
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DUAL-SOLVER: A GENERALIZED ODE SOLVER FOR
DIFFUSION MODELS WITH DUAL PREDICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models deliver state-of-the-art image quality. However, sampling is
costly at inference time because it requires many model evaluations (number of
function evaluations, NFEs). To reduce NFEs, classical ODE multistep methods
have been adopted. Yet differences in the choice of prediction type (noise/data/ve-
locity) and integration domain (half log-SNR/noise-to-signal ratio) lead to differ-
ent outcomes. We introduce Dual-Solver, which generalizes multistep samplers
by introducing learnable parameters that continuously (i) interpolate among pre-
diction types, (ii) select the integration domain, and (iii) adjust the residual terms.
It maintains the traditional predictor-corrector structure and guarantees second-
order local accuracy. These parameters are learned with a classification-based
objective using a frozen pretrained classifier (e.g., ViT or CLIP). On ImageNet
class-conditional generation (DiT, GM-DiT) and text-to-image (SANA, PixArt-
α), Dual-Solver improves FID and CLIP scores in the low-NFE regime (3 ≤ NFE
≤ 9) across backbones.

1 INTRODUCTION

Generative modeling aims to learn a data distribution and draw new samples that resemble real
data. Classic approaches include autoregressive models that factorize likelihoods over pixels or to-
kens (Van den Oord et al., 2016; Salimans et al., 2017), variational auto-encoders that optimize
an evidence lower bound (Kingma & Welling, 2013; Vahdat & Kautz, 2020), flow-based models
that construct exact, invertible density maps (Dinh et al., 2014; Kingma & Dhariwal, 2018), and
generative adversarial networks that learn via a discriminator–generator (Goodfellow et al., 2020;
Arjovsky et al., 2017). Diffusion models have emerged as a modern family in this landscape: the
seminal work of (Sohl-Dickstein et al., 2015) have introduced diffusion probabilistic modeling with
a forward noising process and a learned reverse process trained by minimizing a KL-divergence
objective. Subsequent reformulations (Ho et al., 2020) have streamlined training and inference with
simple denoising objectives (e.g., noise or data prediction), leading to state-of-the-art fidelity and ro-
bust scaling. Today, diffusion models drive progress across modalities, including images (Dhariwal
& Nichol, 2021; Rombach et al., 2022), audio (Kong et al., 2020; Liu et al., 2023), and video (Ho
et al., 2022; Kong et al., 2024).

Diffusion models generate samples by advancing a Markov chain in the latent domain and repeat-
edly evaluating a neural network at each step, making inference cost scale with the number of func-
tion evaluations (NFEs). Leveraging the probability–flow formulation, which casts sampling as an
ordinary differential equation (Song et al., 2021b), a large literature has pursued ODE-based ac-
celeration. Along one axis, classical numerical methods—singlestep Runge–Kutta (Runge, 1895)
and multistep Adams–Bashforth (Bashforth & Adams, 1883)—provide off-the-shelf accuracy–NFE
trade-offs for a given evaluation budget (Butcher, 2016). Along a second axis, diffusion-dedicated
solvers exploit the structure of the denoising dynamics: they approximate noise/data predictions with
low-order Taylor expansions or Lagrange interpolation and derive closed-form updates (Lu et al.,
2022a;b; Qinsheng & Chen, 2023; Zhao et al., 2023; Xue et al., 2024). Lastly, there are learned
solvers that learn the timestep schedule and other sampling-related parameters (Zhou et al., 2024;
Shaul et al., 2023; 2024; Wang et al., 2025). Because these parameters depend on the backbone and
the dataset, such solvers are typically confined to a fixed backbone and specific settings ((e.g., a
chosen NFE and CFG (Ho & Salimans, 2021)). Training also incurs substantial preparation over-
head, as it requires many teacher trajectories or final samples generated at high NFE. Nevertheless,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) DPM-Solver++
(Lu et al., 2022b)

(b) Dual-Solver (Ours) (c) BNS-Solver
(Shaul et al., 2024)

(d) DS-Solver
(Wang et al., 2025)

Figure 1: Sampling results. SANA (Xie et al., 2024), NFE=3, CFG=4.5. See Fig. 21 for further
results.

compared to the classical methods and dedicated solvers discussed above, learned solvers deliver
substantially better sample quality (e.g., lower FID) and are therefore an active area of research.

We introduce Dual-Solver, a learned solver for diffusion models with three types of learnable pa-
rameters:

• a prediction parameter γ that interpolates among noise, data, and velocity prediction types
(Sec. 3.1);

• a domain change parameter τ that interpolates between the log and linear domains
(Sec. 3.2);

• a residual parameter κ that adjusts the residual term while preserving second-order accu-
racy (Sec. 3.3).

We further propose a classification-based learning strategy that yields high-fidelity images even in
the low-NFE regime (Section 5.2). Unlike regression-based learning, which typically requires many
target samples at high NFE, our approach requires no target samples. Solver parameters are learned
using either pretrained image classifiers (He et al., 2016; Dosovitskiy et al., 2020; Howard et al.,
2017) or the zero-shot classifier (Radford et al., 2021). For 3 ≤ NFE ≤ 9, it outperforms prior
state-of-the-art solvers (Section 6).

2 PRELIMINARIES

2.1 DIFFUSION MODELS

Training process. Diffusion models (Ho et al., 2020; Song et al., 2021b) train a backbone network
as follows. We sample a clean sample x0 from the data distribution and noise ϵ from the standard
normal, then linearly combine them with weights αt and σt:

xt = αt x0 + σt ϵ, where x0 ∼ pdata, ϵ ∼ N (0, I), 0 ≤ t ≤ T. (1)

Here, αt and σt are set by a predefined schedule. Common choices include variance-preserving
(VP), with α2

t +σ2
t = 1 (Sohl-Dickstein et al., 2015; Ho et al., 2020); variance-exploding (VE), with

αt = 1, σt ≥ 0 (Song & Ermon, 2019; 2020); and optimal transport (OT), with αt = 1 − t, σt =
t, T = 1 (Lipman et al., 2022). The backbone is trained to take a noisy sample xt and the time t
as input and to predict one of the following: the noise ϵ, the clean sample x0 (Ho et al., 2020), or
the velocity vt = α̇tx0 + σ̇tϵ (Lipman et al., 2022). By convention, the backbone parameters are
denoted θ, and the predictions are written as ϵθ (noise), xθ (data), and vθ (velocity).

Sampling process. The dynamics in Eq. 1 can be written as the following stochastic differential
equation (SDE):

dxt = ft xt dt + gt dwt, ft =
d logαt

dt
, g 2

t =
dσ2

t

dt
− 2

d logαt

dt
σ2
t , (2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where wt is a standard Wiener process. For any time t, a probability-flow ODE that shares the same
marginal distribution as the SDE has been proposed (Song et al., 2021b):

dxt

dt
= ft xt −

1

2
g 2
t ∇x log qt(xt), where ∇x log qt(xt) = −E[ϵ | xt]

σt
≈ −ϵθ(xt, t)

σt
.

(3)

Given this ODE, one can perform sampling using classical numerical methods beyond Euler, such
as singlestep Runge–Kutta (Runge, 1895) and multistep Adams–Bashforth schemes (Bashforth &
Adams, 1883). Moreover, several works split the right-hand side into linear and non-linear parts, and
evaluate the non-linear term using finite-difference approximations (Lu et al., 2022a;b; Zhao et al.,
2023) or via Lagrange interpolation (Qinsheng & Chen, 2023; Xue et al., 2024).

2.2 PREDICTION TYPES

Depending on the form of a model’s output, we distinguish
three prediction types: noise, data, and velocity. The diffusion
model of Sohl-Dickstein et al. (2015) was parameterized to pre-
dict the mean and covariance matrix of the next sample’s dis-
tribution. Following Ho et al. (2020), it has become standard to
train networks that predict either the additive noise or the clean
data. In parallel, the flow matching literature (Lipman et al.,
2022) proposes models that output a vector field; in this paper,
we refer to this as velocity prediction. Although these outputs
differ, they are mutually convertible through simple transfor-
mations. In particular, one can obtain the desired prediction
from any other via

xθ

xti

αti+1

αti
xti

αtixθ

σti+1

σti
xti xnoise

ti+1

xvelocity
ti+1

xdata
ti+1

Noise
Velocity
Data

Figure 2: Euler updates for noise,
velocity, and data predictions.

xθ(xt, t) =
xt − σt ϵθ(xt, t)

αt
, vθ(xt, t) =

dαt

dt
xθ(xt, t) +

dσt

dt
ϵθ(xt, t). (4)

Depending on which of the three predictions is used, we derive Eq. 3 in different forms. The resulting
integral expressions are summarized in Table 1.

Discretization discrepancy. We ask a simple question: do the predictions yield the same up-
date? In continuous time, yes; in discrete time, no. Fig. 2 illustrates this discrepancy in two di-
mensions. For example, with a left-point first-order Euler rule in the λ-domain (half log-SNR),
the noise-prediction update is xnoise

ti+1
=

αti+1

αti

[
xti − σti ∆λti ϵθ(xti , ti)

]
. If we take the Euler

update for the data prediction and rewrite it using xθ = (xti − σtiϵθ)/αti , we obtain xdata
ti+1

=
αti+1

αti

[
(1+∆λti)e

−∆λti xti−e−∆λtiσti ∆λti ϵθ(xti , ti)
]
. Since e−∆λti = 1−∆λti+

1
2∆λ2

ti+· · · ,
a discrepancy appears at order O((∆λti)

2). This naturally raises the question of which update is
preferable in practice.

Differential form Integral form on [ti, ti+1]

Noise ϵθ
dxt

dt
= d logαt

dt xt − σt
dλt

dt ϵθ(xt, t) xti+1
=

αti+1

αti
xti − αti+1

∫ ti+1

ti

σt

αt

dλt

dt ϵθ(xt, t) dt

Velocity vθ
dxt

dt
= dαt

dt xθ(xt, t) +
dσt

dt ϵθ(xt, t) xti+1
= xti +

∫ ti+1

ti

[
dαt

dt xθ(xt, t) +
dσt

dt ϵθ(xt, t)
]
dt

Data xθ
dxt

dt
= d log σt

dt xt + αt
dλt

dt xθ(xt, t) xti+1 =
σti+1

σti
xti + σti+1

∫ ti+1

ti

αt

σt

dλt

dt xθ(xt, t) dt

Table 1: Differential and integral forms for noise, data, and velocity predictions. (αt: signal rate, σt:
noise rate, λt: logαt/σt)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 DUAL-SOLVER

3.1 DUAL PREDICTION WITH PARAMETER γ

We propose a dual prediction scheme that uses both xθ and ϵθ together. We call it dual because
it treats xθ and ϵθ separately, unlike velocity prediction, which bundles them into vθ. Moreover,
we introduce the following integral formulation parameterized by γ, which interpolates between the
integral forms of noise, velocity, and data prediction.

Integral form of dual prediction.

xti+1
=


(
σti+1

σti

)γ
xti + σγti+1

[∫ ti+1

ti

d

dt

(
αt σ

−γ
t

)
xθ(t) dt +

∫ ti+1

ti

d

dt

(
σ1−γ
t

)
ϵθ(t) dt

]
, γ ≥ 0,(

αti+1

αti

)−γ

xti + α−γ
ti+1

[∫ ti+1

ti

d

dt

(
α1+γ
t

)
xθ(t) dt +

∫ ti+1

ti

d

dt
(σt α

γ
t) ϵθ(t) dt

]
, γ < 0.

(5)
Here, we write xθ(t) := xθ(xt, t) and ϵθ(t) := ϵθ(xt, t).

• When γ = −1, the integral reduces to the noise-prediction form (Table 1).
• When γ = 0, the integral reduces to the velocity-prediction form (Table 1).
• When γ = 1, the integral reduces to the data-prediction form (Table 1).

From Eq. 3, we derive the differential form of dual prediction and, by integrating, obtain the integral
form given above; the full derivation is provided in Appendix B.1. For brevity, in Secs. 3.2 and 3.3
we consider only γ ≥ 0; the case γ < 0 follows by the same steps.

