

000 001 002 003 004 005 DUAL-SOLVER: A GENERALIZED ODE SOLVER FOR 006 DIFFUSION MODELS WITH DUAL PREDICTION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023

ABSTRACT

024 Diffusion models deliver state-of-the-art image quality. However, sampling is
025 costly at inference time because it requires many model evaluations (number of
026 function evaluations, NFEs). To reduce NFEs, classical ODE multistep methods
027 have been adopted. Yet differences in the choice of prediction type (noise/data/ve-
028 locity) and integration domain (half log-SNR/noise-to-signal ratio) lead to differ-
029 ent outcomes. We introduce Dual-Solver, which generalizes multistep samplers
030 by introducing learnable parameters that continuously (i) interpolate among pre-
031 diction types, (ii) select the integration domain, and (iii) adjust the residual terms.
032 It maintains the traditional predictor-corrector structure and guarantees second-
033 order local accuracy. These parameters are learned with a classification-based
034 objective using a frozen pretrained classifier (e.g., ViT or CLIP). On ImageNet
035 class-conditional generation (DiT, GM-DiT) and text-to-image (SANA, PixArt-
036 α), Dual-Solver improves FID and CLIP scores in the low-NFE regime ($3 \leq \text{NFE} \leq 9$)
037 across backbones.
038
039

1 INTRODUCTION

040 Generative modeling aims to learn a data distribution and draw new samples that resemble real
041 data. Classic approaches include autoregressive models that factorize likelihoods over pixels or to-
042 kens (Van den Oord et al., 2016; Salimans et al., 2017), variational auto-encoders that optimize
043 an evidence lower bound (Kingma & Welling, 2013; Vahdat & Kautz, 2020), flow-based models
044 that construct exact, invertible density maps (Dinh et al., 2014; Kingma & Dhariwal, 2018), and
045 generative adversarial networks that learn via a discriminator-generator (Goodfellow et al., 2020;
046 Arjovsky et al., 2017). Diffusion models have emerged as a modern family in this landscape: the
047 seminal work of (Sohl-Dickstein et al., 2015) have introduced diffusion probabilistic modeling with
048 a forward noising process and a learned reverse process trained by minimizing a KL-divergence
049 objective. Subsequent reformulations (Ho et al., 2020) have streamlined training and inference with
050 simple denoising objectives (e.g., noise or data prediction), leading to state-of-the-art fidelity and
051 robust scaling. Today, diffusion models drive progress across modalities, including images (Dhariwal
052 & Nichol, 2021; Rombach et al., 2022), audio (Kong et al., 2020; Liu et al., 2023), and video (Ho
053 et al., 2022; Kong et al., 2024).

054 Diffusion models generate samples by advancing a Markov chain in the latent domain and repeat-
055 edly evaluating a neural network at each step, making inference cost scale with the number of func-
056 tion evaluations (NFEs). Leveraging the probability-flow formulation, which casts sampling as an
057 ordinary differential equation (Song et al., 2021b), a large literature has pursued ODE-based ac-
058 celeration. Along one axis, classical numerical methods—singlestep Runge–Kutta (Runge, 1895)
059 and multistep Adams–Bashforth (Bashforth & Adams, 1883)—provide off-the-shelf accuracy–NFE
060 trade-offs for a given evaluation budget (Butcher, 2016). Along a second axis, diffusion-dedicated
061 solvers exploit the structure of the denoising dynamics: they approximate noise/data predictions with
062 low-order Taylor expansions or Lagrange interpolation and derive closed-form updates (Lu et al.,
063 2022a;b; Qinsheng & Chen, 2023; Zhao et al., 2023; Xue et al., 2024). Lastly, there are learned
064 solvers that learn the timestep schedule and other sampling-related parameters (Zhou et al., 2024;
065 Shaul et al., 2023; 2024; Wang et al., 2025). Because these parameters depend on the backbone and
066 the dataset, such solvers are typically confined to a fixed backbone and specific settings ((e.g., a
067 chosen NFE and CFG (Ho & Salimans, 2021)). Training also incurs substantial preparation over-
068 head, as it requires many teacher trajectories or final samples generated at high NFE. Nevertheless,
069

Figure 1: **Sampling results.** SANA (Xie et al., 2024), NFE=3, CFG=4.5. See Fig. 21 for further results.

compared to the classical methods and dedicated solvers discussed above, learned solvers deliver substantially better sample quality (e.g., lower FID) and are therefore an active area of research.

We introduce Dual-Solver, a learned solver for diffusion models with three types of learnable parameters:

- a prediction parameter γ that interpolates among noise, data, and velocity prediction types (Sec. 3.1);
- a domain change parameter τ that interpolates between the log and linear domains (Sec. 3.2);
- a residual parameter κ that adjusts the residual term while preserving second-order accuracy (Sec. 3.3).

We further propose a classification-based learning strategy that yields high-fidelity images even in the low-NFE regime (Section 5.2). Unlike regression-based learning, which typically requires many target samples at high NFE, our approach requires no target samples. Solver parameters are learned using either pretrained image classifiers (He et al., 2016; Dosovitskiy et al., 2020; Howard et al., 2017) or the zero-shot classifier (Radford et al., 2021). For $3 \leq \text{NFE} \leq 9$, it outperforms prior state-of-the-art solvers (Section 6).

2 PRELIMINARIES

2.1 DIFFUSION MODELS

Training process. Diffusion models (Ho et al., 2020; Song et al., 2021b) train a backbone network as follows. We sample a clean sample \mathbf{x}_0 from the data distribution and noise ϵ from the standard normal, then linearly combine them with weights α_t and σ_t :

$$\mathbf{x}_t = \alpha_t \mathbf{x}_0 + \sigma_t \epsilon, \quad \text{where } \mathbf{x}_0 \sim p_{\text{data}}, \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), 0 \leq t \leq T. \quad (1)$$

Here, α_t and σ_t are set by a predefined schedule. Common choices include variance-preserving (VP), with $\alpha_t^2 + \sigma_t^2 = 1$ (Sohl-Dickstein et al., 2015; Ho et al., 2020); variance-exploding (VE), with $\alpha_t = 1$, $\sigma_t \geq 0$ (Song & Ermon, 2019; 2020); and optimal transport (OT), with $\alpha_t = 1 - t$, $\sigma_t = t$, $T = 1$ (Lipman et al., 2022). The backbone is trained to take a noisy sample \mathbf{x}_t and the time t as input and to predict one of the following: the noise ϵ , the clean sample \mathbf{x}_0 (Ho et al., 2020), or the velocity $\mathbf{v}_t = \dot{\alpha}_t \mathbf{x}_0 + \dot{\sigma}_t \epsilon$ (Lipman et al., 2022). By convention, the backbone parameters are denoted θ , and the predictions are written as ϵ_θ (noise), \mathbf{x}_θ (data), and \mathbf{v}_θ (velocity).

Sampling process. The dynamics in Eq. 1 can be written as the following stochastic differential equation (SDE):

$$d\mathbf{x}_t = f_t \mathbf{x}_t dt + g_t d\mathbf{w}_t, \quad f_t = \frac{d \log \alpha_t}{dt}, \quad g_t^2 = \frac{d \sigma_t^2}{dt} - 2 \frac{d \log \alpha_t}{dt} \sigma_t^2, \quad (2)$$

108 where w_t is a standard Wiener process. For any time t , a probability-flow ODE that shares the same
 109 marginal distribution as the SDE has been proposed (Song et al., 2021b):
 110

$$111 \quad \frac{dx_t}{dt} = f_t x_t - \frac{1}{2} g_t^2 \nabla_x \log q_t(x_t), \quad \text{where } \nabla_x \log q_t(x_t) = -\frac{\mathbb{E}[\epsilon | x_t]}{\sigma_t} \approx -\frac{\epsilon_\theta(x_t, t)}{\sigma_t}. \quad (3)$$

114 Given this ODE, one can perform sampling using classical numerical methods beyond Euler, such
 115 as singlestep Runge–Kutta (Runge, 1895) and multistep Adams–Bashforth schemes (Bashforth &
 116 Adams, 1883). Moreover, several works split the right-hand side into linear and non-linear parts, and
 117 evaluate the non-linear term using finite-difference approximations (Lu et al., 2022a;b; Zhao et al.,
 118 2023) or via Lagrange interpolation (Qinsheng & Chen, 2023; Xue et al., 2024).
 119

120 2.2 PREDICTION TYPES

123 Depending on the form of a model’s output, we distinguish
 124 three prediction types: *noise*, *data*, and *velocity*. The diffusion
 125 model of Sohl-Dickstein et al. (2015) was parameterized to pre-
 126 dict the mean and covariance matrix of the next sample’s dis-
 127 tribution. Following Ho et al. (2020), it has become standard to
 128 train networks that predict either the additive noise or the clean
 129 data. In parallel, the flow matching literature (Lipman et al.,
 130 2022) proposes models that output a vector field; in this paper,
 131 we refer to this as *velocity* prediction. Although these outputs
 132 differ, they are mutually convertible through simple trans-
 133 formations. In particular, one can obtain the desired prediction
 134 from any other via

$$136 \quad x_\theta(x_t, t) = \frac{x_t - \sigma_t \epsilon_\theta(x_t, t)}{\alpha_t}, \quad v_\theta(x_t, t) = \frac{d\alpha_t}{dt} x_\theta(x_t, t) + \frac{d\sigma_t}{dt} \epsilon_\theta(x_t, t). \quad (4)$$

138 Depending on which of the three predictions is used, we derive Eq. 3 in different forms. The resulting
 139 integral expressions are summarized in Table 1.
 140

142 **Discretization discrepancy.** We ask a simple question: do the predictions yield the same up-
 143 date? In continuous time, yes; in discrete time, no. Fig. 2 illustrates this discrepancy in two di-
 144 mensions. For example, with a left-point first-order Euler rule in the λ -domain (half log-SNR),
 145 the noise-prediction update is $x_{t_{i+1}}^{\text{noise}} = \frac{\alpha_{t_{i+1}}}{\alpha_{t_i}} [x_{t_i} - \sigma_{t_i} \Delta \lambda_{t_i} \epsilon_\theta(x_{t_i}, t_i)]$. If we take the Euler
 146 update for the data prediction and rewrite it using $x_\theta = (x_{t_i} - \sigma_{t_i} \epsilon_\theta)/\alpha_{t_i}$, we obtain $x_{t_{i+1}}^{\text{data}} =$
 147 $\frac{\alpha_{t_{i+1}}}{\alpha_{t_i}} [(1 + \Delta \lambda_{t_i}) e^{-\Delta \lambda_{t_i}} x_{t_i} - e^{-\Delta \lambda_{t_i}} \sigma_{t_i} \Delta \lambda_{t_i} \epsilon_\theta(x_{t_i}, t_i)]$. Since $e^{-\Delta \lambda_{t_i}} = 1 - \Delta \lambda_{t_i} + \frac{1}{2} \Delta \lambda_{t_i}^2 + \dots$,
 148 a discrepancy appears at order $O((\Delta \lambda_{t_i})^2)$. This naturally raises the question of which update is
 149 preferable in practice.
 150

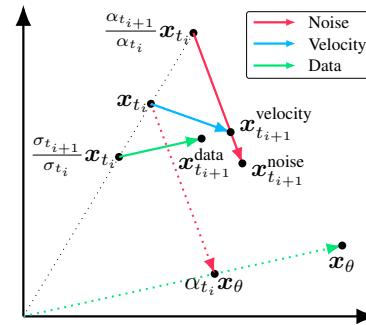


Figure 2: Euler updates for noise, velocity, and data predictions.

	Differential form	Integral form on $[t_i, t_{i+1}]$
Noise ϵ_θ	$\frac{dx_t}{dt} = \frac{d \log \alpha_t}{dt} x_t - \sigma_t \frac{d \lambda_t}{dt} \epsilon_\theta(x_t, t)$	$x_{t_{i+1}} = \frac{\alpha_{t_{i+1}}}{\alpha_{t_i}} x_{t_i} - \alpha_{t_{i+1}} \int_{t_i}^{t_{i+1}} \frac{\sigma_t}{\alpha_t} \frac{d \lambda_t}{dt} \epsilon_\theta(x_t, t) dt$
Velocity v_θ	$\frac{dx_t}{dt} = \frac{d \alpha_t}{dt} x_\theta(x_t, t) + \frac{d \sigma_t}{dt} \epsilon_\theta(x_t, t)$	$x_{t_{i+1}} = x_{t_i} + \int_{t_i}^{t_{i+1}} \left[\frac{d \alpha_t}{dt} x_\theta(x_t, t) + \frac{d \sigma_t}{dt} \epsilon_\theta(x_t, t) \right] dt$
Data x_θ	$\frac{dx_t}{dt} = \frac{d \log \sigma_t}{dt} x_t + \alpha_t \frac{d \lambda_t}{dt} x_\theta(x_t, t)$	$x_{t_{i+1}} = \frac{\sigma_{t_{i+1}}}{\sigma_{t_i}} x_{t_i} + \sigma_{t_{i+1}} \int_{t_i}^{t_{i+1}} \frac{\alpha_t}{\sigma_t} \frac{d \lambda_t}{dt} x_\theta(x_t, t) dt$

Table 1: Differential and integral forms for noise, data, and velocity predictions. (α_t : signal rate, σ_t : noise rate, λ_t : $\log \alpha_t/\sigma_t$)

162 **3 DUAL-SOLVER**
 163

164 **3.1 DUAL PREDICTION WITH PARAMETER γ**

165 We propose a *dual prediction* scheme that uses both \mathbf{x}_θ and $\mathbf{\epsilon}_\theta$ together. We call it *dual* because
 166 it treats \mathbf{x}_θ and $\mathbf{\epsilon}_\theta$ separately, unlike velocity prediction, which bundles them into \mathbf{v}_θ . Moreover,
 167 we introduce the following integral formulation parameterized by γ , which interpolates between the
 168 integral forms of noise, velocity, and data prediction.

169 **Integral form of dual prediction.**

$$170 \mathbf{x}_{t_{i+1}} = \begin{cases} \left(\frac{\sigma_{t_{i+1}}}{\sigma_{t_i}}\right)^\gamma \mathbf{x}_{t_i} + \sigma_{t_{i+1}}^\gamma \left[\int_{t_i}^{t_{i+1}} \frac{d}{dt} (\alpha_t \sigma_t^{-\gamma}) \mathbf{x}_\theta(t) dt + \int_{t_i}^{t_{i+1}} \frac{d}{dt} (\sigma_t^{1-\gamma}) \mathbf{\epsilon}_\theta(t) dt \right], & \gamma \geq 0, \\ \left(\frac{\alpha_{t_{i+1}}}{\alpha_{t_i}}\right)^{-\gamma} \mathbf{x}_{t_i} + \alpha_{t_{i+1}}^{-\gamma} \left[\int_{t_i}^{t_{i+1}} \frac{d}{dt} (\alpha_t^{1+\gamma}) \mathbf{x}_\theta(t) dt + \int_{t_i}^{t_{i+1}} \frac{d}{dt} (\sigma_t \alpha_t^\gamma) \mathbf{\epsilon}_\theta(t) dt \right], & \gamma < 0. \end{cases} \quad (5)$$

175 Here, we write $\mathbf{x}_\theta(t) := \mathbf{x}_\theta(\mathbf{x}_t, t)$ and $\mathbf{\epsilon}_\theta(t) := \mathbf{\epsilon}_\theta(\mathbf{x}_t, t)$.

- 177 • When $\gamma = -1$, the integral reduces to the noise-prediction form (Table 1).
- 178 • When $\gamma = 0$, the integral reduces to the velocity-prediction form (Table 1).
- 179 • When $\gamma = 1$, the integral reduces to the data-prediction form (Table 1).

181 From Eq. 3, we derive the differential form of dual prediction and, by integrating, obtain the integral
 182 form given above; the full derivation is provided in Appendix B.1. For brevity, in Secs. 3.2 and 3.3
 183 we consider only $\gamma \geq 0$; the case $\gamma < 0$ follows by the same steps.

184 **3.2 LOG-LINEAR DOMAIN CHANGE WITH PARAMETER τ**

186 **Domain change.** Let $L : (0, \infty) \rightarrow \mathcal{I}$ be a C^1 diffeomorphism onto an interval $\mathcal{I} \subseteq \mathbb{R}$. Applying
 187 a change of variables to the two integrals in Eq. 5, define

$$188 u(t; \tau_u) = L(\alpha_t \sigma_t^{-\gamma}; \tau_u), \quad v(t; \tau_v) = L(\sigma_t^{1-\gamma}; \tau_v).$$

190 Here, τ_u and τ_v parametrize L in the u - and v -integrals, respectively. Denote $u_i = u(t_i)$, $u_{i+1} =$
 191 $u(t_{i+1})$ and $v_i = v(t_i)$, $v_{i+1} = v(t_{i+1})$. By the chain rule, $\frac{d}{dt} L^{-1}(u) = \frac{dL^{-1}(u)}{du} \frac{du}{dt}$ and similarly
 192 for v . Thus, for $\gamma \geq 0$ we obtain

$$193 \mathbf{x}_{t_{i+1}} = \left(\frac{\sigma_{t_{i+1}}}{\sigma_{t_i}}\right)^\gamma \mathbf{x}_{t_i} + \sigma_{t_{i+1}}^\gamma \left[\int_{u_i}^{u_{i+1}} \frac{dL^{-1}(u; \tau_u)}{du} \mathbf{x}_\theta(u) du + \int_{v_i}^{v_{i+1}} \frac{dL^{-1}(v; \tau_v)}{dv} \mathbf{\epsilon}_\theta(v) dv \right]. \quad (6)$$

196 Here, $\mathbf{x}_\theta(u) := \mathbf{x}_\theta(\mathbf{x}_{u^{-1}(u)}, u^{-1}(u))$ and $\mathbf{\epsilon}_\theta(v) := \mathbf{\epsilon}_\theta(\mathbf{x}_{v^{-1}(v)}, v^{-1}(v))$. The full equation is given
 197 in Eq. 11.

198 **Log-linear transform.** Previous works (Dockhorn et al., 2022; Qinsheng & Chen, 2023; Zhou
 199 et al., 2024) adapt the linear transform $L(y) = y$ with noise prediction. Because $\frac{d}{du} L^{-1}(u) = 1$, the
 200 integrand carries no weighting factor, making it straightforward to develop approximations such as
 201 Taylor expansions and Lagrange interpolation. By contrast, the other works (Lu et al., 2022a,b; Zhao
 202 et al., 2023; Xue et al., 2024) use a logarithmic transform $L(y) = \log y$. Because $\frac{d}{du} L^{-1}(u) = e^u$,
 203 the integrand carries an exponential weight. A closed-form approximation can be obtained via an
 204 exponential integrator (Hochbruck & Ostermann, 2010) or by using Lagrange interpolation. Moti-
 205 vated by these works, we propose a *log-linear* transform that interpolates between the two via a
 206 scalar parameter τ :

$$207 L(y; \tau) = \frac{\log(1 + \tau y)}{\tau}, \quad \tau > 0. \quad (7)$$

209 This transform is invertible, with inverse $L^{-1}(u; \tau) = (e^{\tau u} - 1)/\tau$; its weighting factor is
 210 $\frac{d}{du} L^{-1}(u; \tau) = e^{\tau u}$. Consequently, it has the following properties:

- 212 • As $\tau \rightarrow 0^+$: $\frac{d}{du} L^{-1}(u; \tau) \rightarrow 1$ (no weight).
- 213 • When $\tau = 1$: $\frac{d}{du} L^{-1}(u; \tau) = e^u$ (exponential weight).

