
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ROUTESPLAIN: TOWARDS FAITHFUL AND INTERVEN-
ABLE ROUTING FOR SOFTWARE-RELATED TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

LLMs now tackle a wide range of software-related tasks, yet we show that their
performance varies markedly both across and within these tasks. Routing user
queries to the appropriate LLMs can therefore help improve response quality
while reducing cost. Prior work, however, has focused mainly on general-purpose
LLM routing via black-box models. We introduce Routesplain, the first LLM
router for software-related tasks, including multilingual code generation and re-
pair, input/output prediction, and computer science QA. Unlike existing routing
approaches, Routesplain first extracts human-interpretable concepts from each
query (e.g., task, domain, reasoning complexity) and only routes based on these
concepts, thereby providing intelligible, faithful rationales. We evaluate Routes-
plain on 16 state-of-the-art LLMs across eight software-related tasks; Routesplain
outperforms individual models both in terms of accuracy and cost, and equals
or surpasses all black-box baselines, with concept-level intervention highlighting
avenues for further router improvements.

1 INTRODUCTION

Large Language Models (LLMs) are being adopted for an increasing variety of software-related
use cases, such as code generation and repair, test-case generation, and computer science question-
answering. As the landscape of available LLMs continues to expand with LLMs offering varying
capabilities and pricing tiers, a critical question remains underexplored: do different models perform
better or more efficiently on different types of software-related queries?

If such performance variations exist and can be efficiently predicted, they could enable optimization
through query-based routing in two scenarios: (a) expert routing for queries requiring specialized
capabilities; (b) cost-effective routing when multiple LLMs can adequately answer the query. Prior
work has explored routing for general-purpose LLM use cases (Mohammadshahi et al., 2024; Sik-
eridis et al., 2025; Ong et al., 2025), but typically focused only on simple code completion scenar-
ios (Hu et al., 2024; Zhuang et al., 2025) rather than exploring the rich variability across and within
software-related tasks. In this work, we investigate routing efficiencies in accuracy and cost across
the diverse landscape of software-related queries, from code generation and repair to execution pre-
diction and computer science question-answering.

Moreover, unlike general text tasks, software queries naturally decompose into concepts: high-
level, interpretable characteristics such as programming language, task type, and domain. Therefore,
whereas existing general-purpose approaches either rely on black-box models (Ong et al., 2025) or
try to implicitly (Zhuang et al., 2025) or explicitly (Song et al., 2025) capture abstract model abilities,
software-related task routing lends itself well to concept-based routing.

We propose Routesplain, the first LLM router specifically designed for software-related tasks. Build-
ing on concept bottleneck models (Koh et al., 2020), Routesplain extracts concepts from queries and
routes based solely on these concepts. This approach provides routing rationales that are faith-
ful (Jacovi & Goldberg, 2020), as the concepts accurately reflect the model’s reasoning process,
and intervenable (Koh et al., 2020), since the model’s reasoning process is easy to edit at the con-
cept level. Furthermore, we demonstrate that these interventions are predictable, with concept-level
changes leading to expected routing decisions.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Query

Why can’t I compile this code?

fn greet(name: String) {
println!("Hello {}!", name);

}

fn main() {
let name = 

String::from("Alice");
greet(name);
println!("The name is: {}", 

name);
}

Embedding 
Model

Concept
Classifier

Concept PredictionsEmbedding

Model Classifier

Model Suitability 
Predictions

Domain/General: 0.93

Domain/System: 0.15

.

.

.

.

.

.

PL/Rust: 0.83

Domain/Network: 0.01

.

.

.

o3: 0.17

GPT-4.1 nano: 0.95

Llama 4 Scout: 0.82

Grok 3 mini: 0.67

Figure 1: Overview of the Routesplain framework. Each query is embedded using a fixed embedding
model. First, a concept classifier takes the contextualized embedding and projects it into the concept
space, where each concept represents a high-level, interpretable characteristic of the query (e.g., task,
domain, programming language). Then, a separate model classifier takes a concept-space input and
outputs model suitability predictions. The query is routed to the most suitable model.

We evaluate Routesplain on a dataset comprising eight software-related tasks across 16 state-of-the-
art LLMs including o3 and GPT-4.1. Routesplain outperforms individual models as well as existing
black-box routing approaches KNN router (Hu et al., 2024) and EmbedLLM (Zhuang et al., 2025),
achieving accuracy that matches a fully black-box MLP alternative across most cost regularization
levels while providing strong interpretability and control through concept-level interventions. We
also conduct ablation studies to determine the contribution of each concept group and counterfactual
experiments to verify that changes in the concept space predictably impact the router’s decisions.
Lastly, we show that concept-level intervention can help pinpoint current routing performance limi-
tations, specifically the difficulty and potential of accurately predicting query complexity.

Our contributions include: (1) the first comprehensive exploration of LLM routing potential within
software-related use cases, demonstrating significant LLM performance variability across and within
software-related tasks; (2) a novel LLM routing architecture that provides faithful and intervenable
rationales for routing decisions without compromising performance compared to SoTA black-box
approaches; (3) new methodologies for validating LLM routing correctness through concept ablation
studies and counterfactual concept manipulation experiments.

2 RELATED WORK

Our work intersects two main research areas: LLM ensembling approaches for routing between
models, and interpretability methods for understanding model decisions.

LLM Ensembling LLM ensembles are used in a number of ways to improve output quality and
generation efficiency, including mixture-of-experts layers (Shazeer et al., 2017), speculative decod-
ing (Leviathan et al., 2023), reranking LLM outputs (Ravaut et al., 2022), fusing LLM outputs (Jiang
et al., 2023), cascading from weaker to stronger models (Varshney & Baral, 2022; Chen et al.,
2024a), and routing. Routing approaches differ based on (1) learning paradigms, encompassing su-
pervised (Mohammadshahi et al., 2024; Hu et al., 2024; Zhuang et al., 2025), unsupervised (Guha
et al., 2024), or reinforcement learning (Lu et al., 2024; Sikeridis et al., 2025); (2) the size of the
LLM pool, from a pair of strong and weak LLMs (Ding et al., 2024; Ong et al., 2025) to multi-LLM
routing (Shnitzer et al., 2023; Šakota et al., 2024); (3) routing objectives, with single objective rout-
ing only focused on maximizing accuracy (Zhuang et al., 2025) or multi-objective routing focused
on maximizing accuracy while minimizing cost (Mohammadshahi et al., 2024; Hu et al., 2024).
To our knowledge, although previous work proposes routing to domain experts (Chai et al., 2024),
Routesplain represents the first domain-specific LLM router. Particularly relevant to our work, re-
cent approaches focus on implicit (Zhuang et al., 2025) or explicit (Song et al., 2025) learning of
abstract model abilities. Instead, our routing strategy is based on high-level concepts/characteristics
that make up the query. Chen et al. (2025b) propose tagging using a generative model and rout-
ing based on tag scores. While a compelling direction, a generative approach is both less efficient

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Model pricing and evaluation costs. Cost shows input/output token pricing. Average
output length is measured in tokens per response. Total cost represents the expense of evaluating
each model across our dataset collection. Models are grouped by cost-effectiveness tiers: high-cost
(top), medium-cost (middle), and low-cost (bottom).