3.2 LOG-LINEAR DOMAIN CHANGE WITH PARAMETER τ

Domain change. Let L : (0,∞)→ I be a C1 diffeomorphism onto an interval I ⊆ R. Applying
a change of variables to the two integrals in Eq. 5, define

u(t; τu) = L
(
αt σ

−γ
t ; τu

)
, v(t; τv) = L

(
σ 1−γ
t ; τv

)
.

Here, τu and τv parametrize L in the u- and v-integrals, respectively. Denote ui = u(ti), ui+1 =

u(ti+1) and vi = v(ti), vi+1 = v(ti+1). By the chain rule, d
dtL

−1(u) = dL−1(u)
du

du
dt and similarly

for v. Thus, for γ ≥ 0 we obtain

xti+1
=

(
σti+1

σti

)γ
xti + σγti+1

[∫ ui+1

ui

dL−1(u; τu)

du
xθ(u) du+

∫ vi+1

vi

dL−1(v; τv)

dv
ϵθ(v) dv

]
.

(6)
Here, xθ(u) := xθ(xu−1(u), u

−1(u)) and ϵθ(v) := ϵθ(xv−1(v), v
−1(v)). The full equation is given

in Eq. 11.

Log-linear transform. Previous works (Dockhorn et al., 2022; Qinsheng & Chen, 2023; Zhou
et al., 2024) adapt the linear transform L(y) = y with noise prediction. Because d

duL
−1(u) = 1, the

integrand carries no weighting factor, making it straightforward to develop approximations such as
Taylor expansions and Lagrange interpolation. By contrast, the other works (Lu et al., 2022a;b; Zhao
et al., 2023; Xue et al., 2024) use a logarithmic transform L(y) = log y. Because d

duL
−1(u) = eu,

the integrand carries an exponential weight. A closed-form approximation can be obtained via an
exponential integrator (Hochbruck & Ostermann, 2010) or by using Lagrange interpolation. Moti-
vated by these works, we propose a log–linear transform that interpolates between the two via a
scalar parameter τ :

L(y; τ) =
log(1 + τy)

τ
, τ > 0. (7)

This transform is invertible, with inverse L−1(u; τ) =
(
eτu − 1

)
/τ ; its weighting factor is

d
duL

−1(u; τ) = eτu. Consequently, it has the following properties:

• As τ → 0+: d
duL

−1(u; τ)→ 1 (no weight).

• When τ = 1: d
duL

−1(u; τ) = eu (exponential weight).

We apply the log–linear transform to Eq. 6, allowing separate parameters τu and τv for the u- and
v-integrals, respectively.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 SECOND-ORDER APPROXIMATION WITH PARAMETER κ

On the interval [ui, ui+1], we approximate xθ by using the second-order forward-difference approx-
imation xθ(u) = xθ(ui) +

∆xθ(ui)
∆ui

(u− ui), where xθ(ui) := xθ(xu−1(ui), u
−1(ui)), ∆xθ(ui) :=

xθ(ui+1)−xθ(ui), and ∆ui := ui+1−ui. We also introduce a function K(∆ui;κu) = κu(∆ui)
2,

an O((∆ui)
2) term, to allow additional flexibility in the residual term while preserving second-

order local accuracy. κu is a real scalar parameter that controls the magnitude of the residual term.
Applying the same approximations to ϵθ yields the following second-order corrector x2nd−corr.

ti+1
:

x2nd−corr.
ti+1

=

(
σti+1

σti

)γ

xti + σγ
ti+1

[
xθ(ui)∆L−1(ui; τu) +

∆xθ(ui)

2

(
∆L−1(ui; τu) +B(∆ui;κu)

)
+ ϵθ(vi)∆L−1(vi; τv) +

∆ϵθ(vi)

2

(
∆L−1(vi; τv) +B(∆vi;κv)

)]
.

(8)
Here, xθ(ui) := xθ(xu−1(ui), u

−1(ui)), ∆xθ(ui) := xθ(ui+1) − xθ(ui), ∆L−1(ui; τu) :=

L−1(ui+1; τu) − L−1(ui; τu), and ∆ui := ui+1 − ui; the definitions for ϵθ(vi), ∆ϵθ(vi),
∆L−1(vi; τv), and ∆vi are analogous. The first-order predictor and second-order predictor equa-
tions are provided in Appendix B.3. Note. In Eq. 8, L−1(ui; τu) = αtiσ

−γ
ti , so there is no need to

invert L explicitly. The parameter τu determines the scale of ∆ui, which feeds into B. The same
applies to L−1(vi; τv).

Theorem 3.1 (Local truncation error). Assume that xθ(u) and ϵθ(v) are C2 on [ui, ui+1] and
[vi, vi+1], respectively. Let xexact

ti+1
denote the exact update in equation 6, and let x2nd−corr.

ti+1
denote

the second–order corrector defined in equation 8. Then we have∥∥xexact
ti+1

− x2nd−corr.
ti+1

∥∥ = O
(
(∆ui)

3 + (∆vi)
3
)
.

We provide the detailed proof in Appendix B.4, and by the same argument the accuracies of the first-
and second-order predictors can also be shown.

4 IMPLEMENTATION DETAILS

Dual-Solver performs sampling using a predictor–corrector scheme (Butcher, 2016) based on the
equations developed above. We examine this sampling scheme in detail in Sec. 4.1 and then present
the set of learnable parameters in Sec. 4.2.

4.1 SAMPLING SCHEME

Alg. 1 details the sampling procedure of Dual-Solver. Sampling requires a backbone that provides
both xθ and ϵθ; when only one head is available, the other can be obtained via Eq. 4. Given M
steps, we use timesteps {ti}Mi=0 with t0 = T and draw the initial noise xt0 ∼ N (0, I). We also
maintain a list ℓ to store previous evaluations. Empirically, a first-order predictor with a second-
order corrector performs best (Sec. 6.2). At step i, the first-order predictor takes the current state xti
together with the model evaluations {xθ(xti , ti), ϵθ(xti , ti)} and produces a provisional sample
x′
ti+1

. The second-order corrector then combines the evaluations at ti with fresh evaluations at ti+1,
i.e., {xθ(x

′
ti+1

, ti+1), ϵθ(x
′
ti+1

, ti+1)}, to yield the next sample xti+1
. At the final step i = M − 1,

the corrector is not applied. Explicit formulas for the first-order predictor and second-order corrector
are given in Eqs. 13 and 21.

4.2 LEARNABLE PARAMETERS

For each i-th predictor/corrector step, the parameter sets are ϕpred
i =

{γpred
i , τpredu,i , τpredv,i , κpred

u,i , κpred
v,i } and ϕcorr

i = {γcorr
i , τ corru,i , τ corrv,i , κcorr

u,i , κcorr
v,i }. Thus, each

step uses 2 × 5 = 10 parameters. (The last step (i = M − 1) does not use the corrector, so it has
5 parameters.) Fig. 3 shows the learned parameters for the NFE=5 setting using a DiT (Peebles &
Xie, 2023) backbone. Assuming a noise-prediction backbone (the same reasoning applies to data-
or velocity-prediction) and a first-order predictor with a second-order corrector (Sec. 4.1), ϕpred

i
and ϕcorr

i determine the coefficients for an update that combines the current state xti and two model

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Dual-Solver predictor–corrector
sampling (Sec. 4.1)

Require: Diffusion backbone with dual predic-
tion {xθ, ϵθ}, timesteps {ti}Mi=0, initial noise
xt0 , empty list ℓ, parameters ϕ

1: Evaluate {xθ(xt0 , t0), ϵθ(xt0 , t0)} and
add to L

2: for i = 0 to M − 1 do
3: x′

ti+1
← Predictor(xti , ℓ;ϕ

pred
i)

4: if i ≥M − 1 then break
5: Evaluate {xθ(x

′
ti+1

, ti+1),

ϵθ(x
′
ti+1

, ti+1)} and add to ℓ

6: xti+1
← Corrector(xti , ℓ;ϕ

corr
i)

7: end for
8: return x′

tM

Algorithm 2 Hard-label classification for param-
eter learning (Sec. 5.2)

Require: Diffusion backbone with parameters
θ, VAE decoder D, pre-trained classifier C,
solver S with parameters ϕ, label dataset Y ,
learning rate η

1: while not converged do
2: Sample xT ∼ N (0, I) ▷ initial noise
3: Sample y ∼ Y ▷ class label
4: x0 ← S(xT ; y, ϕ, θ) ▷ sampling
5: x̂0 ← D(x0) ▷ decoding
6: p← C(x̂0) ▷ class probabilities
7: L ← CrossEntropy(p, y) ▷ loss
8: ϕ← ϕ− η∇ϕL ▷ parameter update
9: end while

evaluations, ϵθ(x′
ti , ti) and ϵθ(x

′
ti+1

, ti+1), to produce xti+1
(Appendix H). This may seem heavy,

but Sec. 6.2 (B) shows it is necessary.

In addition to these parameters, we also learn the evaluation times {ti}M−1
i=1 (with t0 and tM fixed),

where M denotes the number of steps. Following prior work (Tong et al., 2025; Wang et al., 2025),
we employ unnormalized step variables {∆t′i}

M−1
i=0 and apply a softmax over i = 0, . . . ,M − 1

to obtain normalized step sizes {∆ti}M−1
i=0 (nonnegative and summing to one). The timesteps are

obtained via a cumulative sum: ti = t0 + (tM − t0)
∑i−1

k=0 ∆tk, i = 1, . . . ,M − 1.

5 SOLVER PARAMETER LEARNING

In this section, we review existing regression-based parameter learning methods, identify their lim-
itations, and introduce a classification-based approach. Fig. 4 provides a schematic overview of all
these methods. We apply them to our proposed Dual-Solver and report FID results for each method
in Sec. 6.2 (C).

5.1 REGRESSION-BASED PARAMETER LEARNING

In regression-based learning, a solver with trainable parameters is referred to as a student solver,
while an existing fixed solver is referred to as a teacher solver, and the student is trained to imitate the
behavior of the teacher running at a high NFE. Most prior works adopt trajectory regression (Shaul
et al., 2023; Zhou et al., 2024; Wang et al., 2025), which compares the trajectories generated by the
teacher and the student, or sample regression (Shaul et al., 2024), which compares only the final
samples. Since comparisons in the trajectory or sample space often show a mismatch with visual
perceptual quality, feature regression has been proposed (Tong et al., 2025), where the measure is
computed in a feature space using metrics such as LPIPS (Zhang et al., 2018). However, all of these
methods require a teacher solver and incur substantial overhead to prepare the supervision targets,
and they tend to perform poorly in the very low NFE regime (e.g., NFE ≤ 5; see Table 3).

Figure 3: Learned parameters. Values of {γ, τu, τv, κu, κv} across sampling steps, learned on
DiT (Peebles & Xie, 2023) at NFE= 5. See Figs. 14, 15, 16, and 17 for further results.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Teacher solver S(t)(xT ; y, θ)

class label y
noise xT

Step 0 · · · Step M−1 Decoder D Classifier C probabilities p
latent x0 image x̂0

Hard-label classification (proposed, Alg. 2)Student solver S(xT ; y, ϕ, θ)

Step 0 · · · Step L−1 Decoder D Classifier C probabilities p(t)
latent x(t)

0 image x̂
(t)
0

Sample
regression

Trajectory
regression

Feature
regression

Soft-label
classification

Figure 4: Solver parameter learning methods. It schematically illustrates trajectory, sample, and
feature regression, as well as soft- and hard-label classification methods.

5.2 CLASSIFICATION-BASED PARAMETER LEARNING

Beyond feature regression, we consider soft-label classification, where we apply a cross-entropy
loss between the classifier outputs (probabilities) of the student and the teacher. This approach yields
improved results in the low-NFE regime (Table 3), but it still requires a teacher solver to generate
the target probabilities.

