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ABSTRACT

LLMs now tackle a wide range of software-related tasks, yet we show that their
performance varies markedly both across and within these tasks. Routing user
queries to the appropriate LLMs can therefore help improve response quality
while reducing cost. Prior work, however, has focused mainly on general-purpose
LLM routing via black-box models. We introduce Routesplain, the first LLM
router for software-related tasks, including multilingual code generation and re-
pair, input/output prediction, and computer science QA. Unlike existing routing
approaches, Routesplain first extracts human-interpretable concepts from each
query (e.g., task, domain, reasoning complexity) and only routes based on these
concepts, thereby providing intelligible, faithful rationales. We evaluate Routes-
plain on 16 state-of-the-art LLMs across eight software-related tasks; Routesplain
outperforms individual models both in terms of accuracy and cost, and equals
or surpasses all black-box baselines, with concept-level intervention highlighting
avenues for further router improvements.

1 INTRODUCTION

Large Language Models (LLMs) are being adopted for an increasing variety of software-related
use cases, such as code generation and repair, test-case generation, and computer science question-
answering. As the landscape of available LLMs continues to expand with LLMs offering varying
capabilities and pricing tiers, a critical question remains underexplored: do different models perform
better or more efficiently on different types of software-related queries?

If such performance variations exist and can be efficiently predicted, they could enable optimization
through query-based routing in two scenarios: (a) expert routing for queries requiring specialized
capabilities; (b) cost-effective routing when multiple LLMs can adequately answer the query. Prior
work has explored routing for general-purpose LLM use cases (Mohammadshahi et al., 2024; Sik-
eridis et al., 2025; Ong et al., 2025), but typically focused only on simple code completion scenar-
ios (Hu et al., 2024; Zhuang et al., 2025) rather than exploring the rich variability across and within
software-related tasks. In this work, we investigate routing efficiencies in accuracy and cost across
the diverse landscape of software-related queries, from code generation and repair to execution pre-
diction and computer science question-answering.

Moreover, unlike general text tasks, software queries naturally decompose into concepts: high-
level, interpretable characteristics such as programming language, task type, and domain. Therefore,
whereas existing general-purpose approaches either rely on black-box models (Ong et al., 2025) or
try to implicitly (Zhuang et al., 2025) or explicitly (Song et al., 2025) capture abstract model abilities,
software-related task routing lends itself well to concept-based routing.

We propose Routesplain, the first LLM router specifically designed for software-related tasks. Build-
ing on concept bottleneck models (Koh et al., 2020), Routesplain extracts concepts from queries and
routes based solely on these concepts. This approach provides routing rationales that are faith-
ful (Jacovi & Goldberg, 2020), as the concepts accurately reflect the model’s reasoning process,
and intervenable (Koh et al., 2020), since the model’s reasoning process is easy to edit at the con-
cept level. Furthermore, we demonstrate that these interventions are predictable, with concept-level
changes leading to expected routing decisions.
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Query

Why can’t I compile this code?

fn greet(name: String) {
println!("Hello {}!", name);

}

fn main() {
let name = 

String::from("Alice");
greet(name);
println!("The name is: {}", 

name);
}

Embedding 
Model
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Model Suitability 
Predictions

Domain/General: 0.93

Domain/System: 0.15
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o3: 0.17

GPT-4.1 nano: 0.95

Llama 4 Scout: 0.82

Grok 3 mini: 0.67

Figure 1: Overview of the Routesplain framework. Each query is embedded using a fixed embedding
model. First, a concept classifier takes the contextualized embedding and projects it into the concept
space, where each concept represents a high-level, interpretable characteristic of the query (e.g., task,
domain, programming language). Then, a separate model classifier takes a concept-space input and
outputs model suitability predictions. The query is routed to the most suitable model.

We evaluate Routesplain on a dataset comprising eight software-related tasks across 16 state-of-the-
art LLMs including o3 and GPT-4.1. Routesplain outperforms individual models as well as existing
black-box routing approaches KNN router (Hu et al., 2024) and EmbedLLM (Zhuang et al., 2025),
achieving accuracy that matches a fully black-box MLP alternative across most cost regularization
levels while providing strong interpretability and control through concept-level interventions. We
also conduct ablation studies to determine the contribution of each concept group and counterfactual
experiments to verify that changes in the concept space predictably impact the router’s decisions.
Lastly, we show that concept-level intervention can help pinpoint current routing performance limi-
tations, specifically the difficulty and potential of accurately predicting query complexity.

Our contributions include: (1) the first comprehensive exploration of LLM routing potential within
software-related use cases, demonstrating significant LLM performance variability across and within
software-related tasks; (2) a novel LLM routing architecture that provides faithful and intervenable
rationales for routing decisions without compromising performance compared to SoTA black-box
approaches; (3) new methodologies for validating LLM routing correctness through concept ablation
studies and counterfactual concept manipulation experiments.

2 RELATED WORK

Our work intersects two main research areas: LLM ensembling approaches for routing between
models, and interpretability methods for understanding model decisions.

