded to its corresponding vertex of Mh. The world-space Gaussians for
each node can be then computed as:

GSMPL
h (t) = Th(t)⊗ LBS(θ(t), ḠSMPL

h ). (2)
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Here Th(t) ∈ SE(3) is the global pose of the node at time t, and LBS(·) is the linear blend skinning
operation that deforms the Gaussians according to the SMPL pose parameters. In order to compute
the LBS operator, one first precomputes the skinning weights of each Gaussian in ḠSMPL

h w.r.t. the
SMPL key joints. Once θ changes over time, the key joints’ transformations are updated and linearly
interpolated onto the Gaussians to obtain the final deformed positions and rotations, while other
attributes in the Gaussian remain unchanged. Crucially, it is highly challenging to accurately optimize
the SMPL poses θ(t) from scratch just with sensor observations, even for single-person or indoor
scenarios (Jiang et al., 2022; Lei et al., 2023; Kocabas et al., 2024). Hence a rough initialization of
θ(t) is typically needed, whose details are deferred to a dedicated section § 4.2.

Non-Rigid Deformable Nodes. These nodes act as a unified representation for other significant
non-rigid instances, including those that fall beyond the scope of SMPL modeling, such as extremely
faraway pedestrians for which even state-of-the-art SMPL estimators cannot provide accurate estima-
tions, or out-of-distribution, template-less non-rigid individuals. Hence, we propose to use a general
deformation network Fφ with parameter φ to fit the non-rigid motions within the nodes. Specifically,
for node h, the world-space Gaussians are defined as:

Gdeform
h (t) = Th(t)⊗

(
Ḡdeform
h ⊕Fφ(Ḡdeform

h , eh, t)
)
, (3)

where the deformation network generates the changes of the Gaussian attributes from time t to the
canonical space Gaussians Ḡdeform

h , outputting the changes in position δµh(t), rotation δqh(t), and
the scaling factors δsh(t). The changes are applied back to Ḡdeform

h with the ⊕ operator that internally
performs a simple arithmetic addition that results in (o,µ+ δµ(t),q+ δq(t), s+ δs(t), c). Notably,
previous approaches such as Yang et al. (2023c) utilizes a single deformation network for the entire
scene, and usually fail in highly complex outdoor dynamic scenes with rapid movements. On the
contrary, in our work, we define a per-node deformation field which has much more representation
power. To maintain computational efficiency, the network weights φ are shared and the identities of
the nodes are disambiguated via an instance embedding parameter eh. Experimental results in § 5.2
show that deformable Gaussians are essential for achieving good reconstruction quality.

Sky Node. We use a separate optimizable environmental map to fit the sky color from view-
ing directions. Compositing the sky image Csky with the rendered Gaussians CG consisting of
(Gbg, {Grigid

v }, {GSMPL
h }, {Gdeform

h }), we obtain the final rendering as:

C = CG + (1−OG)Csky, (4)

where OG =
∑N

i=1 αi

∏i−1
j=1(1− αj) is the rendered opacity mask of Gaussians.

4.2 RECONSTRUCTING IN-THE-WILD HUMANS

22

Body Pose Predictor

Inconsistent ID across Cameras Consistent ID across Cameras

Trackle t

Matching

(a) Human ID Matching (b) Pose Completion

መ𝜃𝑐 , Τ𝑐

0

෨𝜃ℎ መ𝜃𝑗0
0 መ𝜃𝑗1

1 መ𝜃𝑗2
2

෨𝜃ℎ

𝜃ℎ

1 0 1

Figure 3: Human Pose Processing. (a) Human ID matching ensures consistent identification across
cameras. (b) Missing pose completion to recover poses of occluded individuals.

Reconstructing humans from driving logs faces challenges as in-the-wild pose estimators (Goel
et al., 2023; Rajasegaran et al., 2022) are typically designed for single video input and often miss
predictions in occlusion cases. We designed a pipeline that addresses these limitations to predict
accurate and temporally consistent human poses from multi-view videos with frequent occlusions.

Formally, given a set of 3D tracklets for N pedestrians T = {Th}N−1
h=0 from the dataset, our goal

is to obtain the corresponding SMPL pose sets: θ = {θh}N−1
h=0 . Here, Th and θh (For brevity, (t)
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is omitted) represent the boxes sequence and body pose sequence of the h-th human. We apply
4D-Humans (Goel et al., 2023) to each camera’s video independently in our multi-camera setup. This
yields separately processed results of human tracklets and poses: T̂ =

⋃C−1
c=0 T̂c and θ̂ =

⋃C−1
c=0 θ̂c,

where T̂c = {T̂c
j}j∈Dc and θ̂c = {θ̂c

j}j∈Dc represent the predicted tracklets and poses from camera
c, respectively. Here, Dc is the set of detected human indices in camera c. Our task is to reconstruct
θ using θ̂. We achieve this through the following steps:

Tracklet Matching: We define a matching function M that finds the most similar predicted tracklets
for each ground truth tracklet by computing the maximum mean IoU of their 2D projections:

θ̃h = M(h, θ̂,T, T̂). (5)

This function learns a matching between ground truth tracklets and predicted tracklets, then outputs
the corresponding matched pose sequences. Consider 3-camera setup as an example (Fig. 3(a)), if the
h-th ground truth tracklet matches with detected tracklets j0, j1, j2 in cameras 0 to 2 respectively,
then θ̃h = {θ̂0

j0
, θ̂1

j1
, θ̂2

j2
}, where θ̂c

jk
is the pose sequence from camera c for the detected tracklet jk.