Model Cost ($/1M tokens) Avg Output Length Total Cost ($)
o1 15.00/60.00 147.79 557.59
Grok 3 3.00/15.00 375.87 261.01
Grok 4 3.00/15.00 376.66 261.47
GPT-4o 2.50/10.00 266.11 138.70
Llama 3.1 405B 4.00/4.00 220.99 91.40
GPT-4.1 2.00/8.00 188.71 87.01
o3 2.00/8.00 187.69 86.67
o3 mini 1.10/4.40 208.74 51.26
o4 mini 1.10/4.40 170.63 44.78
GPT-4.1 mini 0.40/1.60 199.58 18.07
Grok 3 mini 0.30/0.50 294.25 9.98
Llama 4 Mav (fp8) 0.15/0.60 242.39 7.77
GPT-4o mini 0.15/0.60 219.97 7.25
Llama 3.3 70B 0.13/0.39 221.77 5.20
Llama 4 Scout 0.08/0.30 306.20 4.70
GPT-4.1 nano 0.10/0.40 194.82 4.44

due to generation overhead than a lightweight classifier and less interpretable due to the large and
unconstrained tag space, rendering routing decisions less faithful and harder to correct.

Model Interpretability Our work primarily focuses on ante-hoc explainability by adapting the well-
known concept bottleneck model (Koh et al., 2020), widely used for image detection (Oikarinen
et al., 2023; Panousis et al., 2024), to LLM routing. A popular alternative to ante-hoc methods
are post-hoc methods such as LIME (Ribeiro et al., 2016), SHAP (Lundberg & Lee, 2017), model
probes (Hewitt & Liang, 2019) and generating explanations using chain-of-thought (CoT) prompt-
ing (Wei et al., 2022) or training (Wang et al., 2024b; Yue et al., 2024). However, post-hoc methods
lack the user’s ability to intervene on concepts. Additionally, probes might capture representations
that are not effectively used by the model (Belinkov, 2022). Similarly, CoT-produced rationales
were found to be unfaithful (Turpin et al., 2023; Chen et al., 2024b; 2025a).

3 SOFTWARE-RELATED TASK ROUTING EVALUATION

In this section, we investigate the extent to which performance variations across LLMs on software
tasks justify query-based LLM routing. We examine two scenarios: (1) expert routing, where certain
LLMs significantly outperform others on specific queries, and (2) cost-effective routing, where mul-
tiple LLMs can answer queries but at different costs. We analyze both intertask variability (across
different task types like code generation or repair) and intratask variability (within tasks based on
structural features like programming language or domain), as well as how intratask patterns them-
selves vary across task types.

3.1 ROUTING DATASET CONSTRUCTION

Real-world software engineering requires expertise across diverse tasks beyond just code genera-
tion, including debugging, code understanding, test synthesis, and domain knowledge. We select
tasks that represent these core software engineering capabilities with clear automated evaluation
metrics, building upon and expanding the principle of holistic code evaluation (Jain et al., 2025) that
examines multiple dimensions of programming competence.

We assemble popular datasets spanning these capabilities: BigCodeBench (Zhuo et al., 2025), a
Python-based, open-domain, function-level code completion and natural-language-instruction-based
code generation dataset; CRUXEval (Gu et al., 2024), a Python-based, function-level input and
output prediction dataset; MMLU-ProX/Computer Science (Xuan et al., 2025), the computer science

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

BCB-Complete

BCB-Instruct

BCB-Repair

BCB-Repair+Info

CRUXEval-I

CRUXEval-O

MMLU-ProX/CS
MultiPL-E

Task

GPT-4.1

GPT-4.1 mini

GPT-4.1 nano

GPT-4o

GPT-4o mini

Grok 3

Grok 3 mini

Grok 4

Llama 3.1 405B

Llama 3.3 70B

Llama 4 Mav (fp8)

Llama 4 Scout

o1

o3

o3 mini

o4 mini

M
od

el

58.2% 47.8% 14.8% 38.8% 73.1% 74.4% 74.1% 56.0%

58.2% 47.8% 11.3% 35.2% 67.0% 70.9% 69.4% 57.0%

54.4% 45.4% 6.1% 17.7% 43.0% 54.4% 58.2% 43.6%

58.1% 47.8% 9.6% 32.2% 68.4% 65.8% 62.0% 47.1%

54.8% 46.4% 5.5% 23.6% 57.0% 58.0% 57.1% 47.0%

58.9% 47.0% 11.9% 37.2% 69.9% 69.5% 76.0% 47.0%

59.0% 48.3% 9.5% 35.7% 53.1% 94.5% 72.2% 52.7%

59.1% 46.1% 12.0% 36.6% 69.2% 68.4% 76.3% 47.1%

54.6% 46.5% 8.0% 32.0% 65.4% 65.1% 66.3% 38.1%

58.3% 46.7% 6.3% 26.4% 56.1% 59.8% 62.0% 42.6%

52.1% 48.5% 8.3% 28.1% 57.9% 58.5% 69.4% 38.1%

53.2% 41.9% 8.0% 25.0% 49.1% 62.0% 59.0% 32.4%

63.0% 49.0% 9.5% 45.0% 97.9% 98.1% 80.5% 45.0%

52.2% 44.8% 16.4% 46.7% 99.5% 99.5% 85.1% 34.2%

61.9% 49.4% 10.1% 44.5% 98.4% 98.1% 77.8% 47.6%

59.0% 50.9% 14.2% 46.7% 98.5% 98.0% 78.9% 39.3%

BCB-Complete

BCB-Instruct

BCB-Repair

BCB-Repair+Info

CRUXEval-I

CRUXEval-O

MMLU-ProX/CS
MultiPL-E

Task

0.2% 0.4% 4.9% 1.7% 0.0% 0.0% 0.2% 1.2%

1.6% 1.1% 6.5% 4.2% 2.9% 0.5% 0.7% 3.8%

41.9% 60.4% 18.3% 22.9% 13.4% 41.0% 14.9% 45.8%

0.6% 0.2% 1.2% 0.2% 0.0% 0.0% 0.2% 0.5%

1.7% 7.4% 3.7% 2.7% 6.9% 4.6% 7.0% 2.8%

0.1% 0.5% 1.9% 0.6% 0.0% 0.0% 0.1% 0.5%

3.6% 4.0% 7.7% 9.7% 7.5% 19.6% 4.9% 10.7%

0.6% 0.2% 2.3% 0.3% 0.0% 0.0% 0.2% 0.5%

0.5% 0.7% 1.3% 0.7% 0.0% 0.0% 0.5% 0.3%

12.0% 9.5% 6.8% 9.6% 14.9% 11.9% 22.0% 12.5%

5.8% 3.2% 7.3% 5.5% 4.5% 2.6% 4.0% 5.9%

28.6% 8.9% 17.3% 18.9% 40.0% 17.4% 40.5% 11.3%

0.3% 0.1% 0.5% 1.6% 0.0% 0.0% 0.2% 0.3%

0.6% 1.1% 10.1% 6.1% 0.4% 0.1% 2.1% 0.7%

0.6% 0.5% 1.6% 4.0% 0.9% 0.1% 0.5% 1.7%

1.2% 1.6% 8.9% 11.3% 8.8% 2.1% 2.0% 1.6%

Figure 2: Intertask Performance. Left: 0-shot pass@1 accuracy of each LLM on each task. Right:
Share of queries each LLM answered most cost-effectively per task. An LLM provides the optimal
answer if it correctly answers a query at the lowest cost among all LLMs that answered correctly.
For example, o3 provided the most cost-effective correct answer for 10.11% of BCB-Repair queries.

subset of a challenging multiple-choice question dataset translated to 29 natural languages; MultiPL-
E (Cassano et al., 2023), a code completion dataset in 18 programming languages.

Recognizing the significance of code repair, similarly to prior work (Olausson et al., 2024; Zheng
et al., 2025; Jain et al., 2025), we additionally construct repair tasks by reusing the incorrect re-
sponses of permissively licensed models on BigCodeBench. We filter the generated code snippets
to include only non-trivially incorrect code, i.e., snippets that execute without crashing but fail to
pass the test cases. Furthermore, we deduplicate the code snippets using basic string matching.
We formulate two repair tasks: BigCodeBench-Repair, where we provide only the incorrect code
snippet, and BigCodeBench-Repair+Info, where we additionally provide execution failure feedback
(see Appendix E for prompt templates).