215 We apply the log-linear transform to Eq. 6, allowing separate parameters τ_u and τ_v for the u - and
 v -integrals, respectively.

216 3.3 SECOND-ORDER APPROXIMATION WITH PARAMETER κ
217

218 On the interval $[u_i, u_{i+1}]$, we approximate \mathbf{x}_θ by using the second-order forward-difference approx-
219 imation $\mathbf{x}_\theta(u) = \mathbf{x}_\theta(u_i) + \frac{\Delta\mathbf{x}_\theta(u_i)}{\Delta u_i}(u - u_i)$, where $\mathbf{x}_\theta(u_i) := \mathbf{x}_\theta(\mathbf{x}_{u^{-1}(u_i)}, u^{-1}(u_i))$, $\Delta\mathbf{x}_\theta(u_i) :=$
220 $\mathbf{x}_\theta(u_{i+1}) - \mathbf{x}_\theta(u_i)$, and $\Delta u_i := u_{i+1} - u_i$. We also introduce a function $K(\Delta u_i; \kappa_u) = \kappa_u(\Delta u_i)^2$,
221 an $\mathcal{O}((\Delta u_i)^2)$ term, to allow additional flexibility in the residual term while preserving second-
222 order local accuracy. κ_u is a real scalar parameter that controls the magnitude of the residual term.
223 Applying the same approximations to ϵ_θ yields the following second-order corrector $\mathbf{x}_{t_{i+1}}^{2\text{nd-corr.}}$.

$$224 \mathbf{x}_{t_{i+1}}^{2\text{nd-corr.}} = \left(\frac{\sigma_{t_{i+1}}}{\sigma_{t_i}} \right)^\gamma \mathbf{x}_{t_i} + \sigma_{t_{i+1}}^\gamma \left[\mathbf{x}_\theta(u_i) \Delta L^{-1}(u_i; \tau_u) + \frac{\Delta\mathbf{x}_\theta(u_i)}{2} (\Delta L^{-1}(u_i; \tau_u) + B(\Delta u_i; \kappa_u)) \right. \\ 225 \left. + \epsilon_\theta(v_i) \Delta L^{-1}(v_i; \tau_v) + \frac{\Delta\epsilon_\theta(v_i)}{2} (\Delta L^{-1}(v_i; \tau_v) + B(\Delta v_i; \kappa_v)) \right]. \quad (8)$$

226 Here, $\mathbf{x}_\theta(u_i) := \mathbf{x}_\theta(\mathbf{x}_{u^{-1}(u_i)}, u^{-1}(u_i))$, $\Delta\mathbf{x}_\theta(u_i) := \mathbf{x}_\theta(u_{i+1}) - \mathbf{x}_\theta(u_i)$, $\Delta L^{-1}(u_i; \tau_u) :=$
227 $L^{-1}(u_{i+1}; \tau_u) - L^{-1}(u_i; \tau_u)$, and $\Delta u_i := u_{i+1} - u_i$; the definitions for $\epsilon_\theta(v_i)$, $\Delta\epsilon_\theta(v_i)$,
228 $\Delta L^{-1}(v_i; \tau_v)$, and Δv_i are analogous. The first-order predictor and second-order predictor equa-
229 tions are provided in Appendix B.3. **Note.** In Eq. 8, $L^{-1}(u_i; \tau_u) = \alpha_{t_i} \sigma_{t_i}^{-\gamma}$, so there is no need to
230 invert L explicitly. The parameter τ_u determines the scale of Δu_i , which feeds into B . The same
231 applies to $L^{-1}(v_i; \tau_v)$.

232 **Theorem 3.1** (Local truncation error). *Assume that $\mathbf{x}_\theta(u)$ and $\epsilon_\theta(v)$ are C^2 on $[u_i, u_{i+1}]$ and
233 $[v_i, v_{i+1}]$, respectively. Let $\mathbf{x}_{t_{i+1}}^{\text{exact}}$ denote the exact update in equation 6, and let $\mathbf{x}_{t_{i+1}}^{2\text{nd-corr.}}$ denote
234 the second-order corrector defined in equation 8. Then we have*

$$235 \|\mathbf{x}_{t_{i+1}}^{\text{exact}} - \mathbf{x}_{t_{i+1}}^{2\text{nd-corr.}}\| = \mathcal{O}((\Delta u_i)^3 + (\Delta v_i)^3).$$

236 We provide the detailed proof in Appendix B.4, and by the same argument the accuracies of the first-
237 and second-order predictors can also be shown.

238 4 IMPLEMENTATION DETAILS

239 Dual-Solver performs sampling using a predictor–corrector scheme (Butcher, 2016) based on the
240 equations developed above. We examine this sampling scheme in detail in Sec. 4.1 and then present
241 the set of learnable parameters in Sec. 4.2.

242 4.1 SAMPLING SCHEME

243 Alg. 1 details the sampling procedure of Dual-Solver. Sampling requires a backbone that provides
244 both \mathbf{x}_θ and ϵ_θ ; when only one head is available, the other can be obtained via Eq. 4. Given M
245 steps, we use timesteps $\{t_i\}_{i=0}^M$ with $t_0 = T$ and draw the initial noise $\mathbf{x}_{t_0} \sim \mathcal{N}(0, I)$. We also
246 maintain a list ℓ to store previous evaluations. Empirically, a first-order predictor with a second-
247 order corrector performs best (Sec. 6.2). At step i , the first-order predictor takes the current state \mathbf{x}_{t_i}
248 together with the model evaluations $\{\mathbf{x}_\theta(\mathbf{x}_{t_i}, t_i), \epsilon_\theta(\mathbf{x}_{t_i}, t_i)\}$ and produces a provisional sample
249 $\mathbf{x}'_{t_{i+1}}$. The second-order corrector then combines the evaluations at t_i with fresh evaluations at t_{i+1} ,
250 i.e., $\{\mathbf{x}_\theta(\mathbf{x}'_{t_{i+1}}, t_{i+1}), \epsilon_\theta(\mathbf{x}'_{t_{i+1}}, t_{i+1})\}$, to yield the next sample $\mathbf{x}_{t_{i+1}}$. At the final step $i = M - 1$,
251 the corrector is not applied. Explicit formulas for the first-order predictor and second-order corrector
252 are given in Eqs. 13 and 21.

253 4.2 LEARNABLE PARAMETERS

254 For each i -th predictor/corrector step, the parameter sets are $\phi_i^{\text{pred}} = \{\gamma_i^{\text{pred}}, \tau_{u,i}^{\text{pred}}, \tau_{v,i}^{\text{pred}}, \kappa_{u,i}^{\text{pred}}, \kappa_{v,i}^{\text{pred}}\}$ and $\phi_i^{\text{corr}} = \{\gamma_i^{\text{corr}}, \tau_{u,i}^{\text{corr}}, \tau_{v,i}^{\text{corr}}, \kappa_{u,i}^{\text{corr}}, \kappa_{v,i}^{\text{corr}}\}$. Thus, each
255 step uses $2 \times 5 = 10$ parameters. (The last step ($i = M - 1$) does not use the corrector, so it has
256 5 parameters.) Fig. 3 shows the learned parameters for the NFE=5 setting using a DiT (Peebles &
257 Xie, 2023) backbone. Assuming a noise-prediction backbone (the same reasoning applies to data-
258 or velocity-prediction) and a first-order predictor with a second-order corrector (Sec. 4.1), ϕ_i^{pred}
259 and ϕ_i^{corr} determine the coefficients for an update that combines the current state \mathbf{x}_{t_i} and two model

270

271

272

273

Algorithm 1 Dual-Solver predictor–corrector sampling (Sec. 4.1)

```

Require: Diffusion backbone with dual prediction  $\{\mathbf{x}_\theta, \epsilon_\theta\}$ , timesteps  $\{t_i\}_{i=0}^M$ , initial noise  $\mathbf{x}_{t_0}$ , empty list  $\ell$ , parameters  $\phi$ 
1: Evaluate  $\{\mathbf{x}_\theta(\mathbf{x}_{t_0}, t_0), \epsilon_\theta(\mathbf{x}_{t_0}, t_0)\}$  and add to  $\ell$ 
2: for  $i = 0$  to  $M - 1$  do
3:    $\mathbf{x}'_{t_{i+1}} \leftarrow \text{Predictor}(\mathbf{x}_{t_i}, \ell; \phi_i^{\text{pred}})$ 
4:   if  $i \geq M - 1$  then break
5:   Evaluate  $\{\mathbf{x}_\theta(\mathbf{x}'_{t_{i+1}}, t_{i+1}), \epsilon_\theta(\mathbf{x}'_{t_{i+1}}, t_{i+1})\}$  and add to  $\ell$ 
6:    $\mathbf{x}'_{t_{i+1}} \leftarrow \text{Corrector}(\mathbf{x}_{t_i}, \ell; \phi_i^{\text{corr}})$ 
7: end for
8: return  $\mathbf{x}'_{t_M}$ 

```

286

evaluations, $\epsilon_\theta(\mathbf{x}'_{t_i}, t_i)$ and $\epsilon_\theta(\mathbf{x}'_{t_{i+1}}, t_{i+1})$, to produce $\mathbf{x}_{t_{i+1}}$ (Appendix H). This may seem heavy, but Sec. 6.2 (B) shows it is necessary.

289

290

291

292

293

294

In addition to these parameters, we also learn the evaluation times $\{t_i\}_{i=1}^{M-1}$ (with t_0 and t_M fixed), where M denotes the number of steps. Following prior work (Tong et al., 2025; Wang et al., 2025), we employ unnormalized step variables $\{\Delta t'_i\}_{i=0}^{M-1}$ and apply a softmax over $i = 0, \dots, M - 1$ to obtain normalized step sizes $\{\Delta t_i\}_{i=0}^{M-1}$ (nonnegative and summing to one). The timesteps are obtained via a cumulative sum: $t_i = t_0 + (t_M - t_0) \sum_{k=0}^{i-1} \Delta t_k$, $i = 1, \dots, M - 1$.

295

296

5 SOLVER PARAMETER LEARNING

297

298

299

300

301

In this section, we review existing regression-based parameter learning methods, identify their limitations, and introduce a classification-based approach. Fig. 4 provides a schematic overview of all these methods. We apply them to our proposed Dual-Solver and report FID results for each method in Sec. 6.2 (C).

302

303

5.1 REGRESSION-BASED PARAMETER LEARNING

304

305

306

307

308

309

310

311

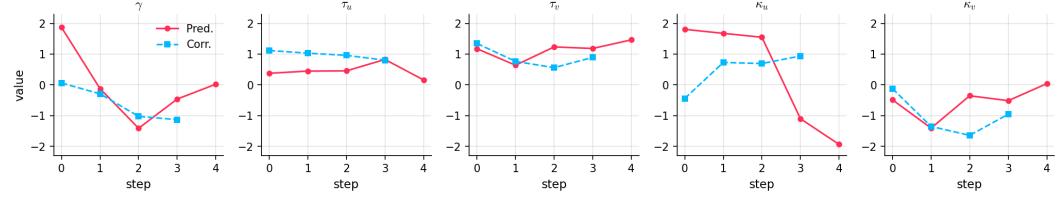
312

313

In regression-based learning, a solver with trainable parameters is referred to as a student solver, while an existing fixed solver is referred to as a teacher solver, and the student is trained to imitate the behavior of the teacher running at a high NFE. Most prior works adopt *trajectory regression* (Shaul et al., 2023; Zhou et al., 2024; Wang et al., 2025), which compares the trajectories generated by the teacher and the student, or *sample regression* (Shaul et al., 2024), which compares only the final samples. Since comparisons in the trajectory or sample space often show a mismatch with visual perceptual quality, *feature regression* has been proposed (Tong et al., 2025), where the measure is computed in a feature space using metrics such as LPIPS (Zhang et al., 2018). However, all of these methods require a teacher solver and incur substantial overhead to prepare the supervision targets, and they tend to perform poorly in the very low NFE regime (e.g., $\text{NFE} \leq 5$; see Table 3).

314

315



322

323

Figure 3: **Learned parameters.** Values of $\{\gamma, \tau_u, \tau_v, \kappa_u, \kappa_v\}$ across sampling steps, learned on DiT (Peebles & Xie, 2023) at $\text{NFE} = 5$. See Figs. 14, 15, 16, and 17 for further results.

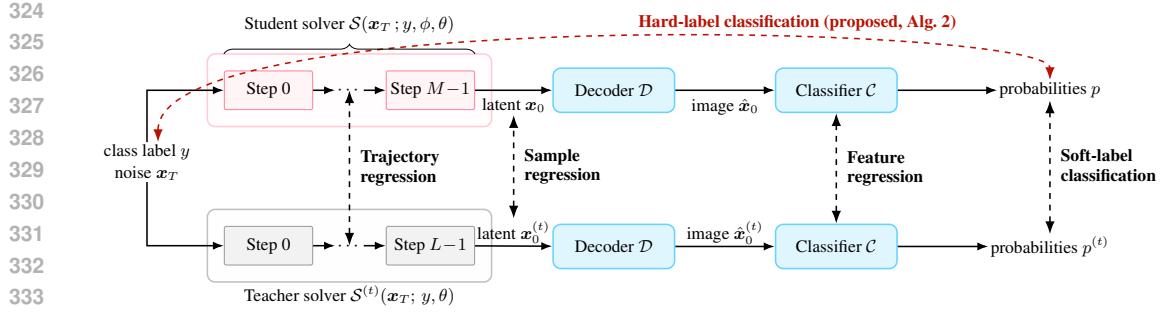


Figure 4: **Solver parameter learning methods.** It schematically illustrates trajectory, sample, and feature regression, as well as soft- and hard-label classification methods.

5.2 CLASSIFICATION-BASED PARAMETER LEARNING

Beyond feature regression, we consider *soft-label classification*, where we apply a cross-entropy loss between the classifier outputs (probabilities) of the student and the teacher. This approach yields improved results in the low-NFE regime (Table 3), but it still requires a teacher solver to generate the target probabilities.

To remove this dependency, we further propose *hard-label classification*, which compares the student’s classifier outputs (probabilities) against the input class label using a cross-entropy loss, without any teacher solver. The overall training procedure is described in Alg. 2. The sample x_0 generated by the solver \mathcal{S} is passed through the decoder \mathcal{D} and the classifier \mathcal{C} to obtain class probabilities p . We then compute a cross-entropy loss between p and the class label $y \sim \mathcal{Y}$, and update the solver parameters ϕ for all time steps via backpropagation. For text-to-image tasks, the class labels are replaced with text prompts, which can be obtained from datasets such as MSCOCO 2014 (Lin et al., 2014) or MJHQ-30K (Li et al., 2024), and the cross-entropy loss is replaced with the CLIP loss (Radford et al., 2021).

Unlike regression to teacher targets, this method focuses on whether the generated samples lie on the correct side of the classifier’s decision boundary, enabling more flexible training. A potential issue is a mismatch between the distribution learned by the classifier and the ground-truth data distribution, but this can be mitigated by selecting an appropriate classifier. In Sec. 6.2 (D), we analyze the relationship between the classifier’s accuracy and the resulting FID scores.

6 EXPERIMENTS

We benchmark Dual-Solver against two families of baselines:

- Dedicated solvers: DDIM (Song et al., 2021a), DPM-Solver++ (Lu et al., 2022b).
- Learned solvers: BNS-Solver (Shaul et al., 2024), DS-Solver (Wang et al., 2025).

We select backbones that span diffusion and flow matching, covering ImageNet (Deng et al., 2009) conditional generation and text-to-image:

- DiT-XL/2-256×256 (Peebles & Xie, 2023): diffusion, ImageNet.
- PixArt- α XL-2-512 (Chen et al., 2023): diffusion, text-to-image.
- GM-DiT 256×256 (Chen et al., 2025): flow matching, ImageNet.
- SANA 600M-512px (Xie et al., 2024): flow matching, text-to-image.

Solver implementations are taken from official sources or reimplemented, and the backbones can be run easily via the diffusers library (von Platen et al., 2022). Further details are provided in Appendix C.

6.1 MAIN QUANTITATIVE RESULTS

We evaluate quantitative performance using FID (Heusel et al., 2017) and CLIP score (Radford et al., 2021). For DiT and GM-DiT, FID is computed on 50k images uniformly sampled across the 1,000 ImageNet (Deng et al., 2009) classes. For SANA and PixArt- α , FID and CLIP are computed on the MSCOCO 2014 (Lin et al., 2014) validation set (30k image–caption pairs). The CLIP

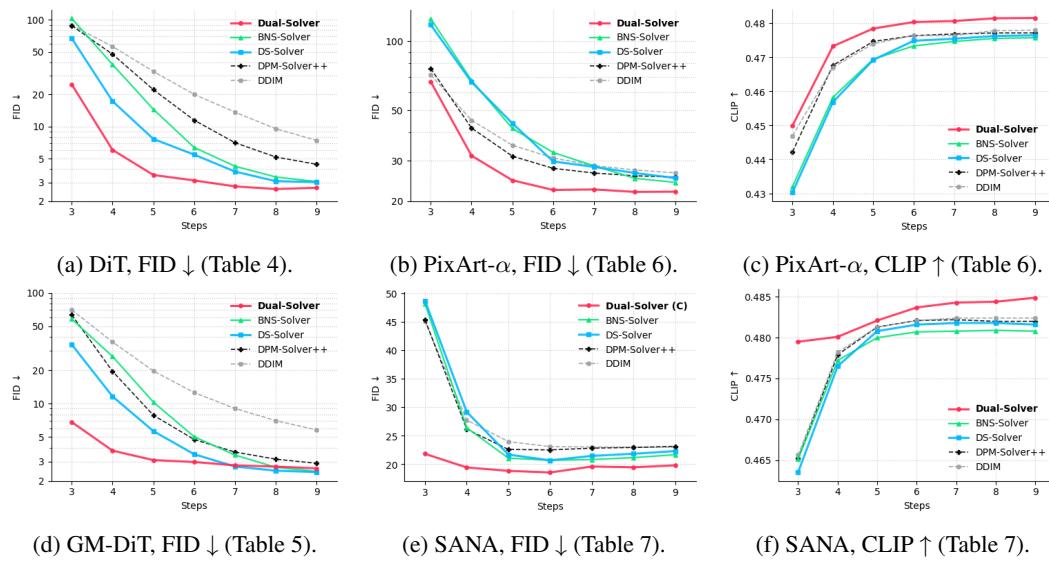


Figure 5: **Main quantitative results.** FID and CLIP score; evaluated on 50k (DiT/GM-DiT) and 30k (SANA/PixArt- α) samples; CFG: DiT=1.5, GM-DiT=1.4, SANA=4.5, PixArt- α =3.5.

score is computed as the cosine similarity between text and image features. As described in Sec. 5, we train Dual-Solver with a classification-based objective. For DiT and GM-DiT, MobileNetV3-Large (Howard et al., 2019) is used, and for SANA and PixArt- α , CLIP(RN101) is used. Fig. 5 plots the measured FID and CLIP scores. Across all evaluated NFEs, Dual-Solver outperforms competing solvers on both FID and CLIP for DiT, SANA, and PixArt- α . For GM-DiT, Dual-Solver underperforms at NFE 7–9; however, when trained with a trajectory regression-based objective, it surpasses the baselines at NFE 8 and 9 (Table 5).