Pose Completion: As visualized in Fig. 3(b), 4D-Humans (Goel et al., 2023) fails to predict SMPL
poses for occluded individuals in driving scenes, we design a process to recover missing poses:

θh = H(θ̃h,T, T̂). (6)

Here, function H identifies missing detections by comparing the ground truth and predicted tracklets,
and interpolates missing poses to complete θh from θ̃h.

4.3 OPTIMIZATION

We simultaneously optimize all the parameters as mentioned in § 4.1 in a single stage to reconstruct
the entire scene. These parameters include: (1) all the Gaussian attributes (opacity, mean positions,
scaling, rotation, and appearance) in their local spaces, namely Gbg, {Ḡrigid

v }, {ḠSMPL
h }, {Ḡdeform

h }, (2)
the poses of both rigid and non-rigid nodes for each frame t, i.e., {Tv(t)}, {Th(t)}, (3) the human
poses of all the SMPL nodes for each frame t, i.e., {θ(t)}, and the corresponding skinning weights,
(4) the weight φ of the deformation network F , (5) the weight of the sky model.

We use the following objective function for optimization:

L = (1− λr)L1 + λrLSSIM + λdepthLdepth + λopacityLopacity + Lreg, (7)

where L1 and LSSIM are the L1 and SSIM losses on rendered images, Ldepth compares the rendered
depth of Gaussians with sparse depth signals from LiDAR, Lopacity encourages the opacity of the
Gaussians to align with the non-sky mask, and Lreg represents various regularization terms applied to
different Gaussian representations. Detailed descriptions of loss terms are provided in the Appendix.

5 EXPERIMENTS

Dataset. We conduct experiments on the Waymo Open Dataset (Sun et al., 2020), which comprises
real-world driving logs. We tested up to 32 dynamic scenes in Waymo, including eight highly complex
dynamic scenes that, in addition to typical vehicles, also contain diverse dynamic classes such as
pedestrians and cyclists. Each selected segment contains approximately 150 frames. The segment
IDs are listed in Tab. 12 and Tab. 6. To further demonstrate our effectiveness on common driving
scenes, we extend our results to 5 additional popular driving datasets: NuScenes (Caesar et al., 2020),
Argoverse2 (Wilson et al., 2023), PandaSet (Xiao et al., 2021), KITTI (Geiger et al., 2012), and
NuPlan (Caesar et al., 2021).

Baselines. We compare our method against several Gaussian Splatting approaches: 3DGS (Kerbl
et al., 2023), DeformableGS (Yang et al., 2023c), StreetGS (Yan et al., 2024), HUGS (Zhou et al.,
2024), and PVG (Chen et al., 2023). Additionally, we compare our method with NeRF-based
approach EmerNeRF (Yang et al., 2023a). Among methods compared, for StreetGS (Yan et al., 2024),
we use our own reimplementation. For 3DGS (Kerbl et al., 2023) and DeformableGS (Yang et al.,
2023c), we use the implementation with LiDAR supervision to ensure the comparison fairness. For
other methods, we use their official code. For training, we utilize data from the three front-facing
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Table 1: Comparison on Waymo Open Dataset. We compute PSNR and SSIM for both the full
image and dynamic regions. Vehicle indicates regions corresponding to vehicle-related classes, while
Human indicates regions corresponding to human-related classes. Box indicates methods that utilize
bounding boxes for dynamic modeling. LiDAR means method using LiDAR information.

Scene Reconstruction Novel View Synthesis
Full Image Human Vehicle Full Image Human Vehicle

Methods Box LiDAR PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
EmerNeRF(Yang et al., 2023a) ✓ 31.93 0.902 22.88 0.578 24.65 0.723 29.67 0.883 20.32 0.454 22.07 0.609
3DGS(Kerbl et al., 2023) ✓ 26.00 0.912 16.88 0.414 16.18 0.425 25.57 0.906 16.62 0.387 16.00 0.407
DeformGS(Yang et al., 2023c) ✓ 28.40 0.929 17.80 0.460 19.53 0.570 27.72 0.922 17.30 0.426 18.91 0.530
PVG(Chen et al., 2023) ✓ 32.37 0.937 24.06 0.703 25.02 0.787 30.19 0.919 21.30 0.567 22.28 0.679
HUGS(Zhou et al., 2024) ✓ ✓ 28.26 0.923 16.23 0.404 24.31 0.794 27.65 0.914 15.99 0.378 23.27 0.748
StreetGS(Yan et al., 2024) ✓ ✓ 29.08 0.936 16.83 0.420 27.73 0.880 28.54 0.928 16.55 0.393 26.71 0.846
Ours ✓ ✓ 34.25 0.954 28.15 0.845 28.91 0.892 32.57 0.942 24.36 0.727 27.57 0.858

Figure 4: Qualitative Comparison of Novel View Synthesis. The insets highlight the details of the
reconstructed dynamic objects. OmniRe manages to recover very fine details, achieving high-quality
reconstruction of various common dynamic objects, including vehicles, pedestrians, and cyclists.

cameras, resized to a resolution of 640×960 for all methods, along with LiDAR data for supervision.
We utilize the instance bounding boxes provided by the dataset to transform objects and refine them
via pose optimization during training. For further implementation details, please refer to Appendix.