The entire dataset collection constitutes 38685 examples, spanning eight verifiable tasks: BCB-
Complete (1140), BCB-Instruct (1140), BCB-Repair (5124), BCB-Repair+Info (5124), CRUXEval-
I (800), CRUXEval-O (800), MMLU-ProX/CS (11890), and MultiPL-E (12 667). We evaluate 16
state-of-the-art LLMs that capture a wide range of capabilities and prices, across multiple families:
GPT models (4.1 full/mini/nano, 4o full/mini), Grok models (3 full/mini, 4), o-series models (o1,
o3 full/mini, o4 mini), and Llama models (3.1 405B, 3.3 70B, 4 Scout/Maverick fp8). We include a
cost breakdown in Table 1. In line with previous literature (Zhuo et al., 2025; Rozière et al., 2024;
Liu et al., 2023; Lai et al., 2023), we use greedy decoding to ensure reproducibility and measure
0-shot pass@1 accuracy.

3.2 INTERTASK PERFORMANCE

The left of Figure 2 shows that o-series reasoning models achieve the highest accuracy on most
tasks, with o3 reaching 99.5% on CRUXEval tasks. The exception is multi-programming-language
code completion, where GPT-4.1 mini achieves the highest accuracy at 57.0%. Nonetheless, the
right of Figure 2 reveals that aggregate accuracy metrics obscure significant routing potential.
Cost-effective models can handle many queries optimally: GPT-4.1 nano provides the most cost-
effective solution for the majority of queries across BCB-Complete, BCB-Instruct, CRUXEval-O,
and MultiPL-E tasks. Simultaneously, expensive models like o3 still provide optimal solutions for
challenging queries (10.1% of BCB-Repair), demonstrating the value of expert routing for difficult
tasks. Notably, even within the low-cost tier, different models excel on different tasks. While GPT-
4.1 nano dominates most tasks, Llama 4 Scout provides optimal solutions for 40.0% and 40.5% of
BCB-Repair+Info and CRUXEval-I queries respectively, compared to only 13.4% and 14.9% for

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

afar
bn

cs

de

en

es

fr

hi

hu

id

it

ja
ko mr ne pt

ru

sr

sw

te

th

uk

ur

vi

wo

yo
zh

zu

0.2

0.4

0.6

0.8

MMLU-ProX/CS by Natural Language

o4 mini
o3

GPT-4.1
GPT-4.1 nano

Grok 3 mini
Llama 4 Scout adb clj cpp cs d dart elixir go hs java jl js lua ml php pl r rb rkt rs scala sh swift ts

Programming Language

GPT-4.1

GPT-4.1 mini

GPT-4.1 nano

GPT-4o

GPT-4o mini

Grok 3

Grok 3 mini

Grok 4

Llama 3.1 405B

Llama 3.3 70B

Llama 4 Mav (fp8)

Llama 4 Scout

o1

o3

o3 mini

o4 mini

M
od

el

0% 67% 64% 44% 38% 19% 64% 59% 68% 54% 67% 80% 55% 62% 75% 44% 66% 21% 49% 60% 72% 41% 58% 85%

21% 64% 74% 53% 39% 20% 60% 71% 66% 56% 66% 77% 55% 58% 72% 39% 64% 15% 58% 64% 73% 44% 47% 83%

0% 34% 67% 31% 27% 45% 50% 23% 57% 60% 58% 73% 44% 34% 74% 26% 52% 2% 35% 59% 14% 45% 57% 79%

0% 59% 68% 49% 23% 33% 55% 55% 61% 43% 54% 73% 32% 55% 73% 17% 61% 12% 55% 53% 8% 44% 64% 73%

17% 49% 63% 44% 27% 24% 47% 42% 55% 63% 56% 72% 41% 41% 67% 24% 54% 7% 45% 47% 60% 39% 50% 77%

2% 48% 66% 42% 24% 27% 66% 29% 50% 4% 71% 56% 73% 48% 68% 40% 49% 21% 59% 53% 46% 48% 54% 65%

2% 61% 53% 30% 59% 20% 61% 52% 72% 56% 71% 79% 72% 44% 74% 37% 54% 7% 50% 56% 53% 43% 50% 80%

3% 47% 65% 42% 27% 27% 66% 30% 50% 5% 70% 56% 74% 46% 68% 42% 48% 20% 60% 52% 46% 49% 54% 66%

15% 50% 53% 19% 23% 32% 47% 55% 51% 15% 23% 30% 31% 15%100%22% 51% 13% 39% 59% 47% 41% 55% 22%

42% 48% 61% 33% 27% 25% 45% 59% 51% 54% 38% 28% 40% 16% 93% 21% 48% 2% 50% 51% 57% 39% 51% 27%

13% 30% 59% 35% 31% 34% 54% 13% 45% 60% 11% 28% 20% 25% 95% 33% 45% 14% 44% 55% 62% 33% 51% 21%

0% 15% 64% 39% 13% 29% 39% 43% 39% 57% 26% 16% 18% 15% 99% 12% 47% 2% 21% 46% 48% 29% 37% 20%

21% 66% 30% 24% 34% 18% 57% 40% 67% 3% 53% 77% 52% 38% 77% 32% 64% 19% 45% 58% 10% 42% 50% 83%

32% 60% 54% 14% 11% 33% 13% 9% 50% 49% 9% 53% 9% 29% 53% 10% 41% 13% 22% 83% 5% 49% 74% 44%

37% 68% 64% 24% 33% 25% 50% 23% 55% 63% 45% 68% 39% 45% 60% 34% 65% 21% 31% 69% 13% 49% 62% 81%

16% 48% 68% 11% 25% 26% 36% 28% 65% 58% 28% 29% 30% 51% 44% 19% 61% 24% 31% 75% 0% 49% 66% 50%

MultiPL-E by Programming Language

Figure 3: 0-shot pass@1 intratask accuracy. Left: Computer-science-related QA, stratified by the
natural language of the query. Right: Multi-programming-language code completion, stratified by
the programming language of the query. For radar plots, we select six representative models.

Computation

Cryptography

General

Network System

Time

Visualization

0.2

0.4

0.6

BCB-Complete
Computation

Cryptography

General

Network System

Time

Visualization

0.1
0.2

0.3
0.4

0.5

BCB-Instruct
Computation

Cryptography

General

Network System

Time

Visualization

0.05
0.10

0.15
0.20

BCB-Repair
Computation

Cryptography

General

Network System

Time

Visualization

0.1
0.2

0.3
0.4

0.5

BCB-Repair+Info

o4 mini o3 GPT-4.1 GPT-4.1 nano Grok 3 mini Llama 4 Scout

Figure 4: 0-shot pass@1 intratask accuracy comparison across open-domain code generation and
repair tasks, stratified by the domain of the query, for six representative models.

GPT-4.1 nano on these tasks. This suggests that expert routing benefits exist not only between cost
tiers, but also within them.

3.3 INTRATASK PERFORMANCE

We examine how LLMs perform on the same task under different conditions, focusing on natural
language, programming language, and domain variations.

Natural and Programming Language Variations As shown on the left in Figure 3, LLM accuracy
varies dramatically based on natural language. While o3 performs consistently well across most
languages, it notably performs worse on Russian (similarly to the other OpenAI models GPT-4.1 and
o4-mini) and is outperformed by Grok 3 mini. Lower-cost models match the accuracy of higher-cost
models like o3 and GPT-4.1, especially on West-European languages like English, Spanish, French,
or Italian. The performance gap between lower-cost and higher-cost models widens for South Asian
languages like Hindi, Marathi, or Telugu. Notably, the accuracy of all but the pricier models o3 and
GPT-4.1 drops significantly for Wolof, a low-resource language.1

In contrast to natural language patterns, programming language performance reveals more complex
specialization patterns. As shown on the right in Figure 3, each model family demonstrates distinct
advantages: Llama models excel at PHP (all achieving above 93% accuracy), GPT-4 models perform
strongly in TypeScript, Grok models have advantages in Julia and Lua, and o-series models show
strength in Rust and Swift. Notably, mini versions sometimes dramatically outperform their full-size
counterparts–Grok 3 mini achieves 52 percentage points higher accuracy than Grok 3 on Java, and
GPT-4o mini similarly outperforms GPT-4o on Scala.