6.2 ABLATION STUDY

We conduct ablations to determine (A) the predictor–corrector order, (B) how much to constrain the degrees of freedom within the parameter set $\phi = \{\gamma, \tau, \kappa\}$, (C) the choice of learning method, and (D) the choice of classifier. Ablations are conducted with DiT (Peebles & Xie, 2023).

NFE	Cross entropy (↓)			
	3	5	7	9
(A) Predictor, Corrector Order				
p1	0.667	0.225	0.183	0.175
p1c2	0.574	0.197	0.178	0.173
p2	1.023	0.253	0.222	0.181
p2c2	5.009	0.317	0.203	0.191
(B) Parameters (γ, τ, κ) Setting				
$\gamma = 1$ fixed	0.816	0.223	0.182	0.176
$\gamma = 0$ fixed	0.600	0.202	0.183	0.180
$\gamma = -1$ fixed	7.871	7.676	0.238	0.196
$\tau = 1$ fixed	0.601	0.217	0.175	0.178
$\kappa = 0$ fixed	0.944	0.256	0.202	0.190
τ, κ shared	0.667	0.221	0.177	0.169
global γ	0.593	0.213	0.181	0.177
global τ	0.596	0.219	0.186	0.179
global κ	0.612	0.240	0.185	0.182
all learnable	0.574	0.197	0.178	0.173

Table 2: Ablation Study

As shown in Table 2 (B), at low NFE (3 and 5), leaving all parameters free yields the best performance. At higher NFEs (7 and 9), configurations that fix or share certain parameters can oc-

casionally perform better. Since gaps are small and our focus is low NFE, we adopt the all-learnable setting by default.

(C) Parameter learning methods. Table 3 reports the results of applying the regression- and classification-based parameter learning methods discussed in Sec. 5 to Dual-Solver. Feature regression is implemented using LPIPS (Zhang et al., 2018), and it generally performs better than regression in the trajectory or sample space. The improvement is particularly pronounced in the very low NFE regime (NFE = 3, 5). Depending on which classifier (AlexNet (Krizhevsky et al., 2012), VGG (Simonyan & Zisserman, 2014), SqueezeNet (Iandola et al., 2016)) is used to extract features, the results vary significantly, underscoring the importance of classifier choice in feature space.

Classification-based methods further widen the performance gap relative to feature regression in the low NFE regime (NFE = 3, 5). In particular, the method that uses only hard labels achieves substantially superior results across all NFEs, which we attribute to the choice of an appropriate classifier; we investigate this in the next paragraph.

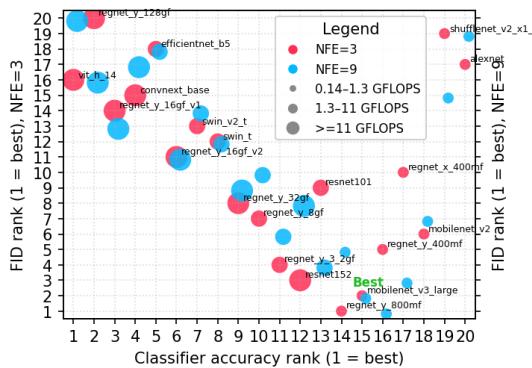


Figure 6: Top-5 accuracy vs. FID (Table 8).

Based on this observation, we choose `mobilenet_v3_large`, which consistently yields low FID at NFE = 3 and 9, as the classifier for parameter learning with both DiT (Peebles & Xie, 2023) and GM-DiT (Chen et al., 2025). A detailed analysis linking this pattern to precision and recall (Kynkänniemi et al., 2019) is provided in Appendix D.

6.3 PARAMETER INTERPOLATION ACROSS NFEs

From the learned parameters of Dual-Solver (Appendix F), we observe that their overall shapes remain similar across different NFEs. Motivated by this, we test the robustness of the learned parameters by applying them to other NFEs. To obtain the parameters for an unseen NFE, we interpolate the parameters of its two neighboring NFEs and then take their weighted average. The detailed formulas are provided in the Appendix G. Fig. 7 reports the results. *Interp.* (3,5), (5,7), (7,9) denotes that we interpolate between the parameter pairs at NFEs (3,5), (5,7), and (7,9) to obtain the parameters for the intermediate NFEs 4, 6, and 8, respectively; the other interpolation schemes are defined analogously. Although these interpolated parameters do not match the performance of parameters directly optimized for each NFE, the gaps are modest, and the resulting FID scores still outperform those of other solvers.

NFE	FID (\downarrow)			
	3	5	7	9
Regression-based learning (Sec. 5.1)				
Sample	107.13	11.71	4.60	2.99
Trajectory	100.89	11.59	3.66	2.84
Feature (AlexNet)	47.75	7.24	3.42	2.91
Feature (VGG)	41.58	5.48	3.23	2.88
Feature (SqueezeNet)	44.00	7.07	3.31	2.79
Classification-based learning (Sec. 5.2)				
Soft-label	25.13	4.90	3.37	3.01
Hard-label	24.91	3.52	2.75	2.67

Table 3: Comparison of parameter learning methods

(D) Classifier model selection. A natural question for classifier-based learning is which classifier to use. To investigate this, we evaluate 20 pretrained classifiers from TorchVision (maintainers & contributors, 2016). Fig. 6 plots FID (on 10k samples) versus classifier top-5 accuracy for each model, ordered by rank. Interestingly, the curve exhibits a clear V-shape: as accuracy decreases, FID initially improves, but beyond ranks 14–16 the FID degrades sharply. This suggests that neither very high nor very low classifier accuracy is optimal; a moderate level is most beneficial for FID.

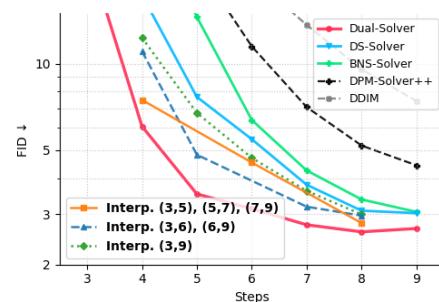


Figure 7: FID results for parameter interpolation across NFEs with a DiT (Peebles & Xie, 2023) backbone.

Figure 8: **Sampling results.** PixArt- α (Chen et al., 2023), NFE=5, CFG=3.5. See Fig. 22 for further results.

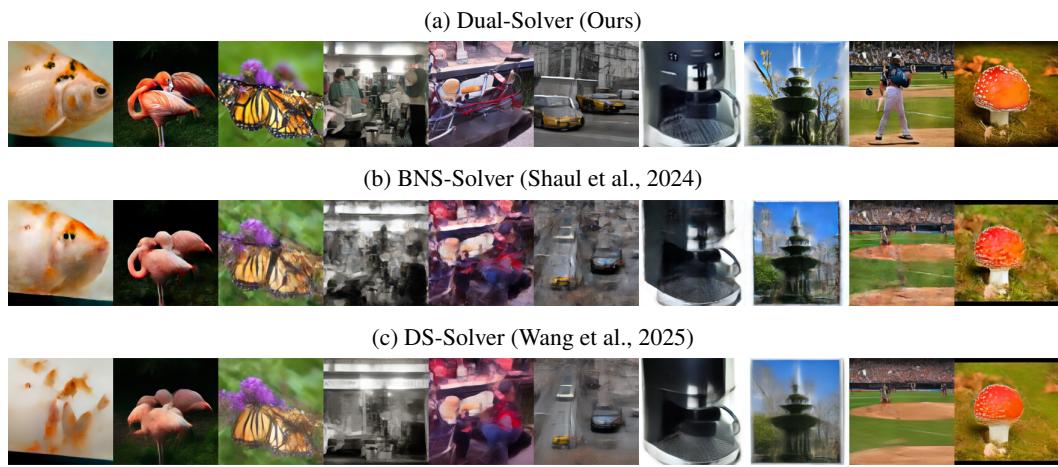


Figure 9: **Sampling results.** GM-DiT (Chen et al., 2025), NFE=3, CFG=1.4. See Fig. 20 for more.

6.4 TRAINING TIME

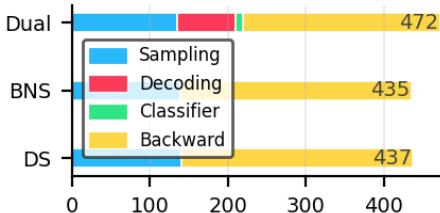


Figure 10: Training time per step (ms) (Table 10).

Fig. 10 reports per-step training time, decomposed into sampling, decoding, classifier, and backward, measured at NFE = 5 using GM-DiT (Chen et al., 2025) as the backbone. Dual-Solver adds decoding and classifier overheads; the latter is modest thanks to lightweight choices, as discussed in Sec. 6.2 (D). Overall, total per-step time increases by about 8% versus BNS-Solver (Shaul et al., 2024) and DS-Solver (Wang et al., 2025). See Appendix E for convergence-time details.

7 CONCLUSIONS AND LIMITATIONS

This paper introduces Dual-Solver, a predictor–corrector sampler that achieves second-order numerical accuracy, featuring per-step learnable parameters (γ, τ, κ) that govern the prediction parameterization (noise/velocity/data), a change of variables, and a second-order residual adjustment. All solver parameters are optimized end-to-end with a classification-based objective using a pretrained image classifier. Across diverse diffusion and flow matching backbones, experiments show substantial improvements over competing solvers in the low-NFE regime ($3 \leq \text{NFE} \leq 9$), measured by both FID and CLIP score. Limitations include the absence of unconditional backbones and a lack of analysis beyond second-order accuracy; both are left for future work.

540 REPRODUCIBILITY STATEMENT
541542 In Sec. 6 and Appendix C, we report detailed information regarding the backbones, solvers, training,
543 and evaluation used in our experiments. All datasets employed, such as ImageNet (Deng et al., 2009)
544 and MSCOCO (Lin et al., 2014), are publicly available under their respective licenses.
545546 REFERENCES
547548 Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
549 In *International conference on machine learning*, pp. 214–223. PMLR, 2017.550 Francis Bashforth and John Couch Adams. *An Attempt to Test the Theories of Capillary Action
551 by Comparing the Theoretical and Measured Forms of Drops of Fluid: With an Explanation of
552 the Method of Integration Employed in Constructing the Tables*. Cambridge University Press,
553 Cambridge, 1883.554 John Charles Butcher. *Numerical methods for ordinary differential equations*. John Wiley & Sons,
555 2016.556 Hansheng Chen, Kai Zhang, Hao Tan, Zexiang Xu, Fujun Luan, Leonidas Guibas, Gordon Wet-
557 zstein, and Sai Bi. Gaussian mixture flow matching models. *arXiv preprint arXiv:2504.05304*,
558 2025.559 Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
560 Kwok, Ping Luo, Huchuan Lu, et al. Pixart- α : Fast training of diffusion transformer for photore-
561 alistic text-to-image synthesis. *arXiv preprint arXiv:2310.00426*, 2023.562 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hier-
563 archical image database. In *2009 IEEE Conference on Computer Vision and Pattern Recognition*,
564 pp. 248–255. IEEE, 2009.565 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances
566 in neural information processing systems*, 34:8780–8794, 2021.567 Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components esti-
568 mation. *arXiv preprint arXiv:1410.8516*, 2014.569 Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Genie: Higher-order denoising diffusion solvers.
570 *Advances in Neural Information Processing Systems*, 35:30150–30166, 2022.571 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
572 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
573 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
574 arXiv:2010.11929*, 2020.575 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
576 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the
577 ACM*, 63(11):139–144, 2020.578 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
579 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
580 770–778, 2016.581 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
582 GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In Is-
583 abelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
584 Vishwanathan, and Roman Garnett (eds.), *Advances in Neural Information Processing Systems*,
585 volume 30, pp. 6626–6637, 2017.586 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In *NeurIPS 2021 Workshop on
587 Deep Generative Models and Downstream Applications*, 2021.

594 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 595 *Neural Information Processing Systems (NeurIPS)*, 33:6840–6851, 2020.
 596

597 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
 598 Fleet. Video diffusion models. *arXiv preprint arXiv:2204.03458*, 2022.

599 Marlis Hochbruck and Alexander Ostermann. Exponential integrators. *Acta Numerica*, 19:209–286,
 600 2010.

601 Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
 602 Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In *Pro-*
 603 *ceedings of the IEEE/CVF international conference on computer vision*, pp. 1314–1324, 2019.

604

605 Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
 606 Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
 607 mobile vision applications. *arXiv preprint arXiv:1704.04861*, 2017.

608

609 Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
 610 Keutzer. SqueezeNet: Alexnet-level accuracy with 50x fewer parameters and 0.5 mb model size.
 611 *arXiv preprint arXiv:1602.07360*, 2016.

612

613 Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
 614 Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali
 615 Farhadi, and Ludwig Schmidt. Openclip, July 2021. URL <https://doi.org/10.5281/zenodo.5143773>. If you use this software, please cite it as below.

616

617 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*
 618 *arXiv:1312.6114*, 2013.

619

620 Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
 621 *Advances in neural information processing systems*, 31, 2018.

622

623 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
 624 Bo Wu, Jianwei Zhang, et al. Hunyuandvideo: A systematic framework for large video generative
 625 models. *arXiv preprint arXiv:2412.03603*, 2024.

626

627 Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
 628 diffusion model for audio synthesis. *arXiv preprint arXiv:2009.09761*, 2020.

629

630 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
 631 *lutional neural networks. Advances in neural information processing systems*, 25, 2012.

632

633 Tuomas Kynkänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
 634 precision and recall metric for assessing generative models. *Advances in neural information*
 635 *processing systems*, 32, 2019.

636

637 Daqing Li, Aleks Kamko, Ehsan Akhgari, Ali Sabet, Linmiao Xu, and Suhail Doshi. Playground v2.
 638 5: Three insights towards enhancing aesthetic quality in text-to-image generation. *arXiv preprint*
 639 *arXiv:2402.17245*, 2024.

640

641 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 642 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer*
 643 *Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014, Pro-*
 644 *ceedings, Part V 13*, pp. 740–755. Springer, 2014.

645

646 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 647 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

648

649 Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and
 650 Mark D Plumbley. Audioldm: Text-to-audio generation with latent diffusion models. *arXiv*
 651 *preprint arXiv:2301.12503*, 2023.

652

653 Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. *arXiv*
 654 *preprint arXiv:1608.03983*, 2016.

648 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 649 *arXiv:1711.05101*, 2017.

650

651 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
 652 ode solver for diffusion probabilistic model sampling in around 10 steps. *Advances in Neural*
 653 *Information Processing Systems*, 35:5775–5787, 2022a.

654

655 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
 656 solver for guided sampling of diffusion probabilistic models. *arXiv preprint arXiv:2211.01095*,
 657 2022b.

658

659 TorchVision maintainers and contributors. Torchvision: Pytorch’s computer vision library. <https://github.com/pytorch/vision>, 2016.

660

661 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 662 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

663

664 Zhang Qinsheng and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
 665 *ICLR*, 2023.

666

667 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 668 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 669 models from natural language supervision. In *International conference on machine learning*, pp.
 8748–8763. PMLR, 2021.

670

671 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 672 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 673 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

674

675 Carl Runge. Ueber die numerische auflösung von differentialgleichungen. *Mathematische Annalen*,
 46:167–178, 1895. URL <http://eudml.org/doc/157756>.

676

677 Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. Pixelcnn++: Improving the
 678 pixelcnn with discretized logistic mixture likelihood and other modifications. *arXiv preprint*
arXiv:1701.05517, 2017.

679

680 Neta Shaul, Juan Perez, Ricky TQ Chen, Ali Thabet, Albert Pumarola, and Yaron Lipman. Bespoke
 681 solvers for generative flow models. *arXiv preprint arXiv:2310.19075*, 2023.

682

683 Neta Shaul, Uriel Singer, Ricky TQ Chen, Matthew Le, Ali Thabet, Albert Pumarola, and Yaron
 684 Lipman. Bespoke non-stationary solvers for fast sampling of diffusion and flow models. *arXiv*
preprint arXiv:2403.01329, 2024.

685

686 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 687 recognition. *arXiv preprint arXiv:1409.1556*, 2014.

688

689 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 690 learning using nonequilibrium thermodynamics. In *International Conference on Machine Learn-
 691 ing*, pp. 2256–2265. PMLR, 2015.

692

693 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *Inter-
 694 national Conference on Learning Representations*, 2021a.

695

696 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 697 *Advances in neural information processing systems*, 32, 2019.

698

699 Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
 700 *Advances in Neural Information Processing Systems*, 33, 2020.

701

702 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 703 Poole. Score-based generative modeling through stochastic differential equations. In *Inter-
 704 national Conference on Learning Representations*, 2021b.

702 Vinh Tong, Trung-Dung Hoang, Anji Liu, Guy Van den Broeck, and Mathias Niepert. Learning
 703 to discretize denoising diffusion odes. In *International Conference on Learning Representations*
 704 (*ICLR*), 2025.

705 Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. *Advances in neural*
 706 *information processing systems*, 33:19667–19679, 2020.

708 Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Con-
 709 ditional image generation with pixelcnn decoders. *Advances in neural information processing*
 710 *systems*, 29, 2016.

711 Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Rasul,
 712 Mishig Davaadorj, Dhruv Nair, Sayak Paul, William Berman, Yiyi Xu, Steven Liu, and Thomas
 713 Wolf. Diffusers: State-of-the-art diffusion models. [https://github.com/huggingface/](https://github.com/huggingface/diffusers)
 714 diffusers, 2022.

715 Shuai Wang, Zexian Li, Tianhui Song, Xubin Li, Tiezheng Ge, Bo Zheng, Limin Wang, et al. Dif-
 716 ferentiable solver search for fast diffusion sampling. *arXiv preprint arXiv:2505.21114*, 2025.

718 Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang, Muyang
 719 Li, Ligeng Zhu, Yao Lu, et al. Sana: Efficient high-resolution image synthesis with linear diffusion
 720 transformers. *arXiv preprint arXiv:2410.10629*, 2024.

722 Shuchen Xue, Mingyang Yi, Weijian Luo, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhi-Ming
 723 Ma. Sa-solver: Stochastic adams solver for fast sampling of diffusion models. *Advances in Neural*
 724 *Information Processing Systems*, 36, 2024.

725 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 726 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on*
 727 *computer vision and pattern recognition*, pp. 586–595, 2018.

729 We Zhao, Li Bai, Yong Rao, Jian Zhou, and Jun Lu. Unipc: A unified predictor-corrector framework
 730 for fast sampling of diffusion models. *arXiv preprint arXiv:2302.04867*, 2023.

731 Zhenyu Zhou, Defang Chen, Can Wang, and Chun Chen. Fast ode-based sampling for diffusion
 732 models in around 5 steps. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 733 *Pattern Recognition*, pp. 7777–7786, 2024.