5.1 MAIN RESULTS

Appearance. We evaluate our method on scene reconstruction and novel view synthesis (NVS)
tasks, using every 10th frame as the held-out test set for NVS. We report PSNR and SSIM scores for
full images, as well as human-related and vehicle-related regions, to assess dynamic reconstruction
capabilities. The quantitative results in Tab. 1 show that OmniRe outperforms all other methods,
with a significant margin in human-related regions, validating our holistic modeling of dynamic
actors. Additionally, while StreetGS (Yan et al., 2024) and our method model vehicles in a similar
way, we observe that OmniRe is slightly better than StreetGS even in vehicle regions. This is due to
the absence of human modeling in StreetGS, which allows supervision signals from human regions
(e.g., colors, LiDAR depth) to incorrectly influence vehicle modeling. The issues StreetGS faces are
one of our motivations for modeling almost everything in a scene holistically, aiming to eliminate
erroneous supervision and unintended gradient propagation.

In addition, we show visualizations in Fig. 4 to assess model performance qualitatively. Although
PVG (Chen et al., 2023) performs well on the scene reconstruction task, it struggles with the
novel view synthesis task in highly dynamic scenes, resulting in blurry dynamic objects in novel
views (Fig. 4-(f)). HUGS (Zhou et al., 2024) (Fig. 4-(e)), StreetGS (Yan et al., 2024)(Fig. 4-(d))
and 3DGS (Kerbl et al., 2023) (Fig. 8-(h)) fail to recover the pedestrians because they are not
capable of modeling non-rigid objects. DeformableGS (Yang et al., 2023c) (Fig. 8-(g)) suffers
from extreme motion blur for outdoor dynamic scenes with rapid movements, despite achieving
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reasonable performance for indoor scenes and cases with small motion. EmerNeRF (Yang et al.,
2023a) reconstructs coarse structures of moving humans and vehicles to a certain level, but struggles
with fine-grained details(Fig. 4-(c)). In contrast to all these methods in comparison, our method
faithfully reconstructs fine details for any object in the scene, handling occlusion, deformation, and
extreme motion. We recommend readers to check our anonymous page for video comparisons of
these methods.

Geometry. In addition to appearance, we also investigate whether our method can reconstruct fine
geometry of urban scenes. We evaluate the Root Mean Squared Error (RMSE) and two-way Chamfer
Distances (CD) for LiDAR depth reconstruction on both training frames and novel frames. Details
about evaluation procedures are provided in the Appendix. Tab. 4 reports the results. Our method
outperforms others by a large margin. Fig. 5 illustrates the accurate reconstruction of dynamic actors
achieved by our method in comparison to other approaches.

(a) GT (b) Ours (c) StreetGS (e) 3DGS(d) DeformGS

Figure 5: Visualizations of Rendered LiDAR. Our method accurately reconstructs LiDAR data for
humans and vehicles compared to other approaches.

5.2 ABLATION STUDIES & APPLICATIONS

Table 2: Ablation on GT Boxes Refinement.

Full PSNR Human PSNR Vehicle PSNR
Recon. NVS Recon. NVS Recon. NVS

Complete Model 34.25 32.57 28.15 24.36 28.91 27.57
w/o Box Refine. 33.04 31.72 26.53 23.67 25.57 24.78

SMPL Modeling. SMPL mod-
eling is important to model the
local, continuous movements of
humans. We study its impact by
disabling the human pose trans-
formation enabled by SMPL and
report the results in Tab. 3 ((a) v.s.
(b)) and illustrate these effects in
Fig. 7-(B). Without template-based modeling, the reconstructed human renderings appear highly
blurred, particularly around the legs, thus failing to accurately reconstruct human body movements.
This contrasts sharply with the precise leg reconstruction observed in our default setting. Moreover,
SMPL modeling provides joint-level control, improving the controllability (Fig. 1-(c,3), (c,4)).

Human Body Pose Refinement. The human body poses extracted as described in (§ 4.2) exhibit
prediction errors and scale ambiguity, which subsequently lead to pose errors that degrade reconstruc-
tion quality, as shown in Fig. 6 (Noisy). We improve this by jointly optimizing the human poses and
Gaussians via the same reconstruction losses. Tab. 3-(a) v.s. (c) ablates this design choice, and Fig. 6
showcases the refined poses. These results verify the effectiveness of our refinement strategy.