1We adopt the geographic and resource classification of natural languages from Xuan et al. (2025).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Domain-Specific Performance Figure 4 reveals nuanced domain effects that vary across task types.
Consistent with the intertask patterns in Figure 2, LLMs show much more similar performance
to each other on original BigCodeBench tasks (code completion and instruction-based generation)
compared to the derived repair tasks, where model performance becomes more stratified. Across
all task types, models perform particularly well on generation- and computation-related domains
but struggle more with network- and time-related tasks. However, the repair tasks exhibit notable
differences depending on whether execution feedback is provided. Code repair with execution in-
formation reduces domain variability across all LLMs, while repair without execution feedback
exacerbates these differences. Without execution feedback, models show stronger performance on
general- and computation-related snippets but struggle with cryptography- and system-related code,
despite not being disproportionately weak at generating such code initially. This pattern reveals in-
teresting model-specific reversals: both o3 and Llama 4 Scout underperform on cryptography- and
network-related repair tasks, where they are superseded by their cheaper alternatives o4 mini and
GPT-4.1 nano, respectively.

These results demonstrate substantial intratask routing potential across multiple dimensions, with
clear opportunities for both expert and cost-effective routing depending on domain, natural and
programming language characteristics.

4 ROUTER FORMULATION

We propose a concept-based LLM router that bases routing decisions on interpretable, intervenable,
high-level concepts. Before introducing our approach, we establish the general routing formulation.

The routing problem can be formulated as learning a function f : X → Rn that maps an input string
x ∈ X to a vector m ∈ Rn, where mi corresponds to the probability that LLM i ∈ {1, ..., n}
provides the most suitable response to x. The input x is first projected into a d-dimensional contex-
tualized embedding space by an embedding model, so the function to learn becomes f : Rd → Rn,
where x ∈ Rd.

A standard supervised approach trains a multi-label classifier that maps from input x ∈ Rd to model
suitability scores m ∈ Rn given true model correctness labels y ∈ Rn by minimizing binary cross-
entropy loss with cost regularization (Equation 1). The cost term represents expected routing cost
under the predicted probability distribution, where cost(xi) is a normalized cost vector for input xi,
and λ controls cost sensitivity.

f̂ = argmin
f

∑
i

(LBCE(f(x
i),y) + λf(ci)cost(xi)) (1)

Our concept-based approach decomposes f into two networks: f(x) = g ◦h(x). We leverage exist-
ing dataset labels to create a k-dimensional concept space capturing natural language, programming
language, domains, required libraries, and three complexity measures. The complexity measures
represent the fraction of models that failed on each input, stratified by model type: reasoning com-
plexity (fraction of reasoning models that failed), general complexity (fraction of non-reasoning
models that failed), and total complexity (fraction of all models that failed). Reasoning and non-
reasoning models form mutually exclusive categories within our 16-model evaluation set.

Network h maps embeddings to concepts: Rd → Rk, trained via Equation 2. Network g maps
concepts to model suitability Rk → Rn, trained with cost-regularization via Equation 3. We train g

and h independently rather than end-to-end. During inference, ĝ receives predicted concepts from ĥ,
enabling human intervention by editing concept predictions. We discuss the impact of concept-level
correction in subsection 5.3.

ĥ = argmin
h

∑
i

LBCE(h(x
i), ci) (2)

ĝ = argmin
g

∑
i

(LBCE(g(c
i),m) + λg(ci)cost(xi)) (3)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

10
0

10
1

Total Cost ($, log scale)

40.0%

45.0%

50.0%

55.0%

60.0%

65.0%

70.0%

75.0%

A
cc

ur
ac

y
=0.0=0.1

=1.0

=3.0

=10.0

GPT-4.1

GPT-4.1 mini

GPT-4.1 nano

GPT-4o

GPT-4o mini

Grok 3Grok 3 mini
Grok 4

Llama 3.1 405B
Llama 3.3 70B

Llama 4 Mav (fp8)

Llama 4 Scout

o1
o3

o3 mini
o4 mini

Oracle

Random

KNN
EmbedLLM

Router Pareto Frontier
Routesplain
MLP Router

GPT-4.1 mini
GPT-4.1 nano

Grok 3 mini
Llama 3.3 70B

Llama 4 Mav (fp8)
Llama 4 Scout o3

o4 mini

Model

0

200

400

600

800

1000

1200

1400

1600

# 
A

ss
ig

nm
en

ts

[0;2)
[2;4)
[4;6)
[6;8)
[8:10)
10

Figure 5: Left: Accuracy against cost of each individual model as well as all routers on the test
set. For EmbedLLM, MLP router, and Routesplain, we show accuracy and cost averaged across
5 training runs. For Routesplain and MLP router, we display the Pareto frontier established by
connecting the average router performance across multiple values of the cost regularizer λ. Right:
The average number of times each model was assigned to an input by Routesplain, as we increase
the λ regularizer. We increase λ by 0.1 on the interval [0; 1) and then by 1 on the interval [1; 10].
We display only the top 8 most assigned models.

5 EVALUATION

We evaluate the efficacy of Routesplain using an 80/10/10 train/validation/test split on our dataset
collection (see section 3). As the collection spans multiple programming and natural languages, we
concatenate embeddings from two models: codesage-small-v2 (Zhang et al., 2024) and multilingual-
e5-small (Wang et al., 2024a). To control for embedding quality, all baselines use the same embed-
dings. We retrain each model five times and report mean and standard deviation. Implementation
and hyperparameter search details are provided in Appendix A. All experiments are conducted on a
single Nvidia A100 80GB GPU.

All router models process the entire test set (3869 queries) in under 10 milliseconds, so latency
and throughput are primarily determined by embedding time. Over 10 runs, embedding the test set
with unoptimized, naive batching averages 36.96 seconds, yielding an average throughput of 104.68
queries per second, surpassing most proposed routing solutions by Ong et al. (2025).

5.1 HOW DOES ROUTESPLAIN COMPARE TO BLACK-BOX SOTA BASELINES?

We compare Routesplain against three black-box baselines: MLP router, KNN router (both standard
baseline types proposed by Hu et al. (2024)), and EmbedLLM (Zhuang et al., 2025). For the MLP
router, we use the black-box formulation in Equation 1. For the KNN router, we train separate
binary classifiers for each model to predict correctness, routing to the model with highest predicted
success probability. For EmbedLLM, we reimplement the algorithm as presented in Zhuang et al.
(2025). All methods receive equal hyperparameter tuning effort. We also include random and oracle
routers to establish theoretical bounds. To evaluate the performance of Routesplain and MLP router
as cost sensitivity (λ) changes, we retrain each router with λ incremented by 0.1 from 0 to 1, and by
1 from 1 to 10. This step size adjustment reflects the greater differences in cost-effectiveness among
medium- and low-cost LLMs.

Competitive Performance with Interpretability Benefits The left of Figure 5 demonstrates that
Routesplain achieves competitive performance while providing interpretability advantages. Route-
splain Pareto dominates EmbedLLM, KNN router, random router, and all individual models across
cost levels. Notably, Routesplain matches the black-box MLP router’s performance at most regu-
larization levels; the MLP router achieves statistically significantly higher mean accuracy only at λ
values of 0.0, 0.3, and 0.4, while Routesplain significantly outperforms the MLP router at λ = 3.0
(see the two-tailed t-test results in Appendix B). Moreover, Routesplain uses 15.65% fewer param-
eters (462K vs 547K) than the MLP router.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Concept group ablation and intervention results across cost regularization levels. Ablation:
Accuracy when removing each concept group during training (compared to baseline). Intervention:
Accuracy when replacing predicted concept labels with gold labels at inference. Values show mean
routing accuracy (%) with standard deviation over 5 runs.