LLM Ensembling LLM ensembles are used in a number of ways to improve output quality and
generation efficiency, including mixture-of-experts layers (Shazeer et al., 2017), speculative decod-
ing (Leviathan et al., 2023), reranking LLM outputs (Ravaut et al., 2022), fusing LLM outputs (Jiang
et al., 2023), cascading from weaker to stronger models (Varshney & Baral, 2022; Chen et al.,
2024a), and routing. Routing approaches differ based on (1) learning paradigms, encompassing su-
pervised (Mohammadshahi et al., 2024; Hu et al., 2024; Zhuang et al., 2025), unsupervised (Guha
et al., 2024), or reinforcement learning (Lu et al., 2024; Sikeridis et al., 2025); (2) the size of the
LLM pool, from a pair of strong and weak LLMs (Ding et al., 2024; Ong et al., 2025) to multi-LLM
routing (Shnitzer et al., 2023; Šakota et al., 2024); (3) routing objectives, with single objective rout-
ing only focused on maximizing accuracy (Zhuang et al., 2025) or multi-objective routing focused
on maximizing accuracy while minimizing cost (Mohammadshahi et al., 2024; Hu et al., 2024).
To our knowledge, although previous work proposes routing to domain experts (Chai et al., 2024),
Routesplain represents the first domain-specific LLM router. Particularly relevant to our work, re-
cent approaches focus on implicit (Zhuang et al., 2025) or explicit (Song et al., 2025) learning of
abstract model abilities. Instead, our routing strategy is based on high-level concepts/characteristics
that make up the query. Chen et al. (2025b) propose tagging using a generative model and rout-
ing based on tag scores. While a compelling direction, a generative approach is both less efficient
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Table 1: Model pricing and evaluation costs. Cost shows input/output token pricing. Average
output length is measured in tokens per response. Total cost represents the expense of evaluating
each model across our dataset collection. Models are grouped by cost-effectiveness tiers: high-cost
(top), medium-cost (middle), and low-cost (bottom).

Model Cost ($/1M tokens) Avg Output Length Total Cost ($)
o1 15.00/60.00 147.79 557.59
Grok 3 3.00/15.00 375.87 261.01
Grok 4 3.00/15.00 376.66 261.47
GPT-4o 2.50/10.00 266.11 138.70
Llama 3.1 405B 4.00/4.00 220.99 91.40
GPT-4.1 2.00/8.00 188.71 87.01
o3 2.00/8.00 187.69 86.67
o3 mini 1.10/4.40 208.74 51.26
o4 mini 1.10/4.40 170.63 44.78
GPT-4.1 mini 0.40/1.60 199.58 18.07
Grok 3 mini 0.30/0.50 294.25 9.98
Llama 4 Mav (fp8) 0.15/0.60 242.39 7.77
GPT-4o mini 0.15/0.60 219.97 7.25
Llama 3.3 70B 0.13/0.39 221.77 5.20
Llama 4 Scout 0.08/0.30 306.20 4.70
GPT-4.1 nano 0.10/0.40 194.82 4.44

due to generation overhead than a lightweight classifier and less interpretable due to the large and
unconstrained tag space, rendering routing decisions less faithful and harder to correct.

Model Interpretability Our work primarily focuses on ante-hoc explainability by adapting the well-
known concept bottleneck model (Koh et al., 2020), widely used for image detection (Oikarinen
et al., 2023; Panousis et al., 2024), to LLM routing. A popular alternative to ante-hoc methods
are post-hoc methods such as LIME (Ribeiro et al., 2016), SHAP (Lundberg & Lee, 2017), model
probes (Hewitt & Liang, 2019) and generating explanations using chain-of-thought (CoT) prompt-
ing (Wei et al., 2022) or training (Wang et al., 2024b; Yue et al., 2024). However, post-hoc methods
lack the user’s ability to intervene on concepts. Additionally, probes might capture representations
that are not effectively used by the model (Belinkov, 2022). Similarly, CoT-produced rationales
were found to be unfaithful (Turpin et al., 2023; Chen et al., 2024b; 2025a).

3 SOFTWARE-RELATED TASK ROUTING EVALUATION

In this section, we investigate the extent to which performance variations across LLMs on software
tasks justify query-based LLM routing. We examine two scenarios: (1) expert routing, where certain
LLMs significantly outperform others on specific queries, and (2) cost-effective routing, where mul-
tiple LLMs can answer queries but at different costs. We analyze both intertask variability (across
different task types like code generation or repair) and intratask variability (within tasks based on
structural features like programming language or domain), as well as how intratask patterns them-
selves vary across task types.

3.1 ROUTING DATASET CONSTRUCTION

Real-world software engineering requires expertise across diverse tasks beyond just code genera-
tion, including debugging, code understanding, test synthesis, and domain knowledge. We select
tasks that represent these core software engineering capabilities with clear automated evaluation
metrics, building upon and expanding the principle of holistic code evaluation (Jain et al., 2025) that
examines multiple dimensions of programming competence.