734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

756	CONTENTS	
757		
758		
759	1 Introduction	1
760		
761	2 Preliminaries	2
762	2.1 Diffusion Models	2
763	2.2 Prediction Types	3
764		
765		
766	3 Dual-Solver	4
767	3.1 Dual Prediction with Parameter γ	4
768	3.2 Log-Linear Domain Change with Parameter τ	4
769	3.3 Second-Order Approximation with Parameter κ	5
770		
771		
772		
773	4 Implementation Details	5
774	4.1 Sampling Scheme	5
775	4.2 Learnable Parameters	5
776		
777		
778	5 Solver Parameter Learning	6
779	5.1 Regression-based Parameter Learning	6
780	5.2 Classification-based Parameter Learning	7
781		
782		
783	6 Experiments	7
784	6.1 Main Quantitative Results	7
785	6.2 Ablation Study	8
786	6.3 Parameter Interpolation across NFEs	9
787	6.4 Training Time	10
788		
789		
790		
791	7 Conclusions and Limitations	10
792		
793		
794	A LLM Usage	17
795		
796	B Derivations	17
797	B.1 Derivation of Dual Prediction	17
798	B.2 Change of Variables	18
799	B.3 Derivation of Sampling Equations	18
800	B.4 Proof of Local Truncation Error	20
801		
802		
803		
804	C Experimental Details	21
805	C.1 Setup	21
806	C.2 Quantitative Results	21
807		
808		
809	D Classifier Accuracy vs. Sample Quality	23

810	E Analysis of Convergence Time	27
811		
812	F Learned Parameters	28
813		
814		
815	G Details of parameter interpolation across NFEs	32
816		
817	H Single Prediction Reparameterization	34
818		
819	H.1 First-order predictor	34
820	H.2 Second-order corrector	35
821		
822		
823		
824		
825		
826		
827		
828		
829		
830		
831		
832		
833		
834		
835		
836		
837		
838		
839		
840		
841		
842		
843		
844		
845		
846		
847		
848		
849		
850		
851		
852		
853		
854		
855		
856		
857		
858		
859		
860		
861		
862		
863		

864 **A LLM USAGE**
865866 We disclose that Large Language Models (LLMs) were used as assistive tools for:
867868 • verifying the consistency of mathematical derivations,
869 • assisting literature search and surfacing related work,
870 • helping with formal writing (style, grammar, typos),
871 • drafting figure and table scripts.
872873
874 All scientific ideas, methods, and results originate from the authors, who take full responsibility for
875 the content of this paper.
876877 **B DERIVATIONS**
878879 **B.1 DERIVATION OF DUAL PREDICTION**
880881 **Differential Form of Dual Prediction.** The differential form corresponding to the integral form
882 in Eq. 5 is given by
883

884
$$\frac{d\mathbf{x}_t}{dt} = \beta\mathbf{x}_t + \alpha_t\left(\frac{d\log\alpha_t}{dt} - \beta\right)\mathbf{x}_\theta(\mathbf{x}_t, t) + \sigma_t\left(\frac{d\log\sigma_t}{dt} - \beta\right)\boldsymbol{\epsilon}_\theta(\mathbf{x}_t, t). \quad (9)$$

885

886 To derive this form, we start from the probability-flow ODE in Eq. 3:
887

888
$$\frac{d\mathbf{x}_t}{dt} = f_t \mathbf{x}_t - \frac{1}{2} g_t^2 \nabla_{\mathbf{x}} \log q(\mathbf{x}_t),$$

889 where $f_t = \frac{d\log\alpha_t}{dt}$, $g_t^2 = \frac{d}{dt}\sigma_t^2 - 2f_t\sigma_t^2$, $\nabla_{\mathbf{x}} \log q(\mathbf{x}_t) = -\frac{\boldsymbol{\epsilon}_\theta(\mathbf{x}_t, t)}{\sigma_t}$.
890

891 Substituting f_t , g_t^2 , and $\nabla_{\mathbf{x}} \log q(\mathbf{x}_t)$ yields:
892

893
$$\begin{aligned} \frac{d\mathbf{x}_t}{dt} &= \frac{d\log\alpha_t}{dt} \mathbf{x}_t + \frac{1}{2\sigma_t} \left(\frac{d}{dt}\sigma_t^2 - 2\frac{d\log\alpha_t}{dt}\sigma_t^2 \right) \boldsymbol{\epsilon}_\theta(\mathbf{x}_t, t) \\ &= \frac{d\log\alpha_t}{dt} \mathbf{x}_t + \sigma_t \left(\frac{d\log\sigma_t}{dt} - \frac{d\log\alpha_t}{dt} \right) \boldsymbol{\epsilon}_\theta(\mathbf{x}_t, t). \end{aligned}$$

894

901 Introducing an arbitrary $\beta \in \mathbb{R}$, we can rewrite:
902

903
$$\begin{aligned} \frac{d\mathbf{x}_t}{dt} &= \beta\mathbf{x}_t + \left(\frac{d\log\alpha_t}{dt} - \beta \right) \mathbf{x}_t + \sigma_t \left(\frac{d\log\sigma_t}{dt} - \frac{d\log\alpha_t}{dt} \right) \boldsymbol{\epsilon}_\theta(\mathbf{x}_t, t) \\ &= \beta\mathbf{x}_t + \left(\frac{d\log\alpha_t}{dt} - \beta \right) (\alpha_t \mathbf{x}_\theta(\mathbf{x}_t, t) + \sigma_t \boldsymbol{\epsilon}_\theta(\mathbf{x}_t, t)) + \sigma_t \left(\frac{d\log\sigma_t}{dt} - \frac{d\log\alpha_t}{dt} \right) \boldsymbol{\epsilon}_\theta(\mathbf{x}_t, t) \\ &= \beta\mathbf{x}_t + \alpha_t \left(\frac{d\log\alpha_t}{dt} - \beta \right) \mathbf{x}_\theta(\mathbf{x}_t, t) + \sigma_t \left(\frac{d\log\sigma_t}{dt} - \beta \right) \boldsymbol{\epsilon}_\theta(\mathbf{x}_t, t). \end{aligned}$$

904

911 Thus we obtain the differential form of *dual prediction*. It is straightforward to verify that choosing
912 $\beta = \frac{d}{dt}\log\alpha_t$ recovers the noise-prediction form, $\beta = \frac{d}{dt}\log\sigma_t$ recovers the data-prediction form,
913 and $\beta = 0$ recovers the velocity-prediction form in Table 1.
914915 **Integral Form of Dual Prediction.** We next apply the variation-of-constants method to Eq. 9 to
916 obtain the following integral representation:
917

918
$$\mathbf{x}_{t_{i+1}} = \exp\left(\int_{t_i}^{t_{i+1}} \beta_u du\right) \mathbf{x}_{t_i} + \int_{t_i}^{t_{i+1}} \exp\left(\int_s^{t_{i+1}} \beta_u du\right) \left[\alpha_s \left(\frac{d\log\alpha_s}{ds} - \beta_s \right) \mathbf{x}_\theta + \sigma_s \left(\frac{d\log\sigma_s}{ds} - \beta_s \right) \boldsymbol{\epsilon}_\theta \right] ds.$$

918 We reparameterize β in terms of a new variable $\gamma \in \mathbb{R}$ as follows:
919

$$\beta(\gamma) = \begin{cases} \gamma \frac{d \log \sigma_t}{dt} = \gamma \frac{\dot{\sigma}_t}{\sigma_t}, & \gamma \geq 0, \\ -\gamma \frac{d \log \alpha_t}{dt} = -\gamma \frac{\dot{\alpha}_t}{\alpha_t}, & \gamma < 0. \end{cases}$$

920 Then we obtain the following γ -interpolated integral form of dual prediction:
921

$$\boxed{\mathbf{x}_{t_{i+1}} = \begin{cases} \left(\frac{\sigma_{t_{i+1}}}{\sigma_{t_i}}\right)^\gamma \mathbf{x}_{t_i} + \sigma_{t_{i+1}}^\gamma \left[\int_{t_i}^{t_{i+1}} \frac{d}{dt}(\alpha_t \sigma_t^{-\gamma}) \mathbf{x}_\theta dt + \int_{t_i}^{t_{i+1}} \frac{d}{dt}(\sigma_t^{1-\gamma}) \mathbf{\epsilon}_\theta dt \right], & \gamma \geq 0, \\ \left(\frac{\alpha_{t_{i+1}}}{\alpha_{t_i}}\right)^{-\gamma} \mathbf{x}_{t_i} + \alpha_{t_{i+1}}^{-\gamma} \left[\int_{t_i}^{t_{i+1}} \frac{d}{dt}(\alpha_t^{1+\gamma}) \mathbf{x}_\theta dt + \int_{t_i}^{t_{i+1}} \frac{d}{dt}(\sigma_t \alpha_t^\gamma) \mathbf{\epsilon}_\theta dt \right], & \gamma < 0. \end{cases}} \quad (10)$$

931 B.2 CHANGE OF VARIABLES

933 Using the transform L defined in Sec. 3.2, we define

$$u(t; \tau_u) = \begin{cases} L(\alpha_t \sigma_t^{-\gamma}; \tau_u), & \gamma \geq 0, \\ L(\alpha_t^{1+\gamma}; \tau_u), & \gamma < 0, \end{cases} \quad v(t; \tau_v) = \begin{cases} L(\sigma_t^{1-\gamma}; \tau_v), & \gamma \geq 0, \\ L(\sigma_t \alpha_t^\gamma; \tau_v), & \gamma < 0. \end{cases}$$

937 Using these variables, applying a change of variables to the integral in Eq. 10 yields

$$\boxed{\mathbf{x}_{t_{i+1}} = \begin{cases} \left(\frac{\sigma_{t_{i+1}}}{\sigma_{t_i}}\right)^\gamma \mathbf{x}_{t_i} + \sigma_{t_{i+1}}^\gamma \left[\int_{u_i}^{u_{i+1}} \frac{dL^{-1}(u; \tau_u)}{du} \mathbf{x}_\theta(u) du + \int_{v_i}^{v_{i+1}} \frac{dL^{-1}(v; \tau_v)}{dv} \mathbf{\epsilon}_\theta(v) dv \right] & (\gamma \geq 0), \\ \left(\frac{\alpha_{t_{i+1}}}{\alpha_{t_i}}\right)^{-\gamma} \mathbf{x}_{t_i} + \alpha_{t_{i+1}}^{-\gamma} \left[\int_{u_i}^{u_{i+1}} \frac{dL^{-1}(u; \tau_u)}{du} \mathbf{x}_\theta(u) du + \int_{v_i}^{v_{i+1}} \frac{dL^{-1}(v; \tau_v)}{dv} \mathbf{\epsilon}_\theta(v) dv \right] & (\gamma < 0). \end{cases}} \quad (11)$$

944 B.3 DERIVATION OF SAMPLING EQUATIONS

946 B.3.1 DERIVATION OF FIRST-ORDER PREDICTOR

948 First, we take a first-order approximation of \mathbf{x}_θ and $\mathbf{\epsilon}_\theta$ in Eq. 11. For the case $\gamma \geq 0$, this yields

$$949 \quad \mathbf{x}_{t_{i+1}} = \left(\frac{\sigma_{t_{i+1}}}{\sigma_{t_i}}\right)^\gamma \mathbf{x}_{t_i} + \sigma_{t_{i+1}}^\gamma \left[\mathbf{x}_\theta(u_i) (\Delta L^{-1}(u_i; \tau_u) + O((\Delta u_i)^2)) + \mathbf{\epsilon}_\theta(v_i) (\Delta L^{-1}(v_i; \tau_v) + O((\Delta v_i)^2)) \right] \quad (\gamma \geq 0). \quad (12)$$

952 Here, we write $\mathbf{x}_\theta(u_i) := \mathbf{x}_\theta(\mathbf{x}_{u^{-1}(u_i)}, u^{-1}(u_i))$, and $\Delta L^{-1}(u_i; \tau_u) := L^{-1}(u_{i+1}; \tau_u) - L^{-1}(u_i; \tau_u)$; the definitions for $\mathbf{\epsilon}_\theta(v_i)$ and $\Delta L^{-1}(v_i; \tau_v)$ are analogous.
953

955 Next, while preserving first-order accuracy, we incorporate the $B(\Delta u_i; \kappa_u) = \mathcal{O}((\Delta u_i)^2)$ and $B(\Delta v_i; \kappa_v) = \mathcal{O}((\Delta v_i)^2)$ correction terms and include the $\gamma < 0$ case, which yields the following
956 first-order predictor of Dual-Solver.
957

$$\boxed{\mathbf{x}_{t_{i+1}}^{\text{1st-pred.}} = \begin{cases} \left(\frac{\sigma_{t_{i+1}}}{\sigma_{t_i}}\right)^\gamma \mathbf{x}_{t_i} + \sigma_{t_{i+1}}^\gamma \left[\mathbf{x}_\theta(u_i) (\Delta L^{-1}(u_i; \tau_u) + B(\Delta u_i; \kappa_u)) + \mathbf{\epsilon}_\theta(v_i) (\Delta L^{-1}(v_i; \tau_v) + B(\Delta v_i; \kappa_v)) \right], & \gamma \geq 0, \\ \left(\frac{\alpha_{t_{i+1}}}{\alpha_{t_i}}\right)^{-\gamma} \mathbf{x}_{t_i} + \alpha_{t_{i+1}}^{-\gamma} \left[\mathbf{x}_\theta(u_i) (\Delta L^{-1}(u_i; \tau_u) + B(\Delta u_i; \kappa_u)) + \mathbf{\epsilon}_\theta(v_i) (\Delta L^{-1}(v_i; \tau_v) + B(\Delta v_i; \kappa_v)) \right], & \gamma < 0. \end{cases}} \quad (13)$$

963 B.3.2 DERIVATION OF SECOND-ORDER PREDICTOR

965 First, we approximate $\mathbf{x}_\theta(u)$ and $\mathbf{\epsilon}_\theta(v)$ near u_i and v_i by a second-order backward-difference ex-
966 pansion. For the case $\gamma \geq 0$, this yields

$$968 \quad \mathbf{x}_{t_{i+1}} \approx \left(\frac{\sigma_{t_{i+1}}}{\sigma_{t_i}}\right)^\gamma \mathbf{x}_{t_i} + \sigma_{t_{i+1}}^\gamma \left[\mathbf{x}_\theta(u_i) \Delta L^{-1}(u_i; \tau_u) + \frac{\Delta \mathbf{x}_\theta(u_{i-1})}{\Delta u_{i-1}} \int_{u_i}^{u_{i+1}} (u - u_i) \frac{dL^{-1}(u; \tau_u)}{du} du \right. \\ 969 \quad \left. + \mathbf{\epsilon}_\theta(v_i) \Delta L^{-1}(v_i; \tau_v) + \frac{\Delta \mathbf{\epsilon}_\theta(v_{i-1})}{\Delta v_{i-1}} \int_{v_i}^{v_{i+1}} (v - v_i) \frac{dL^{-1}(v; \tau_v)}{dv} dv \right] \quad (\gamma \geq 0). \quad (14)$$

972 Using

$$\begin{aligned}
 974 \quad \frac{1}{\Delta u_{i-1}} \int_{u_i}^{u_{i+1}} (u - u_i) \frac{dL^{-1}(u; \tau_u)}{du} du &= \frac{1}{2r_i^{(u)}} \left(\frac{dL^{-1}(u; \tau_u)}{du} \Big|_{u_i} \Delta u_i + \mathcal{O}((\Delta u_i)^2) \right) \\
 975 \quad &= \frac{1}{2r_i^{(u)}} (\Delta L^{-1}(u_i; \tau_u) + \mathcal{O}((\Delta u_i)^2))
 \end{aligned} \tag{15}$$

979 where $r_i^{(u)} := \frac{\Delta u_{i-1}}{\Delta u_i}$ and $r_i^{(v)} := \frac{\Delta v_{i-1}}{\Delta v_i}$, we obtain

$$\begin{aligned}
 982 \quad \mathbf{x}_{t_{i+1}} &\approx \left(\frac{\sigma_{t_{i+1}}}{\sigma_{t_i}} \right)^\gamma \mathbf{x}_{t_i} + \sigma_{t_{i+1}}^\gamma \left[\mathbf{x}_\theta(u_i) \Delta L^{-1}(u_i; \tau_u) + \frac{\Delta \mathbf{x}_\theta(u_{i-1})}{2r_i^{(u)}} (\Delta L^{-1}(u_i; \tau_u) + \mathcal{O}((\Delta u_i)^2)) \right. \\
 983 \quad &\quad \left. + \mathbf{\epsilon}_\theta(v_i) \Delta L^{-1}(v_i; \tau_v) + \frac{\Delta \mathbf{\epsilon}_\theta(v_{i-1})}{2r_i^{(v)}} (\Delta L^{-1}(v_i; \tau_v) + \mathcal{O}((\Delta v_i)^2)) \right] \quad (\gamma \geq 0).
 \end{aligned} \tag{16}$$

987 Next, while preserving second-order accuracy, we incorporate the $B(\Delta u_i; \kappa_u) = \mathcal{O}((\Delta u_i)^2)$ and
 988 $B(\Delta v_i; \kappa_v) = \mathcal{O}((\Delta v_i)^2)$ correction terms and include the $\gamma < 0$ case, which yields the following
 989 second-order predictor of Dual-Solver.

$$\begin{aligned}
 991 \quad \mathbf{x}_{t_{i+1}}^{\text{2nd-pred.}} &= \begin{cases} \left(\frac{\sigma_{t_{i+1}}}{\sigma_{t_i}} \right)^\gamma \mathbf{x}_{t_i} + \sigma_{t_{i+1}}^\gamma \left[\mathbf{x}_\theta \Delta L^{-1}(u_i; \tau_u) + \frac{\Delta \mathbf{x}_\theta(u_{i-1})}{2r_i^{(u)}} (\Delta L^{-1}(u_i; \tau_u) + B(\Delta u_i; \kappa_u)) \right. \\ \quad \left. + \mathbf{\epsilon}_\theta \Delta L^{-1}(v_i; \tau_v) + \frac{\Delta \mathbf{\epsilon}_\theta(v_{i-1})}{2r_i^{(v)}} (\Delta L^{-1}(v_i; \tau_v) + B(\Delta v_i; \kappa_v)) \right], \gamma \geq 0, \\ \left(\frac{\alpha_{t_{i+1}}}{\alpha_{t_i}} \right)^{-\gamma} \mathbf{x}_{t_i} + \alpha_{t_{i+1}}^{-\gamma} \left[\mathbf{x}_\theta \Delta L^{-1}(u_i; \tau_u) + \frac{\Delta \mathbf{x}_\theta(u_{i-1})}{2r_i^{(u)}} (\Delta L^{-1}(u_i; \tau_u) + B(\Delta u_i; \kappa_u)) \right. \\ \quad \left. + \mathbf{\epsilon}_\theta \Delta L^{-1}(v_i; \tau_v) + \frac{\Delta \mathbf{\epsilon}_\theta(v_{i-1})}{2r_i^{(v)}} (\Delta L^{-1}(v_i; \tau_v) + B(\Delta v_i; \kappa_v)) \right], \gamma < 0. \end{cases} \\
 999
 \end{aligned} \tag{17}$$

1000 B.3.3 DERIVATION OF SECOND-ORDER CORRECTOR

1002 First, we approximate $\mathbf{x}_\theta(u)$ and $\mathbf{\epsilon}_\theta(v)$ near u_i and v_i by a forward-difference expansion. For the
 1003 case $\gamma \geq 0$, this yields

$$\begin{aligned}
 1005 \quad \mathbf{x}_{t_{i+1}} &\approx \left(\frac{\sigma_{t_{i+1}}}{\sigma_{t_i}} \right)^\gamma \mathbf{x}_{t_i} + \sigma_{t_{i+1}}^\gamma \left[\mathbf{x}_\theta(u_i) \Delta L^{-1}(u_i; \tau_u) + \frac{\Delta \mathbf{x}_\theta(u_i)}{\Delta u_i} \int_{u_i}^{u_{i+1}} (u - u_i) \frac{dL^{-1}(u; \tau_u)}{du} du \right. \\
 1006 \quad &\quad \left. + \mathbf{\epsilon}_\theta(v_i) \Delta L^{-1}(v_i; \tau_v) + \frac{\Delta \mathbf{\epsilon}_\theta(v_i)}{\Delta v_i} \int_{v_i}^{v_{i+1}} (v - v_i) \frac{dL^{-1}(v; \tau_v)}{dv} dv \right] \quad (\gamma \geq 0).
 \end{aligned} \tag{18}$$