To remove this dependency, we further propose hard-label classification, which compares the stu-
dent’s classifier outputs (probabilities) against the input class label using a cross-entropy loss, with-
out any teacher solver. The overall training procedure is described in Alg. 2. The sample x0 gener-
ated by the solver S is passed through the decoderD and the classifier C to obtain class probabilities
p. We then compute a cross-entropy loss between p and the class label y ∼ Y , and update the
solver parameters ϕ for all time steps via backpropagation. For text-to-image tasks, the class labels
are replaced with text prompts, which can be obtained from datasets such as MSCOCO 2014 (Lin
et al., 2014) or MJHQ-30K (Li et al., 2024), and the cross-entropy loss is replaced with the CLIP
loss (Radford et al., 2021).

Unlike regression to teacher targets, this method focuses on whether the generated samples lie on the
correct side of the classifier’s decision boundary, enabling more flexible training. A potential issue is
a mismatch between the distribution learned by the classifier and the ground-truth data distribution,
but this can be mitigated by selecting an appropriate classifier. In Sec. 6.2 (D), we analyze the
relationship between the classifier’s accuracy and the resulting FID scores.

6 EXPERIMENTS

We benchmark Dual-Solver against two families of baselines:

• Dedicated solvers: DDIM (Song et al., 2021a), DPM-Solver++ (Lu et al., 2022b).
• Learned solvers: BNS-Solver (Shaul et al., 2024), DS-Solver (Wang et al., 2025).

We select backbones that span diffusion and flow matching, covering ImageNet (Deng et al., 2009)
conditional generation and text-to-image:

• DiT-XL/2-256×256 (Peebles & Xie, 2023): diffusion, ImageNet.
• PixArt-α XL-2-512 (Chen et al., 2023): diffusion, text-to-image.
• GM-DiT 256×256 (Chen et al., 2025): flow matching, ImageNet.
• SANA 600M-512px (Xie et al., 2024): flow matching, text-to-image.

Solver implementations are taken from official sources or reimplemented, and the backbones can
be run easily via the diffusers library (von Platen et al., 2022). Further details are provided in Ap-
pendix C.

6.1 MAIN QUANTITATIVE RESULTS

We evaluate quantitative performance using FID (Heusel et al., 2017) and CLIP score (Radford
et al., 2021). For DiT and GM-DiT, FID is computed on 50k images uniformly sampled across
the 1,000 ImageNet (Deng et al., 2009) classes. For SANA and PixArt-α, FID and CLIP are com-
puted on the MSCOCO 2014 (Lin et al., 2014) validation set (30k image–caption pairs). The CLIP

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) DiT, FID ↓ (Table 4). (b) PixArt-α, FID ↓ (Table 6). (c) PixArt-α, CLIP ↑ (Table 6).

(d) GM-DiT, FID ↓ (Table 5). (e) SANA, FID ↓ (Table 7). (f) SANA, CLIP ↑ (Table 7).

Figure 5: Main quantitative results. FID and CLIP score; evaluated on 50k (DiT/GM-DiT) and
30k (SANA/PixArt-α) samples; CFG: DiT=1.5, GM-DiT=1.4, SANA=4.5, PixArt-α=3.5.

score is computed as the cosine similarity between text and image features. As described in Sec. 5,
we train Dual-Solver with a classification-based objective. For DiT and GM-DiT, MobileNetV3-
Large (Howard et al., 2019) is used, and for SANA and PixArt-α, CLIP(RN101) is used. Fig. 5 plots
the measured FID and CLIP scores. Across all evaluated NFEs, Dual-Solver outperforms competing
solvers on both FID and CLIP for DiT, SANA, and PixArt-α. For GM-DiT, Dual-Solver underper-
forms at NFE 7–9; however, when trained with a trajectory regression-based objective, it surpasses
the baselines at NFE 8 and 9 (Table 5).

6.2 ABLATION STUDY

We conduct ablations to determine (A) the predictor–corrector order, (B) how much to constrain the
degrees of freedom within the parameter set ϕ = {γ, τ, κ}, (C) the choice of learning method, and
(D) the choice of classifier. Ablations are conducted with DiT (Peebles & Xie, 2023).

Cross entropy (↓)
NFE 3 5 7 9
(A) Predictor, Corrector Order
p1 0.667 0.225 0.183 0.175
p1c2 0.574 0.197 0.178 0.173
p2 1.023 0.253 0.222 0.181
p2c2 5.009 0.317 0.203 0.191

(B) Parameters (γ, τ, κ) Setting
γ = 1 fixed 0.816 0.223 0.182 0.176
γ = 0 fixed 0.600 0.202 0.183 0.180
γ = −1 fixed 7.871 7.676 0.238 0.196
τ = 1 fixed 0.601 0.217 0.175 0.178
κ = 0 fixed 0.944 0.256 0.202 0.190
τ, κ shared 0.667 0.221 0.177 0.169
global γ 0.593 0.213 0.181 0.177
global τ 0.596 0.219 0.186 0.179
global κ 0.612 0.240 0.185 0.182
all learnable 0.574 0.197 0.178 0.173

Table 2: Ablation Study

(A) Predictor-corrector order. We ablate the pre-
dictor/corrector order: p1 (first-order predictor),
p1c2 (first-order predictor + second-order correc-
tor), p2 (second-order predictor), and p2c2 (second-
order predictor + second-order corrector). The equa-
tions for each predictor and corrector are given in
Eqs. 13, 17, and 21. As shown in Table 2 (A),
p1c2 achieves superior performance across NFE =
3, 5, 7, 9. We therefore adopt p1c2 as the default
configuration for Dual-Solver (Sec. 4.1).
(B) Parameters (γ, τ, κ) setting. We ablate the pa-
rameterization by fixing selected values or sharing
them across parameters to reduce degrees of free-
dom. Choosing γ as 1, 0, or −1 recovers data, ve-
locity, and noise prediction, respectively; τ = 1
gives the log transform; and κ = 0 disables the
second-order residual term. We also tie τu = τv
and κu = κv to share parameters between the inte-
grations for xθ and ϵθ. Additionally, we consider a
global setting in which each of γ, τ , and κ is shared
across all sampling steps.

As shown in Table 2 (B), at low NFE (3 and 5), leaving all parameters free yields the best
performance. At higher NFEs (7 and 9), configurations that fix or share certain parameters can oc-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

casionally perform better. Since gaps are small and our focus is low NFE, we adopt the all-learnable
setting by default.

(C) Parameter learning methods. Table 3 re-
ports the results of applying the regression- and
classification-based parameter learning methods dis-
cussed in Sec. 5 to Dual-Solver. Feature regression
is implemented using LPIPS (Zhang et al., 2018),
and it generally performs better than regression in
the trajectory or sample space. The improvement
is particularly pronounced in the very low NFE
regime (NFE = 3, 5). Depending on which classi-
fier (AlexNet (Krizhevsky et al., 2012), VGG (Si-
monyan & Zisserman, 2014), SqueezeNet (Iandola
et al., 2016)) is used to extract features, the results
vary significantly, underscoring the importance of
classifier choice in feature space.

FID (↓)
NFE 3 5 7 9
Regression-based learning (Sec. 5.1)

Sample 107.13 11.71 4.60 2.99
Trajectory 100.89 11.59 3.66 2.84
Feature (AlexNet) 47.75 7.24 3.42 2.91
Feature (VGG) 41.58 5.48 3.23 2.88
Feature (SqueezeNet) 44.00 7.07 3.31 2.79

Classification-based learning (Sec. 5.2)

Soft-label 25.13 4.90 3.37 3.01
Hard-label 24.91 3.52 2.75 2.67

Table 3: Comparison of parameter learning
methods

Classification-based methods further widen the performance gap relative to feature regression in
the low NFE regime (NFE = 3, 5). In particular, the method that uses only hard labels achieves
substantially superior results across all NFEs, which we attribute to the choice of an appropriate
classifier; we investigate this in the next paragraph.

Figure 6: Top-5 accuracy vs. FID (Table 8).

(D) Classifier model selection. A natural
question for classifier-based learning is which
classifier to use. To investigate this, we eval-
uate 20 pretrained classifiers from TorchVi-
sion (maintainers & contributors, 2016). Fig. 6
plots FID (on 10k samples) versus classifier
top-5 accuracy for each model, ordered by
rank. Interestingly, the curve exhibits a clear
V-shape: as accuracy decreases, FID initially
improves, but beyond ranks 14–16 the FID de-
grades sharply. This suggests that neither very
high nor very low classifier accuracy is opti-
mal; a moderate level is most beneficial for
FID.

Based on this observation, we choose mobilenet v3 large, which consistently yields low
FID at NFE = 3 and 9, as the classifier for parameter learning with both DiT (Peebles & Xie,
2023) and GM-DiT (Chen et al., 2025). A detailed analysis linking this pattern to precision and
recall (Kynkäänniemi et al., 2019) is provided in Appendix D.

6.3 PARAMETER INTERPOLATION ACROSS NFES

From the learned parameters of Dual-Solver (Ap-
pendix F), we observe that their overall shapes remain
similar across different NFEs. Motivated by this, we
test the robustness of the learned parameters by apply-
ing them to other NFEs. To obtain the parameters for
an unseen NFE, we interpolate the parameters of its two
neighboring NFEs and then take their weighted average.
The detailed formulas are provided in the Appendix G.
Fig. 7 reports the results. Interp. (3,5), (5,7), (7,9) de-
notes that we interpolate between the parameter pairs
at NFEs (3,5), (5,7), and (7,9) to obtain the parameters
for the intermediate NFEs 4, 6, and 8, respectively; the
other interpolation schemes are defined analogously. Al-
though these interpolated parameters do not match the

Figure 7: FID results for parameter inter-
polation across NFEs with a DiT (Peebles
& Xie, 2023) backbone.

performance of parameters directly optimized for each NFE, the gaps are modest, and the resulting
FID scores still outperform those of other solvers.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

(a) DPM-Solver++
(Lu et al., 2022b)

(b) Dual-Solver (Ours) (c) BNS-Solver
(Shaul et al., 2024)

(d) DS-Solver
(Wang et al., 2025)

Figure 8: Sampling results. PixArt-α (Chen et al., 2023), NFE=5, CFG=3.5. See Fig. 22 for further
results.

(a) Dual-Solver (Ours)

(b) BNS-Solver (Shaul et al., 2024)

(c) DS-Solver (Wang et al., 2025)

Figure 9: Sampling results. GM-DiT (Chen et al., 2025), NFE=3, CFG=1.4. See Fig. 20 for more.

6.4 TRAINING TIME

Figure 10: Training time per step (ms) (Ta-
ble 10).

Fig. 10 reports per-step training time, decomposed
into sampling, decoding, classifier, and backward,
measured at NFE = 5 using GM-DiT (Chen et al.,
2025) as the backbone. Dual-Solver adds decoding
and classifier overheads; the latter is modest thanks
to lightweight choices, as discussed in Sec. 6.2 (D).
Overall, total per-step time increases by about 8%
versus BNS-Solver (Shaul et al., 2024) and DS-
Solver (Wang et al., 2025). See Appendix E for
convergence-time details.

7 CONCLUSIONS AND LIMITATIONS

This paper introduces Dual-Solver, a predictor–corrector sampler that achieves second-order nu-
merical accuracy, featuring per-step learnable parameters (γ, τ, κ) that govern the prediction param-
eterization (noise/velocity/data), a change of variables, and a second-order residual adjustment. All
solver parameters are optimized end-to-end with a classification-based objective using a pretrained
image classifier. Across diverse diffusion and flow matching backbones, experiments show substan-
tial improvements over competing solvers in the low-NFE regime (3 ≤ NFE ≤ 9), measured by
both FID and CLIP score. Limitations include the absence of unconditional backbones and a lack of
analysis beyond second-order accuracy; both are left for future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

In Sec. 6 and Appendix C, we report detailed information regarding the backbones, solvers, training,
and evaluation used in our experiments. All datasets employed, such as ImageNet (Deng et al., 2009)
and MSCOCO (Lin et al., 2014), are publicly available under their respective licenses.

REFERENCES

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214–223. PMLR, 2017.

Francis Bashforth and John Couch Adams. An Attempt to Test the Theories of Capillary Action
by Comparing the Theoretical and Measured Forms of Drops of Fluid: With an Explanation of
the Method of Integration Employed in Constructing the Tables. Cambridge University Press,
Cambridge, 1883.

