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SMILE: Sparse-Attention based Multiple Instance
Contrastive Learning for Glioma Sub-Type Classification

Using Pathological Images
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Abstract

Gliomas are the most prevalent malignant brain tumor in adults and can be classified into
four typical sub-types based on histological features. Histological diagnosis by patholo-
gists via microscopic visual inspection of pathological slides has been the gold standard for
glioma grading, especially hematoxylin and eosin (H&E) sections. However, due to spatial
heterogeneity and complex tumor micro-environment, it is difficult and time-consuming for
pathologists to differentiate glioma sub-types. In this paper, we propose a Sparse-attention
based Multiple Instance contrastive LEarning (SMILE) method for glioma sub-type clas-
sification. First, we use contrastive learning to extract meaningful representations from
pathological images. Second, we propose the sparse-attention multiple instance learning
aggregator to get sparse instance representations in a bag for label prediction. We vali-
date the proposed SMILE method using a glioma dataset from The Cancer Genome Atlas
(TCGA). Experimental results show superior performance of our method over competing
ones. Ablation study further demonstrates the effectiveness of our design of SMILE.

Keywords: Glioma classification, Sparse-attention, Multiple instance contrastive learning

1. Introduction

Gliomas are the most common primary brain tumor which comprise about 30% of all brain
tumors and central nervous system tumours, and 80% of all malignant brain tumours. They
are classified into four sub-types based on histological features by the World Health Orga-
nization (WHO) (Louis et al., 2016b): astrocytomas (A), oligodendrogliomas (O), glioblas-
tomas (GBM), and oligoastrocytomas (OA) (see Fig. 1). Accurate classification of Gliomas
using pathological images plays an essential role in therapy planning. Nowadays, this task
is still mostly performed by pathologists via microscopic visual inspection of pathological
slides, which requires considerable expertise and concentration, and it is also labor inten-
sive and prone to bias. More important, despite well-established grading strategies, analyses
from multiple pathologists on the same patient (especially those without significantly bifur-
cated appearance features) can easily yield inconsistency (van den Bent, 2010). Therefore,
automated glioma sub-type classification is required to assist pathologists in efficient and
effective diagnosis (Louis et al., 2016a).
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Glioma sub-type classification is challenging in three aspects. First, whole-slide images
(WSIs) (Mobadersany et al., 2018) have a huge size, ranging from several 1 000 to 10 000
pixels along each direction. The pixel-level dense annotations of WSIs are very limited,
if available, which makes this classification problem a weakly supervised one. Second,
different from other kinds of tumor slides, glioma diagnostic slides are occupied almost
entirely by tumorous cells of various morphologies. When dividing a high grade WSI into
small patches, some patches may contain the visual features from lower grade tumors. The
spatial heterogeneity makes the weakly supervised task more difficult. Third, the tumor
micro-environment is complex.

In recent years, convolutional neural networks (CNNs) have shattered performance
benchmarks on image classification tasks (Mobadersany et al., 2018) and show new oppor-
tunities in histopathological glioma sub-type classification (Janowczyk and Madabhushi,
2016). Ertosun and Rubin (2015) applied CNNs to binary classification of glioblastoma
and low-grade glioma (LGG). Jin et al. (2021) proposed a squeeze-and-excitation block
DenseNet (SD-Net) to classify five sub-types of gliomas. They selected 300 patches per
WSI, which limits the performance of this method. To address the issue of spatial hetero-
geneity, multiple instance learning (MIL) has been successfully applied to computational
pathology for tasks such as tumor classification (Campanella et al., 2019; Chikontwe et al.,
2020; Hou et al., 2016; Li et al., 2021). Campanella et al. (2019) proposed a MIL clas-
sifier trained on the large weakly-labeled WSI datasets and achieved better performance
than the fully-supervised classifier trained on small pixel-annotated lab datasets. Ilse et al.
(2018) proposed an attention based multiple intance learning (ABMIL), which only con-
sider self-correlation of instances. Actually, pathologists often consider both he contextual
information around a single area and the correlation information between different areas
when making a diagnosis decision. Vaswani et al. (2017) proposed transformer based on
multi-head self-attention for language tasks, which uses relation matrix to calculate instance
correlation. Dosovitskiy et al. (2020) proposed an version transformer, which makes it pos-
sible to use transformer in vision tasks. Note that, self-attention based transformer is much
desirable to consider the correlation between different instances in MIL aggregator.