Concept Group Ablation Acc (%) Concept Group Intervention Acc (%)
Concept Group λ = 0.0 λ = 0.1 λ = 4.0 λ = 0.0 λ = 0.1 λ = 4.0

Baseline 62.27 (0.32) 62.10 (0.55) 53.98 (0.39) 62.27 (0.32) 62.10 (0.55) 53.98 (0.39)

Tasks 62.27 (0.32) 62.02 (0.22) 53.48 (0.41) 62.30 (0.30) 62.25 (0.63) 53.89 (0.37)

Domains 62.19 (0.32) 62.37 (0.28) 53.81 (0.32) 62.27 (0.33) 62.27 (0.68) 53.92 (0.42)

Libraries 61.69 (0.28) 61.55 (0.32) 52.56 (1.37) 62.26 (0.32) 62.30 (0.61) 53.92 (0.39)

Natural Languages 62.11 (0.16) 62.15 (0.15) 52.71 (0.60) 62.26 (0.34) 62.25 (0.65) 53.90 (0.41)

Programming Languages 60.43 (0.23) 60.76 (0.42) 51.08 (0.86) 62.27 (0.33) 62.13 (0.67) 53.98 (0.41)

Complexity 61.45 (0.29) 61.28 (0.19) 48.43 (0.69) 66.32 (0.15) 65.89 (0.17) 57.02 (0.19)

Cost-Accuracy Tradeoffs The left of Figure 5 illustrates the Pareto frontiers, showing how both
Routesplain and MLP router navigate cost-accuracy tradeoffs. As cost regularization increases, both
routers shift from expensive high-accuracy models to more economical alternatives while maintain-
ing competitive performance. The right of Figure 5 shows how Routesplain’s model assignments
change with cost regularization. Higher λ values shift assignments from expensive models (o3) to-
ward mid-tier options (GPT-4.1 mini, o4 mini) and finally to the most cost-efficient models (GPT-4.1
nano, Llama 4 Scout). This pattern aligns with our dataset analysis findings in section 3, confirming
that the router learns meaningful cost-accuracy relationships.

5.2 HOW DOES EACH CONCEPT CATEGORY CONTRIBUTE TO ROUTESPLAIN’S ACCURACY?

To understand which concepts contribute most to routing decisions, we conduct ablation studies by
systematically removing each concept group and retraining Routesplain across three cost regular-
ization levels (λ = 0, 0.1, 4.0). Results are shown on the left in Table 2.

Concept importance varies significantly with cost sensitivity. At high cost sensitivity (λ = 4.0),
complexity concepts show the largest impact (-5.55 pp), aligning with the critical need to distin-
guish expensive versus cheap model requirements when cost matters most. Programming language
distinctions matter substantially at all cost levels, reflecting the distinct performance profiles across
models shown in subsection 3.3, but have greatest impact at the lowest cost level. Natural language
distinctions show insignificant impact at low cost levels but meaningful effects (-1.27 pp) when cost
is prioritized. This pattern reflects that expensive models handle most natural languages compe-
tently, while cheaper models struggle with low-resource languages (subsection 3.3). Library con-
cepts are most important at high cost sensitivity and show greater significance than domain concepts,
likely because they provide more granular, specific information than broader domain categories.

Task categories show minimal ablation effects, which we attribute to limited cross-dataset label
variability in our current collection, as most tasks lack multiple degrees of freedom across natural
languages, programming languages, and domains. This suggests promising directions for develop-
ing richer evaluation benchmarks with multi-language, multi-domain task variants.

5.3 WHAT DOES CONCEPT-LEVEL INTERVENTION REVEAL ABOUT ROUTING BOTTLENECKS?

Routesplain’s concept bottleneck lets us perform a controlled counterfactual: at inference time we
replace the router’s predictions for a single concept group with ground-truth labels, leave every
other concept prediction unchanged, and then rerun the router. Because only one factor is altered,
any change in downstream accuracy can be attributed unambiguously to that group. The concept-
level predictions quality by group is shown in Table 3, and the accuracy achieved after each oracle
substitution across three cost regularization levels (λ = 0, 0.1, 4.0) is reported on the right in Table 2.

Complexity concepts are the primary bottleneck for routing performance. Providing oracle
complexity labels raises routing accuracy by 3.04–4.05 pp across all cost sensitivities, with the
largest gain at λ = 0. Substituting ground-truth labels for library or programming language con-
cepts, however, does not yield any improvement, even though these groups are not predicted per-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Concept prediction performance by group. We present accuracy, precision, recall, and F1
for binary labels and mean squared error and mean absolute error for complexity ratios, with mean
and standard deviation over 5 runs.

Concept Group Acc (%) Prec (%) Rec (%) F1 (%) MSE MAE
Tasks 99.92 (0.02) 99.79 (0.08) 99.50 (0.07) 99.64 (0.05) — —

Domains 99.99 (0.01) 99.66 (0.11) 99.87 (0.05) 99.76 (0.05) — —
Libraries 99.99 (0.00) 75.57 (0.56) 75.30 (0.78) 75.32 (0.67) — —

Natural Languages 100.00 (0.00) 99.98 (0.04) 99.61 (0.12) 99.79 (0.08) — —
Programming Languages 99.90 (0.03) 99.38 (0.50) 91.79 (2.06) 94.49 (1.77) — —

Complexity — — — — 0.057 (0.005) 0.176 (0.014)

fectly (Table 3). Hence, errors in estimating query complexity propagate directly into routing mis-
takes, whereas errors in the other concept groups are largely absorbed by the second-stage classifier.
Targeting complexity prediction (e.g., via a specialized sub-model) therefore offers the most lever-
age for improving routing accuracy, illustrating the diagnostic power of concept-level intervention.

5.4 DOES CONCEPT-LEVEL INTERVENTION LEAD TO PREDICTABLE ROUTING DECISIONS?

To test whether flipping a single concept produces the intuitive routing shift, we generate 1000 syn-
thetic concept vectors for each of five source–target programming language pairs (e.g., PHP to Rust).
All concept vectors describe the code completion task, English natural language, general domain, no
libraries, and draw query complexity uniformly at random; the only difference between the paired
vectors is that the programming language concept is set to the source language in one case and to the
target language in the other. Passing both versions through Routesplain without cost regularization
lets us measure how the selection of target-specific models responds to the language flip. Across
the five pairs, changing the language concept increases the aggregated selection probability of the
top three target-language models for the given language (as shown in Figure 3) by 37.03 percentage
points and improves their average rank by 2.65 positions. The strong, consistent shift confirms that
the router’s decisions are directionally consistent in concept space: altering only the programming
language concept predictably steers probability mass toward models specialized for that language,
validating Routesplain’s controllability through explicit concept manipulation.

6 LIMITATIONS

Routesplain has several practical constraints. The approach requires concept labels for training
data and may lack representational power to capture nuanced query relationships not well-described
by our concept taxonomy. Developing general-purpose concept spaces for diverse chat applications
remains challenging, as our current concepts are tailored to code generation tasks. Additionally, cur-
rent evaluation datasets lack diversity across multiple concept dimensions; for example, we leverage
an execution-based open-domain Python dataset (BigCodeBench) and an execution-based simple
standard library multi-programming language dataset (MultiPL-E), but no execution-based open-
domain multi-programming language datasets currently exists. This limited cross-concept variabil-
ity may constrain Routesplain’s learning and transferability to out-of-distribution tasks. The system
requires supervision and retraining when adding or removing models, adjusting concepts, or up-
dating model pricing. However, retraining costs are minimal: Routesplain trains from scratch in
approximately one minute on a single Nvidia A100, making iterative improvements feasible.

