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Abstract

Few-shot learning is a challenging task that001
requires language models to generalize from002
limited examples. Large language models003
like GPT-3 and PaLM have made impressive004
progress in this area, but they still face diffi-005
culties in reasoning tasks such as GSM8K, a006
benchmark for arithmetic problems. To im-007
prove their reasoning skills, previous work has008
proposed to guide the language model with009
prompts that elicit a series of reasoning steps010
before giving the final answer, achieving a sig-011
nificant improvement on GSM8K from 17.9%012
to 58.1% in problem-solving rate. In this pa-013
per, we present DIVERSE (Diverse Verifier on014
Reasoning Step), a novel approach that further015
enhances the reasoning capability of language016
models. DIVERSE has three main components:017
first, it generates diverse prompts to explore dif-018
ferent reasoning paths for the same question;019
second, it uses a verifier to filter out incorrect020
answers based on a weighted voting scheme;021
and third, it verifies each reasoning step indi-022
vidually instead of the whole chain. We eval-023
uate DIVERSE on the latest language model024
code-davinci-002 and show that it achieves new025
state-of-the-art results on six of eight reasoning026
benchmarks (e.g., GSM8K 74.4% → 83.2%).027

1 Introduction028

Large pretrained language models (PLMs) have029

shown remarkable performance on various natural030

language processing tasks, either by few-shot learn-031

ing with prompts (Radford et al., 2019; Le Scao032

and Rush, 2021; Jin et al., 2022) or by fine-tuning033

(Houlsby et al., 2019; Hu et al., 2021; He et al.,034

2022). However, despite the increasing size and035

capacity of PLMs such as GPT-3 with 175B param-036

eters (Brown et al., 2020) and PaLM with 540B037

parameters (Chowdhery et al., 2022), their reason-038

ing abilities are still limited and often require mul-039

tiple steps to produce correct answers, especially040

for tasks involving arithmetic, commonsense, or041

Figure 1: Our proposed method, DIVERSE (Diverse
Verifier on Reasoning Step).

inductive reasoning (Cobbe et al., 2021). 042

Recent works (Wei et al., 2022; Zhou et al., 2022; 043

Kojima et al., 2022; Lampinen et al., 2022) have 044

demonstrated that PLMs possess some latent rea- 045

soning capabilities, but they need carefully de- 046

signed prompts to activate them. For instance, Wei 047

et al. (2022) proposed chain-of-thought reasoning, 048

which inserts multi-step reasoning paths before gen- 049

erating the final answers, and achieved significant 050

improvement on the GSM8K arithmetic benchmark 051

(Cobbe et al., 2021). Wang et al. (2022c) further 052

introduced a voting mechanism to select the most 053

consistent answer among different reasoning paths, 054

and achieved state-of-the-art results on several rea- 055

soning benchmarks using the PaLM model (Chowd- 056

hery et al., 2022). Building on these successes, this 057

paper continues this line of research and advances 058

the reasoning capabilities of PLMs in three aspects, 059

as illustrated in Figure 1. 060

First, we propose to increase the diversity of rea- 061

soning paths by not only sampling from a single 062

prompt, but also varying the prompt itself. We hy- 063

pothesize that different prompts can elicit different 064

ways of thinking, while the correct answer should 065

be robust to these variations. Second, we propose 066

to use a verifier to score the quality of each rea- 067

soning path and guide the voting mechanism. We 068

argue that not all reasoning paths are equally good 069

or reliable, and some may contain errors or incon- 070

sistencies that can be detected by the verifier. Third, 071
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Chain-Of-Thought Reasoning for GSM8K Math Word Problem

Q: If there are 3 cars in the parking lot and 2 more
cars arrive, how many cars are in the parking lot?
A: There are 3 cars in the parking lot already. 2 more
arrive. Now there are 3 + 2 = 5 cars. The answer is 5.
...
Q: Janet’s ducks lay 16 eggs per day. She eats three
for breakfast every morning and bakes muffins for her
friends every day with four. She sells the remainder
for $2 per egg. How much does she make every day?
A: She has 16 - 3 - 4 = 9 eggs left. So she makes
2 ∗ 9 =18 per day. The answer is 18.

Figure 2: Chain-of-thought reasoning for GSM8K math
word problem. The prompt is colored black and the rea-
soning path produced by the language model is colored
teal. This reasoning path contains two reasoning steps.

we propose to assign a fine-grained label to each072

step of the reasoning path and use a step-aware073

verifier to attribute the correctness or wrongness of074

the final answer to each step. We conjecture that075

some steps may be correct but followed by wrong076

steps or vice versa, and identifying these cases can077

help diagnose and improve the reasoning process.078

We name our method as DIVERSE (diverse ver-079

ifier on reasoning step) and evaluate it on eight080

reasoning benchmarks that require different types081

of reasoning skills. We use three OpenAI PLMs082

(davinci, text-davinci-002, and code-davinci-002)083

and compare our results with recent state-of-the-art084

methods. We find that DIVERSE can consistently085

and significantly improve the performance of PLMs086

on these tasks, and achieve new state-of-the-art re-087

sults on six of them1: GSM8K (74.4% → 83.2%),088

AsDiv (81.9% → 88.7%), MultiArith (99.3% →089

99.8%), SVAMP(86.6% → 87.0%), SingleEq090

(79.5% → 94.9%), and CLUTRR (67.0% →091

95.9%). We will make our data publicly available092

after the review period.093

2 Diverse Verifier on Reasoning Step094

Figure 1 shows the overview of DIVERSE. The095

key insights are three-fold: (1) leveraging diverse096

prompts to induce more diverse reasoning paths097

from the language models (Section 2.1); (2) train-098

ing a voting verifier to better derive the final an-099

swers from multiple reasoning paths (Section 2.2);100

(3) leveraging step correctness to further boost the101

voting verifier (Section 2.3).102

1Most of the previous SOTA results were achieved by self-
consistency on PaLM-540B(Chowdhery et al., 2022).