We assemble popular datasets spanning these capabilities: BigCodeBench (Zhuo et al., 2025), a
Python-based, open-domain, function-level code completion and natural-language-instruction-based
code generation dataset; CRUXEval (Gu et al., 2024), a Python-based, function-level input and
output prediction dataset; MMLU-ProX/Computer Science (Xuan et al., 2025), the computer science
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58.2% 47.8% 14.8% 38.8% 73.1% 74.4% 74.1% 56.0%

58.2% 47.8% 11.3% 35.2% 67.0% 70.9% 69.4% 57.0%

54.4% 45.4% 6.1% 17.7% 43.0% 54.4% 58.2% 43.6%

58.1% 47.8% 9.6% 32.2% 68.4% 65.8% 62.0% 47.1%

54.8% 46.4% 5.5% 23.6% 57.0% 58.0% 57.1% 47.0%

58.9% 47.0% 11.9% 37.2% 69.9% 69.5% 76.0% 47.0%

59.0% 48.3% 9.5% 35.7% 53.1% 94.5% 72.2% 52.7%

59.1% 46.1% 12.0% 36.6% 69.2% 68.4% 76.3% 47.1%

54.6% 46.5% 8.0% 32.0% 65.4% 65.1% 66.3% 38.1%

58.3% 46.7% 6.3% 26.4% 56.1% 59.8% 62.0% 42.6%

52.1% 48.5% 8.3% 28.1% 57.9% 58.5% 69.4% 38.1%

53.2% 41.9% 8.0% 25.0% 49.1% 62.0% 59.0% 32.4%

63.0% 49.0% 9.5% 45.0% 97.9% 98.1% 80.5% 45.0%

52.2% 44.8% 16.4% 46.7% 99.5% 99.5% 85.1% 34.2%

61.9% 49.4% 10.1% 44.5% 98.4% 98.1% 77.8% 47.6%

59.0% 50.9% 14.2% 46.7% 98.5% 98.0% 78.9% 39.3%

BCB-Complete

BCB-Instruct

BCB-Repair

BCB-Repair+Info

CRUXEval-I

CRUXEval-O

MMLU-ProX/CS
MultiPL-E

Task

0.2% 0.4% 4.9% 1.7% 0.0% 0.0% 0.2% 1.2%

1.6% 1.1% 6.5% 4.2% 2.9% 0.5% 0.7% 3.8%

41.9% 60.4% 18.3% 22.9% 13.4% 41.0% 14.9% 45.8%

0.6% 0.2% 1.2% 0.2% 0.0% 0.0% 0.2% 0.5%

1.7% 7.4% 3.7% 2.7% 6.9% 4.6% 7.0% 2.8%

0.1% 0.5% 1.9% 0.6% 0.0% 0.0% 0.1% 0.5%

3.6% 4.0% 7.7% 9.7% 7.5% 19.6% 4.9% 10.7%

0.6% 0.2% 2.3% 0.3% 0.0% 0.0% 0.2% 0.5%

0.5% 0.7% 1.3% 0.7% 0.0% 0.0% 0.5% 0.3%

12.0% 9.5% 6.8% 9.6% 14.9% 11.9% 22.0% 12.5%

5.8% 3.2% 7.3% 5.5% 4.5% 2.6% 4.0% 5.9%

28.6% 8.9% 17.3% 18.9% 40.0% 17.4% 40.5% 11.3%

0.3% 0.1% 0.5% 1.6% 0.0% 0.0% 0.2% 0.3%

0.6% 1.1% 10.1% 6.1% 0.4% 0.1% 2.1% 0.7%

0.6% 0.5% 1.6% 4.0% 0.9% 0.1% 0.5% 1.7%

1.2% 1.6% 8.9% 11.3% 8.8% 2.1% 2.0% 1.6%

Figure 2: Intertask Performance. Left: 0-shot pass@1 accuracy of each LLM on each task. Right:
Share of queries each LLM answered most cost-effectively per task. An LLM provides the optimal
answer if it correctly answers a query at the lowest cost among all LLMs that answered correctly.
For example, o3 provided the most cost-effective correct answer for 10.11% of BCB-Repair queries.

subset of a challenging multiple-choice question dataset translated to 29 natural languages; MultiPL-
E (Cassano et al., 2023), a code completion dataset in 18 programming languages.

Recognizing the significance of code repair, similarly to prior work (Olausson et al., 2024; Zheng
et al., 2025; Jain et al., 2025), we additionally construct repair tasks by reusing the incorrect re-
sponses of permissively licensed models on BigCodeBench. We filter the generated code snippets
to include only non-trivially incorrect code, i.e., snippets that execute without crashing but fail to
pass the test cases. Furthermore, we deduplicate the code snippets using basic string matching.
We formulate two repair tasks: BigCodeBench-Repair, where we provide only the incorrect code
snippet, and BigCodeBench-Repair+Info, where we additionally provide execution failure feedback
(see Appendix E for prompt templates).

The entire dataset collection constitutes 38685 examples, spanning eight verifiable tasks: BCB-
Complete (1140), BCB-Instruct (1140), BCB-Repair (5124), BCB-Repair+Info (5124), CRUXEval-
I (800), CRUXEval-O (800), MMLU-ProX/CS (11890), and MultiPL-E (12 667). We evaluate 16
state-of-the-art LLMs that capture a wide range of capabilities and prices, across multiple families:
GPT models (4.1 full/mini/nano, 4o full/mini), Grok models (3 full/mini, 4), o-series models (o1,
o3 full/mini, o4 mini), and Llama models (3.1 405B, 3.3 70B, 4 Scout/Maverick fp8). We include a
cost breakdown in Table 1. In line with previous literature (Zhuo et al., 2025; Rozière et al., 2024;
Liu et al., 2023; Lai et al., 2023), we use greedy decoding to ensure reproducibility and measure
0-shot pass@1 accuracy.