Recently, contrastive learning has demonstrated success in learning visual representa-
tions without labels (Chen et al., 2020; He et al., 2020; Grill et al., 2020). It is very suitable
to use a contrastive strategy to learn feature representations of pathological patches. This
strategy can divide pathological patches into different classes without labels. To use unla-
beled pathological images for model training, we advocate to explore contrastive learning
for glioma sub-type classification. In this paper, we proposed a novel approach, called
Sparse-attention based Multiple Instance contrastive LEarning (SMILE), for glioma sub-
type classification using pathological images. First, we use a contrastive training strategy
to pretrain a patch-level feature extractor so that we can obtain discriminative patch-level
feature representations. Second, we propose to use sparse-attention multiple instance learn-
ing and get better classification by using a sparse-attention block. We validate our proposed
method using the TCGA glioma dataset and the accuracy of sub-classification is 0.8857.

The contributions of this work are summarized as follows: (1) first use contrastive
learning strategy to learn feature representations on glioma sub-type classification, and (2)
propose a sparse-attention block for multiple instance feature aggregation.
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Figure 1: Examples of four glioma sub-types. Each legend has two parts: Left part is at
0.3× magnification, and right part is at 10× magnification.

2. Methods

In this section, we introduce our proposed Sparse-attention based Multiple Instance con-
trastive LEarning (SMILE) framework for glioma sub-type classification. The proposed
SMILE framework consists of two main components: (1) a contrastive learning strategy to
train a powerful feature extractor, and (2) a sparse-attention block for meaningful multiple
instance feature aggregation.

2.1 Contrastive Learning for Better Feature Representation

Contrastive learning is a popular research topic recently, since it enables learning robust
feature representations without manual labels. In particular, two random transformations
are applied to one training image for obtaining a pair of augmented images. Each trans-
formed image from the pair of images is then fed into an encoder, and is finally projected to
latent feature representations. We constrain the latent features from the same image to be
close while those from different images to be far-away. Inspired by this concept, we try to
pretrain a powerful patch-level feature extractor to learn patch-level discriminative feature
representations. However, almost all glioma image patches from the slide have tumor tis-
sue, so these patches are positive samples. It is quite different from the typical contrastive
learning scenario which requires both positive and negative samples. As a consequence, we
build our own contrastive learning module (as shown in Fig. 2) by borrowing the idea from
a contrastive learning paradigm that does not require negative samples in a batch(Grill
et al., 2020). We will introduce the building blocks of this module one by one below.

A stochastic data augmentation module transforms any given data sample randomly
and results in two correlated views for the same sample, denoted xi and xj , which we
consider as an input pair. We sequentially apply simple augmentations: random cropping,
followed by resizing back to the original size, random color distortion, random rotation,
random flip, and random Gaussian blurring.

3



A feature encoder E extracts representation vectors from augmented data samples.
Our framework is flexible to various network architectures without much constraint. We
opt for ResNet-50 (He et al., 2016) as the encoder backbone, which contains a convolutional
(Conv) layer, four stages of residual blocks, an average pooling layer, and a fully connected
(FC) layer, followed by softmax. We remove the FC layer and softmax. ResNet-50 is used
to obtain feature embedding hi, where hi ∈ R1×2048 is the output after the average pooling
layer.

Figure 2: The workflow of contrastive learning for pathological images. The target network
weights are updated by an exponential moving average of the corresponding on-
line network weights. We take one patch and randomly transform to get a pair of
patches, i.e., xi andxj . After the feature extractors E1 and E2, we get represen-
tations hi and hj . pi is obtained by using two MLP operations, g1(·) and g3(·). oj
is obtained using one MLP operation g2(·). The symbol // means stop-gradient.
The pathological patches selected from the WSI are used for contrastive training.