2.1 Diverse Prompts 103

To reason effectively, it is beneficial to explore 104

diverse reasoning paths, following the idea that 105

“All Roads lead to Rome”. Wang et al. (2022c) 106

proposed to generate various reasoning paths from 107

language models by sampling decoding. However, 108

their method relies on a fixed set of exemplars for 109

all prompts, which may introduce bias and limit 110

the diversity of the generated reasoning paths. To 111

address this issue, we randomly select M1 different 112

prompts for each question, and then sample M2 113

reasoning paths for each prompt using sampling 114

decoding. This way, we obtain M = M1 × M2 115

diverse reasoning paths for each question.2 116

2.2 Voting Verifier 117

Verifier. The verifier takes a question and a candi- 118

date reasoning path as input, and outputs the prob- 119

ability that the reasoning path leads to the correct 120

answer. We use deberta-v3-large (He et al., 2021) 121

as the backbone model, with a small scalar head 122

that outputs predictions on the [CLS] token. 123

Training the verifier. For each training question, 124

we generate multiple candidate reasoning paths 125

using chain-of-thought reasoning. We regard the 126

reasoning paths that match the ground truth final 127

answer as positive, and the others as negative. 128

Voting Verifier. Wang et al. (2022c) use major- 129

ity voting to aggregate the predictions of different 130

reasoning paths. This method may fail when the 131

majority of the reasoning paths are misled, while 132

the minority of the reasoning paths are reasonable. 133

We propose voting verifier, which leverages both 134

voting and verifier: 135

ŷ = argmax
y

M∑
i=1

1yi=y · f(xi, zi,yi), (1) 136

where 1yi=y is an indicator function that returns 1 137

(or 0) if yi = y (or not), and f(·) is the probability 138

produced by the verifier. 139

2.3 Step-aware Voting Verifier 140

Each reasoning path consists of several steps. We 141

hypothesize that not all the steps in an incorrect 142

reasoning path are equally wrong, and some steps 143

may still be useful for reasoning. To exploit this, 144

2Our main experiments use M1 = 5 and M2 = 20.

2



Figure 3: How step-level labels are extracted. This
figure shows four reasoning paths for a math word prob-
lem: the first two are positive and the bottom two are
negative. The path 7 → 9 → 18 means that the first step
calculates 7, the second step calculates 9, and the third
step calculates the final answer 18. For the last path, the
third step (which calculates 8) has never occurred in any
positive reasoning paths, thus we regard this step and
all steps after it as negative steps.

we extend the voting verifier to a step-aware voting145

verifier by introducing an extended loss function:146

L = L0 + α · L1,

L1 =

|D̂|∑
i=1

|Si|∑
j=1

BCE(labeli,j , f ′(inputi, j)).
(2)147

α is a hyperparameter to balance the original148

loss L0 and the step-level auxiliary loss L1;149

Si,1, Si,2, ..., Si,|Si| are the steps in zi; labeli,j in-150

dicates whether Si,j is correct or not; f ′(inputi, j)151

represents the probability of the positive label for152

Si,j .3153

To obtain the step-level labels (i.e., labeli,j) for154

negative training data with wrong answers, we de-155

sign an algorithm that compares intermediate re-156

sults among steps in positive/negative reasoning157

paths. Figure 3 illustrates this algorithm. This158

algorithm can not only work on math word prob-159

lems, but also generalize to other reasoning tasks:160

we use an off-the-shelf natural language inference161

model, roberta-large-mnli (Liu et al., 2019), to162

check whether two reasoning steps are semanti-163

cally equivalent or not. Given a reasoning step, if164

we cannot find any semantically equivalent step in165

the positive reasoning paths, we label it and all the166

subsequent steps as negative steps.167

3Specifically, f ′(inputi, j) is predicted from the hidden
state of the last token of Si,j in DEBERTA-V3-LARGE, similar
to token classification tasks.

3 Experimental Setup 168

3.1 Reasoning Tasks 169

Arithmetic Reasoning. Following Wang et al. 170

(2022c), we use AsDiv (Miao et al., 2020), Sin- 171

gleEq (Koncel-Kedziorski et al., 2015), MultiArith 172

(Roy and Roth, 2015), SVAMP (Patel et al., 2021), 173

and GSM8K (Cobbe et al., 2021). 174

Commonsense Reasoning. Following Wang 175

et al. (2022c), we use CommonsenseQA (Talmor 176

et al., 2019) and StrategyQA (Geva et al., 2021). 177

Inductive Reasoning. We use CLUTRR (Sinha 178

et al., 2019), a diagnostic benchmark for induc- 179

tive reasoning, requiring inferring kinship relations 180

between characters in short stories. 181

3.2 Details 182

Language Models. We use three OpenAI lan- 183

guage models: davinci, text-davinci-002 and code- 184

davinci-002. We use the default parameters except 185

a temperature of 0.5 in sampling. 186

Exemplars. For arithmetic/commonsense/induc- 187

tive reasoning, each prompt contains 5/7/7 exem- 188

plars. For DIVERSE, each question has 5 differ- 189

ent prompts, and 20 reasoning paths are sampled 190

from the language model for each prompt. For 191

arithmetic reasoning, the exemplars are randomly 192

sampled from the training dataset of GSM8K; for 193

CLUTRR, the exemplars are sampled from its train- 194

ing dataset, with reasoning paths synthesized by 195

handcraft rules (detailed settings for CLUTRR are 196

listed in Appendix D); for StrategyQA and Com- 197

monsenseQA, their original datasets do not contain 198

enough exemplars with well-annotated reasoning 199

paths, so we construct 1, 000 pseudo exemplars by 200

“self-teaching” (the approach and the noise issue are 201

discussed in Appendix B) from “seed” exemplars 202

provided by Wei et al. (2022). 203

Training Datasets. For each task, we sample 204

1, 000 ⟨question, answer⟩ pairs from the training 205

dataset to train the verifier. 206

Verifier. We fine-tune deberta-v3-large (He et al., 207

2021) with learning rate 1 × 10−5 and batch size 208

128. For the step-aware verifier, we select the best 209

α among 0.0/0.1/0.2/0.3. 210

4 Main Results 211

Table 1 shows the overall experimental results. We 212

mainly compare DIVERSE with two baselines: (1) 213
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Method GSM8K AsDiv MultiArith SVAMP SingleEq CommonsenseQA StrategyQA CLUTRR
Previous SOTA (Fine-tuning) 57a 75.3b 60.5c 57.4d 32.5e 91.2f 73.9g 67.0 h