John Charles Butcher. Numerical methods for ordinary differential equations. John Wiley & Sons,
2016.

Hansheng Chen, Kai Zhang, Hao Tan, Zexiang Xu, Fujun Luan, Leonidas Guibas, Gordon Wet-
zstein, and Sai Bi. Gaussian mixture flow matching models. arXiv preprint arXiv:2504.05304,
2025.

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
Kwok, Ping Luo, Huchuan Lu, et al. Pixart-α: Fast training of diffusion transformer for photore-
alistic text-to-image synthesis. arXiv preprint arXiv:2310.00426, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255. IEEE, 2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components esti-
mation. arXiv preprint arXiv:1410.8516, 2014.

Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Genie: Higher-order denoising diffusion solvers.
Advances in Neural Information Processing Systems, 35:30150–30166, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In Is-
abelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information Processing Systems,
volume 30, pp. 6626–6637, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on
Deep Generative Models and Downstream Applications, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems (NeurIPS), 33:6840–6851, 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. arXiv preprint arXiv:2204.03458, 2022.

Marlis Hochbruck and Alexander Ostermann. Exponential integrators. Acta Numerica, 19:209–286,
2010.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In Pro-
ceedings of the IEEE/CVF international conference on computer vision, pp. 1314–1324, 2019.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size.
arXiv preprint arXiv:1602.07360, 2016.

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali
Farhadi, and Ludwig Schmidt. Openclip, July 2021. URL https://doi.org/10.5281/
zenodo.5143773. If you use this software, please cite it as below.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
Advances in neural information processing systems, 31, 2018.

Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
Bo Wu, Jianwei Zhang, et al. Hunyuanvideo: A systematic framework for large video generative
models. arXiv preprint arXiv:2412.03603, 2024.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. arXiv preprint arXiv:2009.09761, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in neural information
processing systems, 32, 2019.

Daiqing Li, Aleks Kamko, Ehsan Akhgari, Ali Sabet, Linmiao Xu, and Suhail Doshi. Playground v2.
5: Three insights towards enhancing aesthetic quality in text-to-image generation. arXiv preprint
arXiv:2402.17245, 2024.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Pro-
ceedings, Part V 13, pp. 740–755. Springer, 2014.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and
Mark D Plumbley. Audioldm: Text-to-audio generation with latent diffusion models. arXiv
preprint arXiv:2301.12503, 2023.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

12

https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022a.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095,
2022b.

TorchVision maintainers and contributors. Torchvision: Pytorch’s computer vision library. https:
//github.com/pytorch/vision, 2016.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.

Zhang Qinsheng and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
ICLR, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Carl Runge. Ueber die numerische auflösung von differentialgleichungen. Mathematische Annalen,
46:167–178, 1895. URL http://eudml.org/doc/157756.

Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. Pixelcnn++: Improving the
pixelcnn with discretized logistic mixture likelihood and other modifications. arXiv preprint
arXiv:1701.05517, 2017.

Neta Shaul, Juan Perez, Ricky TQ Chen, Ali Thabet, Albert Pumarola, and Yaron Lipman. Bespoke
solvers for generative flow models. arXiv preprint arXiv:2310.19075, 2023.

Neta Shaul, Uriel Singer, Ricky TQ Chen, Matthew Le, Ali Thabet, Albert Pumarola, and Yaron
Lipman. Bespoke non-stationary solvers for fast sampling of diffusion and flow models. arXiv
preprint arXiv:2403.01329, 2024.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing, pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021a.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
Advances in Neural Information Processing Systems, 33, 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021b.

13

https://github.com/pytorch/vision
https://github.com/pytorch/vision
http://eudml.org/doc/157756

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Vinh Tong, Trung-Dung Hoang, Anji Liu, Guy Van den Broeck, and Mathias Niepert. Learning
to discretize denoising diffusion odes. In International Conference on Learning Representations
(ICLR), 2025.

Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. Advances in neural
information processing systems, 33:19667–19679, 2020.

Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Con-
ditional image generation with pixelcnn decoders. Advances in neural information processing
systems, 29, 2016.

Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Rasul,
Mishig Davaadorj, Dhruv Nair, Sayak Paul, William Berman, Yiyi Xu, Steven Liu, and Thomas
Wolf. Diffusers: State-of-the-art diffusion models. https://github.com/huggingface/
diffusers, 2022.

Shuai Wang, Zexian Li, Tianhui Song, Xubin Li, Tiezheng Ge, Bo Zheng, Limin Wang, et al. Dif-
ferentiable solver search for fast diffusion sampling. arXiv preprint arXiv:2505.21114, 2025.

Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang, Muyang
Li, Ligeng Zhu, Yao Lu, et al. Sana: Efficient high-resolution image synthesis with linear diffusion
transformers. arXiv preprint arXiv:2410.10629, 2024.

Shuchen Xue, Mingyang Yi, Weijian Luo, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhi-Ming
Ma. Sa-solver: Stochastic adams solver for fast sampling of diffusion models. Advances in Neural
Information Processing Systems, 36, 2024.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

We Zhao, Li Bai, Yong Rao, Jian Zhou, and Jun Lu. Unipc: A unified predictor-corrector framework
for fast sampling of diffusion models. arXiv preprint arXiv:2302.04867, 2023.

Zhenyu Zhou, Defang Chen, Can Wang, and Chun Chen. Fast ode-based sampling for diffusion
models in around 5 steps. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 7777–7786, 2024.

14

https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

2 Preliminaries 2

2.1 Diffusion Models . 2

2.2 Prediction Types . 3

3 Dual-Solver 4

3.1 Dual Prediction with Parameter γ . 4

3.2 Log-Linear Domain Change with Parameter τ . 4

3.3 Second-Order Approximation with Parameter κ 5

4 Implementation Details 5

4.1 Sampling Scheme . 5

4.2 Learnable Parameters . 5

5 Solver Parameter Learning 6

5.1 Regression-based Parameter Learning . 6

5.2 Classification-based Parameter Learning . 7

6 Experiments 7

6.1 Main Quantitative Results . 7

6.2 Ablation Study . 8

6.3 Parameter Interpolation across NFEs . 9

6.4 Training Time . 10

7 Conclusions and Limitations 10

A LLM Usage 17

B Derivations 17

B.1 Derivation of Dual Prediction . 17

B.2 Change of Variables . 18

B.3 Derivation of Sampling Equations . 18

B.4 Proof of Local Truncation Error . 20

C Experimental Details 21

C.1 Setup . 21

C.2 Quantitative Results . 21

D Classifier Accuracy vs. Sample Quality 23

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

E Analysis of Convergence Time 27

F Learned Parameters 28

G Details of parameter interpolation across NFEs 32

H Single Prediction Reparameterization 34

H.1 First-order predictor . 34

H.2 Second-order corrector . 35

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A LLM USAGE

We disclose that Large Language Models (LLMs) were used as assistive tools for:

• verifying the consistency of mathematical derivations,

• assisting literature search and surfacing related work,

• helping with formal writing (style, grammar, typos),

• drafting figure and table scripts.

All scientific ideas, methods, and results originate from the authors, who take full responsibility for
the content of this paper.

B DERIVATIONS

B.1 DERIVATION OF DUAL PREDICTION

Differential Form of Dual Prediction. The differential form corresponding to the integral form
in Eq. 5 is given by

dxt

dt
= βxt + αt

(d logαt

dt
− β

)
xθ(xt, t) + σt

(d log σt

dt
− β

)
ϵθ(xt, t). (9)

To derive this form, we start from the probability-flow ODE in Eq. 3:

dxt

dt
= ft xt −

1

2
g2t ∇x log q(xt),

where ft =
d logαt

dt
, g2t =

d

dt
σ2
t − 2 ft σ

2
t , ∇x log q(xt) = −

ϵθ(xt, t)

σt
.

Substituting ft, g2t , and ∇x log q(xt) yields:

dxt

dt
=

d logαt

dt
xt +

1

2σt

(
d

dt
σ2
t − 2

d logαt

dt
σ2
t

)
ϵθ(xt, t)

=
d logαt

dt
xt + σt

(
d log σt

dt
− d logαt

dt

)
ϵθ(xt, t).

Introducing an arbitrary β ∈ R, we can rewrite:

dxt

dt
= βxt +

(d logαt

dt
− β

)
xt + σt

(
d log σt

dt
− d logαt

dt

)
ϵθ(xt, t)

= βxt +
(d logαt

dt
− β

)(
αtxθ(xt, t) + σtϵθ(xt, t)

)
+ σt

(
d log σt

dt
− d logαt

dt

)
ϵθ(xt, t)

= βxt + αt

(d logαt

dt
− β

)
xθ(xt, t) + σt

(d log σt

dt
− β

)
ϵθ(xt, t).

Thus we obtain the differential form of dual prediction. It is straightforward to verify that choosing
β = d

dt logαt recovers the noise-prediction form, β = d
dt log σt recovers the data-prediction form,

and β = 0 recovers the velocity-prediction form in Table 1.

Integral Form of Dual Prediction. We next apply the variation-of-constants method to Eq. 9 to
obtain the following integral representation:

xti+1
= exp

(∫ ti+1

ti
βu du

)
xti +

∫ ti+1

ti
exp
(∫ ti+1

s
βu du

)[
αs

(
d logαs

ds − βs

)
xθ + σs

(
d log σs

ds − βs

)
ϵθ

]
ds.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

We reparameterize β in terms of a new variable γ ∈ R as follows:

β(γ) =


γ
d log σt

dt
= γ

σ̇t

σt
, γ ≥ 0,

−γ d logαt

dt
= −γ α̇t

αt
, γ < 0.

Then we obtain the following γ-interpolated integral form of dual prediction:

xti+1 =


(
σti+1

σti

)γ
xti + σγti+1

[∫ ti+1

ti

d

dt

(
αt σ

−γ
t

)
xθ dt +

∫ ti+1

ti

d

dt

(
σ1−γ
t

)
ϵθ dt

]
, γ ≥ 0,(

αti+1

αti

)−γ

xti + α−γ
ti+1

[∫ ti+1

ti

d

dt

(
α1+γ
t

)
xθ dt +

∫ ti+1

ti

d

dt
(σt α

γ
t) ϵθ dt

]
, γ < 0.

(10)

B.2 CHANGE OF VARIABLES

Using the transform L defined in Sec. 3.2, we define

u(t; τu) =

{
L
(
αt σ

−γ
t ; τu

)
, γ ≥ 0,

L
(
α 1+γ
t ; τu

)
, γ < 0,

v(t; τv) =

{
L
(
σ 1−γ
t ; τv

)
, γ ≥ 0,

L
(
σt α

γ
t ; τv

)
, γ < 0.

Using these variables, applying a change of variables to the integral in Eq. 10 yields

xti+1
=


(
σti+1

σti

)γ

xti + σγ
ti+1

[∫ ui+1

ui

dL−1(u; τu)

du
xθ(u) du +

∫ vi+1

vi

dL−1(v; τv)

dv
ϵθ(v) dv

]
(γ ≥ 0),(

αti+1

αti

)−γ

xti + α−γ
ti+1

[∫ ui+1

ui

dL−1(u; τu)

du
xθ(u) du +

∫ vi+1

vi

dL−1(v; τv)

dv
ϵθ(v) dv

]
(γ < 0).

(11)

B.3 DERIVATION OF SAMPLING EQUATIONS

B.3.1 DERIVATION OF FIRST-ORDER PREDICTOR

First, we take a first-order approximation of xθ and ϵθ in Eq. 11. For the case γ ≥ 0, this yields

xti+1 =
(

σti+1

σti

)γ
xti + σγ

ti+1

[
xθ(ui)

(
∆L−1(ui; τu) +O((∆ui)

2)
)
+ ϵθ(vi)

(
∆L−1(vi; τv) +O((∆vi)

2)
)]

(γ ≥ 0).

(12)

Here, we write xθ(ui) := xθ(xu−1(ui), u
−1(ui)), and ∆L−1(ui; τu) := L−1(ui+1; τu) −

L−1(ui; τu); the definitions for ϵθ(vi) and ∆L−1(vi; τv) are analogous.