3.2 INTERTASK PERFORMANCE

The left of Figure 2 shows that o-series reasoning models achieve the highest accuracy on most
tasks, with o3 reaching 99.5% on CRUXEval tasks. The exception is multi-programming-language
code completion, where GPT-4.1 mini achieves the highest accuracy at 57.0%. Nonetheless, the
right of Figure 2 reveals that aggregate accuracy metrics obscure significant routing potential.
Cost-effective models can handle many queries optimally: GPT-4.1 nano provides the most cost-
effective solution for the majority of queries across BCB-Complete, BCB-Instruct, CRUXEval-O,
and MultiPL-E tasks. Simultaneously, expensive models like o3 still provide optimal solutions for
challenging queries (10.1% of BCB-Repair), demonstrating the value of expert routing for difficult
tasks. Notably, even within the low-cost tier, different models excel on different tasks. While GPT-
4.1 nano dominates most tasks, Llama 4 Scout provides optimal solutions for 40.0% and 40.5% of
BCB-Repair+Info and CRUXEval-I queries respectively, compared to only 13.4% and 14.9% for
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MultiPL-E by Programming Language

Figure 3: 0-shot pass@1 intratask accuracy. Left: Computer-science-related QA, stratified by the
natural language of the query. Right: Multi-programming-language code completion, stratified by
the programming language of the query. For radar plots, we select six representative models.
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Figure 4: 0-shot pass@1 intratask accuracy comparison across open-domain code generation and
repair tasks, stratified by the domain of the query, for six representative models.

GPT-4.1 nano on these tasks. This suggests that expert routing benefits exist not only between cost
tiers, but also within them.

3.3 INTRATASK PERFORMANCE

We examine how LLMs perform on the same task under different conditions, focusing on natural
language, programming language, and domain variations.

Natural and Programming Language Variations As shown on the left in Figure 3, LLM accuracy
varies dramatically based on natural language. While o3 performs consistently well across most
languages, it notably performs worse on Russian (similarly to the other OpenAI models GPT-4.1 and
o4-mini) and is outperformed by Grok 3 mini. Lower-cost models match the accuracy of higher-cost
models like o3 and GPT-4.1, especially on West-European languages like English, Spanish, French,
or Italian. The performance gap between lower-cost and higher-cost models widens for South Asian
languages like Hindi, Marathi, or Telugu. Notably, the accuracy of all but the pricier models o3 and
GPT-4.1 drops significantly for Wolof, a low-resource language.1

In contrast to natural language patterns, programming language performance reveals more complex
specialization patterns. As shown on the right in Figure 3, each model family demonstrates distinct
advantages: Llama models excel at PHP (all achieving above 93% accuracy), GPT-4 models perform
strongly in TypeScript, Grok models have advantages in Julia and Lua, and o-series models show
strength in Rust and Swift. Notably, mini versions sometimes dramatically outperform their full-size
counterparts–Grok 3 mini achieves 52 percentage points higher accuracy than Grok 3 on Java, and
GPT-4o mini similarly outperforms GPT-4o on Scala.

1We adopt the geographic and resource classification of natural languages from Xuan et al. (2025).
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Domain-Specific Performance Figure 4 reveals nuanced domain effects that vary across task types.
Consistent with the intertask patterns in Figure 2, LLMs show much more similar performance
to each other on original BigCodeBench tasks (code completion and instruction-based generation)
compared to the derived repair tasks, where model performance becomes more stratified. Across
all task types, models perform particularly well on generation- and computation-related domains
but struggle more with network- and time-related tasks. However, the repair tasks exhibit notable
differences depending on whether execution feedback is provided. Code repair with execution in-
formation reduces domain variability across all LLMs, while repair without execution feedback
exacerbates these differences. Without execution feedback, models show stronger performance on
general- and computation-related snippets but struggle with cryptography- and system-related code,
despite not being disproportionately weak at generating such code initially. This pattern reveals in-
teresting model-specific reversals: both o3 and Llama 4 Scout underperform on cryptography- and
network-related repair tasks, where they are superseded by their cheaper alternatives o4 mini and
GPT-4.1 nano, respectively.

These results demonstrate substantial intratask routing potential across multiple dimensions, with
clear opportunities for both expert and cost-effective routing depending on domain, natural and
programming language characteristics.

4 ROUTER FORMULATION

We propose a concept-based LLM router that bases routing decisions on interpretable, intervenable,
high-level concepts. Before introducing our approach, we establish the general routing formulation.

The routing problem can be formulated as learning a function f : X → Rn that maps an input string
x ∈ X to a vector m ∈ Rn, where mi corresponds to the probability that LLM i ∈ {1, ..., n}
provides the most suitable response to x. The input x is first projected into a d-dimensional contex-
tualized embedding space by an embedding model, so the function to learn becomes f : Rd → Rn,
where x ∈ Rd.