9–12 year olds (Cobbe et al., 2021) 60 - - - - - - -
LaMDA 137B:
Greedy Decode 17.1 49.0 51.8 38.9 56.6 57.9 65.4 -
Self-Consistency 27.7 58.2 75.7 53.3 - 63.1 67.8 -
PaLM 540B:
Greedy Decode 56.5 74.0 94.7 79.0 79.5 79.0 75.3 -
Self-Consistency 74.4 81.9 99.3 86.6 - 80.7 81.6 -

GPT-3 davinci (175B):
Greedy Decode 8.7 31.4 31.4 21.2 38.2 48.2 59.2 33.6
Self-Consistency 18.9 52.8 68.6 44.6 59.6 57.4 65.6 42.5
DIVERSE 30.9 (+12.0) 57.6 (+4.8) 87.6 (+19.0) 46.9 (+2.3) 65.1 (+5.5) 75.0 (+17.6) 66.3 (+0.7) 92.5 (+50.0)
text-davinci-002:
Greedy Decode 37.1 60.8 70.7 60.0 73.3 65.5 57.8 18.4
Self-Consistency 58.2 76.9 88.4 78.2 87.2 72.9 69.8 15.8
DIVERSE 70.2 (+12.0) 83.5 (+6.6) 96.4 (+8.0) 82.7 (+4.5) 86.5 (-0.7) 79.2 (+6.3) 74.8 (+5.0) 68.5 (+52.7)
code-davinci-002:
Greedy Decode 55.3 75.5 88.8 70.5 87.5 73.4 72.0 32.9
Self-Consistency 76.7 86.2 98.6 85.8 93.7 77.3 77.6 35.6
DIVERSE 82.3 (+5.6) 88.7 (+1.5) 99.8 (+1.2) 87.0 (+1.2) 94.9 (+1.2) 79.9 (+2.6) 78.6 (+1.0) 95.9 (+60.1)

Table 1: The comparison of DIVERSE, Greedy Decode and Self-Consistency. The previous SOTA results (fine-tuned
on non-gigantic pretrained transformers) are: a: Cobbe et al. (2021), b: Miao et al. (2020), c: Roy and Roth (2015),
d: Pi et al. (2022), e: Hu et al. (2019a), f : Xu et al. (2021), g: Chowdhery et al. (2022), h: Sinha et al. (2019). The
parameter number of either text-davinci-002 or code-davinci-002 is hidden to us.

Question Self-Consistency DIVERSE

[GSM8K] Mark decides to buy packs
of old magic cards and open them to
sell. He buys 3 packs for $1800 each.
He gets 1 card that is worth $4000
and another card worth $1000. There
are 30 more cards worth an average
of $50 each. How much money profit
did he make?

Mark bought 3 packs for $1800 each for a total of
$1800 * 3 = 5400 (68.1%) . He got 1 card worth
$4000 and another card worth $1000 for a total of
$4000 + $1000 = $5000 (72.1%) . There were 30
more cards worth an average of $50 each for a total
of $50 * 30 = 1500 (63.7%) . Mark made a profit

of $5000 + $1500 = 6500 (40.5%) . The answer is
6500.
Answer: 6500 (Wrong) Score: 62.3%

The cheaper cards are worth a total of 30 * 50 =
1500 (84.4%) . So all the cards together are worth

1500 + 4000 + 1000 = 6500 (83.3%) . The cost

for the cards was 1800 * 3 = 5400 (80.1%) . So

he made a profit of 6500 - 5400 = 1100 (70.0%) .
The answer is 1100.
Answer: 1100 (Correct) Score: 91.2%

Table 2: A GSM8K example (code-davinci-002) with step-level scores given by the step-aware verifier. The scores
can not only improve the performance but also help the understanding of where the reasoning paths start to be
incorrect.

greedily decoding a single reasoning path (Wei214

et al., 2022), referred to as Greedy Decode; (2)215

sampling 100 reasoning paths, then select the final216

answer via majority voting (Wang et al., 2022c),217

referred to as Self-Consistency.218

4.1 Effectiveness219

Experimental results clearly demonstrate that DI-220

VERSE can bring significant and consistent im-221

provements over recent strong baselines. The im-222

provements are across different models (davinci,223

text-davinci-002 and code-davinci-002) as well as224

different reasoning skills (eight tasks in three rea-225

soning skills). Taking GSM8K as an example, com-226

pared to Greedy Decoding and Self-Consistency,227

DIVERSE brings improvements of 22.2%/12.0%228

on davinci, 33.1%/12.0% on text-davinci-002, and229

27.0%/5.6% on code-davinci-002. Compared to230

Self-Consistency, DIVERSE achieves average im-231

provements of 5.6%/5.1%/54.3% on the three rea-232

soning skills, respectively.233

4.2 Comparing to Previous SOTAs 234

In Table 1, we also compare DIVERSE with: (1) 235

previous SOTA results based on fine-tuning; (2) 236

recent SOTA results (Wei et al., 2022) based on 237

PaLM (Chowdhery et al., 2022), a gigantic lan- 238

guage model with 540 billion parameters.4 239

On all the five arithmetic reasoning tasks, DI- 240

VERSE (with code-davinci-002) achieves new 241

SOTA results, with an average improvement of 242

6.2%. On the two commonsense reasoning tasks, 243

the performance of DIVERSE is slightly lower 244

(−1.9%) than that of PaLM-based self-consistency. 245

We speculate that the reason might be: these two 246

commonsense reasoning tasks are multiple-choice 247

tasks rather than open-ended generation tasks, re- 248

sulting in more false-positive exemplars in the 249

pseudo exemplar base (Details will be discussed in 250

Section B.2). Regarding inductive reasoning, DI- 251

4DIVERSE can also be applied to PaLM, but PaLM is not
publicly available.
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Method GSM8K CQA CLUTRR

davinci:
M1 = 1,M2 = 100 18.9 57.4 42.5
M1 = 5,M2 = 20 21.3 57.5 45.9
text-davinci-002:
M1 = 1,M2 = 100 58.2 72.9 15.8
M1 = 5,M2 = 20 61.3 77.3 21.2
code-davinci-002:
M1 = 1,M2 = 100 76.7 77.3 35.6
M1 = 5,M2 = 20 80.0 78.8 43.8

Table 3: The effectiveness of diverse prompts (⟨5, 20⟩)
compared to pure sampling decoding (Wang et al.,
2022c), under majority voting.