Next, while preserving first-order accuracy, we incorporate the B(∆ui;κu) = O((∆ui)
2) and

B(∆vi;κv) = O((∆vi)
2) correction terms and include the γ < 0 case, which yields the following

first-order predictor of Dual-Solver.

x1st−pred.
ti+1

=


(
σti+1

σti

)γ

xti + σγ
ti+1

[
xθ(ui)

(
∆L−1(ui; τu) +B(∆ui;κu)

)
+ ϵθ(vi)

(
∆L−1(vi; τv) +B(∆vi;κv)

)]
, γ ≥ 0,(

αti+1

αti

)−γ

xti + α−γ
ti+1

[
xθ(ui)

(
∆L−1(ui; τu) +B(∆ui;κu)

)
+ ϵθ(vi)

(
∆L−1(vi; τv) +B(∆vi;κv)

)]
, γ < 0.

(13)

B.3.2 DERIVATION OF SECOND-ORDER PREDICTOR

First, we approximate xθ(u) and ϵθ(v) near ui and vi by a second-order backward-difference ex-
pansion. For the case γ ≥ 0, this yields

xti+1 ≈
(
σti+1

σti

)γ

xti + σγ
ti+1

[
xθ(ui)∆L−1(ui; τu) +

∆xθ(ui−1)

∆ui−1

∫ ui+1

ui

(u− ui)
dL−1(u; τu)

du
du

+ ϵθ(vi)∆L−1(vi; τv) +
∆ϵθ(vi−1)

∆vi−1

∫ vi+1

vi

(v − vi)
dL−1(v; τv)

dv
dv

]
(γ ≥ 0).

(14)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Using

1

∆ui−1

∫ ui+1

ui

(u− ui)
dL−1(u; τu)

du
du =

1

2r
(u)
i

(
dL−1(u; τu)

du

∣∣∣∣
ui

∆ui +O((∆ui)
2)

)

=
1

2r
(u)
i

(
∆L−1(ui; τu) +O((∆ui)

2)
) (15)

where r
(u)
i := ∆ui−1

∆ui
and r

(v)
i := ∆vi−1

∆vi
, we obtain

xti+1
≈
(
σti+1

σti

)γ

xti + σγ
ti+1

[
xθ(ui)∆L−1(ui; τu) +

∆xθ(ui−1)

2r
(u)
i

(
∆L−1(ui; τu) +O((∆ui)

2)
)

+ ϵθ(vi)∆L−1(vi; τv) +
∆ϵθ(vi−1)

2r
(v)
i

(
∆L−1(vi; τv) +O((∆vi)

2)
)]

(γ ≥ 0).

(16)

Next, while preserving second-order accuracy, we incorporate the B(∆ui;κu) = O((∆ui)
2) and

B(∆vi;κv) = O((∆vi)
2) correction terms and include the γ < 0 case, which yields the following

second-order predictor of Dual-Solver.

x2nd−pred.
ti+1

=



(
σti+1

σti

)γ

xti + σγ
ti+1

[
xθ ∆L−1(ui; τu) +

∆xθ(ui−1)

2r
(u)
i

(
∆L−1(ui; τu) +B(∆ui;κu)

)
+ ϵθ ∆L−1(vi; τv) +

∆ϵθ(vi−1)

2r
(v)
i

(
∆L−1(vi; τv) +B(∆vi;κv)

)]
, γ ≥ 0,(

αti+1

αti

)−γ

xti + α−γ
ti+1

[
xθ ∆L−1(ui; τu) +

∆xθ(ui−1)

2r
(u)
i

(
∆L−1(ui; τu) +B(∆ui;κu)

)
+ ϵθ ∆L−1(vi; τv) +

∆ϵθ(vi−1)

2r
(v)
i

(
∆L−1(vi; τv) +B(∆vi;κv)

)]
, γ < 0.

(17)

B.3.3 DERIVATION OF SECOND-ORDER CORRECTOR

First, we approximate xθ(u) and ϵθ(v) near ui and vi by a forward-difference expansion. For the
case γ ≥ 0, this yields

xti+1
≈
(
σti+1

σti

)γ

xti + σγ
ti+1

[
xθ(ui)∆L−1(ui; τu) +

∆xθ(ui)

∆ui

∫ ui+1

ui

(u− ui)
dL−1(u; τu)

du
du

+ ϵθ(vi)∆L−1(vi; τv) +
∆ϵθ(vi)

∆vi

∫ vi+1

vi

(v − vi)
dL−1(v; τv)

dv
dv

]
(γ ≥ 0).

(18)

Using

1

∆ui

∫ ui+1

ui

(u− ui)
dL−1(u; τu)

du
du =

1

2

(
dL−1(u; τu)

du

∣∣∣∣
ui

∆ui +O((∆ui)
2)

)

=
1

2

(
∆L−1(ui; τu) +O((∆ui)

2)
) (19)

we obtain

xti+1 ≈
(
σti+1

σti

)γ

xti + σγ
ti+1

[
xθ(ui)∆L−1(ui; τu) +

∆xθ(ui)

2

(
∆L−1(ui; τu) +O((∆ui)

2)
)

+ ϵθ(vi)∆L−1(vi; τv) +
∆ϵθ(vi)

2

(
∆L−1(vi; τv) +O((∆vi)

2)
)]

(γ ≥ 0).

(20)

Next, while preserving second-order accuracy, we incorporate the B(∆ui;κu) = O((∆ui)
2) and

B(∆vi;κv) = O((∆vi)
2) correction terms and include the γ < 0 case, which yields the following

second-order corrector of Dual-Solver.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

x2nd−corr.
ti+1

=



(
σti+1

σti

)γ

xti + σγ
ti+1

[
xθ ∆L−1(ui; τu) +

∆xθ(ui)

2

(
∆L−1(ui; τu) +B(∆ui;κu)

)
+ ϵθ ∆L−1(vi; τv) +

∆ϵθ(vi)

2

(
∆L−1(vi; τv) +B(∆vi;κv)

)]
, γ ≥ 0,(

αti+1

αti

)−γ

xti + α−γ
ti+1

[
xθ ∆L−1(ui; τu) +

∆xθ(ui)

2

(
∆L−1(ui; τu) +B(∆ui;κu)

)
+ ϵθ ∆L−1(vi; τv) +

∆ϵθ(vi)

2

(
∆L−1(vi; τv) +B(∆vi;κv)

)]
, γ < 0.

(21)

B.4 PROOF OF LOCAL TRUNCATION ERROR

Proof. We begin by rewriting the exact solution in Eq. 6 as follows:

xti+1 =
(

σti+1

σti

)γ
xti + σγti+1

(
Ix + Iϵ

)
,

with

Ix :=

∫ ui+1

ui

(L−1)′(u)xθ(u) du, Iϵ :=

∫ vi+1

vi

(L−1)′(v) ϵθ(v) dv.

We then demonstrate the accuracy of the proposed second-order corrector x2nd−corr.
ti+1

in equation 8
by using the approximation for Ix and Iϵ with third-order accuracy.

We take second–order Taylor expansions of xθ(u) and (L−1)′(u) at ui:

xθ(u) = xθ(ui)+x′
θ(ui)s+

1
2 x

′′
θ (ξu)s

2, (L−1)′(u) = (L−1)′(ui)+(L−1)′′(ui)s+
1
2 (L

−1)(3)(ζu)s
2,

where s = u − ui and ξu, ζu ∈ (ui, ui+1). Then the integral Ix can be represented in terms of the
integral of s as

Ix =

∫ ∆ui

0

(
A0 +A1s+O(s2)

)
ds = A0 ∆ui +

1
2A1 (∆ui)

2 +O((∆ui)
3)

with
A0 := (L−1)′(ui)xθ(ui), A1 := (L−1)′(ui)x

′
θ(ui) + (L−1)′′(ui)xθ(ui),

and ∆L−1(ui) := L−1(ui+1)−L−1(ui). Furthermore, Ix can be expressed in terms of xθ(ui) and
its derivative as
Ix = xθ(ui)

(
(L−1)′(ui)∆ui +

1
2 (L

−1)′′(ui)(∆ui)
2
)︸ ︷︷ ︸

= ∆L−1(ui)+O((∆ui)3)

+x′
θ(ui) (L

−1)′(ui)
1
2 (∆ui)

2 +O((∆ui)
3)

= xθ(ui)∆L−1(ui) + x′
θ(ui) (L

−1)′(ui)
1
2 (∆ui)

2 +O((∆ui)
3).

From the definition of second-order corrector approximation in equation 8, let us denote the last part
of the approximation with Ĩx and Ĩϵ as

Ĩx = xθ(ui)∆L−1(ui) +
1
2∆xθ(ui)

(
∆L−1(ui) +Bx(∆ui)

)
,

Ĩϵ = ϵθ(vi)∆L−1(vi) +
1
2 ∆ϵθ(vi)

(
∆L−1(vi) +Bϵ(∆vi)

)
.

Here, we remark that Bx(∆ui) = O((∆ui)
2) and Bϵ(∆vi) = O((∆vi)

2). Using the fact

∆xθ(ui) = xθ(ui+1)− xθ(ui) = x′
θ(ui)∆ui +O((∆ui)

2),

Ĩx can be rewritten as

Ĩx = xθ(ui)∆L−1(ui) + x′
θ(ui)

1
2∆ui

(
∆L−1(ui) +Bx(∆ui)

)
+O((∆ui)

3).

Then

Ix − Ĩx = 1
2x

′
θ(ui)

[
(L−1)′(ui)(∆ui)

2 −∆L−1(ui)∆ui

]
− 1

2 x
′
θ(ui)Bx(∆ui)∆ui +O((∆ui)

3).

Since ∆L−1(ui) = (L−1)′(ui)∆ui + O((∆ui)
2) and Bx(∆ui) = O((∆ui)

2), we conclude that
Ix − Ĩx = O((∆ui)

3). By the same argument, Iϵ − Ĩϵ = O((∆vi)
3). Therefore, it follows that

xexact
ti+1
− x2nd−corr.

ti+1
= σγ

ti+1

[
(Ix − Ĩx) + (Iϵ − Ĩϵ)

]
= O((∆ui)

3 + (∆vi)
3).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C EXPERIMENTAL DETAILS

C.1 SETUP

Environment details We run all experiments on a single NVIDIA RTX pro 6000
(Driver 575.57.08) under Ubuntu 24.04 with Python 3.11.13, PyTorch 2.8.0, and CUDA 12.9.

Backbone Details We evaluate DiT-XL/2 (Peebles & Xie, 2023), GM-DiT (Chen et al., 2025),
SANA (Xie et al., 2024), and PixArt-α (Chen et al., 2023). All models are obtained via the Hugging
Face Diffusers (von Platen et al., 2022) pipelines and run in evaluation mode with bfloat16.
The model identifiers are:

• DiT: facebook/DiT-XL-2-256
• GM-DiT: Lakonik/gmflow imagenet k8 ema

• SANA: Efficient-Large-Model/Sana 600M 512px diffusers

• PixArt-α: PixArt-alpha/PixArt-XL-2-512x512

Solver Details The solvers used in our experiments are the diffusion-dedicated DDIM (Song et al.,
2021a), the second-order multistep DPM-Solver++ (Lu et al., 2022b), and the learned solvers BNS-
Solver (Shaul et al., 2024) and DS-Solver (Wang et al., 2025). We use DDIM as the first-order coun-
terpart of DPM-Solver++ (as proposed in Lu et al. (2022a)). Implementations of DPM-Solver++
and DS-Solver are taken from their official GitHub repositories1,2, and BNS-Solver is implemented
according to the paper.

Learning Details We train with AdamW (Loshchilov & Hutter, 2017) using β = (0.9, 0.999),
ϵ = 1e−8, and weight decay 0.01. The learning rate decays from 2 × 10−3 to 1 × 10−4 over
20k steps via cosine annealing (Loshchilov & Hutter, 2016). The batch size is fixed to 10 for all
experiments. For regression-based learning, the teacher trajectory is a 200-step DDIM Song et al.
(2021a) method on 1k samples.