Deformable Nodes. Deformable nodes are important for accurately reconstructing out-of-distribution
or template-less actors. Our approach addresses this challenge by learning a self-supervised deforma-
tion field that transforms Gaussians from their canonical space to the shape space. Tab. 3 ((a) v.s. (d))
proves the importance of this component. In Fig. 7-(A) shows that without deformable nodes, some
dynamic actors are either ignored or incorrectly blended into the background.

Boxes Refinement. In practice, we observe that the instance bounding boxes provided by the dataset
are imprecise. These noisy ground truth boxes can be harmful to rendering quality. To address this,
we jointly refine the bounding box parameters during training. Tab. 2 and Fig. 12 show the practical

Table 3: Ablation on Non-Rigid Modeling.

Full PSNR Human PSNR
Recon. NVS Recon. NVS

(a) Ours default 34.25 32.57 28.15 24.36
(b) w/o SMPL actors 32.80 31.76 24.71 23.18
(c) w/o Body pose refine 33.84 32.44 26.97 24.04
(d) w/o Deformed actors 33.64 32.17 25.26 22.41

Table 4: Evaluation of LiDAR Depth Accuracy.

Training Frames Novel Frames
Methods CD↓ RMSE↓ CD↓ RMSE↓
3DGS(Kerbl et al., 2023) 0.415 2.804 0.467 2.896
DeformableGS(Yang et al., 2023c) 0.384 2.965 0.383 2.990
StreetGS(Yan et al., 2024) 0.274 2.199 0.286 2.228
Ours 0.242 1.894 0.244 1.909
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Figure 6: Ablation of Human Body Pose Refinement.

Figure 7: Ablation of Human Modeling.

benefits of this simple yet effective step, which results in improved numeric metrics and reduced
blurriness of foreground objects.

Applications to Simulation. Thanks to the decomposition nature of OmniRe, each instance is
modeled separately. After joint training, we obtain reconstructed assets that can be flexibly edited in
terms of position and rotation. Beyond editing within a single scene, we can also transfer assets from
one scene to another, adding variety and complexity to the reconstructed environments. Fig. 1(c,left)
demonstrates a swap of the black vehicle originally in the scene (inset) with a reconstructed vehicle
from another scene; and (c,right) an insertion of a pedestrian from the scene in the inset to a new
scene. Additional car swap edits are shown in Fig. 11. Through explicit modeling of pedestrians
and other non-rigid individuals, we achieve the simulation of reenacted scenarios involving detailed
pedestrian-vehicle interaction. As demonstrated in Fig. 9, we simulate a moving vehicle stopping
at a crossing, waiting for a pedestrian who slowly crosses. The pedestrian is reconstructed from
another scene. This simulation of humans is extremely challenging for previous methods. The precise
control over the behaviors of vehicles and humans unlocks possibilities in modeling causality and designing
configurable actor behaviors, as demonstrated in CityLifeSim (Wang et al., 2022).

6 CONCLUSION

Our method, OmniRe, tackles comprehensive urban scene modeling using Gaussian Scene Graphs. It
achieves fast, high-quality reconstruction and rendering, suggesting promise for driving and robotics
simulation. We also present solutions for human modeling in complex environments. Future work
includes self-supervised learning, improved scene representations, and safety/privacy considerations.
To ensure reproducibility, we provide detailed implementation instructions and will release our code.

Broader impact. Our method aims to address a significant problem in autonomous driving—
simulation. This approach has the potential to enhance the development and testing of autonomous
vehicles, potentially leading to safer and more efficient AV systems. Simulation, in a safe and
controllable manner, remains an open and challenging research question.

Ethics&Privacy. Our work does not involve the collection or annotation of new data. We utilize
well-established public datasets that adhere to strict ethical guidelines. These datasets ensure that
sensitive information, including identifiable human features, is blurred or anonymized to protect
individual privacy. We are committed to ensuring that our method, as well as future applications, are
employed responsibly and ethically to maintain safety and preserve privacy.

Limitations. While enabling holistic scene modeling, OmniRe still has certain limitations. First, our
method does not explicitly model lighting effects, which may lead to visual harmony issues during
simulations, particularly when combining elements reconstructed under varying lighting conditions.
Addressing this non-trivial challenge requires dedicated efforts beyond the scope of our current work.
Further research into modeling light effects and enhancing simulation realism remains crucial for
achieving more convincing and harmonious results. Second, similar to other per-scene optimization
methods, OmniRe produces less satisfactory novel views when the camera deviates significantly
from the training trajectories. Future works to address this issue include incorporating data-driven
priors, such as image or video generative models, and optimizing camera poses jointly.
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Supplemental Material

A IMPLEMENTATION DETAILS

Initialization: For the background model, we refer to PVG (Chen et al., 2023), combining 6× 105

LiDAR points with 4× 105 random samples, which are divided into 2× 105 near samples uniformly
distributed by distance to the scene’s origin and 2× 105 far samples uniformly distributed by inverse
distance. To initialize the background, we filter out the LiDAR samples of dynamic objects. For rigid
nodes and non-rigid deformable nodes, we utilize their bounding boxes to accumulate the LiDAR
points, while for non-rigid SMPL nodes, we initialize the Gaussians on the template mesh in their
canonical space. To determine the initial color of Gaussians, we project LiDAR points onto the image
plane, whereas random samples are initialized with random colors. The initial human body pose
sequences of non-rigid SMPL Nodes are obtained through the process described in § 4.2.