⟨M1,M2⟩ GSM8K

M1 = 1,M2 = 100 76.7
M1 = 5,M2 = 20 80.0
M1 = 10,M2 = 10 79.8
M1 = 100,M2 = 1 73.0

Table 4: GSM8K majority voting results for different
⟨M1,M2⟩ settings on code-davinci-002.

VERSE achieves a surprisingly good performance252

of 95.9% on the CLUTRR task, outperforming253

(+28.9%) previous SOTA result with fine-tuning254

(Sinha et al., 2019).5255

5 Case Study256

Table 2 shows an example of step-level scores given257

by the step-aware verifier. Steps in the correct258

reasoning path have relatively high scores, while259

the scores in the wrong reasoning path show where260

the path starts to be wrong. This indicates that261

besides improving the performance, the step-aware262

verifier can also bring interpretability to show the263

step-level correctness. We also show some extra264

examples of majority-voting in Table 10.265

6 Analysis266

We also conduct ablation experiments and analysis267

to investigate the keys to the success of DIVERSE.268

6.1 The Effectiveness of Diverse Prompts269

By diversifying both prompts and reasoning paths270

(⟨M1 = 5,M2 = 20⟩), we consistently improve271

5Sinha et al. (2019) also introduced a method with 100%
accuracy. We do not take it into the comparison, as this method
requires a domain-specific system with complicated rules to
extract a knowledge graph for each input text.

text-002 code-00230

40

50

60

35.6 (+2.3)

50.2 (+3.8)

Reasoning Paths

Diverse Prompts
Fixed Prompts

text-002 code-00210

15

20

14.3 (+0.1)

18.1 (+1.1)

Final Answers

Diverse Prompts
Fixed Prompts

Figure 4: Diverse prompts increase the diversity of
GSM8K reasoning paths and their final answers. This
is beneficial for the voting verifier. Left: the average
number of distinct reasoning paths per question (we
consider two reasoning paths to be the same if they have
the same intermediate result chain as shown in Figure
3). Right: the average number of distinct final answers
per question.

performance over the sampling decoding approach 272

(⟨M1 = 1,M2 = 100⟩) of Wang et al. (2022c), as 273

shown in Table 3. Both methods use majority vot- 274

ing. Table 4 further reveals that neither only using 275

diverse prompts nor only using sampling is optimal. 276

In other words, the best performance is achieved by 277

combining diverse prompts and sampling. More- 278

over, Figure 4 demonstrates that diverse prompts 279

lead to more diverse reasoning paths. We hypoth- 280

esize that this diversity contributes to the perfor- 281

mance improvement by: (1) making correct results 282

more distinguishable from varied errors during in- 283

ference; and (2) providing more diverse negative 284

samples for enhancing the verifier’s generalizabil- 285

ity during training. 286

6.2 The Effectiveness of Voting Verifier 287

We compare three algorithms to conclude the agree- 288

ment from diverse reasoning paths: majority vot- 289

ing, verifier, and voting verifier. Table 5 shows 290

the results. Compared to majority voting, our vot- 291

ing verifier can significantly and consistently boost 292

reasoning performance across different tasks and 293

different language models. Verifier without voting 294

often outperforms majority voting, but extending it 295

to voting verifier can further boost the performance. 296

6.3 The Effectiveness of Step-aware Verifier 297

We evaluate the impact of incorporating step-level 298

information into the voting verifier of DIVERSE. 299

Table 6 shows the performance of DIVERSE with 300

and without the step-aware mechanism on both the 301
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Method GSM8K CQA CLUTRR

davinci:
Voting 21.3 57.4 45.9
Verifier 27.0 74.1 93.2
Voting Verifier 30.6 75.0 92.5
text-davinci-002:
Voting 61.3 77.3 35.6
Verifier 62.7 77.9 93.8
Voting Verifier 68.9 79.2 93.8
code-davinci-002:
Voting 80.0 75.4 43.8
Verifier 65.9 78.8 95.9
Voting Verifier 82.3 78.8 95.9

Table 5: The effectiveness of voting verifier. All exepri-
ments in this table use ⟨M1,M2⟩ = ⟨5, 20⟩.

Random
Selected

Verifier Step
Verifier

0

15

30

45 41

31

20

(a) The number of correct rea-
soning paths containing re-
dundant steps.

Step Verifier (33%)
Equal (50%)
Verifier (17%)

(b) With the step-aware mech-
anism, incorrect paths contain
more correct steps.

Figure 5: Human evaluation on GSM8K shows the
effectiveness of the step-aware mechanism for verifier.

GSM8K and the CommonsenseQA datasets. We302

find that using the step-aware verifier improves the303

performance in most of the experiments. The only304

exception is code-davinci-002 on GSM8K, where305

the step-aware verifier slightly lowers the perfor-306

mance. We hypothesize that code-davinci-002 is307

more capable of generating high-quality reasoning308

paths, and thus does not benefit much from the309

step-level information.310

Detailed Human Evaluation of Reasoning Steps.311

We further analyze the quality of generated rea-312

soning steps, by asking human annotators to judge313

whether the GSM8K reasoning steps produced by314

DIVERSE (with/without step-aware mechanism)315

are good or not. Here “good” means not only cor-316

rect formulas and calculation results but also tex-317

tual fluency and logical coherence.318

Formulation Error (95%)
Missing Steps (2%)
Calculation Error (2%)
Number Hallucination (1%)

Figure 6: The distribution of error types in incorrect
reasoning steps.