1010 Using

$$\begin{aligned}
 1012 \quad \frac{1}{\Delta u_i} \int_{u_i}^{u_{i+1}} (u - u_i) \frac{dL^{-1}(u; \tau_u)}{du} du &= \frac{1}{2} \left(\frac{dL^{-1}(u; \tau_u)}{du} \Big|_{u_i} \Delta u_i + \mathcal{O}((\Delta u_i)^2) \right) \\
 1013 \quad &= \frac{1}{2} (\Delta L^{-1}(u_i; \tau_u) + \mathcal{O}((\Delta u_i)^2))
 \end{aligned} \tag{19}$$

1017 we obtain

$$\begin{aligned}
 1019 \quad \mathbf{x}_{t_{i+1}} &\approx \left(\frac{\sigma_{t_{i+1}}}{\sigma_{t_i}} \right)^\gamma \mathbf{x}_{t_i} + \sigma_{t_{i+1}}^\gamma \left[\mathbf{x}_\theta(u_i) \Delta L^{-1}(u_i; \tau_u) + \frac{\Delta \mathbf{x}_\theta(u_i)}{2} (\Delta L^{-1}(u_i; \tau_u) + \mathcal{O}((\Delta u_i)^2)) \right. \\
 1020 \quad &\quad \left. + \mathbf{\epsilon}_\theta(v_i) \Delta L^{-1}(v_i; \tau_v) + \frac{\Delta \mathbf{\epsilon}_\theta(v_i)}{2} (\Delta L^{-1}(v_i; \tau_v) + \mathcal{O}((\Delta v_i)^2)) \right] \quad (\gamma \geq 0).
 \end{aligned} \tag{20}$$

1024 Next, while preserving second-order accuracy, we incorporate the $B(\Delta u_i; \kappa_u) = \mathcal{O}((\Delta u_i)^2)$ and
 1025 $B(\Delta v_i; \kappa_v) = \mathcal{O}((\Delta v_i)^2)$ correction terms and include the $\gamma < 0$ case, which yields the following
 1026 second-order corrector of Dual-Solver.

$$\boxed{\begin{aligned}
& \mathbf{x}_{t_{i+1}}^{2\text{nd-corr.}} = \begin{cases} \left(\frac{\sigma_{t_{i+1}}}{\sigma_{t_i}}\right)^\gamma \mathbf{x}_{t_i} + \sigma_{t_{i+1}}^\gamma \left[\mathbf{x}_\theta \Delta L^{-1}(u_i; \tau_u) + \frac{\Delta \mathbf{x}_\theta(u_i)}{2} (\Delta L^{-1}(u_i; \tau_u) + B(\Delta u_i; \kappa_u)) \right. \\ \left. + \boldsymbol{\epsilon}_\theta \Delta L^{-1}(v_i; \tau_v) + \frac{\Delta \boldsymbol{\epsilon}_\theta(v_i)}{2} (\Delta L^{-1}(v_i; \tau_v) + B(\Delta v_i; \kappa_v)) \right], \gamma \geq 0, \\ \left(\frac{\alpha_{t_{i+1}}}{\alpha_{t_i}}\right)^{-\gamma} \mathbf{x}_{t_i} + \alpha_{t_{i+1}}^{-\gamma} \left[\mathbf{x}_\theta \Delta L^{-1}(u_i; \tau_u) + \frac{\Delta \mathbf{x}_\theta(u_i)}{2} (\Delta L^{-1}(u_i; \tau_u) + B(\Delta u_i; \kappa_u)) \right. \\ \left. + \boldsymbol{\epsilon}_\theta \Delta L^{-1}(v_i; \tau_v) + \frac{\Delta \boldsymbol{\epsilon}_\theta(v_i)}{2} (\Delta L^{-1}(v_i; \tau_v) + B(\Delta v_i; \kappa_v)) \right], \gamma < 0. \end{cases} \quad (21)
\end{aligned}}$$

B.4 PROOF OF LOCAL TRUNCATION ERROR

Proof. We begin by rewriting the exact solution in Eq. 6 as follows:

$$\mathbf{x}_{t_{i+1}} = \left(\frac{\sigma_{t_{i+1}}}{\sigma_{t_i}}\right)^\gamma \mathbf{x}_{t_i} + \sigma_{t_{i+1}}^\gamma (I_x + I_\epsilon),$$

with

$$I_x := \int_{u_i}^{u_{i+1}} (L^{-1})'(u) \mathbf{x}_\theta(u) du, \quad I_\epsilon := \int_{v_i}^{v_{i+1}} (L^{-1})'(v) \boldsymbol{\epsilon}_\theta(v) dv.$$

We then demonstrate the accuracy of the proposed second-order corrector $\mathbf{x}_{t_{i+1}}^{2\text{nd-corr.}}$ in equation 8 by using the approximation for I_x and I_ϵ with third-order accuracy.

We take second-order Taylor expansions of $\mathbf{x}_\theta(u)$ and $(L^{-1})'(u)$ at u_i :

$$\mathbf{x}_\theta(u) = \mathbf{x}_\theta(u_i) + \mathbf{x}'_\theta(u_i)s + \frac{1}{2}\mathbf{x}''_\theta(\xi_u)s^2, \quad (L^{-1})'(u) = (L^{-1})'(u_i) + (L^{-1})''(u_i)s + \frac{1}{2}(L^{-1})^{(3)}(\zeta_u)s^2,$$

where $s = u - u_i$ and $\xi_u, \zeta_u \in (u_i, u_{i+1})$. Then the integral I_x can be represented in terms of the integral of s as

$$I_x = \int_0^{\Delta u_i} (A_0 + A_1s + \mathcal{O}(s^2)) ds = A_0 \Delta u_i + \frac{1}{2}A_1 (\Delta u_i)^2 + \mathcal{O}((\Delta u_i)^3)$$

with

$$A_0 := (L^{-1})'(u_i) \mathbf{x}_\theta(u_i), \quad A_1 := (L^{-1})'(u_i) \mathbf{x}'_\theta(u_i) + (L^{-1})''(u_i) \mathbf{x}_\theta(u_i),$$

and $\Delta L^{-1}(u_i) := L^{-1}(u_{i+1}) - L^{-1}(u_i)$. Furthermore, I_x can be expressed in terms of $\mathbf{x}_\theta(u_i)$ and its derivative as

$$\begin{aligned}
I_x &= \mathbf{x}_\theta(u_i) \underbrace{\left((L^{-1})'(u_i) \Delta u_i + \frac{1}{2}(L^{-1})''(u_i) (\Delta u_i)^2 \right)}_{= \Delta L^{-1}(u_i) + \mathcal{O}((\Delta u_i)^3)} + \mathbf{x}'_\theta(u_i) (L^{-1})'(u_i) \frac{1}{2}(\Delta u_i)^2 + \mathcal{O}((\Delta u_i)^3) \\
&= \mathbf{x}_\theta(u_i) \Delta L^{-1}(u_i) + \mathbf{x}'_\theta(u_i) (L^{-1})'(u_i) \frac{1}{2}(\Delta u_i)^2 + \mathcal{O}((\Delta u_i)^3).
\end{aligned}$$

From the definition of second-order corrector approximation in equation 8, let us denote the last part of the approximation with \tilde{I}_x and \tilde{I}_ϵ as

$$\begin{aligned}
\tilde{I}_x &= \mathbf{x}_\theta(u_i) \Delta L^{-1}(u_i) + \frac{1}{2} \Delta \mathbf{x}_\theta(u_i) (\Delta L^{-1}(u_i) + B_x(\Delta u_i)), \\
\tilde{I}_\epsilon &= \boldsymbol{\epsilon}_\theta(v_i) \Delta L^{-1}(v_i) + \frac{1}{2} \Delta \boldsymbol{\epsilon}_\theta(v_i) (\Delta L^{-1}(v_i) + B_\epsilon(\Delta v_i)).
\end{aligned}$$

Here, we remark that $B_x(\Delta u_i) = \mathcal{O}((\Delta u_i)^2)$ and $B_\epsilon(\Delta v_i) = \mathcal{O}((\Delta v_i)^2)$. Using the fact

$$\Delta \mathbf{x}_\theta(u_i) = \mathbf{x}_\theta(u_{i+1}) - \mathbf{x}_\theta(u_i) = \mathbf{x}'_\theta(u_i) \Delta u_i + \mathcal{O}((\Delta u_i)^2),$$

\tilde{I}_x can be rewritten as

$$\tilde{I}_x = \mathbf{x}_\theta(u_i) \Delta L^{-1}(u_i) + \mathbf{x}'_\theta(u_i) \frac{1}{2} \Delta u_i (\Delta L^{-1}(u_i) + B_x(\Delta u_i)) + \mathcal{O}((\Delta u_i)^3).$$

Then

$$I_x - \tilde{I}_x = \frac{1}{2} \mathbf{x}'_\theta(u_i) \left[(L^{-1})'(u_i) (\Delta u_i)^2 - \Delta L^{-1}(u_i) \Delta u_i \right] - \frac{1}{2} \mathbf{x}'_\theta(u_i) B_x(\Delta u_i) \Delta u_i + \mathcal{O}((\Delta u_i)^3).$$

Since $\Delta L^{-1}(u_i) = (L^{-1})'(u_i) \Delta u_i + \mathcal{O}((\Delta u_i)^2)$ and $B_x(\Delta u_i) = \mathcal{O}((\Delta u_i)^2)$, we conclude that $I_x - \tilde{I}_x = \mathcal{O}((\Delta u_i)^3)$. By the same argument, $I_\epsilon - \tilde{I}_\epsilon = \mathcal{O}((\Delta v_i)^3)$. Therefore, it follows that

$$\mathbf{x}_{t_{i+1}}^{\text{exact}} - \mathbf{x}_{t_{i+1}}^{2\text{nd-corr.}} = \sigma_{t_{i+1}}^\gamma [(I_x - \tilde{I}_x) + (I_\epsilon - \tilde{I}_\epsilon)] = \mathcal{O}((\Delta u_i)^3 + (\Delta v_i)^3).$$

□

1080 C EXPERIMENTAL DETAILS
10811082 C.1 SETUP
10831084 **Environment details** We run all experiments on a single NVIDIA RTX pro 6000
1085 (Driver 575.57.08) under Ubuntu 24.04 with Python 3.11.13, PyTorch 2.8.0, and CUDA 12.9.
10861087 **Backbone Details** We evaluate DiT-XL/2 (Peebles & Xie, 2023), GM-DiT (Chen et al., 2025),
1088 SANA (Xie et al., 2024), and PixArt- α (Chen et al., 2023). All models are obtained via the Hugging
1089 Face Diffusers (von Platen et al., 2022) pipelines and run in evaluation mode with `bfloat16`.
1090 The model identifiers are:1091

- DiT: `facebook/DiT-XL-2-256`
- GM-DiT: `Lakonik/gmflow_imagenet_k8_ema`
- SANA: `Efficient-Large-Model/Sana_600M_512px_diffusers`
- PixArt- α : `PixArt-alpha/PixArt-XL-2-512x512`

10921093 **Solver Details** The solvers used in our experiments are the diffusion-dedicated DDIM (Song et al.,
1094 2021a), the second-order multistep DPM-Solver++ (Lu et al., 2022b), and the learned solvers BNS-
1095 Solver (Shaul et al., 2024) and DS-Solver (Wang et al., 2025). We use DDIM as the first-order coun-
1096 terpart of DPM-Solver++ (as proposed in Lu et al. (2022a)). Implementations of DPM-Solver++
1097 and DS-Solver are taken from their official GitHub repositories^{1,2}, and BNS-Solver is implemented
1098 according to the paper.
10991100 **Learning Details** We train with AdamW (Loshchilov & Hutter, 2017) using $\beta = (0.9, 0.999)$,
1101 $\epsilon = 1e-8$, and weight decay 0.01. The learning rate decays from 2×10^{-3} to 1×10^{-4} over
1102 20k steps via cosine annealing (Loshchilov & Hutter, 2016). The batch size is fixed to 10 for all
1103 experiments. For regression-based learning, the teacher trajectory is a 200-step DDIM Song et al.
1104 (2021a) method on 1k samples.
11051106 **Sampling Details** We use an NFE grid of $\{3, 4, 5, 6, 7, 8, 9\}$ for all backbones. Classifier-free
1107 guidance (CFG; Ho & Salimans, 2021) is fixed per backbone as follows: DiT = 1.5, GM-DiT = 1.4,
1108 SANA = 4.5, and PixArt- α = 3.5. For FID, we use the publicly released ImageNet training-set
1109 statistics (Dhariwal & Nichol, 2021), while for SANA and PixArt- α we compute the FID statistics
1110 from 30k samples drawn from the MSCOCO 2014 (Lin et al., 2014) evaluation set (Lin et al., 2014);
1111 CLIP is computed with the official RN101 variant (Radford et al., 2021). We generate 50,000 images
1112 for ImageNet and 30,000 images for text-to-image (MSCOCO 2014 (Lin et al., 2014) evaluation
1113 prompts).
11141115 C.2 QUANTITATIVE RESULTS
11161117 Table 4: **DiT** (Peebles & Xie, 2023): FID (\downarrow) vs. NFE. ImageNet generation, 50k samples.
11181119
1120

Method	3	4	5	6	7	8	9
DDIM (Song et al., 2021a)	89.33	56.33	32.91	20.06	13.64	9.55	7.42
DPM-Solver++(Lu et al., 2022b)	88.46	47.64	22.19	11.49	7.06	5.19	4.43
BNS-Solver(Shaul et al., 2024)	103.26	38.20	14.53	6.37	4.25	3.37	3.05
DS-Solver(Wang et al., 2025)	67.31	17.31	7.66	5.46	3.79	3.08	3.02
Dual-Solver (Ours)	24.91	6.05	3.52	3.13	2.75	2.60	2.67

11211¹<https://github.com/LuChengTHU/dpm-solver>2²<https://github.com/MCG-NJU/NeuralSolver>

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

Table 5: **GM-DiT** Chen et al. (2025): FID (\downarrow) vs. NFE. ImageNet generation, 50k samples.

Method	3	4	5	6	7	8	9
DDIM (Song et al., 2021a)	70.15	35.98	19.70	12.55	9.03	7.01	5.78
DPM-Solver++(Lu et al., 2022b)	63.24	19.53	7.85	4.74	3.65	3.15	2.89
BNS-Solver(Shaul et al., 2024)	57.88	26.64	10.31	5.02	3.43	2.66	2.44
DS-Solver(Wang et al., 2025)	34.15	11.60	5.64	3.49	2.70	2.48	2.41
Dual-Solver-R (Ours)	45.53	14.43	7.49	3.75	2.77	2.44	2.32
Dual-Solver-C (Ours)	6.81	3.76	3.09	2.97	2.77	2.70	2.60

R = trajectory regression-based; C = classification-based.

Table 6: **PixArt- α** (Chen et al., 2023): FID (\downarrow) and CLIP score (\uparrow) vs. NFE. Text-to-image on MSCOCO 2014 (Lin et al., 2014) with 30k samples.

Method	3	4	5	6	7	8	9
FID (\downarrow)							
DDIM (Song et al., 2021a)	71.37	45.21	35.12	30.92	28.60	27.39	26.58
DPM-Solver++(Lu et al., 2022b)	76.01	41.77	31.48	27.83	26.56	25.82	25.48
BNS-Solver(Shaul et al., 2024)	125.65	66.94	41.31	32.55	28.55	25.18	24.15
DS-Solver(Wang et al., 2025)	118.01	66.09	43.62	29.74	28.25	26.57	25.22
Dual-Solver (Ours)	66.61	31.61	24.68	22.39	22.51	21.96	22.01
CLIP (RN101, \uparrow)							
DDIM (Song et al., 2021a)	0.4469	0.4670	0.4739	0.4764	0.4763	0.4778	0.4779
DPM-Solver++(Lu et al., 2022b)	0.4422	0.4676	0.4746	0.4763	0.4768	0.4771	0.4771
BNS-Solver(Shaul et al., 2024)	0.4320	0.4582	0.4694	0.4733	0.4746	0.4755	0.4757
DS-Solver(Wang et al., 2025)	0.4303	0.4568	0.4692	0.4748	0.4754	0.4762	0.4764
Dual-Solver (Ours)	0.4499	0.4732	0.4784	0.4803	0.4806	0.4814	0.4815

Table 7: **SANA** (Xie et al., 2024): FID (\downarrow) and CLIP score (RN101, \uparrow) vs. NFE. Text-to-image on MSCOCO 2014 (Lin et al., 2014) with 30k samples.

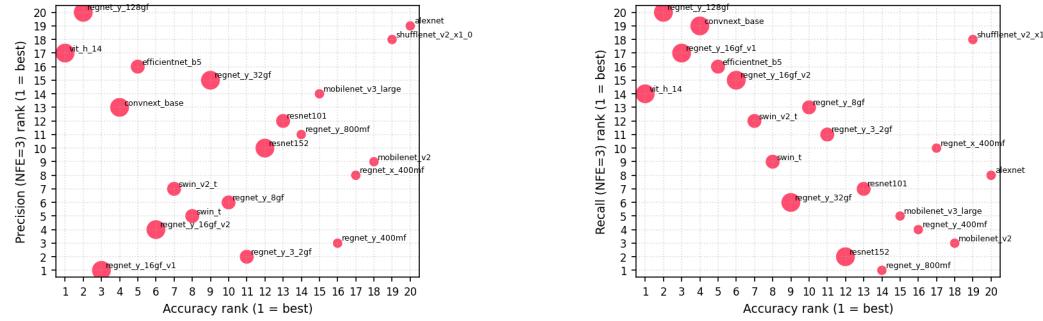
Method	3	4	5	6	7	8	9
FID (\downarrow)							
DDIM (Song et al., 2021a)	45.05	27.72	23.93	23.06	22.99	22.96	22.97
DPM-Solver++(Lu et al., 2022b)	45.33	26.12	22.56	22.48	22.79	22.90	23.11
BNS-Solver(Shaul et al., 2024)	48.16	26.37	21.04	20.66	20.79	21.13	21.64
DS-Solver(Wang et al., 2025)	48.65	29.15	21.66	20.65	21.43	21.80	22.27
Dual-Solver (Ours)	21.79	19.40	18.81	18.52	19.57	19.43	19.77
CLIP (\uparrow)							
DDIM (Song et al., 2021a)	0.4656	0.4782	0.4813	0.4821	0.4824	0.4824	0.4824
DPM-Solver++(Lu et al., 2022b)	0.4652	0.4779	0.4813	0.4821	0.4822	0.4820	0.4820
BNS-Solver(Shaul et al., 2024)	0.4651	0.4772	0.4800	0.4807	0.4808	0.4809	0.4808
DS-Solver(Wang et al., 2025)	0.4635	0.4765	0.4808	0.4816	0.4818	0.4818	0.4816
Dual-Solver (Ours)	0.4795	0.4801	0.4821	0.4837	0.4843	0.4844	0.4849

1188 D CLASSIFIER ACCURACY VS. SAMPLE QUALITY

1190 As examined in Sec. 6.2, we study the relationship between classifier accuracy and FID. In this
 1191 section, Table 8 provides detailed numerical results, and Fig. 11 analyzes the trend from the per-
 1192 spectives of precision and recall (Kynkääniemi et al., 2019). Table 8 reports the pretrained weights
 1193 from TorchVision (maintainers & contributors, 2016) and the results of training Dual-Solver with
 1194 each set of weights. Using a GM-DiT (Chen et al., 2025) backbone, we present FID, precision, and
 1195 recall at NFE= 3 and 9. The best value for each metric is highlighted in bold. In Fig. 12, we show
 1196 NFE=3 samples from Dual-Solver trained with the classifiers listed in Table 8, ordered by increasing
 1197 FID (lower is better).