A multi-layer perceptron (MLP) maps representations to the space where contrastive
loss is applied. The MLP g(·) consists of a 1 × 1 Conv layer with the output size of 4096,
followed by batch normalization (BN), rectified linear units (ReLU), and a 1×1 Conv layer
with the output dimension of 256.

A contrastive loss function defines for a contrastive prediction task. Given an image
x and a pair of transformed examples xi and xj , the contrastive prediction task aims to
maximize the similarity of a given pair, i.e., xi andxj . From the augmented xi, the online
network outputs a representation pi, and from the augmented xj , the target network outputs
oj . We then use l2 normalization on both pi and oj to get p̂i and ôj . The loss function for
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an augmented pair is defined as

Lossi,j =‖ p̂i − ôj ‖22 (1)

An exponential moving average defines the weights update. The target network just
provides the ground truth of the online network, and does not perform gradient propagation
in each training step. The weights of target network µ is updated by an exponential moving
average of the corresponding online network weights θ. There are given by:

µ = ωµ+ (1− ω)θ (2)

where ω denotes the target decay rate.

Figure 3: The workflow of ResNet-50. It contains a convolutional (Conv) layer, four stages
of residual blocks, an average pooling layer, and a fully connected (FC) layer,
followed by softmax.

2.2 Sparse-Attention based Multiple Instance Learning

Different from most previous methods which either learn an instance classifier or a bag
classifier, our proposed Sparse-Attention Module (SAM) based multiple instance learning
jointly learns the instance classifier, the bag classifier, and the embeddings in one architec-
ture. Our method includes three parts: instance-level embedding and classification, instance
embedding aggregator, and slide-level classification.

Let A = {a1, a2, · · · , am} be a bag of instances where ai is the ith instance. Let H =
{h1, h2, · · · , hm} be feature embeddings of instances where hi = E(ai) is obtained by the
feature extractor E. The first part is an instance-level classifier operating on each of the
instances. The output B = {b1, b2, · · · , bm} is obtained by bi = Whi, where W is a weight
vector.

Then we select the top-n instance embeddings Ĥ = {ĥ1, ĥ2, · · · , ĥn} as the following
transformer inputs.
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In the second part, we aggregate the instance embeddings into a bag embedding which
is further scored by a transformer classifier, as shown in Fig. 4. We will introduce the
transformer classifier blocks below.

A multihead self-attention module (MSA) contains several parallel self-attention
(SA) layers. Each self-attention layer can be described as mapping a query and a set of
key-value pairs to an output, where the query Q, key K, value V are given by:

Figure 4: The workflow of SAM module. A batch of instances from one bag will be input
in an extractor that is trained by contrastive learning and get the feature embed-
dings. We use the SAM module to select the top-n instance feature embeddings,
and then input the embedding into the transfomer module, which contains of
alternating layers of LN,MSA and FFN blocks. We use a MLP head to predict
the final output. The single SA module is shown in bottom-right corner.

Q = WqĤ,K = WkĤ,V = WvĤ, (3)

where Wq,Wk,Wv are weight vectors. We compute the single self-attention function of
output as:

Attention(Q,K,V) = softmax(
QKT

√
d

)V. (4)

Multihead s1lf-attention fuction is computed by:

MultiheadAttention(Q,K,V) = Concat(attention1, attention2, · · · , attentionm)W0. (5)

The selected instance embeddings ĥi is transformed with position encoding. The input of
transformer z0 is defined as:

z0 = [hclass; ĥ1; ĥ2; · · · ; ĥn] + Hpos, (6)
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where hclass denotes the class of WSI and Hpos denotes position information of each in-
stance.

The output features of MSA is computed by:

z
′
` = MSA(LN(z`−1)) + z`−1, ` = 1 · · ·L (7)

A feed forward Network (FFN) consists of a 1×1 Conv layer, followed by a Gaussian
Error Linerar Unit (GELU), and a 1× 1 Conv layer.

z` = FFN(LN(z
′
`−1)) + z

′
`, ` = 1 · · ·L (8)

The MSA and FFN modules are repeated L times.