We further examine the quality of the reasoning 319

steps generated by DIVERSE (with/without step- 320

aware mechanism) for GSM8K, by asking human 321

annotators to rate them based on correctness, flu- 322

ency, and coherence. For each test question, we 323

compare three reasoning paths produced by code- 324

davinci-002: the one with the highest verifier score, 325

the one with the highest step-aware verifier score, 326

and a randomly chosen one. The annotators (master 327

students) label any incorrect or unsatisfactory rea- 328

soning steps in each path (single-blind) and explain 329

why. We collect annotations for 200 test questions, 330

half of which have correct final answers from all 331

three paths, and half of which have incorrect final 332

answers from all three paths. 333

We find that all the reasoning paths with correct 334

final answers are also correct in every interme- 335

diate step, which shows that code-davinci-002 can 336

reliably generate accurate reasoning steps, not just 337

lucky guesses. However, we also find that many 338

of the correct reasoning paths have unnecessary 339

steps. Figure 5(a) shows that 40% of the random 340

paths have redundant steps, and the verifier can 341

lower this percentage to 31%. We also find that the 342

step-aware verifier can further eliminate redun- 343

dant reasoning steps from 31% to 20%. 344

Furthermore, for the incorrect reasoning paths, we 345

find that the step-aware mechanism helps pro- 346

duce more correct steps before making mistakes. 347

For each failed test question, we compare the num- 348

ber of correct steps in the path with the highest ver- 349

ifier score and the path with the highest step-aware 350

verifier score (by human evaluation). Figure 5(b) 351

shows that for 33%/17% of the failed test cases, 352

the step-aware verifier generates more/fewer cor- 353

rect steps than the verifier without the step-aware 354

mechanism. 355
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GSM8K CommonsenseQA

davinci:
DIVERSE (without step) 30.6 75.0
DIVERSE (with step) 30.9 76.0
text-davinci-002:
DIVERSE (without step) 68.9 79.2
DIVERSE (with step) 70.2 79.8
code-davinci-002:
DIVERSE (without step) 82.3 78.8
DIVERSE (with step) 81.5 79.9

Table 6: The effectiveness of step-aware voting verifier,
with ⟨M1,M2⟩ = ⟨5, 20⟩.

Step Error Types. Figure 6 shows the distribu-356

tion of error types in the incorrect reasoning steps.357

We see that 95% of the errors are caused by incor-358

rect formulations (i.e., using wrong intermediate359

results or operators and generating invalid formu-360

las, which lead to incorrect answers). We also see361

that, although code-davinci-002 often makes divi-362

sion calculation errors (e.g., 10/3 = 3), both the363

verifier and the step-aware verifier can effectively364

assign low scores to such paths, thus improving the365

performance.366

6.4 How Many Diverse Outputs Do We Need?367

Figure 7 shows the accuracy at different M values,368

where M is the number of reasoning paths sam-369

pled from the 100 generated paths for each ques-370

tion. We observe that: (1) the accuracy increases371

with more reasoning paths, but the improvement372

becomes marginal at M ≥ 50; (2) DIVERSE out-373

performs self-consistency significantly and consis-374

tently at different M values.375

6.5 How Many Training Data Do We Need?376

DIVERSE requires a dataset with reasoning paths377

for training the verifier. Figure 8 shows how the378

size of this dataset affects the performance. We379

observe that: the performance is only reduced by380

about 2%, even if the size of training data is cut by381

75% (from 1, 000 to 250). With the same reasoning382

paths, voting verifier performs better than majority383

voting, while verifier without voting causes signifi-384

cant performance drops.385

6.6 The Impact of the Number of Exemplars386

We conduct experiments for k = 3/5/8 (k is the387

number of exemplars used in each prompt) on388

GSM8K. Figure 9 shows the results. We observe389

that: using 8 exemplars in each prompt can further390
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Figure 7: GSM8K accuracy at different M values (how
many reasoning paths are used for each question).

boost the accuracy of GSM8K to 83.2%. 391

7 Related Work 392

Reasoning Skills. Researchers in the literature 393

have proposed many benchmarks requiring various 394

reasoning skills, including commonsense reasoning 395

(Zellers et al., 2018; Talmor et al., 2019; Bhaga- 396

vatula et al., 2019; Geva et al., 2021) numerical 397

reasoning (Dua et al., 2019), multi-hop reasoning 398

(Yang et al., 2018), arithmetic reasoning (Koncel- 399

Kedziorski et al., 2015; Roy and Roth, 2015; Miao 400

et al., 2020; Patel et al., 2021; Cobbe et al., 2021), 401

logical reasoning (Liu et al., 2020; Yu et al., 2020), 402

inductive reasoning (Sinha et al., 2019) and tabular 403

reasoning (Chen et al., 2020; Zhu et al., 2021). 404

Reasoning with Symbolic Systems. Much re- 405

search in the literature enhances the reasoning 406

capabilities of machine learning systems by ex- 407

ploiting symbolic systems, including knowledge 408

graphs (Mihaylov and Frank, 2018; Bauer et al., 409

2018; Kundu et al., 2019; Wang et al., 2019; Lin 410

et al., 2019; Ding et al., 2019; Feng et al., 2020; 411

Wang et al., 2022b), or question taxonomies (Dua 412

et al., 2019; Andor et al., 2019; Hu et al., 2019b; 413

Wang et al., 2022a). Although these methods work 414

well on specific benchmarks, they usually require 415

domain-specific designs and human efforts, thus 416

limiting the generalizability. 417

Reasoning via Language Models. This line of 418

work aims to address reasoning tasks in a gen- 419

eral sequence-to-sequence manner, empowered by 420

reasoning-aware pre-training or fine-tuning of lan- 421

guage models. For example, Deng et al. (2021) 422

proposed to train the language model with crawled 423

data from the internet; Asai and Hajishirzi (2020) 424

proposed a logic-guided data augmentation method 425

to pre-train the language model; Shen et al. (2021); 426

Cobbe et al. (2021) proposed to train a verifier to 427
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Figure 8: DIVERSE performance (code-davinci-002)
on GSM8K with different sizes of the training dataset
(without labeled reasoning paths).