A standard supervised approach trains a multi-label classifier that maps from input x ∈ Rd to model
suitability scores m ∈ Rn given true model correctness labels y ∈ Rn by minimizing binary cross-
entropy loss with cost regularization (Equation 1). The cost term represents expected routing cost
under the predicted probability distribution, where cost(xi) is a normalized cost vector for input xi,
and λ controls cost sensitivity.

f̂ = argmin
f

∑
i

(LBCE(f(x
i),y) + λf(ci)cost(xi)) (1)

Our concept-based approach decomposes f into two networks: f(x) = g ◦h(x). We leverage exist-
ing dataset labels to create a k-dimensional concept space capturing natural language, programming
language, domains, required libraries, and three complexity measures. The complexity measures
represent the fraction of models that failed on each input, stratified by model type: reasoning com-
plexity (fraction of reasoning models that failed), general complexity (fraction of non-reasoning
models that failed), and total complexity (fraction of all models that failed). Reasoning and non-
reasoning models form mutually exclusive categories within our 16-model evaluation set.

Network h maps embeddings to concepts: Rd → Rk, trained via Equation 2. Network g maps
concepts to model suitability Rk → Rn, trained with cost-regularization via Equation 3. We train g

and h independently rather than end-to-end. During inference, ĝ receives predicted concepts from ĥ,
enabling human intervention by editing concept predictions. We discuss the impact of concept-level
correction in subsection 5.3.

ĥ = argmin
h

∑
i

LBCE(h(x
i), ci) (2)

ĝ = argmin
g

∑
i

(LBCE(g(c
i),m) + λg(ci)cost(xi)) (3)
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Figure 5: Left: Accuracy against cost of each individual model as well as all routers on the test
set. For EmbedLLM, MLP router, and Routesplain, we show accuracy and cost averaged across
5 training runs. For Routesplain and MLP router, we display the Pareto frontier established by
connecting the average router performance across multiple values of the cost regularizer λ. Right:
The average number of times each model was assigned to an input by Routesplain, as we increase
the λ regularizer. We increase λ by 0.1 on the interval [0; 1) and then by 1 on the interval [1; 10].
We display only the top 8 most assigned models.

5 EVALUATION

We evaluate the efficacy of Routesplain using an 80/10/10 train/validation/test split on our dataset
collection (see section 3). As the collection spans multiple programming and natural languages, we
concatenate embeddings from two models: codesage-small-v2 (Zhang et al., 2024) and multilingual-
e5-small (Wang et al., 2024a). To control for embedding quality, all baselines use the same embed-
dings. We retrain each model five times and report mean and standard deviation. Implementation
and hyperparameter search details are provided in Appendix A. All experiments are conducted on a
single Nvidia A100 80GB GPU.

All router models process the entire test set (3869 queries) in under 10 milliseconds, so latency
and throughput are primarily determined by embedding time. Over 10 runs, embedding the test set
with unoptimized, naive batching averages 36.96 seconds, yielding an average throughput of 104.68
queries per second, surpassing most proposed routing solutions by Ong et al. (2025).

5.1 HOW DOES ROUTESPLAIN COMPARE TO BLACK-BOX SOTA BASELINES?

We compare Routesplain against three black-box baselines: MLP router, KNN router (both standard
baseline types proposed by Hu et al. (2024)), and EmbedLLM (Zhuang et al., 2025). For the MLP
router, we use the black-box formulation in Equation 1. For the KNN router, we train separate
binary classifiers for each model to predict correctness, routing to the model with highest predicted
success probability. For EmbedLLM, we reimplement the algorithm as presented in Zhuang et al.
(2025). All methods receive equal hyperparameter tuning effort. We also include random and oracle
routers to establish theoretical bounds. To evaluate the performance of Routesplain and MLP router
as cost sensitivity (λ) changes, we retrain each router with λ incremented by 0.1 from 0 to 1, and by
1 from 1 to 10. This step size adjustment reflects the greater differences in cost-effectiveness among
medium- and low-cost LLMs.

Competitive Performance with Interpretability Benefits The left of Figure 5 demonstrates that
Routesplain achieves competitive performance while providing interpretability advantages. Route-
splain Pareto dominates EmbedLLM, KNN router, random router, and all individual models across
cost levels. Notably, Routesplain matches the black-box MLP router’s performance at most regu-
larization levels; the MLP router achieves statistically significantly higher mean accuracy only at λ
values of 0.0, 0.3, and 0.4, while Routesplain significantly outperforms the MLP router at λ = 3.0
(see the two-tailed t-test results in Appendix B). Moreover, Routesplain uses 15.65% fewer param-
eters (462K vs 547K) than the MLP router.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Concept group ablation and intervention results across cost regularization levels. Ablation:
Accuracy when removing each concept group during training (compared to baseline). Intervention:
Accuracy when replacing predicted concept labels with gold labels at inference. Values show mean
routing accuracy (%) with standard deviation over 5 runs.