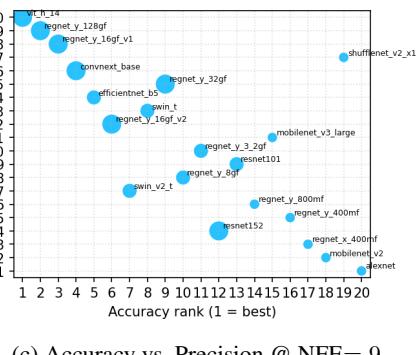
1198 **Table 8: ImageNet per-classifier metrics.** Top-5 accuracy, FID, precision/recall at NFE=3 and 9,
 1199 and GFLOPs; FID is measured on 10k samples after training Dual-Solver for each classifier.

Weights ³	Top-5 Acc. (%)	FID@3	FID@9	Precision@3	Precision@9	Recall@3	Recall@9	GFLOPS
ViT_H14_Weights.IMAGENET1K_SWAG_E2E_V1	98.694	10.71	6.72	0.8376	0.8960	0.7420	0.7311	1016.72
RegNet_Y_128GF_Weights.IMAGENET1K_SWAG_LINEAR_V1	97.844	12.99	6.61	0.8230	0.8996	0.7327	0.7336	127.52
RegNet_Y_16GF_Weights.IMAGENET1K_SWAG_LINEAR_V1	97.244	9.97	5.32	0.8573	0.9007	0.7392	0.7467	15.91
ConvNeXt_Base_Weights.IMAGENET1K_V1	96.870	10.28	5.78	0.8529	0.9040	0.7359	0.7327	15.36
EfficientNet_B5_Weights.IMAGENET1K_V1	96.628	11.53	6.01	0.8379	0.9048	0.7393	0.7310	10.27
RegNet_Y_16GF_Weights.IMAGENET1K_V2	96.328	9.63	5.21	0.8559	0.9061	0.7396	0.7455	15.91
SwinV2_T_Weights.IMAGENET1K_V1	96.132	9.73	5.34	0.8555	0.9078	0.7439	0.7410	5.94
SwinT_Weights.IMAGENET1K_V1	95.776	9.65	5.29	0.8559	0.9055	0.7448	0.7425	4.49
RegNet_Y_32GF_Weights.IMAGENET1K_V1	95.340	9.55	5.04	0.8520	0.9043	0.7464	0.7455	32.28
RegNet_Y_8GF_Weights.IMAGENET1K_V1	95.048	9.54	5.10	0.8559	0.9074	0.7438	0.7414	8.47
RegNet_Y_3_2GF_Weights.IMAGENET1K_V1	94.576	9.50	5.01	0.8564	0.9065	0.7448	0.7436	3.18
ResNet152_Weights.IMAGENET1K_V1	94.046	9.49	5.03	0.8537	0.9089	0.7493	0.7459	11.51
ResNet101_Weights.IMAGENET1K_V1	93.546	9.59	4.98	0.8529	0.9067	0.7459	0.7454	7.80
RegNet_Y_800MF_Weights.IMAGENET1K_V1	93.136	9.40	4.99	0.8532	0.9081	0.7508	0.7437	0.83
MobileNetV3_Large_Weights.IMAGENET1K_V2	92.566	9.44	4.87	0.8523	0.9062	0.7467	0.7475	0.22
RegNet_Y_400MF_Weights.IMAGENET1K_V1	91.716	9.50	4.87	0.8560	0.9082	0.7470	0.7489	0.40
RegNet_X_400MF_Weights.IMAGENET1K_V1	90.950	9.60	4.93	0.8553	0.9091	0.7448	0.7410	0.41
MobileNet_V2_Weights.IMAGENET1K_V1	90.286	9.52	5.03	0.8541	0.9118	0.7471	0.7331	0.30
ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1	88.316	11.57	5.51	0.8368	0.9017	0.7388	0.7436	0.14
AlexNet_Weights.IMAGENET1K_V1	79.066	11.20	6.22	0.8300	0.9163	0.7455	0.7187	0.71

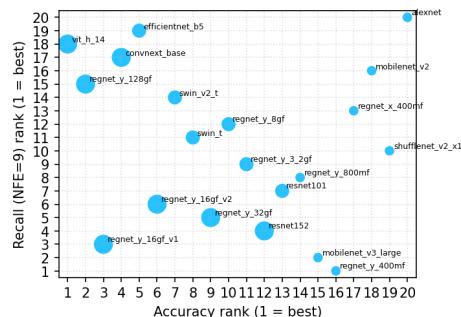


(a) Accuracy vs. Precision @ NFE= 3

(b) Accuracy vs. Recall @ NFE= 3



(c) Accuracy vs. Precision @ NFE= 9



(d) Accuracy vs. Recall @ NFE= 9

1238 **Figure 11: Accuracy vs. precision/recall.** We select 20 TorchVision classifiers sorted by accuracy,
 1239 learn the Dual-Solver for each, and report precision/recall at NFE=3 and 9 on 10k samples.

1240
 1241
³<https://docs.pytorch.org/vision/main/models.html>

1242 **Classifier accuracy vs. precision and recall.** Fig. 11 (a) and (b) plot precision and recall versus
 1243 classifier accuracy at NFE= 3, respectively. The results show little relationship between accuracy
 1244 and precision, while accuracy versus recall follows the V-shape seen in Fig. 6. In other words,
 1245 neither very high nor very low accuracy helps recall; a moderate level yields higher recall. The
 1246 pattern differs at NFE= 9. Fig. 11 (c) and (d) plot precision and recall versus classifier accuracy at
 1247 NFE= 9. Unlike the NFE= 3 case, precision exhibits a strong negative correlation with accuracy,
 1248 and accuracy appears largely unrelated to recall.

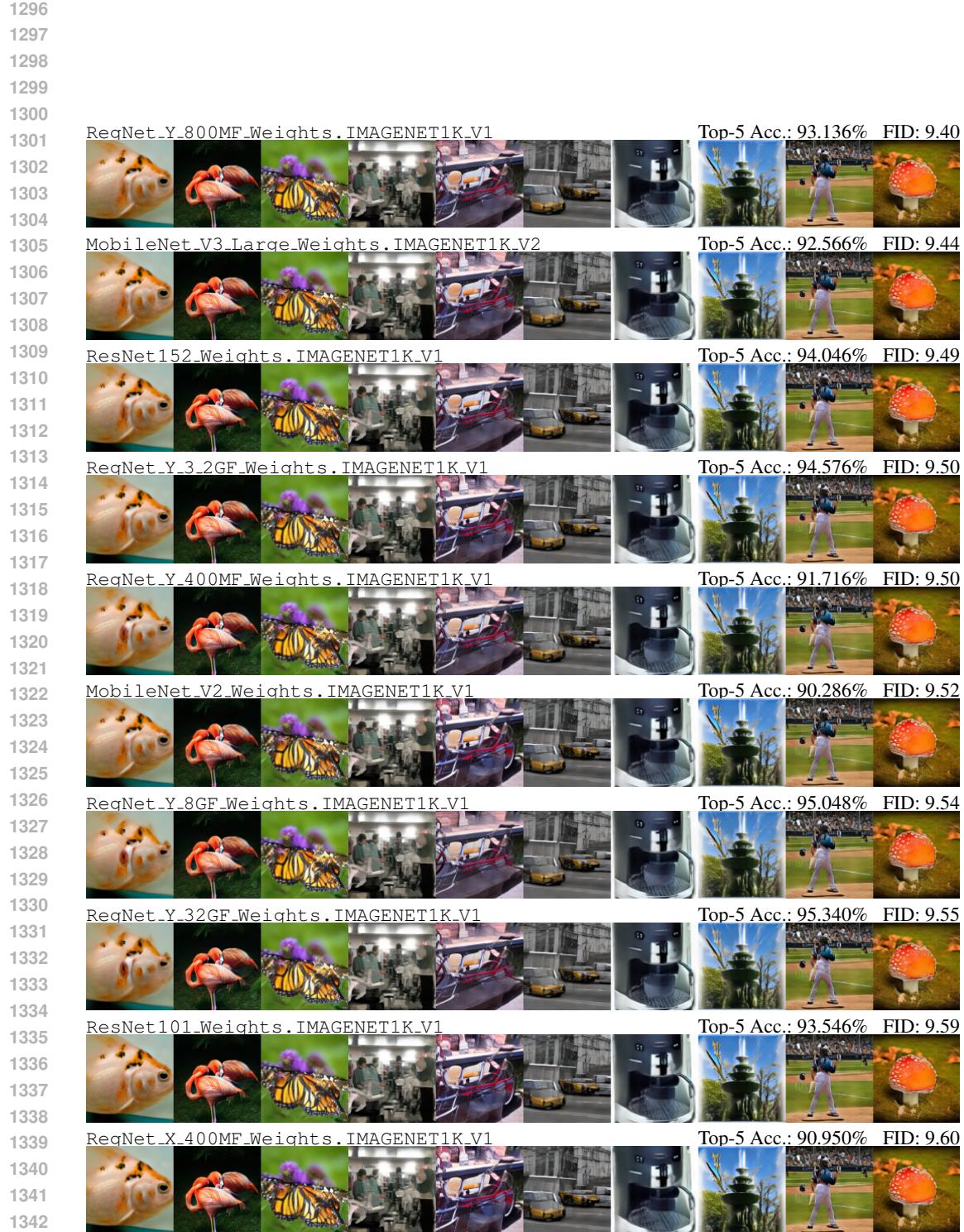
1249 **OpenCLIP accuracy vs. FID.** Table 9 reports the FID evaluation used to select the CLIP model
 1250 for learning Dual-Solver on the text-to-image task. All weights are from OpenCLIP (Ilharco et al.,
 1251 2021) and are available from the official repository⁴. Using the SANA (Xie et al., 2024) backbone
 1252 we trained the Dual-Solver for 20k steps. At NFE=3 and NFE=6, we generated 10k samples with
 1253 MSCOCO 2014 (Lin et al., 2014) prompts and measured FID on the evaluation set. Based on these
 1254 results, we chose the RN101 weights—which achieved an FID of 18.52 at NFE=6—as the model
 1255 for learning the Dual-Solver in the main text-to-image experiment. Notably, this result also indicates
 1256 that models with somewhat lower classification accuracy can yield lower FID.

1257 **Table 9: OpenCLIP per-classifier metrics.** MSCOCO accuracy, FID at NFE=3 and 6, and
 1258 GFLOPs; FID is measured on 30k samples after learning Dual-Solver for each classifier.

Weights	MSCOCO Acc. (%)	FID@3	FID@6	GFLOPs
ViT-H-14-378-quickgelu, dfn5b	63.76	23.98	23.28	1054.05
coca_ViT-L-14, mscoco.finetuned_laion2b_s13b_b90k	60.28	23.09	21.22	214.52
EVA02-E-14, laion2b_s4b_b115k	58.92	22.41	21.12	1007.93
convnext_xxlarge, laion2b_s34b_b82k_augreg	58.34	21.05	20.86	800.88
ViT-B-16-SigLIP-256, webli	57.24	21.03	19.87	57.84
EVA02-L-14-336, merged2b_s6b_b61k	56.05	23.15	23.28	167.50
ViT-L-14, commonpool_xl_laion_s13b_b90k	55.13	23.46	22.81	175.33
convnext_base_w, laion_aesthetic_s13b_b82k	52.38	20.97	19.86	49.38
convnext_base_w_320, laion_aesthetic_s13b_b82k_augreg	51.42	20.69	20.26	175.33
ViT-B-16-plus-240, laion400m_e32	49.79	21.66	21.18	64.03
ViT-B-32, laion2b_e16	47.68	23.75	23.49	14.78
ViT-B-32-quickgelu, metaclip_fullcc	46.62	22.46	21.42	14.78
RN50x16, openai	45.38	22.49	21.36	33.34
ViT-B-32, laion400m_e31	43.27	22.40	21.70	14.78
RN101, openai	40.25	21.78	18.52	25.50
ViT-B-16, commonpool_l_text_s1b_b8k	37.30	23.50	23.54	41.09
ViT-B-16, commonpool_l_s1b_b8k	28.55	22.94	24.73	41.09
ViT-B-32, commonpool_m_text_s128m_b4k	14.52	22.39	22.55	14.78
ViT-B-32, commonpool_s_clip_s13m_b4k	2.24	22.32	21.31	14.78
coca_ViT-B-32, mscoco.finetuned_laion2b_s13b_b90k	0.60	23.76	23.14	33.34

1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

⁴https://github.com/mlfoundations/open_clip



1344 Figure 12: **Sampling results by classifier.** Classifier weights, top-5 accuracy, and FID are reported;
1345 entries are sorted by ascending FID.

1346
1347
1348
1349

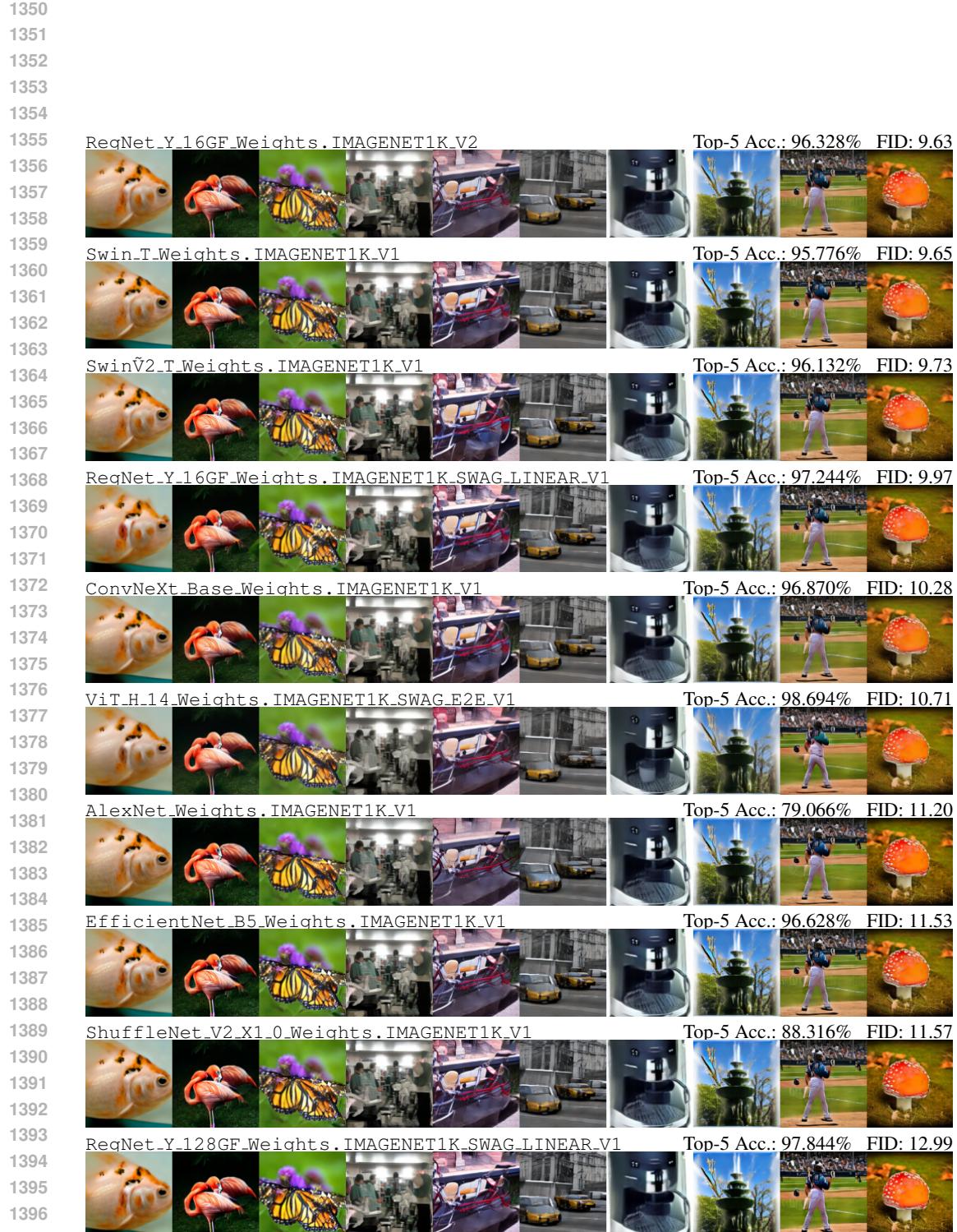


Figure 12: Sampling results by classifier. (continued).

1398
1399
1400
1401
1402
1403

E ANALYSIS OF CONVERGENCE TIME

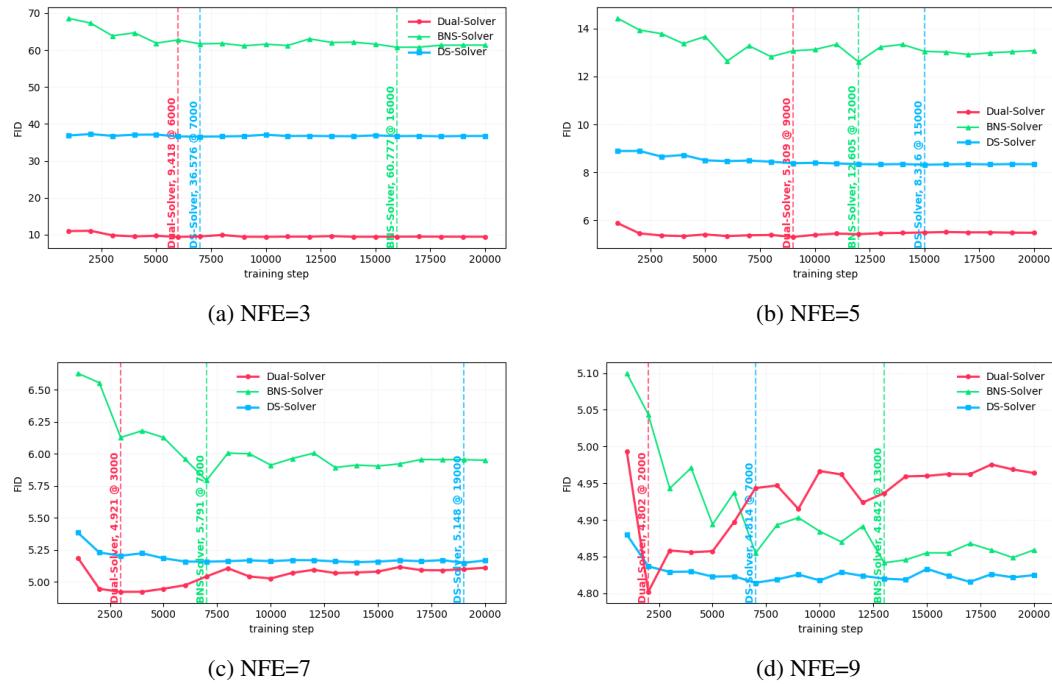


Figure 13: **FID vs. training step** for three solvers on GM-DiT (CFG=1.4): Dual-Solver (Ours), BNS-Solver (Shaul et al., 2024), and DS-Solver (Wang et al., 2025).