Training: Our method trains for 30,000 iterations with all scene nodes optimized jointly. The
learning rate for Gaussian properties aligns with the default settings of 3DGS (Kerbl et al., 2023),
but varies slightly across different node types. Specifically, we set the learning rate for the rotation
of Gaussians to 5 × 10−5 for non-rigid SMPL nodes and 1 × 10−5 for other nodes. The degrees
of spherical harmonics are set to 3 for background nodes, rigid nodes, and non-rigid deformable
nodes, while it is set to 1 for non-rigid SMPL nodes. The learning rate for the rotation of instance
boxes is 1 × 10−5, decreasing exponentially to 5 × 10−6. The learning rate for the translation of
instance boxes is 5× 10−4, decreasing exponentially to 1× 10−4. The learning rate for human body
poses of non-rigid SMPL nodes is 5× 10−5, decreasing exponentially to 1× 10−5. For the Gaussian
densification strategy, we utilize the absolute gradient of Gaussians introduced in Ye et al. (2024) to
control memory usage. We set the densification threshold of position gradient to 3× 10−4. This use
of absolute gradient has a minimal impact on performance, as discussed in detail in Appendix D.4.
The densification threshold for scaling is 3× 10−3. Our method runs on a single NVIDIA RTX 4090
GPU, with training for each scene taking about 1 hour. Training time varies with different training
settings.

Optimization: We utilize the loss function introduced in Eq (7) to jointly optimize all learnable
parameters. The image loss is computed as:

Limage = (1− λr)L1 + λrLSSIM (8)

due to sparse temporal-spatial observation of the dynamic part, its supervision signal is insufficient.
To address this, we apply a higher image loss weight to the dynamic regions identified by the rendered
dynamic mask. This weight is set to 5. The depth map loss is computed as:

Ldepth =
1

hw

∑∥∥∥Ds − D̂
∥∥∥
1

(9)

where Ds is the inverse of the sparse depth map. We project LiDAR points onto the image plane to
generate the sparse LiDAR map, and D̂ is the inverse of the predicted depth map.

The mask loss Lopacity is computed as:

Lopacity = − 1

hw

∑
OG · logOG − 1

hw

∑
Msky · log(1−OG) (10)

where Msky is the sky mask, and OG is the rendered opacity map.

In addition to the reconstruction losses, we introduce various regularization terms for different
Gaussian representations to improve quality. Among these, an important regularization term is Lpose,
designed to ensure smooth human body poses θ(t). This term is defined as:

Lpose =
1

2
∥θ(t− δ) + θ(t+ δ)− 2θ(t)∥1 (11)

where δ is a randomly chosen integer from {1, 2, 3, 4, 5}. We set the weight of the SSIM loss, λr,
to 0.2, the depth loss, λdepth, to 0.1, the opacity loss, λopacity, to 0.05, and the pose smoothness loss,
λpose, to 0.01.
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Figure 8: Additional Qualitative Comparison of Novel View Synthesis.

Figure 9: A sample of human-vehicle interaction simulation in driving scenarios. For video demos,
we refer readers to visit our anonymous page.

B BASELINES

• EmerNeRF (Yang et al., 2023a) is a state-of-the-art NeRF-Based method for dynamic driving scene
reconstruction. EmerNeRF uses a static field represented by a 3D Hash-Grid to model the static parts
of the scene and a dynamic field with a 4D Hash-Grid to model the dynamic parts. Additionally, it
employs a flow field to aggregate the dynamic features. This self-supervised decomposition approach
yields good results on dynamic scene modeling and static-dynamic decomposition, with the scene
flow emerging in the flow field.

• DeformableGS (Yang et al., 2023c) defines a canonical space to represent scenes with Gaussians.
To model dynamics, it uses a deformation network to predict offsets of Gaussian properties. These
offsets then deform the Gaussians to fit the scene dynamics. DeformableGS works well in synthetic
and indoor datasets. We compare it to our method to evaluate its ability to model challenging out-door
dynamic scenes.

• StreetGS (Yan et al., 2024) is a dynamic scene modeling method based on Gaussian Splatting for
driving scenes. StreetGS models the components of dynamic scenes separately: the static background
and the foreground vehicles. It utilizes boxes predicted by an off-the-shelf model to warp the
Gaussians of foreground vehicles and refine them during training. StreetGS yields good results on
driving scenes but ignores other non-rigid dynamic objects in the scene.

• HUGS (Zhou et al., 2024) is a GS-based method for driving scene modeling and understanding. It
not only models the appearance of a scene but also distills 2D flow maps and semantic maps into the
3D scene to enable holistic urban scene understanding. Similar to StreetGaussian (Yan et al., 2024),
HUGS uses object boxes for compositing dynamic elements. HUGS achieves good performance in
both scene modeling and semantic modeling. However, it primarily focuses on rigid backgrounds
and objects, without addressing non-rigid dynamics.