Concept Group Ablation Acc (%) Concept Group Intervention Acc (%)
Concept Group λ = 0.0 λ = 0.1 λ = 4.0 λ = 0.0 λ = 0.1 λ = 4.0

Baseline 62.27 (0.32) 62.10 (0.55) 53.98 (0.39) 62.27 (0.32) 62.10 (0.55) 53.98 (0.39)

Tasks 62.27 (0.32) 62.02 (0.22) 53.48 (0.41) 62.30 (0.30) 62.25 (0.63) 53.89 (0.37)

Domains 62.19 (0.32) 62.37 (0.28) 53.81 (0.32) 62.27 (0.33) 62.27 (0.68) 53.92 (0.42)

Libraries 61.69 (0.28) 61.55 (0.32) 52.56 (1.37) 62.26 (0.32) 62.30 (0.61) 53.92 (0.39)

Natural Languages 62.11 (0.16) 62.15 (0.15) 52.71 (0.60) 62.26 (0.34) 62.25 (0.65) 53.90 (0.41)

Programming Languages 60.43 (0.23) 60.76 (0.42) 51.08 (0.86) 62.27 (0.33) 62.13 (0.67) 53.98 (0.41)

Complexity 61.45 (0.29) 61.28 (0.19) 48.43 (0.69) 66.32 (0.15) 65.89 (0.17) 57.02 (0.19)

Cost-Accuracy Tradeoffs The left of Figure 5 illustrates the Pareto frontiers, showing how both
Routesplain and MLP router navigate cost-accuracy tradeoffs. As cost regularization increases, both
routers shift from expensive high-accuracy models to more economical alternatives while maintain-
ing competitive performance. The right of Figure 5 shows how Routesplain’s model assignments
change with cost regularization. Higher λ values shift assignments from expensive models (o3) to-
ward mid-tier options (GPT-4.1 mini, o4 mini) and finally to the most cost-efficient models (GPT-4.1
nano, Llama 4 Scout). This pattern aligns with our dataset analysis findings in section 3, confirming
that the router learns meaningful cost-accuracy relationships.

5.2 HOW DOES EACH CONCEPT CATEGORY CONTRIBUTE TO ROUTESPLAIN’S ACCURACY?

To understand which concepts contribute most to routing decisions, we conduct ablation studies by
systematically removing each concept group and retraining Routesplain across three cost regular-
ization levels (λ = 0, 0.1, 4.0). Results are shown on the left in Table 2.

Concept importance varies significantly with cost sensitivity. At high cost sensitivity (λ = 4.0),
complexity concepts show the largest impact (-5.55 pp), aligning with the critical need to distin-
guish expensive versus cheap model requirements when cost matters most. Programming language
distinctions matter substantially at all cost levels, reflecting the distinct performance profiles across
models shown in subsection 3.3, but have greatest impact at the lowest cost level. Natural language
distinctions show insignificant impact at low cost levels but meaningful effects (-1.27 pp) when cost
is prioritized. This pattern reflects that expensive models handle most natural languages compe-
tently, while cheaper models struggle with low-resource languages (subsection 3.3). Library con-
cepts are most important at high cost sensitivity and show greater significance than domain concepts,
likely because they provide more granular, specific information than broader domain categories.

Task categories show minimal ablation effects, which we attribute to limited cross-dataset label
variability in our current collection, as most tasks lack multiple degrees of freedom across natural
languages, programming languages, and domains. This suggests promising directions for develop-
ing richer evaluation benchmarks with multi-language, multi-domain task variants.

5.3 WHAT DOES CONCEPT-LEVEL INTERVENTION REVEAL ABOUT ROUTING BOTTLENECKS?

Routesplain’s concept bottleneck lets us perform a controlled counterfactual: at inference time we
replace the router’s predictions for a single concept group with ground-truth labels, leave every
other concept prediction unchanged, and then rerun the router. Because only one factor is altered,
any change in downstream accuracy can be attributed unambiguously to that group. The concept-
level predictions quality by group is shown in Table 3, and the accuracy achieved after each oracle
substitution across three cost regularization levels (λ = 0, 0.1, 4.0) is reported on the right in Table 2.

Complexity concepts are the primary bottleneck for routing performance. Providing oracle
complexity labels raises routing accuracy by 3.04–4.05 pp across all cost sensitivities, with the
largest gain at λ = 0. Substituting ground-truth labels for library or programming language con-
cepts, however, does not yield any improvement, even though these groups are not predicted per-
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Table 3: Concept prediction performance by group. We present accuracy, precision, recall, and F1
for binary labels and mean squared error and mean absolute error for complexity ratios, with mean
and standard deviation over 5 runs.

Concept Group Acc (%) Prec (%) Rec (%) F1 (%) MSE MAE
Tasks 99.92 (0.02) 99.79 (0.08) 99.50 (0.07) 99.64 (0.05) — —

Domains 99.99 (0.01) 99.66 (0.11) 99.87 (0.05) 99.76 (0.05) — —
Libraries 99.99 (0.00) 75.57 (0.56) 75.30 (0.78) 75.32 (0.67) — —

Natural Languages 100.00 (0.00) 99.98 (0.04) 99.61 (0.12) 99.79 (0.08) — —
Programming Languages 99.90 (0.03) 99.38 (0.50) 91.79 (2.06) 94.49 (1.77) — —

Complexity — — — — 0.057 (0.005) 0.176 (0.014)

fectly (Table 3). Hence, errors in estimating query complexity propagate directly into routing mis-
takes, whereas errors in the other concept groups are largely absorbed by the second-stage classifier.
Targeting complexity prediction (e.g., via a specialized sub-model) therefore offers the most lever-
age for improving routing accuracy, illustrating the diagnostic power of concept-level intervention.