In Sec. 6.4, we analyze the per-step computational cost. Table 10 provides the corresponding summary statistics. In this section, we analyze the time to convergence. As reported in Appendix C, we train up to 20k steps, but the best-performing checkpoint is typically found earlier. Because FID evaluates a different criterion than the regression- and classification-based objectives, training longer does not ensure better FID.

Fig. 13 reports FID evaluated every 1k steps during training up to 20k. We use GM-DiT (Chen et al., 2025) as the backbone and compute FID over 10k samples. All three models—Dual-Solver (ours), BNS-Solver (Shaul et al., 2024), and DS-Solver (Wang et al., 2025)—reach their minimum FID before 20k steps.

For NFE= 3, Dual-Solver attains its minimum at 6k steps, DS-Solver at 7k steps, and BNS-Solver at 16k steps. For NFE= 5, Dual-Solver at 9k, BNS-Solver at 12k, and DS-Solver at 15k. For NFE= 7, Dual-Solver at 3k, BNS-Solver at 7k, and DS-Solver at 19k. For NFE= 9, Dual-Solver at 2k, DS-Solver at 7k, and BNS-Solver at 13k.

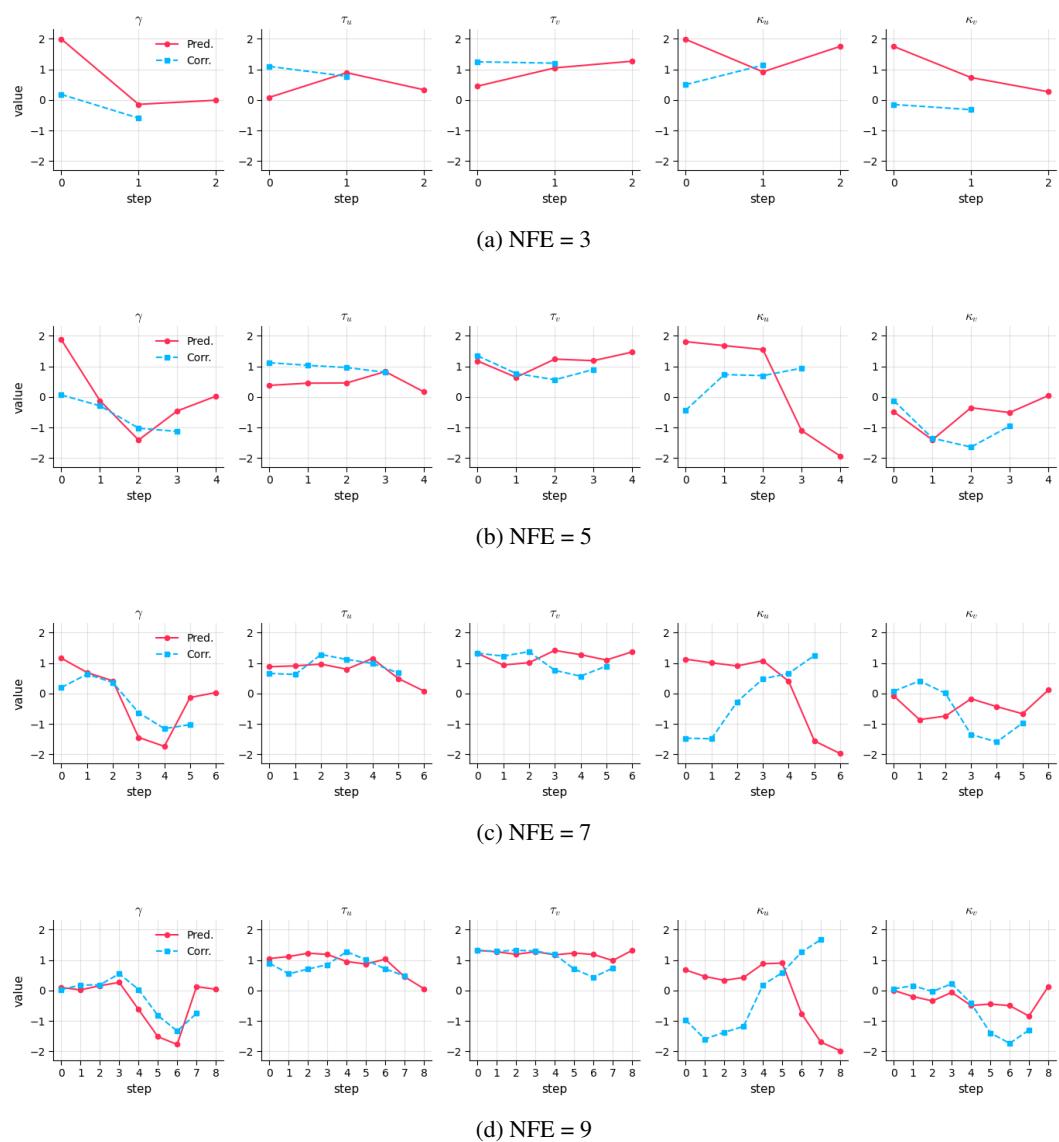
For Dual-Solver, FID often increases after the first minimum, which we attribute to overfitting toward classifier decision regions that reduces recall (Appendix D). Across NFE= 3, 5, 7, 9, Dual-Solver converges faster; we attribute this to the classification objective, which only requires samples to enter the correct decision region rather than matching per-sample targets.

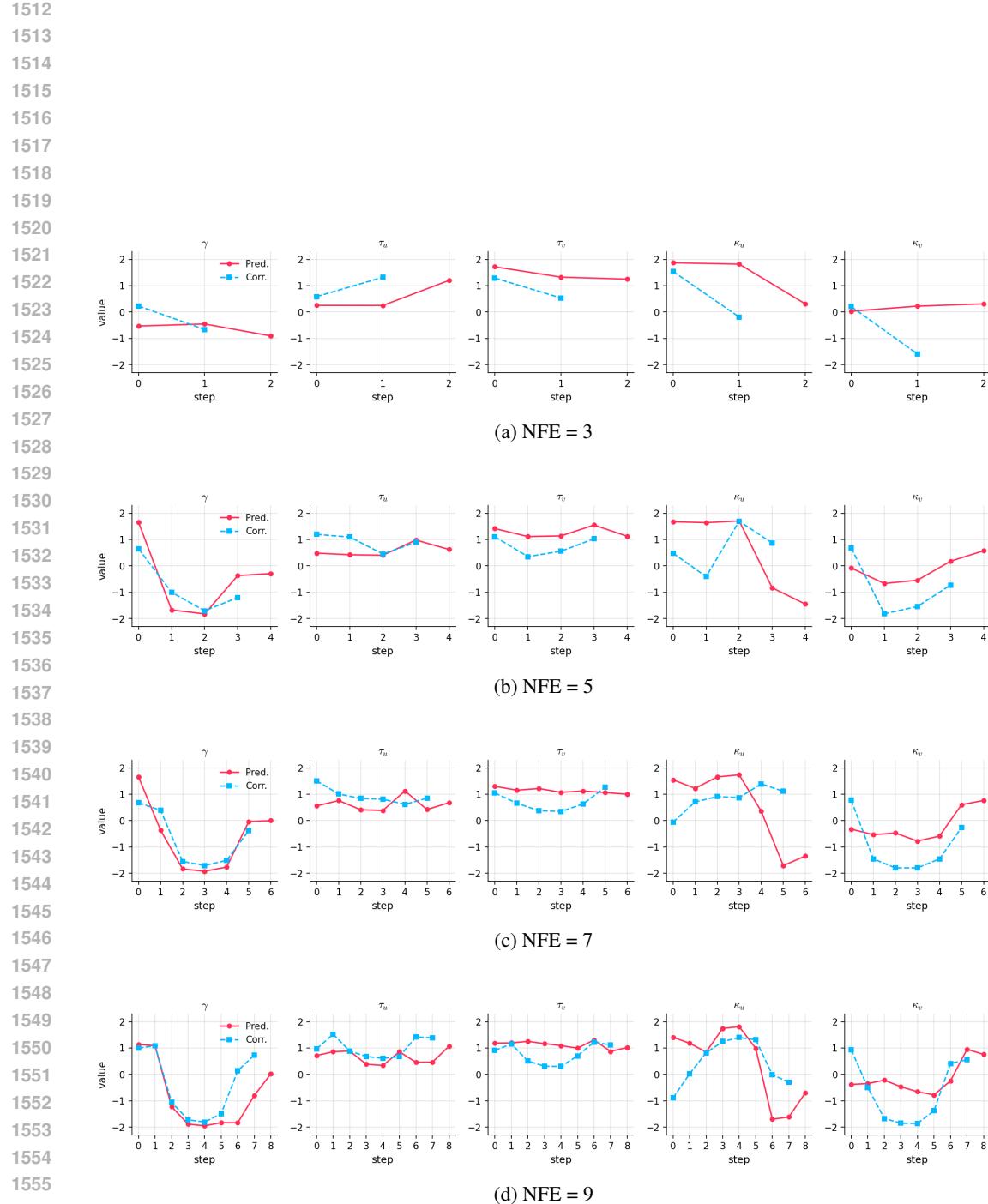
Stage	Dual-Solver	BNS-Solver	DS-Solver
forward	135.39	140.57	138.33
decoding	73.67	—	—
classifier	10.19	—	—
backward	253.04	296.82	297.02
sum	472.29	437.39	435.35

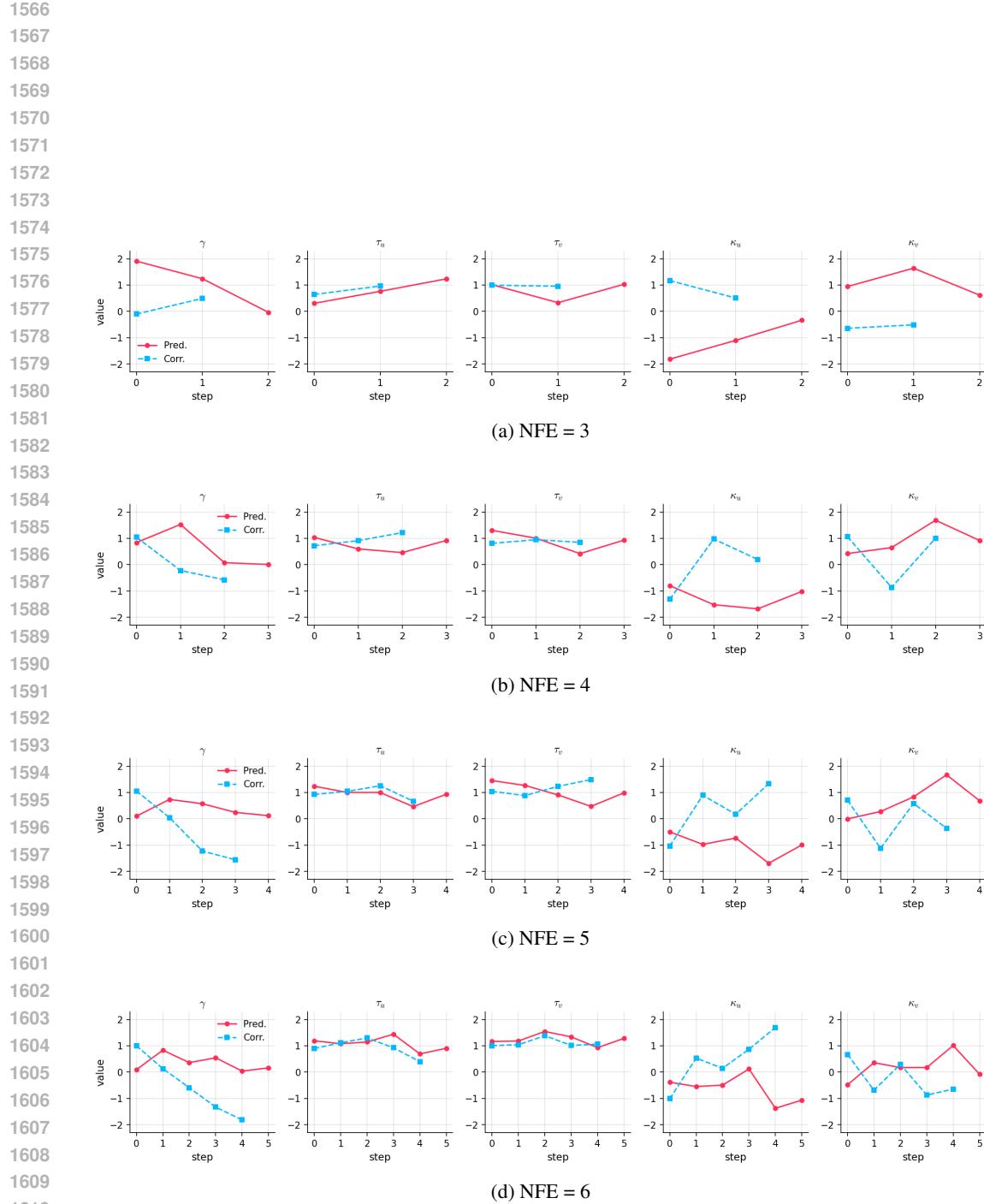
Table 10: Training time per step (ms; batch size = 10, GM-DiT). Means over 100 runs.

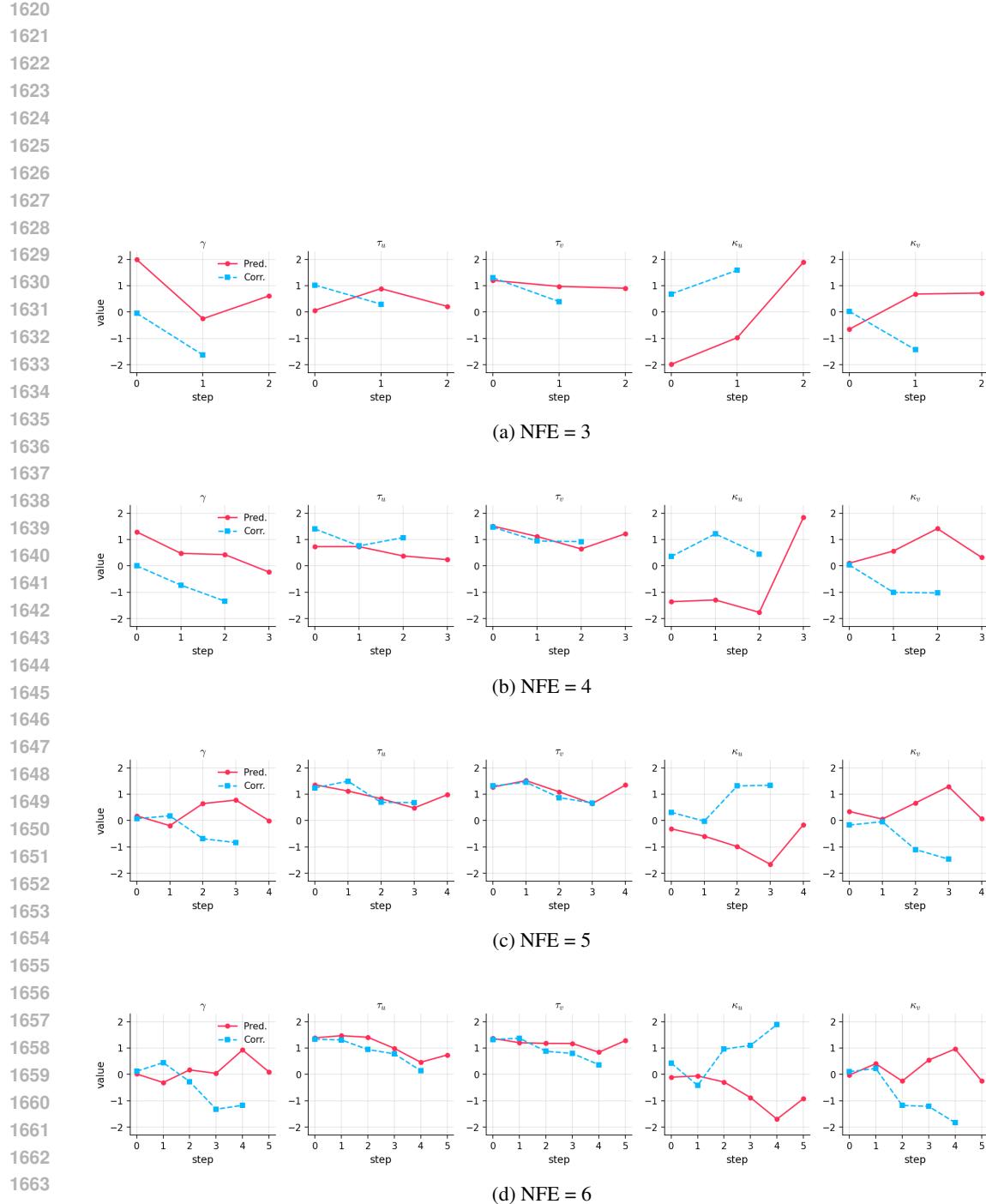
1458 F LEARNED PARAMETERS
1459

1460 In Figs. 14, 15, 16, 17 we plot the Dual-Solver parameters learned via classification-based learning
1461 (Sec. 5.2), as defined in Sec. 4.2. For the DiT, GM-DiT, SANA, and PixArt- α backbones, we set
1462 CFG to 1.5, 1.4, 4.5, and 3.5, respectively, and train for 20k steps. We plot results at NFE = 3, 5, 7,
1463 9 for DiT and GM-DiT, and at NFE = 3, 4, 5, 6 for SANA and PixArt- α . Separate parameter sets
1464 are learned for the predictor and the corrector, and they are shown in different colors. Within the
1465 same backbone, the parameter curves are similar even across different NFEs. We conjecture that this
1466 arises from the backbone’s intrinsic trajectory.

1504 **Figure 14: Learned parameters.** $\{\gamma, \tau_u, \tau_v, \kappa_u, \kappa_v\}$ for DiT (Peebles & Xie, 2023).
1505
1506
1507
1508
1509
1510
1511

Figure 15: **Learned parameters.** $\{\gamma, \tau_u, \tau_v, \kappa_u, \kappa_v\}$ for GM-DiT (Chen et al., 2025).

Figure 16: **Learned parameters.** $\{\gamma, \tau_u, \tau_v, \kappa_u, \kappa_v\}$ for SANA (Xie et al., 2024).

Figure 17: **Learned parameters.** $\{\gamma, \tau_u, \tau_v, \kappa_u, \kappa_v\}$ for PixArt- α (Chen et al., 2023).