• PVG (Chen et al., 2023) introduces Periodic Vibration Gaussians that vibrate over time with
optimizable vibration directions, life span, and life peak (the moment of highest opacity) to represent
dynamic scenes. These Gaussians are optimized using a self-supervised approach. The method
achieves static-dynamic decomposition by categorizing Gaussians based on their life spans. We
compare PVG with our method to evaluate our capability in modeling highly complex dynamic
scenes.

Among all the compared methods, HUGS (Zhou et al., 2024) and StreetGaussians (Yan et al., 2024)
require bounding boxes of foreground objects. PVG (Chen et al., 2023), StreetGaussians (Yan et al.,
2024), and EmerNeRF (Yang et al., 2023a) utilize LiDAR data for depth supervision. While the
original implementations of 3DGS (Kerbl et al., 2023) and DeformableGS (Yang et al., 2023c) do
not include depth supervision, we added LiDAR depth supervision in experiments to ensure a fair
comparison.
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C EVALUATION

Appearance. For the Novel View Synthesis task, we select every 10th frame from the original
sequence as the test set. We use PSNR and SSIM to evaluate the quality of the rendered images.
Since we focus on dynamic scenes, we also compute the PSNR and SSIM for regions with vehicles
and humans. To identify regions of vehicles and humans, we use Segformer (Xie et al., 2021) to
obtain semantic masks. We further identify the movable dynamic parts using projections of moving
object bounding boxes, utilizing their velocity information. One example of dynamic masks cam bee
seen in Fig. 10.

Figure 10: An example of the dynamic masks for computing dynamic region metrics.

Geometry. Our method uses LiDAR data to initialize Gaussians and supervise scene depth by
comparing the rendered depth map with the sparse LiDAR depth map. Post-training, Gaussians
typically deviate from their initial state through densification or optimization, Therefore, comparing
the LiDAR depth reconstruction is still a valid comparison. We follow the depth evaluation method
of StreetSurf (Guo et al., 2023): render a depth map and match depth pixels to LiDAR rays. For
Chamfer Distance, re-project the predicted depth to 3D using the LiDAR ray direction and origin.
For RMSE, compare the GT and predicted ranges for LiDAR rays.

D ADDITIONAL RESULTS

D.1 QUALITATIVE COMPARISON

We refer reviewers to our anonymous page for video comparisons of the methods.

D.2 QUANTITATIVE COMPARISON

To further validate our method’s effectiveness, we tested our method against StreetGS (Yan et al.,
2024) and EmerNeRF (Yang et al., 2023a) on 32 dynamic scenes from the Waymo dataset, with
results reported in Tab. 5.

Table 5: We expanded our evaluation to 32 dynamic scenes from the Waymo dataset, comparing our
method with StreetGS (Yan et al., 2024) and EmerNeRF (Yang et al., 2023a). The segment IDs are
listed in Tab. 6.

Scene Reconstruction Novel View Synthesis
Full Image Human Vehicle Full Image Human Vehicle

Methods PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
EmerNeRF 31.29 0.877 23.14 0.581 24.47 0.709 29.04 0.851 20.76 0.467 21.80 0.582
StreetGS 29.93 0.931 19.63 0.524 27.48 0.871 28.73 0.910 18.77 0.470 26.18 0.825
Ours 33.73 0.946 28.28 0.855 28.02 0.880 31.71 0.924 24.57 0.730 26.55 0.833

Table 6: Segment IDs of 32 dynamic scenes of Waymo Dataset used in the test for Tab. 5.

seg104554... seg125050... seg169514... seg584622... seg776165... seg138251... seg448767... seg965324...

seg119252... seg122514... seg132544... seg134024... seg166004... seg173881... seg215148... seg391164...

seg454855... seg560223... seg571325... seg587066... seg842457... seg952165... seg952995... seg112365...

seg152664... seg411445... seg123218... seg102252... seg148106... seg265611... seg179934... seg104859...
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D.3 OMNIRE ON CHALLENGING SCENES

To demonstrate the effectiveness and robustness of OmniRe, we tested our method alongside StreetGS (Yan
et al., 2024), PVG (Chen et al., 2023), and DeformableGS (Yang et al., 2023c) on various challenging scenes.
The results show that OmniRe maintains high reconstruction quality under most challenging conditions.
This section provides the quantitative performance of the compared methods. We encourage reviewers to
visit our anonymous page for visualizations for better understanding.

Super Crowded Scenes. Reconstructing scenes with extreme dynamic occlusions poses significant chal-
lenges. OmniRe is specifically designed to handle these scenes and performs well even in highly occluded
scenes. We conducted experiments on three extremely crowded scenes from Waymo (seg112520. . . ,
seg104859. . . , seg152664. . . ), including situations with a large crowd of people simultaneously crossing a
street. Results in Tab. 7 show that OmniRe demonstrates strong performance in these scenes.

Table 7: Comparison on super crowded scenes.