rank solutions sampled from fine-tuned language428

models; Geva et al. (2020); Yoran et al. (2022);429

Campagna et al. (2020); Wang et al. (2022a) pro-430

posed to equip language models with reasoning431

abilities by generating training examples with432

human-designed templates; Pi et al. (2022) pro-433

posed to inject reasoning capabilities into language434

models by continual pre-training on program exe-435

cution data.436

Reasoning via Prompting Gigantic Language437

Models. Gigantic language models like GPT-3438

(Brown et al., 2020) have demonstrated impressive439

few-shot learning capabilities in many tasks and440

have attracted many research interests on making441

gigantic language models better few-shot learners442

(Zhao et al., 2021; Holtzman et al., 2021; Min et al.,443

2021; Liu et al., 2022; Lu et al., 2021; Rubin et al.,444

2021; Min et al., 2022). However, these methods445

struggle to address tasks requiring reasoning skills.446

To mitigate this, recently there is a line of research447

that focuses on unleashing the reasoning capabili-448

ties of gigantic language models via better prompt-449

ing strategies. Wei et al. (2022) proposed chain-450

of-thought reasoning, of which the key insight is451

the insertion of multi-step reasoning paths before452

generating the final answers; Wang et al. (2022c)453

proposed to improve chain-of-thought reasoning454

via self-consistency, of which the key insight is455

to conclude the most consistent answer from dif-456

ferent reasoning paths sampled from the language457

model; Zhou et al. (2022); Creswell et al. (2022)458

proposed to leverage gigantic language models to459

decompose questions into sub-questions, thereby460

addressing them in an iterative manner; Kojima461

et al. (2022) proposed that gigantic language mod-462

els can even be good zero-shot reasoners, by design-463
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Figure 9: DIVERSE performance (code-davinci-002)
on GSM8K when each prompt contains 3/5/8 exem-
plars.

ing prompts that can induce language models to do 464

reasoning step-by-step; Lampinen et al. (2022) pro- 465

posed building a prompt by selecting examples and 466

explanations together, thus substantially improving 467

performance over selecting examples alone. De- 468

spite their great successes, these works come with 469

their limitations. This paper is a continuation of 470

this line of research, focusing on diverse verifier on 471

reasoning steps. 472

8 Conclusion and Future Work 473

In this paper, we present DIVERSE, a novel and 474

general method to enhance the reasoning abilities 475

of large language models. Our method builds on 476

the idea of prompting language models with multi- 477

step reasoning paths, but introduces three key in- 478

novations: diverse prompts, voting verifier, and 479

stepwise verifier. The latter is especially novel and 480

effective, as it verifies each reasoning step sepa- 481

rately and we provides a detailed analysis of the 482

model’s behavior in each step. We demonstrate the 483

superiority of DIVERSE through extensive experi- 484

ments. For instance, using code-davinci-002, our 485

method achieves state-of-the-art performance on 486

most reasoning tasks, surpassing the 540B PaLM 487

model with previous prompting techniques. 488

There are many directions for our future work. (1) 489

As discussed in Appendix B.2, we will continue to 490

investigate how to reduce or recognize false posi- 491

tive pseudo exemplars. (2) We plan to investigate 492

mechanisms to produce better diverse prompts than 493

simple sampling. (3) We will extend DIVERSE to 494

other tasks and continue to design better prompting 495

techniques to elicit the power of gigantic language 496

models. 497
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9 Limitations498

Computing Resources. Despite the surprising499

performance it achieves, our framework needs to500

be applied to large language models like GPT-501

3 or PaLM. Inference with these models costs502

more time and budgets than fine-tuning models503

like RoBERTa (Liu et al., 2019).504

Faithfulness. Although DIVERSE can signifi-505

cantly improve the accuracy of final answers, we506

still cannot guarantee that the reasoning paths pro-507

duced by the language models are 100 percent faith-508

ful. This is the key challenge and future direction509

for this line of research (chain-of-thought reason-510

ing).511

More Training Data. DIVERSE needs more la-512

beled data with well-annotated reasoning paths513

to construct diverse prompts, and it also needs a514

training dataset for supervising the verifier. How-515

ever, from another point of view, this limitation516

can also be regarded as a contribution that studies517

how chain-of-thought reasoning can be further im-518

proved if we have more training data than just a519

few exemplars.520

Human Evaluation of Reasoning Steps. We use521

human evaluation to measure the quality of the in-522

termediate steps in reasoning paths since few cur-523

rent works provide reliable frameworks to evaluate524

the quality of reasoning steps.525
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[STRATEGYQA] Yes or no: Could a llama birth twice

during War in Vietnam (1945-46)? ▷ The War in Vietnam

was 6 months. The gestation period for a llama is 11

months. So a llama could not give birth twice during the

War in Vietnam. The answer is no.

[CLUTRR] Roy was eating lunch with his son John and

his wife Mary. What kind of relative is John to Mary? ▷

John is the son of Roy. Roy is the husband of Mary. Thus,

John is the son of Mary. The answer is son.

Table 7: Besides arithmetic reasoning, we also inves-
tigate commonsense and inductive reasoning.