Sampling Details We use an NFE grid of {3, 4, 5, 6, 7, 8, 9} for all backbones. Classifier-free
guidance (CFG; Ho & Salimans, 2021) is fixed per backbone as follows: DiT = 1.5, GM-DiT = 1.4,
SANA = 4.5, and PixArt-α = 3.5. For FID, we use the publicly released ImageNet training-set
statistics (Dhariwal & Nichol, 2021), while for SANA and PixArt-α we compute the FID statistics
from 30k samples drawn from the MSCOCO 2014 (Lin et al., 2014) evaluation set (Lin et al., 2014);
CLIP is computed with the official RN101 variant (Radford et al., 2021). We generate 50,000 images
for ImageNet and 30,000 images for text-to-image (MSCOCO 2014 (Lin et al., 2014) evaluation
prompts).

C.2 QUANTITATIVE RESULTS

Table 4: DiT (Peebles & Xie, 2023): FID (↓) vs. NFE. ImageNet generation, 50k samples.

Method 3 4 5 6 7 8 9

DDIM (Song et al., 2021a) 89.33 56.33 32.91 20.06 13.64 9.55 7.42
DPM-Solver++(Lu et al., 2022b) 88.46 47.64 22.19 11.49 7.06 5.19 4.43
BNS-Solver(Shaul et al., 2024) 103.26 38.20 14.53 6.37 4.25 3.37 3.05
DS-Solver(Wang et al., 2025) 67.31 17.31 7.66 5.46 3.79 3.08 3.02

Dual-Solver (Ours) 24.91 6.05 3.52 3.13 2.75 2.60 2.67

1https://github.com/LuChengTHU/dpm-solver
2https://github.com/MCG-NJU/NeuralSolver

21

https://github.com/LuChengTHU/dpm-solver
https://github.com/MCG-NJU/NeuralSolver

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 5: GM-DiT Chen et al. (2025): FID (↓) vs. NFE. ImageNet generation, 50k samples.

Method 3 4 5 6 7 8 9

DDIM (Song et al., 2021a) 70.15 35.98 19.70 12.55 9.03 7.01 5.78
DPM-Solver++(Lu et al., 2022b) 63.24 19.53 7.85 4.74 3.65 3.15 2.89
BNS-Solver(Shaul et al., 2024) 57.88 26.64 10.31 5.02 3.43 2.66 2.44
DS-Solver(Wang et al., 2025) 34.15 11.60 5.64 3.49 2.70 2.48 2.41

Dual-Solver-R (Ours) 45.53 14.43 7.49 3.75 2.77 2.44 2.32
Dual-Solver-C (Ours) 6.81 3.76 3.09 2.97 2.77 2.70 2.60

R = trajectory regression-based; C = classification-based.

Table 6: PixArt-α (Chen et al., 2023): FID (↓) and CLIP score (↑) vs. NFE. Text-to-image on
MSCOCO 2014 (Lin et al., 2014) with 30k samples.

Method 3 4 5 6 7 8 9

FID (↓)

DDIM (Song et al., 2021a) 71.37 45.21 35.12 30.92 28.60 27.39 26.58
DPM-Solver++ (Lu et al., 2022b) 76.01 41.77 31.48 27.83 26.56 25.82 25.48
BNS-Solver (Shaul et al., 2024) 125.65 66.94 41.31 32.55 28.55 25.18 24.15
DS-Solver (Wang et al., 2025) 118.01 66.09 43.62 29.74 28.25 26.57 25.22

Dual-Solver (Ours) 66.61 31.61 24.68 22.39 22.51 21.96 22.01

CLIP (RN101, ↑)

DDIM (Song et al., 2021a) 0.4469 0.4670 0.4739 0.4764 0.4763 0.4778 0.4779
DPM-Solver++ (Lu et al., 2022b) 0.4422 0.4676 0.4746 0.4763 0.4768 0.4771 0.4771
BNS-Solver (Shaul et al., 2024) 0.4320 0.4582 0.4694 0.4733 0.4746 0.4755 0.4757
DS-Solver (Wang et al., 2025) 0.4303 0.4568 0.4692 0.4748 0.4754 0.4762 0.4764

Dual-Solver (Ours) 0.4499 0.4732 0.4784 0.4803 0.4806 0.4814 0.4815

Table 7: SANA (Xie et al., 2024): FID (↓) and CLIP score (RN101, ↑) vs. NFE. Text-to-image on
MSCOCO 2014 (Lin et al., 2014) with 30k samples.

Method 3 4 5 6 7 8 9

FID (↓)

DDIM (Song et al., 2021a) 45.05 27.72 23.93 23.06 22.99 22.96 22.97
DPM-Solver++ (Lu et al., 2022b) 45.33 26.12 22.56 22.48 22.79 22.90 23.11
BNS-Solver (Shaul et al., 2024) 48.16 26.37 21.04 20.66 20.79 21.13 21.64
DS-Solver (Wang et al., 2025) 48.65 29.15 21.66 20.65 21.43 21.80 22.27

Dual-Solver (Ours) 21.79 19.40 18.81 18.52 19.57 19.43 19.77

CLIP (↑)

DDIM (Song et al., 2021a) 0.4656 0.4782 0.4813 0.4821 0.4824 0.4824 0.4824
DPM-Solver++ (Lu et al., 2022b) 0.4652 0.4779 0.4813 0.4821 0.4822 0.4820 0.4820
BNS-Solver (Shaul et al., 2024) 0.4651 0.4772 0.4800 0.4807 0.4808 0.4809 0.4808
DS-Solver (Wang et al., 2025) 0.4635 0.4765 0.4808 0.4816 0.4818 0.4818 0.4816

Dual-Solver (Ours) 0.4795 0.4801 0.4821 0.4837 0.4843 0.4844 0.4849

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D CLASSIFIER ACCURACY VS. SAMPLE QUALITY

As examined in Sec. 6.2, we study the relationship between classifier accuracy and FID. In this
section, Table 8 provides detailed numerical results, and Fig. 11 analyzes the trend from the per-
spectives of precision and recall (Kynkäänniemi et al., 2019). Table 8 reports the pretrained weights
from TorchVision (maintainers & contributors, 2016) and the results of training Dual-Solver with
each set of weights. Using a GM-DiT (Chen et al., 2025) backbone, we present FID, precision, and
recall at NFE= 3 and 9. The best value for each metric is highlighted in bold. In Fig. 12, we show
NFE=3 samples from Dual-Solver trained with the classifiers listed in Table 8, ordered by increasing
FID (lower is better).

Table 8: ImageNet per-classifier metrics. Top-5 accuracy, FID, precision/recall at NFE=3 and 9,
and GFLOPs; FID is measured on 10k samples after training Dual-Solver for each classifier.

Weights3 Top-5 Acc. (%) FID@3 FID@9 Precision@3 Precision@9 Recall@3 Recall@9 GFLOPS
ViT H 14 Weights.IMAGENET1K SWAG E2E V1 98.694 10.71 6.72 0.8376 0.8960 0.7420 0.7311 1016.72
RegNet Y 128GF Weights.IMAGENET1K SWAG LINEAR V1 97.844 12.99 5.61 0.8230 0.8996 0.7327 0.7336 127.52
RegNet Y 16GF Weights.IMAGENET1K SWAG LINEAR V1 97.244 9.97 5.32 0.8573 0.9007 0.7392 0.7467 15.91
ConvNeXt Base Weights.IMAGENET1K V1 96.870 10.28 5.78 0.8529 0.9040 0.7359 0.7327 15.36
EfficientNet B5 Weights.IMAGENET1K V1 96.628 11.53 6.01 0.8379 0.9048 0.7393 0.7310 10.27
RegNet Y 16GF Weights.IMAGENET1K V2 96.328 9.63 5.21 0.8559 0.9061 0.7396 0.7455 15.91
SwinṼ2 T Weights.IMAGENET1K V1 96.132 9.73 5.34 0.8555 0.9078 0.7439 0.7410 5.94
Swin T Weights.IMAGENET1K V1 95.776 9.65 5.29 0.8559 0.9055 0.7448 0.7425 4.49
RegNet Y 32GF Weights.IMAGENET1K V1 95.340 9.55 5.04 0.8520 0.9043 0.7464 0.7455 32.28
RegNet Y 8GF Weights.IMAGENET1K V1 95.048 9.54 5.10 0.8559 0.9074 0.7438 0.7414 8.47
RegNet Y 3 2GF Weights.IMAGENET1K V1 94.576 9.50 5.01 0.8564 0.9065 0.7448 0.7436 3.18
ResNet152 Weights.IMAGENET1K V1 94.046 9.49 5.03 0.8537 0.9089 0.7493 0.7459 11.51
ResNet101 Weights.IMAGENET1K V1 93.546 9.59 4.98 0.8529 0.9067 0.7459 0.7454 7.80
RegNet Y 800MF Weights.IMAGENET1K V1 93.136 9.40 4.99 0.8532 0.9081 0.7508 0.7437 0.83
MobileNet V3 Large Weights.IMAGENET1K V2 92.566 9.44 4.87 0.8523 0.9062 0.7467 0.7475 0.22
RegNet Y 400MF Weights.IMAGENET1K V1 91.716 9.50 4.87 0.8560 0.9082 0.7470 0.7489 0.40
RegNet X 400MF Weights.IMAGENET1K V1 90.950 9.60 4.93 0.8553 0.9091 0.7448 0.7410 0.41
MobileNet V2 Weights.IMAGENET1K V1 90.286 9.52 5.03 0.8541 0.9118 0.7471 0.7331 0.30
ShuffleNet V2 X1 0 Weights.IMAGENET1K V1 88.316 11.57 5.51 0.8368 0.9017 0.7388 0.7436 0.14
AlexNet Weights.IMAGENET1K V1 79.066 11.20 6.22 0.8300 0.9163 0.7455 0.7187 0.71

(a) Accuracy vs. Precision @ NFE= 3 (b) Accuracy vs. Recall @ NFE= 3

(c) Accuracy vs. Precision @ NFE= 9 (d) Accuracy vs. Recall @ NFE= 9

Figure 11: Accuracy vs. precision/recall. We select 20 TorchVision classifiers sorted by accuracy,
learn the Dual-Solver for each, and report precision/recall at NFE=3 and 9 on 10k samples.

3https://docs.pytorch.org/vision/main/models.html

23

https://docs.pytorch.org/vision/main/models.html

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Classifier accuracy vs. precision and recall. Fig. 11 (a) and (b) plot precision and recall versus
classifier accuracy at NFE= 3, respectively. The results show little relationship between accuracy
and precision, while accuracy versus recall follows the V-shape seen in Fig. 6. In other words,
neither very high nor very low accuracy helps recall; a moderate level yields higher recall. The
pattern differs at NFE= 9. Fig. 11 (c) and (d) plot precision and recall versus classifier accuracy at
NFE= 9. Unlike the NFE= 3 case, precision exhibits a strong negative correlation with accuracy,
and accuracy appears largely unrelated to recall.

OpenCLIP accuracy vs. FID. Table 9 reports the FID evaluation used to select the CLIP model
for learning Dual-Solver on the text-to-image task. All weights are from OpenCLIP (Ilharco et al.,
2021) and are available from the official repository4. Using the SANA (Xie et al., 2024) backbone
we trained the Dual-Solver for 20k steps. At NFE=3 and NFE=6, we generated 10k samples with
MSCOCO 2014 (Lin et al., 2014) prompts and measured FID on the evaluation set. Based on these
results, we chose the RN101 weights—which achieved an FID of 18.52 at NFE=6—as the model
for learning the Dual-Solver in the main text-to-image experiment. Notably, this result also indicates
that models with somewhat lower classification accuracy can yield lower FID.

Table 9: OpenCLIP per-classifier metrics. MSCOCO accuracy, FID at NFE=3 and 6, and
GFLOPs; FID is measured on 30k samples after learning Dual-Solver for each classifier.