5.4 DOES CONCEPT-LEVEL INTERVENTION LEAD TO PREDICTABLE ROUTING DECISIONS?

To test whether flipping a single concept produces the intuitive routing shift, we generate 1000 syn-
thetic concept vectors for each of five source–target programming language pairs (e.g., PHP to Rust).
All concept vectors describe the code completion task, English natural language, general domain, no
libraries, and draw query complexity uniformly at random; the only difference between the paired
vectors is that the programming language concept is set to the source language in one case and to the
target language in the other. Passing both versions through Routesplain without cost regularization
lets us measure how the selection of target-specific models responds to the language flip. Across
the five pairs, changing the language concept increases the aggregated selection probability of the
top three target-language models for the given language (as shown in Figure 3) by 37.03 percentage
points and improves their average rank by 2.65 positions. The strong, consistent shift confirms that
the router’s decisions are directionally consistent in concept space: altering only the programming
language concept predictably steers probability mass toward models specialized for that language,
validating Routesplain’s controllability through explicit concept manipulation.

6 LIMITATIONS

Routesplain has several practical constraints. The approach requires concept labels for training
data and may lack representational power to capture nuanced query relationships not well-described
by our concept taxonomy. Developing general-purpose concept spaces for diverse chat applications
remains challenging, as our current concepts are tailored to code generation tasks. Additionally, cur-
rent evaluation datasets lack diversity across multiple concept dimensions; for example, we leverage
an execution-based open-domain Python dataset (BigCodeBench) and an execution-based simple
standard library multi-programming language dataset (MultiPL-E), but no execution-based open-
domain multi-programming language datasets currently exists. This limited cross-concept variabil-
ity may constrain Routesplain’s learning and transferability to out-of-distribution tasks. The system
requires supervision and retraining when adding or removing models, adjusting concepts, or up-
dating model pricing. However, retraining costs are minimal: Routesplain trains from scratch in
approximately one minute on a single Nvidia A100, making iterative improvements feasible.

7 CONCLUSION

We introduced Routesplain, the first concept-based LLM router for software tasks, which matches
black-box model performance while providing interpretable routing decisions. Our evaluation across
eight tasks and 16 LLMs reveals significant routing potential and demonstrates that architectures
enable diagnostic insights, such as identifying complexity prediction as the primary performance
bottleneck, that are impossible with opaque systems. This work establishes interpretable routing as
a viable approach for domain-specific LLM orchestration and opens directions for targeted improve-
ments in routing system design.
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8 REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we have made several efforts to provide comprehensive
implementation details and experimental specifications. Complete hyperparameter configurations
for all router architectures (Routesplain, MLP router, KNN router, and EmbedLLM) are provided
in Appendix A, including hidden dimensions, dropout probabilities, learning rates, and batch sizes
determined through systematic grid search. Our evaluation uses publicly available datasets (Big-
CodeBench, CRUXEval, MMLU-ProX/Computer Science, and MultiPL-E) with licensing infor-
mation detailed in Appendix C. For our constructed repair tasks, we provide exact prompt tem-
plates in Appendix E and describe our filtering methodology for non-trivially incorrect code snippets
in subsection 3.1. All experiments follow standard best practices with 80/10/10 train/validation/test
splits, 5 independent training runs with reported means and standard deviations, greedy decoding for
consistency, and 0-shot pass@1 accuracy evaluation. We specify the exact embedding models used
(codesage-small-v2 and multilingual-e5-small), hardware requirements (single Nvidia A100 80GB
GPU), and statistical testing procedures (two-tailed t-tests and Mann-Whitney U tests). The 38,685
evaluation examples span 16 state-of-the-art LLMs across eight software-related tasks, with model
pricing and cost calculations transparently reported in Table 1. Our concept taxonomy and routing
strategy are clearly defined in section 4, enabling replication of our concept-based routing approach.
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A IMPLEMENTATION DETAILS

A.1 ROUTESPLAIN

Routesplain consists of two separately trained classifiers. Each classifier is a two-layer MLP with
GeLU (Hendrycks & Gimpel, 2023) and dropout. We conduct a separate hyperparameter grid search
over plausible hidden dimensions, dropout probability, learning rate, and batch size for each classi-
fier and select the combination that results in the lowest mean validation set loss across 3 random
seeds. Namely, for the concept classifier, this is: hidden dimension = 256, dropout probability = 0.1,
learning rate = 0.001, and batch size = 24. For the model classifier, this is hidden dimension = 176,
dropout probability = 0.0, learning rate = 0.001, and batch size = 8.

A.2 MLP ROUTER

The MLP router is a two-layer MLP classifier with GeLU and dropout. We conduct a thorough
hyperparemeter grid search over plausible hidden dimensions, dropout probability, learning rate,
and batch size and select the combination that results in the lowest mean validation set loss across 3
random seeds: hidden dimension = 384, dropout probability = 0.2, learning rate = 0.001, batch size
= 8.