Scene Reconstruction Novel View Synthesis
Full Image Human Vehicle Full Image Human Vehicle

Methods PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DeformGS 26.69 0.861 19.48 0.504 17.49 0.455 25.66 0.839 18.71 0.448 17.12 0.414
PVG 29.11 0.865 24.56 0.686 21.29 0.644 27.21 0.830 22.24 0.555 19.63 0.528
StreetGS 26.81 0.865 19.31 0.516 24.79 0.787 25.67 0.841 18.53 0.459 23.40 0.723
Ours 31.25 0.900 27.50 0.809 25.91 0.812 28.91 0.866 23.78 0.675 24.46 0.750

Nighttime Scenes. We tested three nighttime scenes (seg129008. . . , seg102261. . . , seg128560. . . ) from
Waymo. Results in Tab. 8 indicate that OmniRe outperforms the compared methods, achieving superior
reconstruction quality under low-light conditions.

Table 8: Comparison on night time scenes.

Scene Reconstruction Novel View Synthesis
Full Image Human Vehicle Full Image Human Vehicle

Methods PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DeformGS 30.06 0.767 27.40 0.665 20.62 0.612 28.88 0.740 22.30 0.530 19.20 0.535
PVG 30.55 0.768 30.74 0.777 22.77 0.713 29.32 0.740 25.22 0.634 20.90 0.611
StreetGS 30.60 0.775 27.54 0.667 25.68 0.772 29.38 0.741 21.88 0.523 24.61 0.729
Ours 31.14 0.778 31.06 0.790 25.87 0.774 29.79 0.744 25.71 0.689 24.29 0.724

Adverse Weather Conditions. To evaluate performance under adverse weather conditions, we tested
seven scenes with varying weather types: a. rainy (seg113555. . . , seg109277. . . , seg141339. . . ) b. foggy
(seg161022. . . , seg172163. . . ) c. cloudy (seg144275. . . , seg157956. . . ). OmniRe handled these challenging
conditions robustly, maintaining high reconstruction fidelity across all weather conditions (Tab. 9).

Table 9: Comparison on adverse weather scenes.

Scene Reconstruction Novel View Synthesis
Full Image Human Vehicle Full Image Human Vehicle

Methods PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DeformGS 32.92 0.933 20.06 0.497 23.12 0.658 31.43 0.916 19.65 0.478 22.06 0.598
PVG 32.75 0.927 27.75 0.785 27.20 0.795 31.12 0.907 25.02 0.656 24.44 0.677
StreetGS 33.49 0.933 18.26 0.424 32.28 0.916 32.05 0.918 18.56 0.434 29.60 0.841
Ours 34.00 0.935 30.12 0.857 32.55 0.919 32.58 0.920 26.75 0.763 29.82 0.844

High-Speed Scenes. For high-speed scenes such as highways, we tested three highway scenes from the
Waymo dataset (seg109239. . . , seg113924. . . , seg118396). Results are provided in Tab. 10. As highways
typically lack non-rigid objects (e.g., humans), human metrics were not applicable. Since non-rigid
modeling was not required in these scenes, OmniRe and StreetGS demonstrated comparable performance.

Table 10: Comparison on high speed scenes.

Scene Reconstruction Novel View Synthesis
Full Image Human Vehicle Full Image Human Vehicle

Methods PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DeformGS 26.95 0.855 - - 17.49 0.482 25.56 0.837 - - 16.07 0.407
PVG 28.28 0.861 - - 21.14 0.617 25.79 0.825 - - 17.65 0.470
StreetGS 30.89 0.902 - - 29.45 0.883 28.05 0.863 - - 24.88 0.766
Ours 30.85 0.902 - - 29.51 0.882 28.01 0.864 - - 24.52 0.760
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D.4 ABLATION STUDIES

Absolute Gradient. In our implementation, we applied AbsGrad for 3DGS densification across
all reproduced methods (StreetGS, DeformableGS, and 3DGS) as a standard practice. To quantify
the impact of AbsGrad, we conducted a comparative study with and without its application. The
results of this analysis are presented in Tab. 11. We see that disabling AbsGrad leads to a marginal
performance decrease (about 0.1 PSNR) for all methods, proving that AbsGrad is not the key factor
contributing to our performance advantage over others. Note that DeformableGS fails to run due to
out-of-memory issues when AbsGrad was disabled. Based on these findings, we recommend the
incorporation of AbsGrad as a standard practice in 3DGS densification and related methods.

Table 11: Ablation on AbsGrad. By default, we apply AbsGrad to all GS-based approaches
reproduced by us. We now disable it to analyze its impact. We mark methods with AbsGrad enabled
with grey background. We observe that 1) DeformableGS fails under w/o. AbsGrad setting because
of out of memory issue; 2) enabling AbsGrad is a good practice ( +0.1 PNSR for all methods) but not
an enabling factor for our performance lead.