Weights MSCOCO Acc. (%) FID@3 FID@6 GFLOPs

ViT-H-14-378-quickgelu, dfn5b 63.76 23.98 23.28 1054.05
coca ViT-L-14, mscoco finetuned laion2b s13b b90k 60.28 23.09 21.22 214.52
EVA02-E-14, laion2b s4b b115k 58.92 22.41 21.12 1007.93
convnext xxlarge, laion2b s34b b82k augreg 58.34 21.05 20.86 800.88
ViT-B-16-SigLIP-256, webli 57.24 21.03 19.87 57.84
EVA02-L-14-336, merged2b s6b b61k 56.05 23.15 23.28 167.50
ViT-L-14, commonpool xl laion s13b b90k 55.13 23.46 22.81 175.33
convnext base w, laion aesthetic s13b b82k 52.38 20.97 19.86 49.38
convnext base w 320, laion aesthetic s13b b82k augreg 51.42 20.69 20.26 175.33
ViT-B-16-plus-240, laion400m e32 49.79 21.66 21.18 64.03
ViT-B-32, laion2b e16 47.68 23.75 23.49 14.78
ViT-B-32-quickgelu, metaclip fullcc 46.62 22.46 21.42 14.78
RN50x16, openai 45.38 22.49 21.36 33.34
ViT-B-32, laion400m e31 43.27 22.40 21.70 14.78
RN101, openai 40.25 21.78 18.52 25.50
ViT-B-16, commonpool l text s1b b8k 37.30 23.50 23.54 41.09
ViT-B-16, commonpool l s1b b8k 28.55 22.94 24.73 41.09
ViT-B-32, commonpool m text s128m b4k 14.52 22.39 22.55 14.78
ViT-B-32, commonpool s clip s13m b4k 2.24 22.32 21.31 14.78
coca ViT-B-32, mscoco finetuned laion2b s13b b90k 0.60 23.76 23.14 33.34

4https://github.com/mlfoundations/open_clip

24

https://github.com/mlfoundations/open_clip

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

RegNet Y 800MF Weights.IMAGENET1K V1 Top-5 Acc.: 93.136% FID: 9.40

MobileNet V3 Large Weights.IMAGENET1K V2 Top-5 Acc.: 92.566% FID: 9.44

ResNet152 Weights.IMAGENET1K V1 Top-5 Acc.: 94.046% FID: 9.49

RegNet Y 3 2GF Weights.IMAGENET1K V1 Top-5 Acc.: 94.576% FID: 9.50

RegNet Y 400MF Weights.IMAGENET1K V1 Top-5 Acc.: 91.716% FID: 9.50

MobileNet V2 Weights.IMAGENET1K V1 Top-5 Acc.: 90.286% FID: 9.52

RegNet Y 8GF Weights.IMAGENET1K V1 Top-5 Acc.: 95.048% FID: 9.54

RegNet Y 32GF Weights.IMAGENET1K V1 Top-5 Acc.: 95.340% FID: 9.55

ResNet101 Weights.IMAGENET1K V1 Top-5 Acc.: 93.546% FID: 9.59

RegNet X 400MF Weights.IMAGENET1K V1 Top-5 Acc.: 90.950% FID: 9.60

Figure 12: Sampling results by classifier. Classifier weights, top-5 accuracy, and FID are reported;
entries are sorted by ascending FID.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

RegNet Y 16GF Weights.IMAGENET1K V2 Top-5 Acc.: 96.328% FID: 9.63

Swin T Weights.IMAGENET1K V1 Top-5 Acc.: 95.776% FID: 9.65

SwinṼ2 T Weights.IMAGENET1K V1 Top-5 Acc.: 96.132% FID: 9.73

RegNet Y 16GF Weights.IMAGENET1K SWAG LINEAR V1 Top-5 Acc.: 97.244% FID: 9.97

ConvNeXt Base Weights.IMAGENET1K V1 Top-5 Acc.: 96.870% FID: 10.28

ViT H 14 Weights.IMAGENET1K SWAG E2E V1 Top-5 Acc.: 98.694% FID: 10.71

AlexNet Weights.IMAGENET1K V1 Top-5 Acc.: 79.066% FID: 11.20

EfficientNet B5 Weights.IMAGENET1K V1 Top-5 Acc.: 96.628% FID: 11.53

ShuffleNet V2 X1 0 Weights.IMAGENET1K V1 Top-5 Acc.: 88.316% FID: 11.57

RegNet Y 128GF Weights.IMAGENET1K SWAG LINEAR V1 Top-5 Acc.: 97.844% FID: 12.99

Figure 12: Sampling results by classifier. (continued).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E ANALYSIS OF CONVERGENCE TIME

(a) NFE=3 (b) NFE=5

(c) NFE=7 (d) NFE=9

Figure 13: FID vs. training step for three solvers on GM-DiT (CFG=1.4): Dual-Solver (Ours),
BNS-Solver (Shaul et al., 2024), and DS-Solver (Wang et al., 2025).

In Sec. 6.4, we analyze the per-step computational
cost. Table 10 provides the corresponding summary
statistics. In this section, we analyze the time to con-
vergence. As reported in Appendix C, we train up to
20k steps, but the best-performing checkpoint is typ-
ically found earlier. Because FID evaluates a differ-
ent criterion than the regression- and classification-
based objectives, training longer does not ensure
better FID.

Stage Dual-Solver BNS-Solver DS-Solver

forward 135.39 140.57 138.33
decoding 73.67 – –
classifier 10.19 – –
backward 253.04 296.82 297.02

sum 472.29 437.39 435.35

Table 10: Training time per step (ms; batch
size = 10, GM-DiT). Means over 100 runs.

Fig. 13 reports FID evaluated every 1k steps during training up to 20k. We use GM-DiT (Chen et al.,
2025) as the backbone and compute FID over 10k samples. All three models—Dual-Solver (ours),
BNS-Solver (Shaul et al., 2024), and DS-Solver (Wang et al., 2025)—reach their minimum FID
before 20k steps.

For NFE= 3, Dual-Solver attains its minimum at 6k steps, DS-Solver at 7k steps, and BNS-Solver at
16k steps. For NFE= 5, Dual-Solver at 9k, BNS-Solver at 12k, and DS-Solver at 15k. For NFE= 7,
Dual-Solver at 3k, BNS-Solver at 7k, and DS-Solver at 19k. For NFE= 9, Dual-Solver at 2k, DS-
Solver at 7k, and BNS-Solver at 13k.

For Dual-Solver, FID often increases after the first minimum, which we attribute to overfitting to-
ward classifier decision regions that reduces recall (Appendix D). Across NFE= 3, 5, 7, 9, Dual-
Solver converges faster; we attribute this to the classification objective, which only requires samples
to enter the correct decision region rather than matching per-sample targets.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

F LEARNED PARAMETERS

In Figs. 14, 15, 16, 17 we plot the Dual-Solver parameters learned via classification-based learning
(Sec. 5.2), as defined in Sec. 4.2. For the DiT, GM-DiT, SANA, and PixArt-α backbones, we set
CFG to 1.5, 1.4, 4.5, and 3.5, respectively, and train for 20k steps. We plot results at NFE = 3, 5, 7,
9 for DiT and GM-DiT, and at NFE = 3, 4, 5, 6 for SANA and PixArt-α. Separate parameter sets
are learned for the predictor and the corrector, and they are shown in different colors. Within the
same backbone, the parameter curves are similar even across different NFEs. We conjecture that this
arises from the backbone’s intrinsic trajectory.

(a) NFE = 3

(b) NFE = 5

(c) NFE = 7

(d) NFE = 9

Figure 14: Learned parameters. {γ, τu, τv, κu, κv} for DiT (Peebles & Xie, 2023).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

(a) NFE = 3

(b) NFE = 5

(c) NFE = 7

(d) NFE = 9

Figure 15: Learned parameters. {γ, τu, τv, κu, κv} for GM-DiT (Chen et al., 2025).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

(a) NFE = 3

(b) NFE = 4

(c) NFE = 5

(d) NFE = 6

Figure 16: Learned parameters. {γ, τu, τv, κu, κv} for SANA (Xie et al., 2024).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

(a) NFE = 3

(b) NFE = 4

(c) NFE = 5

(d) NFE = 6

Figure 17: Learned parameters. {γ, τu, τv, κu, κv} for PixArt-α (Chen et al., 2023).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

G DETAILS OF PARAMETER INTERPOLATION ACROSS NFES

In this section, we describe how to interpolate the parameters discussed in Sec. 6.3 so that they can
be used at other NFEs. The parameters of Dual-Solver,

ϕ = {γpred, τpredu , τpredv , κpred
u , κpred

v , γcorr, τ corru , τ corrv , κcorr
u , κcorr

v },

are given as arrays whose length equals the NFE. (The corrector parameters have length NFE−1,
and we match the length to NFE by repeating the last element.) For example, γpred =

(γpred
0 , . . . , γpred

NFE−1). To interpolate these parameters, we consider the following linear interpo-
lation scheme for a generic array.

Definition G.1 (Linear interpolation). Let f (M) = (f
(M)
0 , . . . , f

(M)
M−1) be an array of length M . The

linearly interpolated array Interp(f (M);N) of length N is defined as follows. First, set

ti =
i

N − 1
(M − 1), ji =

⌊
ti
⌋
, αi = ti − ji,

and for each i = 0, . . . , N − 1 define

Interp(f (M);N)[i] = (1− αi) f
(M)
ji

+ αi f
(M)
ji+1.

Definition G.2 (Averaged linear interpolation). Let M < N < L be three NFEs, and let f (M) ∈
RM and f (L) ∈ RL be the corresponding arrays. We first obtain their linearly interpolated versions
of length N ,

f̃ (M) = Interp(f (M);N), f̃ (L) = Interp(f (L);N).

We then use the relative position of N between M and L as weights and define

wM =
L−N

L−M
, wL =

N −M

L−M
,

and, for each i = 0, . . . , N − 1,

Interp(f (M), f (L);N)[i] = wM f̃ (M)[i] + wL f̃ (L)[i].

Using this procedure, we obtain the array for an intermediate NFE from the two arrays at neighboring
NFEs, and apply the same construction to every parameter in ϕ. Examples of interpolated parameters
are shown in Fig. 18. Specifically, we obtain the parameters for NFE=4 by interpolating those learned
at NFE=(3, 5), for NFE=6 from NFE=(5, 7), and for NFE=8 from NFE=(7, 9).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

(a) NFE = 3

(b) NFE = 4, interpolated from (3, 5)

(c) NFE = 5

(d) NFE = 6, interpolated from (5, 7)

(e) NFE = 7

(f) NFE = 8, interpolated from (7, 9)

(g) NFE = 9

Figure 18: Interpolated parameters. {γ, τu, τv, κu, κv} for DiT (Peebles & Xie, 2023).

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

H SINGLE PREDICTION REPARAMETERIZATION

In this section, we show that the first-order predictor in Eq. 13 and the second-order corrector in
Eq. 21 can each be expressed using a single prediction type (noise, data, or velocity).

H.1 FIRST-ORDER PREDICTOR

For γ ≥ 0, Eq. 13 gives:

x1st-pred.
ti+1

=

(
σti+1

σti

)γ

xti + σγ
ti+1

[
xθ(ti)K(ui) + ϵθ(ti)K(vi)

]
, (22)

where for brevity we denote

xθ(ti) := xθ(xti , ti), ϵθ(ti) := ϵθ(xti , ti),

and

K(ui) := ∆L−1(ui; τu) +B(∆ui;κu), K(vi) := ∆L−1(vi; τv) +B(∆vi;κv).

The case γ < 0 admits an analogous derivation by replacing σγ with α−γ as in Eq. 13.

Reparameterization to noise prediction. Assume the backbone outputs only the noise prediction
ϵθ(t). Using the deterministic transform between predictions from Eq. 4,

xθ(ti) =
xti − σtiϵθ(ti)

αti

, (23)

Eq. 22 becomes

x1st-pred.
ti+1

=

(
σti+1

σti

)γ

xti + σγ
ti+1

[
xti − σtiϵθ(ti)

αti

K(ui) + ϵθ(ti)K(vi)

]

=

[(
σti+1

σti

)γ

+ σγ
ti+1

K(ui)

αti

]
xti +

[
σγ
ti+1

(
K(vi)−

σti

αti

K(ui)
)]

ϵθ(ti). (24)

Thus, for a noise-prediction backbone, the predictor is a linear combination of xti and ϵθ(ti).