This is the Appendix for the paper: “On the Ad-898

vance of Making Language Models Better Reason-899

ers”.900

A Preliminaries901

Prompting. Prompting means prepending a few902

exemplars to the task input x and generating the903

output y from the pretrained language model:904

p(y|C,x) =
|y|∏
t=1

pLM(yt|C,x, y<t), (3)905

where C is the concatenation of K exemplars:906

C = (x1,y1); (x2,y2); ...; (xK ,yK). (4)907

We denote prompt as the concatenation of the ex-908

emplars C and the input x.909

Reasoning Paths. For reasoning tasks that aim910

to generate an answer y for a question x, Wei et al.911

(2022) proposed the insertion of a reasoning path z912

before generating the answer y:913

C ′ = (x1, z1,y1); ...; (xK , zK ,yK), (5)914

where zi is a text reasoning path of how the an-915

swer yi is reasoned step-by-step for question xi.916

Then, during inference, a reasoning path z will be917

generated before the answer y:918

p(y|C ′,x) = p(z|C ′,x) · p(y|C ′,x, z). (6)919

Figure 10 demonstrates this idea in arithmetic rea-920

soning (GSM8K), and Table 7 demonstrates this921

idea in commonsense reasoning (StrategyQA) and922

inductive reasoning (CLUTRR).923

Prompt & Samples

Q: If there are 3 cars in the parking lot and 2 more
cars arrive, how many cars are in the parking lot?
A: There are 3 cars in the parking lot already. 2 more
arrive. Now there are 3 + 2 = 5 cars. The answer is 5.
...
Q: Janet’s ducks lay 16 eggs per day. She eats three
for breakfast every morning and bakes muffins for her
friends every day with four. She sells the remainder
for $2 per egg. How much does she make every day?
A:

[Sample 1] She has 16 - 3 - 4 = 9 eggs left. So she
makes 2 ∗ 9 =18 per day. The answer is 18. (✓)

[Sample 2] This means she uses 3 + 4 = 7 eggs every
day. So in total she sells 7 * 2 =14 per day. The
answer is 14. (%)

[Sample 3] She eats 3 for breakfast, so she has 16 - 3
= 13 left. Then she bakes muffins, so 13 - 4 = 9 eggs
left. She makes 9 * $2 = $18. The answer is 18. (✓)

Figure 10: Prompting large language models to generate
different reasoning paths, then selecting the final answer
via majority voting (Wang et al., 2022c).

B Boosting Reasoning Paths via 924

Self-Teaching 925

In this section, we first introduce self-teaching, 926

the method we use to construct a larger exemplar 927

base when the original dataset does not contain 928

enough data with well-annotated reasoning paths 929

(Appendix B.1). We then discuss the noise issue 930

when facing multiple-choice tasks (Appendix B.2). 931

B.1 Self Teaching 932

A critical issue of DIVERSE is how to provide 933

diverse prompts.6 Supposing that there is an ex- 934

emplar base E, we can sample K exemplars from it 935

to construct a prompt, and repeat this M1 times in- 936

dependently to construct M1 prompts with diverse 937

exemplars. 938

For scenarios that do not have sufficient exem- 939

plars (i.e., |E| < K ∗ M1), we propose to boot- 940

strap the diversity of prompts by “self-teaching”, 941

i.e., generating pseudo reasoning paths from a 942

few exemplars and some ⟨question, answer⟩ pairs 943

without reasoning paths.7 Suppose that D is 944

a dataset without reasoning paths, consisting of 945

6Wang et al. (2022c) tried an ensemble-based approach,
i.e., to permutate exemplars in the original prompt. However,
this strategy does not increase diversity in terms of exemplars.

7This is motivated by Zelikman et al. (2022).
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Dataset N Example Question

GSM8K 1319 James decides to run 3 sprints 3 times a week. He runs 60 meters each
sprint. How many total meters does he run a week?

AsDiv 2096 Seven red apples and two green apples are in the basket. How many
apples are in the basket?

MultiArith 600 The school cafeteria ordered 42 red apples and 7 green apples for students
lunches. But, if only 9 students wanted fruit, how many extra did the
cafeteria end up with?

SVAMP 1000 Paco had 26 salty cookies and 17 sweet cookies. He ate 14 sweet cookies
and 9 salty cookies. How many salty cookies did Paco have left?

SingleEq 508 Terez has 44 cows on his farm. 50 percent of the cows are female, and 50
percent of the females are pregnant. How many pregnant female cows
does Terez have?

CommonsenseQA 3387 Sammy wanted to go to where the people were. Where might he go?
Options: (a) race track (b) populated areas (c) desert (d) apartment (e)
roadblock

StrategyQA 2280 Could you go to New York Public Library and the Six Flags Great Escape
in the same day?

CLUTRR 447 Kelly and her mother Ernest made breakfast together. Constance and her
husband Ernest wanted a child badly What kind of relative is Kelly to
Constance? The possible relationships are: sister, son, aunt,
granddaughter, father, grandfather, grandmother, mother-in-law, uncle,
niece, mother, brother, daughter, nephew, grandson, son-in-law,
father-in-law, daughter-in-law.

Table 8: Reasoning benchmarks we use in this paper with examples. N means the number of test cases.

(x,y∗) pairs. Given the small exemplar base E, for946

each (x,y∗) ∈ D, we can use prompting to gener-947

ate a reasoning path z and the predicted answer y.948

We define the pseudo exemplar base E′ as:949

E′ = {(x, z,y)|(x,y∗) ∈ D,y = y∗}, (7)950

then E ∪E′ can be regarded as the new exemplar951

base for generating diverse prompts.952

B.2 Noises in Multiple Choice Tasks953

In our experimental setup, StrategyQA and Com-954

monsenseQA are more challenging than other tasks,955

as they use pseudo exemplars generated through956

“self-teaching” (Appendix B.1).957

“Self-teaching” may lead to bad exemplars, whose958

reasoning paths are invalid but happen to yield959

answers coinciding with the ground truth. Ques-960

tions in StrategyQA/CommonsenseQA are two-961

choice/four-choice questions, respectively. There-962

fore, such noise would be more serious in Strate-963

gyQA than in CommonsenseQA. This somehow964

explains why DIVERSE can achieve comparable 965

performance (−0.8%) as the PaLM-based SOTA 966

on CommonsenseQA, while it sees a 3.0% perfor- 967

mance decline to PaLM on StrategyQA, which has 968

only two choices. In other words, it is easier for 969

StrategyQA to yield a right answer but a misleading 970

reasoning path. 971

C Data Statistics 972

Table 8 shows the reasoning benchmarks we use in 973

this paper with examples. We use the same test sets 974

as Wei et al. (2022) for GSM8K, AsDiv, MultiArith, 975

SVAMP, SingleEq, and CommonsenseQA. 976

For StrategyQA, there are 2, 290 test cases (i.e., 977

questions paired with TRUE/FALSE labels), but 978

there is no other case that can be leveraged by 979

DIVERSE to construct diverse exemplars (as in- 980

troduced in Section 2.1). To address this problem, 981

we randomly divide these 2, 290 test cases into two 982

equal parts (denoted as T1 and T2). For each DI- 983
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VERSE experiment of SQA, we conduct two runs:984