A.3 KNN ROUTER

For the KNN router, we use the scikit-learn’s KNeighborsClassifier (Pedregosa et al., 2011) and
select the number of neighbors that results in the highest accuracy on the validation set: k = 20.
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A.4 EMBEDLLM ROUTER

For the EmbedLLM router, we reimplement the approach as described in Zhuang et al. (2025)
and implemented in the accompanying GitHub repository. We conduct a thorough hyperparame-
ter search over plausible hidden dimensions, model embedding dimensions, learning rate, and batch
size and select the combination that results in the lowest validation set loss across 3 random seeds:
hidden dimension = 512, model embedding dimension = 128, learning rate = 0.001, batch size = 32.

B COMPARISON OF CLASSIFICATION ACCURACY BETWEEN ROUTESPLAIN
AND MLP ROUTER

Table 4 summarizes the classification accuracy of Routesplain and the MLP router across varying
levels of the cost regularizer λ. For each setting, we report the mean accuracy and standard deviation
over five runs, and provide p-values from both a two-tailed t-test and a Mann-Whitney U test to
assess statistical significance.

Our results demonstrate that the two models achieve comparable accuracy across almost all regular-
ization levels. Statistically significant differences between their means are only observed at λ = 0.0,
0.3, 0.4, and 3.0 (p < 0.05 for both tests), with the MLP router performing slightly better at low λ
and Routesplain sometimes outperforming the MLP router at higher λ. These findings highlight the
near parity in accuracy between Routesplain and the MLP router, and importantly, indicate that our
interpretable approach can match or surpass the performance of a traditional black-box alternative,
especially as cost regularization is increased.

λ Routesplain Acc (%) MLP Router Acc (%) t-test p Mann-Whitney p
0.0 62.27 (0.32) 63.46 (0.76) 0.021 0.036
0.1 62.10 (0.55) 62.71 (0.81) 0.210 0.222
0.2 62.02 (0.38) 62.40 (0.37) 0.148 0.151
0.3 61.20 (0.50) 61.94 (0.50) 0.047 0.056
0.4 60.54 (0.27) 61.46 (0.40) 0.004 0.008
0.5 60.37 (0.39) 60.74 (0.58) 0.281 0.310
0.6 60.03 (0.38) 60.07 (0.38) 0.852 0.841
0.7 59.61 (0.36) 59.78 (0.75) 0.665 0.690
0.8 59.28 (0.55) 59.28 (0.56) 0.989 1.000
0.9 59.34 (0.49) 58.90 (0.61) 0.248 0.346
1.0 58.58 (0.59) 58.61 (0.30) 0.907 0.834
2.0 56.62 (0.43) 56.20 (0.57) 0.222 0.222
3.0 55.45 (0.60) 54.32 (0.67) 0.024 0.032
4.0 53.98 (0.39) 53.70 (1.15) 0.629 1.000
5.0 51.79 (0.64) 52.53 (1.55) 0.365 0.222
6.0 51.75 (0.61) 50.83 (1.77) 0.323 0.548
7.0 49.63 (1.10) 49.98 (1.78) 0.723 0.841
8.0 49.65 (0.38) 50.11 (0.75) 0.272 0.462
9.0 48.50 (0.88) 48.90 (0.60) 0.437 0.461
10.0 48.19 (1.06) 47.64 (1.72) 0.564 0.690

Table 4: Comparison of classification accuracy (%) between Routesplain and MLP router across
varying values of the cost regularizer λ. For each λ, both models are retrained five times; we report
the mean accuracy as well as standard deviation in parentheses. To assess statistical significance
between model performances at each λ, we report the p-values from both a two-tailed t-test and
the Mann-Whitney U test. This analysis provides insight into the differences in accuracy across
different degrees of cost regularization.

C LICENSING INFORMATION

We include the licensing information for the used datasets and embedding models in Table 5.
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Category Name License
Datasets BigCodeBench Apache 2.0

CRUXEval MIT
MMLU-ProX MIT
MultiPL-E MIT

Embedding Models intfloat/multilingual-e5-small MIT
codesage/codesage-small-v2 Apache 2.0

Table 5: Licensing information for used datasets and embedding models.

D LLM USAGE

We used LLMs to help with grammar correction.

E BIGCODEBENCH-REPAIR PROMPT TEMPLATES

We include the prompt templates for BigCodeBench-Repair (Figure 6) and BigCodeBench-
Repair+Info (Figure 7).

User:
I want to solve the following problem:
‘‘‘
{prompt}
‘‘‘

I produced the following code, but it does not work:
‘‘‘python
{code}
‘‘‘

Please provide the fixed code as a self-contained Python script
in a markdown code block.

Figure 6: Prompt Template for BigCodeBench-Repair.
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User:
I was given the following problem to solve:
‘‘‘
{prompt}
‘‘‘

I produced the following code, but it does not work:
‘‘‘python
{code}
‘‘‘

Here are more details:
‘‘‘
{additional execution failure information}
‘‘‘

Please provide the fixed code as a self-contained Python script
in a markdown code block.

Figure 7: Prompt Template for BigCodeBench-Repair+Info.
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