Scene Reconstruction Novel View Synthesis
Full Image Human Vehicle Full Image Human Vehicle

Methods PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
EmerNeRF 31.93 0.902 22.88 0.578 24.65 0.723 29.67 0.883 20.32 0.454 22.07 0.609
3DGS* 26.00 0.912 16.88 0.414 16.18 0.425 25.57 0.906 16.62 0.387 16.00 0.407
3DGS 25.84 0.910 16.69 0.405 16.02 0.415 25.61 0.905 16.52 0.383 15.97 0.405
DeformGS* 28.40 0.929 17.80 0.460 19.53 0.570 27.72 0.922 17.30 0.426 18.91 0.530
DeformGS – – – – – – – – – – – –
PVG 32.37 0.937 24.06 0.703 25.02 0.787 30.19 0.919 21.30 0.567 22.28 0.679
HUGS 28.26 0.923 16.23 0.404 24.31 0.794 27.65 0.914 15.99 0.378 23.27 0.748
StreetGS* 29.08 0.936 16.83 0.420 27.73 0.880 28.54 0.928 16.55 0.393 26.71 0.846
StreetGS 28.89 0.932 16.70 0.409 28.07 0.878 28.46 0.926 16.41 0.387 26.86 0.845
Ours* 34.25 0.954 28.15 0.845 28.91 0.892 32.57 0.942 24.36 0.727 27.57 0.858
Ours 34.11 0.953 28.00 0.842 28.83 0.890 32.46 0.941 24.28 0.726 27.55 0.857

Table 12: Segment IDs of 8 dynamic scenes of Waymo Dataset used in the test for Tab. 1. and Tab. 11

seg104554... seg125050... seg169514... seg584622... seg776165... seg138251... seg448767... seg965324...

Additional Results The Tab. 14 is the full table of Tab. 3 that includes evaluation on SSIM. The
Tab. 13 is the full table of Tab. 2 that includes evaluation on SSIM.

Table 13: Ablation on GT Boxes Refinement.

Scene Reconstruction Novel View Synthesis
Full Image Human Vehicle Full Image Human Vehicle

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
Complete Model 34.25 0.954 28.15 0.845 28.91 0.892 32.57 0.942 24.36 0.727 27.57 0.858
w/o Box Refine. 33.04 0.947 26.53 0.790 25.57 0.813 31.72 0.936 23.67 0.686 24.78 0.785

E OMNIRE IN PRACTICE

Bounding Boxes. Similar to other scene-graph-based approaches (Ost et al., 2021; Yang et al.,
2023b; Tonderski et al., 2024; Fischer et al., 2024b; Zhou et al., 2023; 2024; Yan et al., 2024), we
utilize bounding boxes for driving scene reconstruction, as they are widely used for producing superior
reconstruction results compared to methods that do not employ them. Additionally, bounding boxes
offer significant controllability. It allows precise manipulation of both rigid objects like vehicles and
non-rigid objects such as individual human body movements—an ability lacking in self-supervised
methods like EmerNeRF (Yang et al., 2023a) and PVG (Chen et al., 2023) that do not use instance
information. This level of controllability is crucial for tasks like scene simulation, which require
the ability to manage the movement of all participating agents. Lastly, bounding box annotation is a
standard and generally straightforward process in the autonomous driving field, with most popular
datasets already providing these annotations via established auto-labeling tools, thereby minimizing
manual effort and making the resource both efficient and accessible. For real-world driving logs,
these auto-labeling tools can generate precise bounding boxes at little cost.
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Table 14: Ablation on Non-Rigid Modeling.

Scene Reconstruction Novel View Synthesis
Full Image Human Full Image Human

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
(a) Ours default 34.25 0.954 28.15 0.845 32.57 0.942 24.36 0.727
(b) w/o SMPL actors 32.80 0.949 24.71 0.770 31.76 0.939 23.18 0.694
(c) w/o Body Pose Refine. 33.84 0.952 26.97 0.815 32.44 0.941 24.04 0.712
(d) w/o Deformed actors 33.64 0.953 25.26 0.766 32.17 0.941 22.41 0.653

Figure 11: Our method allows for flexible editing of scene assets.

How to Determine Gaussian Representations for Humans? We categorize pedestrians into
two groups for modeling. Near-range pedestrians, detected by our human pose processing module
introduced in § 4.2, are modeled using SMPL nodes. Far-range pedestrians, typically undetected due
to distance, are modeled using deformable nodes. This approach naturally distinguishes between near
and far-range pedestrians based on human detection capabilities.

Other individuals, such as those using wheelchairs, skateboards, or bicycles, are often labeled as
“cyclists” in the datasets we study. However, these labels may be specific to the dataset used, and in
some cases, the annotations might not be accurate. For instance, in the Waymo Dataset, a person on a
motorcycle may be labeled as a “vehicle”. This reliance on dataset-specific labels could potentially
limit the generalization of our method to other scenarios with imperfect labels.

To address this issue, we conducted preliminary experiments using GPT-4o (Achiam et al., 2023) to
classify individuals (cropped by bounding boxes) into two categories: pedestrians and humans using
personal transportation devices (e.g., wheelchairs, bicycles, motorcycles). Testing on 60 individuals
(30 from each category), GPT-4o (Achiam et al., 2023) achieved 100% accuracy. This suggests
that accurate labels can be obtained relatively easily, thanks to the development of vision-language
models.

Figure 12: Ablation of Boxes Refinement.
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