Reparameterization to data prediction. Assume the backbone outputs only the data prediction
xθ(t). From Eq. 4 we have the inverse relation

ϵθ(ti) =
xti − αtixθ(ti)

σti

. (25)

Substituting Eq. 25 into Eq. 22 yields

x1st-pred.
ti+1

=

(
σti+1

σti

)γ

xti + σγ
ti+1

[
xθ(ti)K(ui) +

xti − αtixθ(ti)

σti

K(vi)

]

=

[(
σti+1

σti

)γ

+ σγ
ti+1

K(vi)

σti

]
xti +

[
σγ
ti+1

(
K(ui)−

αti

σti

K(vi)
)]

xθ(ti). (26)

Therefore, for a data-prediction backbone, the predictor is a linear combination of xti and xθ(ti).

Reparameterization to velocity prediction. Assume the backbone outputs only the velocity pre-
diction vθ(t). Eq. 4 gives the linear relations[

xti

vθ(ti)

]
= Mti

[
xθ(ti)

ϵθ(ti)

]
, Mti :=

[
αti σti

α̇ti σ̇ti

]
, (27)

where α̇ti :=
dαti

dt and σ̇ti :=
dσti

dt . Let

detMti = αti σ̇ti − σti α̇ti .

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Inverting Eq. 27 gives

xθ(ti) = (detMti)
−1
(
σ̇ti xti − σti vθ(ti)

)
, ϵθ(ti) = (detMti)

−1
(
− α̇ti xti + αti vθ(ti)

)
.

(28)
Substituting Eq. 28 into Eq. 22 yields

x1st-pred.
ti+1

=

(
σti+1

σti

)γ

xti + σγ
ti+1

(detMti)
−1
[
K(ui)(σ̇tixti − σtivθ(ti)) +K(vi)(−α̇tixti + αtivθ(ti))

]
=

[(
σti+1

σti

)γ

+ σγ
ti+1

K(ui)σ̇ti −K(vi)α̇ti

detMti

]
xti +

[
σγ
ti+1

αtiK(vi)− σtiK(ui)

detMti

]
vθ(ti).

(29)

Thus, for a velocity-prediction backbone, the predictor is a linear combination of xti and vθ(ti).

H.2 SECOND-ORDER CORRECTOR

For γ ≥ 0, Eq. 21 gives:

x2nd-corr.
ti+1

=

(
σti+1

σti

)γ

xti+σγ
ti+1

[
xθ(ti)∆L−1(ui)+

∆xθ(ti)

2
K(ui)+ϵθ(ti)∆L−1(vi)+

∆ϵθ(ti)

2
K(vi)

]
,

(30)
where

∆xθ(ti) := xθ(ti+1)− xθ(ti), ∆ϵθ(ti) := ϵθ(ti+1)− ϵθ(ti),

and
K(ui) := ∆L−1(ui) +B(∆ui;κu), K(vi) := ∆L−1(vi) +B(∆vi;κv).

As in standard predictor– corrector schemes, the predictions at ti+1 are evaluated using the
first–order predictor x1st-pred.

ti+1
.

Reparameterization to noise prediction. Assume the backbone outputs only the noise prediction
ϵθ(t). Using Eq. 4,

xθ(tj) =
xtj − σtjϵθ(tj)

αtj

, j ∈ {i, i+ 1}, (31)

we obtain

∆xθ(ti) =
x′
ti+1
− σti+1ϵθ(ti+1)

αti+1

− xti − σtiϵθ(ti)

αti

, ∆ϵθ(ti) = ϵθ(ti+1)− ϵθ(ti),

where we denote x′
ti+1

= x1st-pred.
ti+1

. Substituting these into Eq. 30 and collecting terms with respect
to xti , x

′
ti+1

, ϵθ(ti), and ϵθ(ti+1) yields

x2nd-corr.
ti+1

= C
(x)
i xti + C

(x)
i+1 x

′
ti+1

+ C
(ϵθ)
i ϵθ(ti) + C

(ϵθ)
i+1 ϵθ(ti+1), (32)

where

C
(x)
i =

(
σti+1

σti

)γ

+ σγ
ti+1

(
∆L−1(ui)

αti

− K(ui)

2αti

)
, (33)

C
(x)
i+1 = σγ

ti+1

K(ui)

2αti+1

, (34)

C
(ϵθ)
i = σγ

ti+1

(
− σti

αti

∆L−1(ui) + ∆L−1(vi) +
σti

2αti

K(ui)−
1

2
K(vi)

)
, (35)

C
(ϵθ)
i+1 = σγ

ti+1

(
−

σti+1

2αti+1

K(ui) +
1

2
K(vi)

)
. (36)

Thus, for a noise–prediction backbone, the second–order corrector is a linear combination of xti ,
x′
ti+1

, ϵθ(ti), and ϵθ(ti+1).

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Reparameterization to data prediction. Assume the backbone outputs only the data prediction
xθ(t). Using the inverse relation

ϵθ(tj) =
xtj − αtjxθ(tj)

σtj

, j ∈ {i, i+ 1}, (37)

we obtain

∆ϵθ(ti) =
x′
ti+1
− αti+1xθ(ti+1)

σti+1

− xti − αtixθ(ti)

σti

, ∆xθ(ti) = xθ(ti+1)− xθ(ti),

where we denote x′
ti+1

= x1st-pred.
ti+1

. Substituting into Eq. 30 and collecting terms with respect to xti ,
x′
ti+1

, xθ(ti), and xθ(ti+1) yields

x2nd-corr.
ti+1

= C
(x)
i xti + C

(x)
i+1 x

′
ti+1

+ C
(xθ)
i xθ(ti) + C

(xθ)
i+1 xθ(ti+1), (38)

where

C
(x)
i =

(
σti+1

σti

)γ

+ σγ
ti+1

(
∆L−1(vi)

σti

− K(vi)

2σti

)
, (39)

C
(x)
i+1 = σγ

ti+1

K(vi)

2σti+1

, (40)

C
(xθ)
i = σγ

ti+1

(
∆L−1(ui)−

αti

σti

∆L−1(vi)−
1

2
K(ui) +

αti

2σti

K(vi)

)
, (41)

C
(xθ)
i+1 = σγ

ti+1

(
1

2
K(ui)−

αti+1

2σti+1

K(vi)

)
. (42)

Therefore, for a data–prediction backbone, the corrector is a linear combination of xti , x
′
ti+1

, xθ(ti),
and xθ(ti+1).

Reparameterization to velocity prediction. Assume the backbone outputs only the velocity pre-
diction vθ(t). Eq. 4 implies the linear system[

xtj

vθ(tj)

]
= Mtj

[
xθ(tj)

ϵθ(tj)

]
, Mtj :=

[
αtj σtj

α̇tj σ̇tj

]
, j ∈ {i, i+ 1}, (43)

where α̇tj :=
dαtj

dt and σ̇tj :=
dσtj

dt , and

detMtj = αtj σ̇tj − σtj α̇tj .

Inverting Eq. 43 gives

xθ(tj) = (detMtj)
−1
(
σ̇tj xtj − σtj vθ(tj)

)
, ϵθ(tj) = (detMtj)

−1
(
− α̇tj xtj + αtj vθ(tj)

)
.

(44)
Accordingly,

∆xθ(ti) = xθ(ti+1)− xθ(ti), ∆ϵθ(ti) = ϵθ(ti+1)− ϵθ(ti),

where each xθ(tj) and ϵθ(tj) is an linear combination of xtj and vθ(tj) via Eq. 44. Substituting
Eq. 44 into Eq. 30 and collecting terms with respect to xti , x

′
ti+1

, vθ(ti), and vθ(ti+1) yields

x2nd-corr.
ti+1

= C
(x)
i xti + C

(x)
i+1 x

′
ti+1

+ C
(vθ)
i vθ(ti) + C

(vθ)
i+1 vθ(ti+1), (45)

where

C
(x)
i =

(
σti+1

σti

)γ

+ σγ
ti+1

σ̇ti∆L−1(ui)− α̇ti∆L−1(vi)− 1
2 σ̇tiK(ui) +

1
2 α̇tiK(vi)

detMti

, (46)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

C
(x)
i+1 = σγ

ti+1

1
2 σ̇ti+1K(ui)− 1

2 α̇ti+1K(vi)

detMti+1

, (47)

C
(vθ)
i = σγ

ti+1

−σti∆L−1(ui) + αti∆L−1(vi) +
1
2σtiK(ui)− 1

2αtiK(vi)

detMti

, (48)

C
(vθ)
i+1 = σγ

ti+1

− 1
2σti+1K(ui) +

1
2αti+1K(vi)

detMti+1

. (49)

Thus, for a velocity–prediction backbone, the second–order corrector is a linear combination of xti ,
x′
ti+1

, vθ(ti), and vθ(ti+1).

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

(a) DPM-Solver++ (Lu et al., 2022b)

(b) Dual-Solver (Ours)

(c) BNS-Solver (Shaul et al., 2024)

(d) DS-Solver (Wang et al., 2025)

Figure 19: Additional sampling results. DiT-XL/2 256×256 (NFE=4, CFG=1.5)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

(a) DPM-Solver++ (Lu et al., 2022b)

(b) Dual-Solver (Ours)

(c) BNS-Solver (Shaul et al., 2024)

(d) DS-Solver (Wang et al., 2025)

Figure 20: Additional sampling results. GM-DiT 256×256 (NFE=3, CFG=1.4)

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Golden autumn park of falling leaves, graceful girl playing violin,
flowing satin dress, impressionist brush strokes

Towering neon-lit cyberpunk skyline, armored samurai with glowing katana,
chrome textures, cinematic digital art

Remote desert oasis at sunrise, powerful white stallion galloping, glossy
mane and muscles, hyperreal photo realism

Vibrant tropical beach at sunset, pirate ship anchored offshore,
weathered wood hull, playful cartoon illustration

Overgrown jungle temple ruins, spotted leopard stalking prey, sleek fur
patterns, painterly realism concept art

(a) DPM-Solver++
(Lu et al., 2022b)

(b) Dual-Solver (Ours) (c) BNS-Solver
(Shaul et al., 2024)

(d) DS-Solver
(Wang et al., 2025)

Figure 21: Additional sampling results. SANA (Xie et al., 2024), NFE=3, CFG=4.5.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

In a misty emerald forest clearing, a majestic golden wolf with silky
glowing fur, painted in luminous oil style

Towering neon-lit cyberpunk skyline, armored samurai with glowing katana,
chrome textures, cinematic digital art

Vast desert beneath a starry cosmos, colossal sphinx carved in sandstone,
rough surface, surreal dreamlike painting

Sleek futuristic laboratory interior, humanoid AI robot in motion,
polished steel surfaces, sci-fi blueprint style

Storm-drenched battlefield ruins, giant mech rising from fire, rusted
armor plates, gritty photorealistic concept art

(a) DPM-Solver++
(Lu et al., 2022b)

(b) Dual-Solver (Ours) (c) BNS-Solver
(Shaul et al., 2024)

(d) DS-Solver
(Wang et al., 2025)

Figure 22: Additional sampling results. PixArt-α (Chen et al., 2023), NFE=5, CFG=3.5.

41

	Introduction
	Preliminaries
	Diffusion Models
	Prediction Types

	Dual-Solver
	Dual Prediction with Parameter
	Log-Linear Domain Change with Parameter
	Second-Order Approximation with Parameter

	Implementation Details
	Sampling Scheme
	Learnable Parameters

	Solver Parameter Learning
	Regression-based Parameter Learning
	Classification-based Parameter Learning

	Experiments
	Main Quantitative Results
	Ablation Study
	Parameter Interpolation across NFEs
	Training Time

	Conclusions and Limitations
	LLM Usage
	Derivations
	Derivation of Dual Prediction
	Change of Variables
	Derivation of Sampling Equations
	Proof of Local Truncation Error

	Experimental Details
	Setup
	Quantitative Results

	Classifier Accuracy vs. Sample Quality
	Analysis of Convergence Time
	Learned Parameters
	Details of parameter interpolation across NFEs
	Single Prediction Reparameterization
	First-order predictor
	Second-order corrector