7 CONCLUSION

We introduced Routesplain, the first concept-based LLM router for software tasks, which matches
black-box model performance while providing interpretable routing decisions. Our evaluation across
eight tasks and 16 LLMs reveals significant routing potential and demonstrates that architectures
enable diagnostic insights, such as identifying complexity prediction as the primary performance
bottleneck, that are impossible with opaque systems. This work establishes interpretable routing as
a viable approach for domain-specific LLM orchestration and opens directions for targeted improve-
ments in routing system design.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we have made several efforts to provide comprehensive
implementation details and experimental specifications. Complete hyperparameter configurations
for all router architectures (Routesplain, MLP router, KNN router, and EmbedLLM) are provided
in Appendix A, including hidden dimensions, dropout probabilities, learning rates, and batch sizes
determined through systematic grid search. Our evaluation uses publicly available datasets (Big-
CodeBench, CRUXEval, MMLU-ProX/Computer Science, and MultiPL-E) with licensing infor-
mation detailed in Appendix C. For our constructed repair tasks, we provide exact prompt tem-
plates in Appendix E and describe our filtering methodology for non-trivially incorrect code snippets
in subsection 3.1. All experiments follow standard best practices with 80/10/10 train/validation/test
splits, 5 independent training runs with reported means and standard deviations, greedy decoding for
consistency, and 0-shot pass@1 accuracy evaluation. We specify the exact embedding models used
(codesage-small-v2 and multilingual-e5-small), hardware requirements (single Nvidia A100 80GB
GPU), and statistical testing procedures (two-tailed t-tests and Mann-Whitney U tests). The 38,685
evaluation examples span 16 state-of-the-art LLMs across eight software-related tasks, with model
pricing and cost calculations transparently reported in Table 1. Our concept taxonomy and routing
strategy are clearly defined in section 4, enabling replication of our concept-based routing approach.

REFERENCES

Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances. Computa-
tional Linguistics, 48(1):207–219, March 2022. doi: 10.1162/coli a 00422. URL https:
//aclanthology.org/2022.cl-1.7/.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, Arjun Guha,
Michael Greenberg, and Abhinav Jangda. Multipl-e: A scalable and polyglot approach to bench-
marking neural code generation. IEEE Transactions on Software Engineering, 49(7):3675–3691,
2023. doi: 10.1109/TSE.2023.3267446.

Ziwei Chai, Guoyin Wang, Jing Su, Tianjie Zhang, Xuanwen Huang, Xuwu Wang, Jingjing Xu,
Jianbo Yuan, Hongxia Yang, Fei Wu, and Yang Yang. An expert is worth one token: Synergizing
multiple expert LLMs as generalist via expert token routing. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 11385–11396, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.614. URL
https://aclanthology.org/2024.acl-long.614/.

Lingjiao Chen, Matei Zaharia, and James Zou. FrugalGPT: How to use large language models while
reducing cost and improving performance. Transactions on Machine Learning Research, 2024a.
ISSN 2835-8856. URL https://openreview.net/forum?id=cSimKw5p6R.

Yanda Chen, Ruiqi Zhong, Narutatsu Ri, Chen Zhao, He He, Jacob Steinhardt, Zhou Yu, and Kath-
leen Mckeown. Do models explain themselves? Counterfactual simulatability of natural language
explanations. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp.
7880–7904. PMLR, 21–27 Jul 2024b. URL https://proceedings.mlr.press/v235/
chen24bl.html.

Yanda Chen, Joe Benton, Ansh Radhakrishnan, Jonathan Uesato, Carson Denison, John Schulman,
Arushi Somani, Peter Hase, Misha Wagner, Fabien Roger, Vlad Mikulik, Samuel R. Bowman,
Jan Leike, Jared Kaplan, and Ethan Perez. Reasoning models don’t always say what they think,
2025a. URL https://arxiv.org/abs/2505.05410.

Zhou Chen, Zhiqiang Wei, Yuqi Bai, Xue Xiong, and Jianmin Wu. TagRouter: Learning route
to LLMs through tags for open-domain text generation tasks. In Wanxiang Che, Joyce Nabende,
Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the Association for Compu-
tational Linguistics: ACL 2025, pp. 21539–21564, Vienna, Austria, July 2025b. Association for

10

https://aclanthology.org/2022.cl-1.7/
https://aclanthology.org/2022.cl-1.7/
https://aclanthology.org/2024.acl-long.614/
https://openreview.net/forum?id=cSimKw5p6R
https://proceedings.mlr.press/v235/chen24bl.html
https://proceedings.mlr.press/v235/chen24bl.html
https://arxiv.org/abs/2505.05410


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.1110.
URL https://aclanthology.org/2025.findings-acl.1110/.

Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Rühle, Laks
V. S. Lakshmanan, and Ahmed Hassan Awadallah. Hybrid LLM: Cost-efficient and quality-aware
query routing. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=02f3mUtqnM.

Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I.
Wang. Cruxeval: a benchmark for code reasoning, understanding and execution. In Proceedings
of the 41st International Conference on Machine Learning, ICML’24. JMLR.org, 2024.

Neel Guha, Mayee F. Chen, Trevor Chow, Ishan S. Khare, and Christopher Ré. Smoothie:
Label free language model routing. In A. Globerson, L. Mackey, D. Belgrave,
A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Infor-
mation Processing Systems, volume 37, pp. 127645–127672. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/e6b57a990462df5afa58d64ce2709db9-Paper-Conference.pdf.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023. URL https://
arxiv.org/abs/1606.08415.

John Hewitt and Percy Liang. Designing and interpreting probes with control tasks. In Kentaro
Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), pp. 2733–2743, Hong Kong, China,
November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1275. URL
https://aclanthology.org/D19-1275/.

Qitian Jason Hu, Jacob Bieker, Xiuyu Li, Nan Jiang, Benjamin Keigwin, Gaurav Ranganath, Kurt
Keutzer, and Shriyash Kaustubh Upadhyay. Routerbench: A benchmark for multi-LLM routing
system. In Agentic Markets Workshop at ICML 2024, 2024. URL https://openreview.
net/forum?id=IVXmV8Uxwh.

Alon Jacovi and Yoav Goldberg. Towards faithfully interpretable NLP systems: How should we
define and evaluate faithfulness? In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault
(eds.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pp. 4198–4205, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/
2020.acl-main.386. URL https://aclanthology.org/2020.acl-main.386/.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamina-
tion free evaluation of large language models for code. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
chfJJYC3iL.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. LLM-blender: Ensembling large language mod-
els with pairwise ranking and generative fusion. In Anna Rogers, Jordan Boyd-Graber, and
Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 14165–14178, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.792. URL
https://aclanthology.org/2023.acl-long.792/.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
Percy Liang. Concept bottleneck models. In Hal Daumé III and Aarti Singh (eds.), Proceedings of
the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 5338–5348. PMLR, 13–18 Jul 2020. URL https://proceedings.
mlr.press/v119/koh20a.html.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau
Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: a natural and reliable benchmark for data
science code generation. In Proceedings of the 40th International Conference on Machine Learn-
ing, ICML’23. JMLR.org, 2023.

11

https://aclanthology.org/2025.findings-acl.1110/
https://openreview.net/forum?id=02f3mUtqnM
https://proceedings.neurips.cc/paper_files/paper/2024/file/e6b57a990462df5afa58d64ce2709db9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/e6b57a990462df5afa58d64ce2709db9-Paper-Conference.pdf
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://aclanthology.org/D19-1275/
https://openreview.net/forum?id=IVXmV8Uxwh
https://openreview.net/forum?id=IVXmV8Uxwh
https://aclanthology.org/2020.acl-main.386/
https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=chfJJYC3iL
https://aclanthology.org/2023.acl-long.792/
https://proceedings.mlr.press/v119/koh20a.html
https://proceedings.mlr.press/v119/koh20a.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In Proceedings of the 40th International Conference on Machine Learning, ICML’23.
JMLR.org, 2023.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. In
Proceedings of the 37th International Conference on Neural Information Processing Systems,
NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates Inc.

Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren Zhou.
Routing to the expert: Efficient reward-guided ensemble of large language models. In Kevin
Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pp. 1964–1974, Mexico City, Mexico, June 2024. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.109. URL https:
//aclanthology.org/2024.naacl-long.109/.

Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In Proceed-
ings of the 31st International Conference on Neural Information Processing Systems, NIPS’17,
pp. 4768–4777, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Alireza Mohammadshahi, Arshad Rafiq Shaikh, and Majid Yazdani. Routoo: Learning to route to
large language models effectively, 2024. URL https://arxiv.org/abs/2401.13979.

Tuomas Oikarinen, Subhro Das, Lam M. Nguyen, and Tsui-Wei Weng. Label-free concept bottle-
neck models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=FlCg47MNvBA.

Theo X. Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-
Lezama. Is self-repair a silver bullet for code generation? In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
y0GJXRungR.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E. Gonzalez,
M Waleed Kadous, and Ion Stoica. RouteLLM: Learning to route LLMs from preference
data. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=8sSqNntaMr.

Konstantinos P. Panousis, Dino Ienco, and Diego Marcos. Coarse-to-fine concept bottleneck models.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=RMdnTnffou.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Mathieu Ravaut, Shafiq Joty, and Nancy Chen. SummaReranker: A multi-task mixture-of-experts
re-ranking framework for abstractive summarization. In Smaranda Muresan, Preslav Nakov,
and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 4504–4524, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.309. URL
https://aclanthology.org/2022.acl-long.309/.

Marco Ribeiro, Sameer Singh, and Carlos Guestrin. “why should I trust you?”: Explaining the pre-
dictions of any classifier. In John DeNero, Mark Finlayson, and Sravana Reddy (eds.), Proceed-
ings of the 2016 Conference of the North American Chapter of the Association for Computational
Linguistics: Demonstrations, pp. 97–101, San Diego, California, June 2016. Association for
Computational Linguistics. doi: 10.18653/v1/N16-3020. URL https://aclanthology.
org/N16-3020/.

12

https://aclanthology.org/2024.naacl-long.109/
https://aclanthology.org/2024.naacl-long.109/
https://arxiv.org/abs/2401.13979
https://openreview.net/forum?id=FlCg47MNvBA
https://openreview.net/forum?id=y0GJXRungR
https://openreview.net/forum?id=y0GJXRungR
https://openreview.net/forum?id=8sSqNntaMr
https://openreview.net/forum?id=RMdnTnffou
https://aclanthology.org/2022.acl-long.309/
https://aclanthology.org/N16-3020/
https://aclanthology.org/N16-3020/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Ev-
timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.
URL https://arxiv.org/abs/2308.12950.

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hin-
ton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-
experts layer. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=B1ckMDqlg.

Tal Shnitzer, Anthony Ou, Mı́rian Silva, Kate Soule, Yuekai Sun, Justin Solomon, Neil Thompson,
and Mikhail Yurochkin. Large language model routing with benchmark datasets, 2023. URL
https://arxiv.org/abs/2309.15789.

Dimitrios Sikeridis, Dennis Ramdass, and Pranay Pareek. Pickllm: Context-aware rl-assisted large
language model routing. In Qingyun Wang, Wenpeng Yin, Abhishek Aich, Yumin Suh, and Kuan-
Chuan Peng (eds.), AI for Research and Scalable, Efficient Systems, pp. 227–239, Singapore,
2025. Springer Nature Singapore. ISBN 978-981-96-8912-5.

Wei Song, Zhenya Huang, Cheng Cheng, Weibo Gao, Bihan Xu, GuanHao Zhao, Fei Wang, and
Runze Wu. IRT-router: Effective and interpretable multi-LLM routing via item response the-
ory. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 15629–15644, Vienna, Austria, July 2025. Association for Com-
putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.761. URL
https://aclanthology.org/2025.acl-long.761/.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel R. Bowman. Language models don’t always
say what they think: Unfaithful explanations in chain-of-thought prompting. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=bzs4uPLXvi.

Neeraj Varshney and Chitta Baral. Model cascading: Towards jointly improving efficiency and
accuracy of NLP systems. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Pro-
ceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.
11007–11021, Abu Dhabi, United Arab Emirates, December 2022. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2022.emnlp-main.756. URL https://aclanthology.
org/2022.emnlp-main.756/.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Mul-
tilingual e5 text embeddings: A technical report, 2024a. URL https://arxiv.org/abs/
2402.05672.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhi-
fang Sui. Math-shepherd: Verify and reinforce LLMs step-by-step without human annotations. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 9426–9439,
Bangkok, Thailand, August 2024b. Association for Computational Linguistics. doi: 10.18653/
v1/2024.acl-long.510. URL https://aclanthology.org/2024.acl-long.510/.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Weihao Xuan, Rui Yang, Heli Qi, Qingcheng Zeng, Yunze Xiao, Aosong Feng, Dairui Liu, Yun
Xing, Junjue Wang, Fan Gao, Jinghui Lu, Yuang Jiang, Huitao Li, Xin Li, Kunyu Yu, Ruihai
Dong, Shangding Gu, Yuekang Li, Xiaofei Xie, Felix Juefei-Xu, Foutse Khomh, Osamu Yoshie,
Qingyu Chen, Douglas Teodoro, Nan Liu, Randy Goebel, Lei Ma, Edison Marrese-Taylor, Shijian
Lu, Yusuke Iwasawa, Yutaka Matsuo, and Irene Li. Mmlu-prox: A multilingual benchmark for

13

https://arxiv.org/abs/2308.12950
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://arxiv.org/abs/2309.15789
https://aclanthology.org/2025.acl-long.761/
https://openreview.net/forum?id=bzs4uPLXvi
https://openreview.net/forum?id=bzs4uPLXvi
https://aclanthology.org/2022.emnlp-main.756/
https://aclanthology.org/2022.emnlp-main.756/
https://arxiv.org/abs/2402.05672
https://arxiv.org/abs/2402.05672
https://aclanthology.org/2024.acl-long.510/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

advanced large language model evaluation, 2025. URL https://arxiv.org/abs/2503.
10497.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
MAmmoTH: Building math generalist models through hybrid instruction tuning. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=yLClGs770I.

Dejiao Zhang, Wasi Uddin Ahmad, Ming Tan, Hantian Ding, Ramesh Nallapati, Dan Roth, Xiaofei
Ma, and Bing Xiang. CODE REPRESENTATION LEARNING AT SCALE. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=vfzRRjumpX.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refinement,
2025. URL https://arxiv.org/abs/2402.14658.

Richard Zhuang, Tianhao Wu, Zhaojin Wen, Andrew Li, Jiantao Jiao, and Kannan Ramchandran.
EmbedLLM: Learning compact representations of large language models. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=Fs9EabmQrJ.

Terry Yue Zhuo, Vu Minh Chien, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen GONG, James
Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kaddour, Ming Xu, Zhihan
Zhang, Prateek Yadav, Naman Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, Qian Liu, Zijian Wang,
David Lo, Binyuan Hui, Niklas Muennighoff, Daniel Fried, Xiaoning Du, Harm de Vries, and Le-
andro Von Werra. Bigcodebench: Benchmarking code generation with diverse function calls and
complex instructions. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=YrycTjllL0.