using T1 to construct diverse exemplars and T2 as985

the test set, and vice versa. The final reported solve986

rate is the average solve rate of these two runs.987

For CLUTRR, Sinha et al. (2019) provided several988

versions: clean, supporting, irrelevant, and discon-989

nected. The clean version is the basic dataset, while990

the others are the perturbed variations of it. Our991

experiments are conducted on the clean version.992

D Our Changes to CLUTRR993

In our experiments, two changes are applied to the994

CLUTRR benchmark: (1) appending candidate an-995

swers to each question; (2) constructing reasoning996

paths based on rules. Table 9 shows an example of997

CLUTRR data after our modification.998

Candidate Answers. Besides the original ques-999

tions (e.g., “Mary, a female, took her husband who1000

is a male, Roy, out for lunch. Ernest bought to1001

dress for his father Roy. What kind of relative is1002

Ernest to Mary?”), we also provide all the candi-1003

date answers (i.e., “The possible relationships are:1004

sister, son, aunt, granddaughter, father, grandfather,1005

grandmother, mother-in-law, uncle, niece, mother,1006

brother, daughter, nephew, grandson, son-in-law,1007

father-in-law, daughter-in-law”) in the input se-1008

quence. Our preliminary experiments show that,1009

the gigantic language models cannot reach more1010

than 50% accuracy without the sequence of candi-1011

date answers.1012

Reasoning Paths. For each question, Sinha et al.1013

(2019) also provided a knowledge graph that formu-1014

lates the relations directly mentioned in the ques-1015

tion. Each knowledge graph consists of several1016

⟨e1, r, e2⟩ triplets, which means there is a rela-1017

tion r from e1 to e2. Take the aforementioned1018

question as an example, the knowledge graph con-1019

sists of two triplets: ⟨Mary, husband,Roy⟩ and1020

⟨Ernest, father,Roy⟩.1021

For each question, we construct the reasoning path1022

based on its knowledge graph. We first topologi-1023

cally sort all triplets in the knowledge graph. For1024

each triplet, we convert it to a reasoning step using1025

the template “{e2} is the {r} of {e1}”. After that, we1026

can get the reasoning path by concatenating these1027

reasoning steps. Take the aforementioned question1028

as an example, the reasoning path is: “Roy is the1029

husband of Mary. Roy is the father of Ernest. Thus,1030

Ernest is the son of Mary.”1031

Variant Input Example

CLUTRR
for NLI
(Original)

Input: Story: Kelly and her mother Ernest made
breakfast together. Constance and her husband
Ernest wanted a child badly. Query: Kelly, Con-
stance
Output: daughter

CLUTRR
for NLG
(Ours)

Input: Kelly and her mother Ernest made break-
fast together. Constance and her husband Ernest
wanted a child badly. What kind of relative is Kelly
to Constance? The possible relationships are: sis-
ter, son, aunt, granddaughter, father, grandfather,
grandmother, mother-in-law, uncle, niece, mother,
brother, daughter, nephew, grandson, son-in-law,
father-in-law, daughter-in-law.
Output: Kelly is the daughter of Ernest. Ernest is
the husband of Constance. Thus, Kelly is the
daughter of Constance. So the answer is daughter.

Table 9: Examples of the original and our constructed
CLUTRR data. In our experiments, we concatenated
the class information (marked with red) after the input
question as the input, and constructed reasoning paths
(marked with blue) via a simple text template as the
output.
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Question Self-Consistency DIVERSE

[GSM8K] Siobhan has 2 fewer jewels
than Aaron. Aaron has 5 more jewels
than half of Raymond’s jewels. If
Raymond has 40 jewels, how many
jewels does Siobhan have?

Aaron has 2 more jewels than half of Raymond’s
jewels. So Aaron has 40 / 2 + 2 = 22 jewels. Siob-
han has 2 fewer jewels than Aaron so she has 22 - 2
= 20 jewels. So the answer is 20.
Answer: 20 (Wrong) Count: 33

Raymond has 40 jewels. Half of Raymond’s jewels
is 40 / 2 = 20. Aaron has 5 more jewels than half
of Raymond’s jewels, so he has 20 + 5 = 25 jewels.
Siobhan has 2 fewer jewels than Aaron, so she has
25 - 2 = 23 jewels. So the answer is 23.
Answer: 23 (Correct) Count: 32

[StrategyQA] Could you go to New
York Public Library and the Six Flags
Great Escape in the same day?

The New York Public Library is in Manhattan. The
Six Flags Great Escape is in Queensbury. Manhat-
tan and Queensbury are too far apart to go to both
in a single day. Thus, you could not go to New York
Public Library and the Six Flags Great Escape in
the same day. So the answer is no.
Answer: no (Wrong) Count: 62

The New York Public Library is in New York City.
The Six Flags Great Escape is in Queensbury, New
York. Queensbury is about 3.5 hours away from
New York City by car. Thus, you could go to the
New York Public Library and the Six Flags Great
Escape in the same day. So the answer is yes.
Answer: yes (Correct) Count: 38

Table 10: Examples of code-davinci-002 on GSM8K. Compared to self-consistency (majority voting), DIVERSE
can select the correct-but-not-most answer out of the sampled candidates, thus improving the reasoning performance.
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