A multi-layer perceptron (MLP) head The MLP head consists of a LN and a 1× 1
Conv layer with the output dimension of class number c.

c = MLP(LN(zL)). (9)

3. Experiments and Results

3.1 Datasets

To validate our proposed multimodal paradigm for integrating histological and genomic
features, we collect glioma data from the TCGA (Tomczak et al., 2015), a cancer data
consortium that contains paired high-throughput genome analysis and diagnostic whole-
slide images with ground-truth histologic grade labels. Subtype cases of A, O and GBM
are in the merged TCGA-GBM and TCGA-LGG (TCGA-GBMLGG) project. There are
769 cases in this dataset, which contains 141 A cases, 209 O cases, 350 GBM cases, 36
OA cases, and 33 no-reported cases. Glioma whole slide images were cropped at 20×
objective magnification using OpenSlide [23]. High-power fields (HPFs) at 256×256 pixels
were sampled from these regions and used for training and testing. We perform three-sub-
type classification task, i.e., A, O, GBM classification. We divide the dataset into two parts:
560 slides (80%) for training, and 140 slides (20%) for testing. And the same proportion of
each sub-type is set both in the training set and testing set, as shown in Table 1. There are
113 A slides, 167 O slides, and 280 GBM slides in each training fold. And there are 28 A
slides, 42 O slides, and 70 GBM slides in each testing fold. We use 4-fold cross-validation.

Class Training Fold Testing Fold

A 113 28
O 167 42

GBM 280 70
Total 560 140

Table 1: TCGA dataset of training fold and testing fold.
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3.2 Implementation details

For pretraining with contrastive learning, we use Adam (Kingma and Ba, 2014) optimizer
with a constant learning rate of 0.0001 to update the weights of the encoder model during
the training. The batch size for training is 256, and the epoch is set to 100. The feature
extractor is trained on a workstation with two NVIDIA GTX 1080Ti GPUs and 64GB
Memory. The SAM is trained by using Adam with a constant learning rate of 0.0001. The
number of self-attention head is set to 6 and the number of transformer block is set to
4. The batch size for training this part is 256, and the epoch is set to 80. The model is
implemented on PyTorch.

Method Accuracy F1

ResNet-50+MIL 0.7714 0.8624
ResNet-50+MIL+Contrast 0.7929 0.8710

ResNet-50+ABMIL 0.8214 0.8917
ResNet-50+ABMIL+Contrast 0.8357 0.8971

ResNet-50+SAM 0.8500 0.9074
ResNet-50+SAM+Contrast (SMILE) 0.8857 0.9266

Table 2: Performance of contrastive learning strategy, evaluated on the average of testing
folds.

Impact of contrastive learning strategy. To investigate the impact of contrastive
learning, we directly conduct experiments to compare the models with or without contrastive
learning. The accuracy of ResNet-50 with MIL and contrastive learning strategy is 0.7929
and the F1 score is 0.8710. It improves the accuracy by 2.15% and the F1 score by 0.86%
over the ResNet-50 with MIL. The ABMIL with contrastive learning strategy improves the
accuracy by 1.43% and the F1 score by 0.54% over the single ABMIL. The SMILE improves
the accuracy by 3.57% and the F1 score by 1.92% over the SAM module.

Impact of SAM. As shown in Table 2, the proposed SAM module improves the accuracy
by 7.86% over the MIL and 2.86% over the ABMIL. Besides, the SAM module improves
the F1 score by 4.5% over the MIL and 1.57% over the ABMIL, which demonstrates the
effectiveness of the proposed SAM.

Generally, each proposed module in our method is proved to be effective.

4. Conclusion

In this paper, we proposed a SMILE framework for glioma sub-type classification. In
particular, we use contrastive learning to pretrain a glioma sub-type oriented feature ex-
tractor, so that we can learn meaningful patch-level representations. Also, the proposed
sparse-attention based multiple instance learning framework brings high performance gain
for pathological image classification. Experimental results on clinical data show the effec-
tiveness of our proposed method. In the future work, we will apply our proposed model to
multiple caner types for further evaluation.
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