Marija Šakota, Maxime Peyrard, and Robert West. Fly-swat or cannon? cost-effective language
model choice via meta-modeling. In Proceedings of the 17th ACM International Conference on
Web Search and Data Mining, WSDM ’24, pp. 606–615, New York, NY, USA, 2024. Associa-
tion for Computing Machinery. ISBN 9798400703713. doi: 10.1145/3616855.3635825. URL
https://doi.org/10.1145/3616855.3635825.

A IMPLEMENTATION DETAILS

A.1 ROUTESPLAIN

Routesplain consists of two separately trained classifiers. Each classifier is a two-layer MLP with
GeLU (Hendrycks & Gimpel, 2023) and dropout. We conduct a separate hyperparameter grid search
over plausible hidden dimensions, dropout probability, learning rate, and batch size for each classi-
fier and select the combination that results in the lowest mean validation set loss across 3 random
seeds. Namely, for the concept classifier, this is: hidden dimension = 256, dropout probability = 0.1,
learning rate = 0.001, and batch size = 24. For the model classifier, this is hidden dimension = 176,
dropout probability = 0.0, learning rate = 0.001, and batch size = 8.

A.2 MLP ROUTER

The MLP router is a two-layer MLP classifier with GeLU and dropout. We conduct a thorough
hyperparemeter grid search over plausible hidden dimensions, dropout probability, learning rate,
and batch size and select the combination that results in the lowest mean validation set loss across 3
random seeds: hidden dimension = 384, dropout probability = 0.2, learning rate = 0.001, batch size
= 8.

A.3 KNN ROUTER

For the KNN router, we use the scikit-learn’s KNeighborsClassifier (Pedregosa et al., 2011) and
select the number of neighbors that results in the highest accuracy on the validation set: k = 20.

14

https://arxiv.org/abs/2503.10497
https://arxiv.org/abs/2503.10497
https://openreview.net/forum?id=yLClGs770I
https://openreview.net/forum?id=yLClGs770I
https://openreview.net/forum?id=vfzRRjumpX
https://openreview.net/forum?id=vfzRRjumpX
https://arxiv.org/abs/2402.14658
https://openreview.net/forum?id=Fs9EabmQrJ
https://openreview.net/forum?id=Fs9EabmQrJ
https://openreview.net/forum?id=YrycTjllL0
https://doi.org/10.1145/3616855.3635825


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.4 EMBEDLLM ROUTER

For the EmbedLLM router, we reimplement the approach as described in Zhuang et al. (2025)
and implemented in the accompanying GitHub repository. We conduct a thorough hyperparame-
ter search over plausible hidden dimensions, model embedding dimensions, learning rate, and batch
size and select the combination that results in the lowest validation set loss across 3 random seeds:
hidden dimension = 512, model embedding dimension = 128, learning rate = 0.001, batch size = 32.

B COMPARISON OF CLASSIFICATION ACCURACY BETWEEN ROUTESPLAIN
AND MLP ROUTER

Table 4 summarizes the classification accuracy of Routesplain and the MLP router across varying
levels of the cost regularizer λ. For each setting, we report the mean accuracy and standard deviation
over five runs, and provide p-values from both a two-tailed t-test and a Mann-Whitney U test to
assess statistical significance.

Our results demonstrate that the two models achieve comparable accuracy across almost all regular-
ization levels. Statistically significant differences between their means are only observed at λ = 0.0,
0.3, 0.4, and 3.0 (p < 0.05 for both tests), with the MLP router performing slightly better at low λ
and Routesplain sometimes outperforming the MLP router at higher λ. These findings highlight the
near parity in accuracy between Routesplain and the MLP router, and importantly, indicate that our
interpretable approach can match or surpass the performance of a traditional black-box alternative,
especially as cost regularization is increased.

λ Routesplain Acc (%) MLP Router Acc (%) t-test p Mann-Whitney p
0.0 62.27 (0.32) 63.46 (0.76) 0.021 0.036
0.1 62.10 (0.55) 62.71 (0.81) 0.210 0.222
0.2 62.02 (0.38) 62.40 (0.37) 0.148 0.151
0.3 61.20 (0.50) 61.94 (0.50) 0.047 0.056
0.4 60.54 (0.27) 61.46 (0.40) 0.004 0.008
0.5 60.37 (0.39) 60.74 (0.58) 0.281 0.310
0.6 60.03 (0.38) 60.07 (0.38) 0.852 0.841
0.7 59.61 (0.36) 59.78 (0.75) 0.665 0.690
0.8 59.28 (0.55) 59.28 (0.56) 0.989 1.000
0.9 59.34 (0.49) 58.90 (0.61) 0.248 0.346
1.0 58.58 (0.59) 58.61 (0.30) 0.907 0.834
2.0 56.62 (0.43) 56.20 (0.57) 0.222 0.222
3.0 55.45 (0.60) 54.32 (0.67) 0.024 0.032
4.0 53.98 (0.39) 53.70 (1.15) 0.629 1.000
5.0 51.79 (0.64) 52.53 (1.55) 0.365 0.222
6.0 51.75 (0.61) 50.83 (1.77) 0.323 0.548
7.0 49.63 (1.10) 49.98 (1.78) 0.723 0.841
8.0 49.65 (0.38) 50.11 (0.75) 0.272 0.462
9.0 48.50 (0.88) 48.90 (0.60) 0.437 0.461
10.0 48.19 (1.06) 47.64 (1.72) 0.564 0.690

Table 4: Comparison of classification accuracy (%) between Routesplain and MLP router across
varying values of the cost regularizer λ. For each λ, both models are retrained five times; we report
the mean accuracy as well as standard deviation in parentheses. To assess statistical significance
between model performances at each λ, we report the p-values from both a two-tailed t-test and
the Mann-Whitney U test. This analysis provides insight into the differences in accuracy across
different degrees of cost regularization.

C LICENSING INFORMATION

We include the licensing information for the used datasets and embedding models in Table 5.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Category Name License
Datasets BigCodeBench Apache 2.0

CRUXEval MIT
MMLU-ProX MIT
MultiPL-E MIT

Embedding Models intfloat/multilingual-e5-small MIT
codesage/codesage-small-v2 Apache 2.0

Table 5: Licensing information for used datasets and embedding models.

D LLM USAGE

We used LLMs to help with grammar correction.

E BIGCODEBENCH-REPAIR PROMPT TEMPLATES

We include the prompt templates for BigCodeBench-Repair (Figure 6) and BigCodeBench-
Repair+Info (Figure 7).

User:
I want to solve the following problem:
‘‘‘
{prompt}
‘‘‘

I produced the following code, but it does not work:
‘‘‘python
{code}
‘‘‘

Please provide the fixed code as a self-contained Python script
in a markdown code block.

Figure 6: Prompt Template for BigCodeBench-Repair.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

User:
I was given the following problem to solve:
‘‘‘
{prompt}
‘‘‘

I produced the following code, but it does not work:
‘‘‘python
{code}
‘‘‘

Here are more details:
‘‘‘
{additional execution failure information}
‘‘‘

Please provide the fixed code as a self-contained Python script
in a markdown code block.

Figure 7: Prompt Template for BigCodeBench-Repair+Info.

17


	Introduction
	Related Work
	Software-related Task Routing Evaluation 
	Routing Dataset Construction 
	Intertask Performance
	Intratask Performance 

	Router Formulation 
	Evaluation
	How does Routesplain compare to black-box SoTA baselines? 
	How does each concept category contribute to Routesplain's accuracy?
	What does concept-level intervention reveal about routing bottlenecks? 
	Does concept-level intervention lead to predictable routing decisions?

	Limitations
	Conclusion
	Reproducibility Statement
	Implementation Details 
	Routesplain
	MLP Router
	KNN Router
	EmbedLLM Router

	Comparison of classification accuracy between Routesplain and MLP router 
	Licensing Information 
	LLM Usage
	BigCodeBench-Repair Prompt Templates 