1674 G DETAILS OF PARAMETER INTERPOLATION ACROSS NFEs 1675

1676 In this section, we describe how to interpolate the parameters discussed in Sec. 6.3 so that they can
 1677 be used at other NFEs. The parameters of Dual-Solver,

$$1679 \quad \phi = \{\gamma^{\text{pred}}, \tau_u^{\text{pred}}, \tau_v^{\text{pred}}, \kappa_u^{\text{pred}}, \kappa_v^{\text{pred}}, \gamma^{\text{corr}}, \tau_u^{\text{corr}}, \tau_v^{\text{corr}}, \kappa_u^{\text{corr}}, \kappa_v^{\text{corr}}\},$$

1680 are given as arrays whose length equals the NFE. (The corrector parameters have length NFE-1,
 1681 and we match the length to NFE by repeating the last element.) For example, $\gamma^{\text{pred}} =$
 1682 $(\gamma_0^{\text{pred}}, \dots, \gamma_{NFE-1}^{\text{pred}})$. To interpolate these parameters, we consider the following linear interpo-
 1683 lation scheme for a generic array.

1684 **Definition G.1** (Linear interpolation). Let $f^{(M)} = (f_0^{(M)}, \dots, f_{M-1}^{(M)})$ be an array of length M . The
 1685 linearly interpolated array $\text{Interp}(f^{(M)}; N)$ of length N is defined as follows. First, set

$$1687 \quad t_i = \frac{i}{N-1} (M-1), \quad j_i = \lfloor t_i \rfloor, \quad \alpha_i = t_i - j_i,$$

1689 and for each $i = 0, \dots, N-1$ define

$$1691 \quad \text{Interp}(f^{(M)}; N)[i] = (1 - \alpha_i) f_{j_i}^{(M)} + \alpha_i f_{j_i+1}^{(M)}.$$

1693 **Definition G.2** (Averaged linear interpolation). Let $M < N < L$ be three NFEs, and let $f^{(M)} \in$
 1694 \mathbb{R}^M and $f^{(L)} \in \mathbb{R}^L$ be the corresponding arrays. We first obtain their linearly interpolated versions
 1695 of length N ,

$$1696 \quad \tilde{f}^{(M)} = \text{Interp}(f^{(M)}; N), \quad \tilde{f}^{(L)} = \text{Interp}(f^{(L)}; N).$$

1697 We then use the relative position of N between M and L as weights and define

$$1699 \quad w_M = \frac{L-N}{L-M}, \quad w_L = \frac{N-M}{L-M},$$

1701 and, for each $i = 0, \dots, N-1$,

$$1703 \quad \text{Interp}(f^{(M)}, f^{(L)}; N)[i] = w_M \tilde{f}^{(M)}[i] + w_L \tilde{f}^{(L)}[i].$$

1705 Using this procedure, we obtain the array for an intermediate NFE from the two arrays at neighboring
 1706 NFEs, and apply the same construction to every parameter in ϕ . Examples of interpolated parameters
 1707 are shown in Fig. 18. Specifically, we obtain the parameters for NFE=4 by interpolating those learned
 1708 at NFE=(3, 5), for NFE=6 from NFE=(5, 7), and for NFE=8 from NFE=(7, 9).

1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

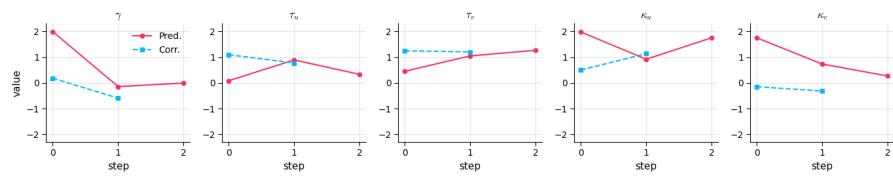
1777

1778

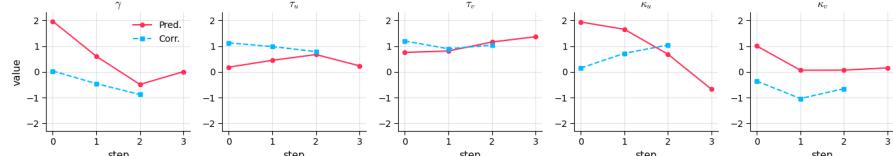
1779

1780

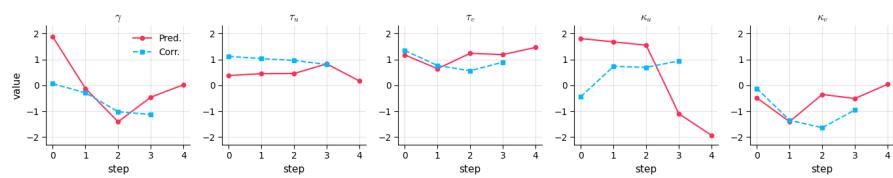
1781



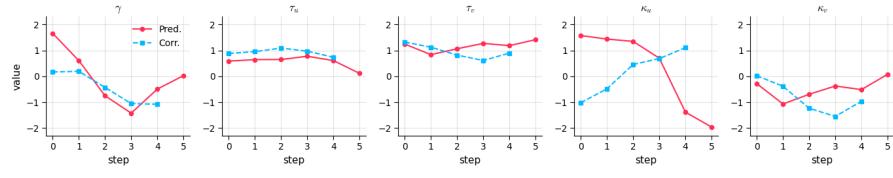
(a) NFE = 3



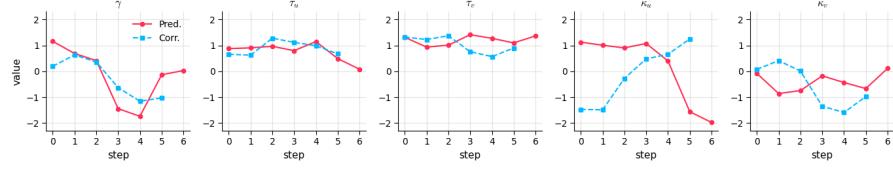
(b) NFE = 4, interpolated from (3, 5)



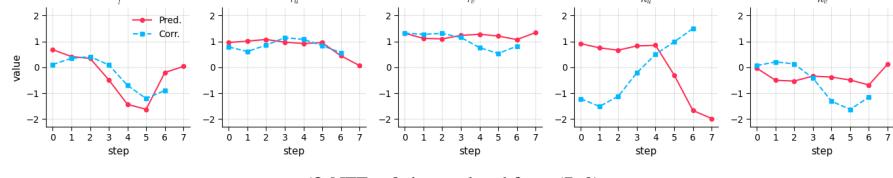
(c) NFE = 5



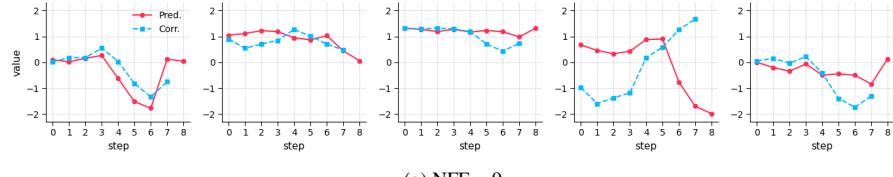
(d) NFE = 6, interpolated from (5, 7)



(e) NFE = 7



(f) NFE = 8, interpolated from (7, 9)



(g) NFE = 9

Figure 18: Interpolated parameters. $\{\gamma, \tau_u, \tau_v, \kappa_u, \kappa_v\}$ for DiT (Peebles & Xie, 2023).

1782 H SINGLE PREDICTION REPARAMETERIZATION

1784 In this section, we show that the first-order predictor in Eq. 13 and the second-order corrector in
 1785 Eq. 21 can each be expressed using a single prediction type (noise, data, or velocity).

1787 H.1 FIRST-ORDER PREDICTOR

1789 For $\gamma \geq 0$, Eq. 13 gives:

$$1790 \quad \mathbf{x}_{t_{i+1}}^{\text{1st-pred.}} = \left(\frac{\sigma_{t_{i+1}}}{\sigma_{t_i}} \right)^\gamma \mathbf{x}_{t_i} + \sigma_{t_{i+1}}^\gamma \left[\mathbf{x}_\theta(t_i) K(u_i) + \boldsymbol{\epsilon}_\theta(t_i) K(v_i) \right], \quad (22)$$

1793 where for brevity we denote

$$1794 \quad \mathbf{x}_\theta(t_i) := \mathbf{x}_\theta(\mathbf{x}_{t_i}, t_i), \quad \boldsymbol{\epsilon}_\theta(t_i) := \boldsymbol{\epsilon}_\theta(\mathbf{x}_{t_i}, t_i),$$

1795 and

$$1797 \quad K(u_i) := \Delta L^{-1}(u_i; \tau_u) + B(\Delta u_i; \kappa_u), \quad K(v_i) := \Delta L^{-1}(v_i; \tau_v) + B(\Delta v_i; \kappa_v).$$

1798 The case $\gamma < 0$ admits an analogous derivation by replacing σ^γ with $\alpha^{-\gamma}$ as in Eq. 13.

1800 **Reparameterization to noise prediction.** Assume the backbone outputs only the noise prediction
 1801 $\boldsymbol{\epsilon}_\theta(t)$. Using the deterministic transform between predictions from Eq. 4,

$$1803 \quad \mathbf{x}_\theta(t_i) = \frac{\mathbf{x}_{t_i} - \sigma_{t_i} \boldsymbol{\epsilon}_\theta(t_i)}{\alpha_{t_i}}, \quad (23)$$

1805 Eq. 22 becomes

$$1807 \quad \mathbf{x}_{t_{i+1}}^{\text{1st-pred.}} = \left(\frac{\sigma_{t_{i+1}}}{\sigma_{t_i}} \right)^\gamma \mathbf{x}_{t_i} + \sigma_{t_{i+1}}^\gamma \left[\frac{\mathbf{x}_{t_i} - \sigma_{t_i} \boldsymbol{\epsilon}_\theta(t_i)}{\alpha_{t_i}} K(u_i) + \boldsymbol{\epsilon}_\theta(t_i) K(v_i) \right] \\ 1808 = \left[\left(\frac{\sigma_{t_{i+1}}}{\sigma_{t_i}} \right)^\gamma + \sigma_{t_{i+1}}^\gamma \frac{K(u_i)}{\alpha_{t_i}} \right] \mathbf{x}_{t_i} + \left[\sigma_{t_{i+1}}^\gamma \left(K(v_i) - \frac{\sigma_{t_i}}{\alpha_{t_i}} K(u_i) \right) \right] \boldsymbol{\epsilon}_\theta(t_i). \quad (24)$$

1813 Thus, for a noise-prediction backbone, the predictor is a linear combination of \mathbf{x}_{t_i} and $\boldsymbol{\epsilon}_\theta(t_i)$.

1814 **Reparameterization to data prediction.** Assume the backbone outputs only the data prediction
 1815 $\mathbf{x}_\theta(t)$. From Eq. 4 we have the inverse relation

$$1817 \quad \boldsymbol{\epsilon}_\theta(t_i) = \frac{\mathbf{x}_{t_i} - \alpha_{t_i} \mathbf{x}_\theta(t_i)}{\sigma_{t_i}}. \quad (25)$$

1820 Substituting Eq. 25 into Eq. 22 yields

$$1821 \quad \mathbf{x}_{t_{i+1}}^{\text{1st-pred.}} = \left(\frac{\sigma_{t_{i+1}}}{\sigma_{t_i}} \right)^\gamma \mathbf{x}_{t_i} + \sigma_{t_{i+1}}^\gamma \left[\mathbf{x}_\theta(t_i) K(u_i) + \frac{\mathbf{x}_{t_i} - \alpha_{t_i} \mathbf{x}_\theta(t_i)}{\sigma_{t_i}} K(v_i) \right] \\ 1822 = \left[\left(\frac{\sigma_{t_{i+1}}}{\sigma_{t_i}} \right)^\gamma + \sigma_{t_{i+1}}^\gamma \frac{K(v_i)}{\sigma_{t_i}} \right] \mathbf{x}_{t_i} + \left[\sigma_{t_{i+1}}^\gamma \left(K(u_i) - \frac{\alpha_{t_i}}{\sigma_{t_i}} K(v_i) \right) \right] \mathbf{x}_\theta(t_i). \quad (26)$$

1827 Therefore, for a data-prediction backbone, the predictor is a linear combination of \mathbf{x}_{t_i} and $\mathbf{x}_\theta(t_i)$.

1829 **Reparameterization to velocity prediction.** Assume the backbone outputs only the velocity pre-
 1830 diction $\mathbf{v}_\theta(t)$. Eq. 4 gives the linear relations

$$1831 \quad \begin{bmatrix} \mathbf{x}_{t_i} \\ \mathbf{v}_\theta(t_i) \end{bmatrix} = M_{t_i} \begin{bmatrix} \mathbf{x}_\theta(t_i) \\ \boldsymbol{\epsilon}_\theta(t_i) \end{bmatrix}, \quad M_{t_i} := \begin{bmatrix} \alpha_{t_i} & \sigma_{t_i} \\ \dot{\alpha}_{t_i} & \dot{\sigma}_{t_i} \end{bmatrix}, \quad (27)$$

1834 where $\dot{\alpha}_{t_i} := \frac{d\alpha_{t_i}}{dt}$ and $\dot{\sigma}_{t_i} := \frac{d\sigma_{t_i}}{dt}$. Let

$$1835 \quad \det M_{t_i} = \alpha_{t_i} \dot{\sigma}_{t_i} - \sigma_{t_i} \dot{\alpha}_{t_i}.$$

1836 Inverting Eq. 27 gives
 1837

$$1838 \quad \mathbf{x}_\theta(t_i) = (\det M_{t_i})^{-1} \left(\dot{\sigma}_{t_i} \mathbf{x}_{t_i} - \sigma_{t_i} \mathbf{v}_\theta(t_i) \right), \quad \boldsymbol{\epsilon}_\theta(t_i) = (\det M_{t_i})^{-1} \left(-\dot{\alpha}_{t_i} \mathbf{x}_{t_i} + \alpha_{t_i} \mathbf{v}_\theta(t_i) \right). \quad (28)$$

1840 Substituting Eq. 28 into Eq. 22 yields
 1841

$$1842 \quad \mathbf{x}_{t_{i+1}}^{\text{1st-pred.}} = \left(\frac{\sigma_{t_{i+1}}}{\sigma_{t_i}} \right)^\gamma \mathbf{x}_{t_i} + \sigma_{t_{i+1}}^\gamma (\det M_{t_i})^{-1} \left[K(u_i) (\dot{\sigma}_{t_i} \mathbf{x}_{t_i} - \sigma_{t_i} \mathbf{v}_\theta(t_i)) + K(v_i) (-\dot{\alpha}_{t_i} \mathbf{x}_{t_i} + \alpha_{t_i} \mathbf{v}_\theta(t_i)) \right] \\ 1843 \\ 1844 \quad = \left[\left(\frac{\sigma_{t_{i+1}}}{\sigma_{t_i}} \right)^\gamma + \sigma_{t_{i+1}}^\gamma \frac{K(u_i) \dot{\sigma}_{t_i} - K(v_i) \dot{\alpha}_{t_i}}{\det M_{t_i}} \right] \mathbf{x}_{t_i} + \left[\sigma_{t_{i+1}}^\gamma \frac{\alpha_{t_i} K(v_i) - \sigma_{t_i} K(u_i)}{\det M_{t_i}} \right] \mathbf{v}_\theta(t_i). \quad (29)$$

1847 Thus, for a velocity-prediction backbone, the predictor is a linear combination of \mathbf{x}_{t_i} and $\mathbf{v}_\theta(t_i)$.
 1848

1849 H.2 SECOND-ORDER CORRECTOR

1851 For $\gamma \geq 0$, Eq. 21 gives:
 1852

$$1853 \quad \mathbf{x}_{t_{i+1}}^{\text{2nd-corr.}} = \left(\frac{\sigma_{t_{i+1}}}{\sigma_{t_i}} \right)^\gamma \mathbf{x}_{t_i} + \sigma_{t_{i+1}}^\gamma \left[\mathbf{x}_\theta(t_i) \Delta L^{-1}(u_i) + \frac{\Delta \mathbf{x}_\theta(t_i)}{2} K(u_i) + \boldsymbol{\epsilon}_\theta(t_i) \Delta L^{-1}(v_i) + \frac{\Delta \boldsymbol{\epsilon}_\theta(t_i)}{2} K(v_i) \right], \quad (30)$$

1855 where

$$1856 \quad \Delta \mathbf{x}_\theta(t_i) := \mathbf{x}_\theta(t_{i+1}) - \mathbf{x}_\theta(t_i), \quad \Delta \boldsymbol{\epsilon}_\theta(t_i) := \boldsymbol{\epsilon}_\theta(t_{i+1}) - \boldsymbol{\epsilon}_\theta(t_i),$$

1857 and

$$1858 \quad K(u_i) := \Delta L^{-1}(u_i) + B(\Delta u_i; \kappa_u), \quad K(v_i) := \Delta L^{-1}(v_i) + B(\Delta v_i; \kappa_v).$$

1860 As in standard predictor–corrector schemes, the predictions at t_{i+1} are evaluated using the
 1861 first–order predictor $\mathbf{x}_{t_{i+1}}^{\text{1st-pred.}}$.
 1862

1863 **Reparameterization to noise prediction.** Assume the backbone outputs only the noise prediction
 1864 $\boldsymbol{\epsilon}_\theta(t)$. Using Eq. 4,

$$1865 \quad \mathbf{x}_\theta(t_j) = \frac{\mathbf{x}_{t_j} - \sigma_{t_j} \boldsymbol{\epsilon}_\theta(t_j)}{\alpha_{t_j}}, \quad j \in \{i, i+1\}, \quad (31)$$

1867 we obtain

$$1868 \quad \Delta \mathbf{x}_\theta(t_i) = \frac{\mathbf{x}'_{t_{i+1}} - \sigma_{t_{i+1}} \boldsymbol{\epsilon}_\theta(t_{i+1})}{\alpha_{t_{i+1}}} - \frac{\mathbf{x}_{t_i} - \sigma_{t_i} \boldsymbol{\epsilon}_\theta(t_i)}{\alpha_{t_i}}, \quad \Delta \boldsymbol{\epsilon}_\theta(t_i) = \boldsymbol{\epsilon}_\theta(t_{i+1}) - \boldsymbol{\epsilon}_\theta(t_i),$$

1871 where we denote $\mathbf{x}'_{t_{i+1}} = \mathbf{x}_{t_{i+1}}^{\text{1st-pred.}}$. Substituting these into Eq. 30 and collecting terms with respect
 1872 to \mathbf{x}_{t_i} , $\mathbf{x}'_{t_{i+1}}$, $\boldsymbol{\epsilon}_\theta(t_i)$, and $\boldsymbol{\epsilon}_\theta(t_{i+1})$ yields
 1873

$$1874 \quad \mathbf{x}_{t_{i+1}}^{\text{2nd-corr.}} = C_i^{(x)} \mathbf{x}_{t_i} + C_{i+1}^{(x)} \mathbf{x}'_{t_{i+1}} + C_i^{(\epsilon_\theta)} \boldsymbol{\epsilon}_\theta(t_i) + C_{i+1}^{(\epsilon_\theta)} \boldsymbol{\epsilon}_\theta(t_{i+1}), \quad (32)$$

1875 where

$$1876 \quad C_i^{(x)} = \left(\frac{\sigma_{t_{i+1}}}{\sigma_{t_i}} \right)^\gamma + \sigma_{t_{i+1}}^\gamma \left(\frac{\Delta L^{-1}(u_i)}{\alpha_{t_i}} - \frac{K(u_i)}{2 \alpha_{t_i}} \right), \quad (33)$$

$$1877 \quad C_{i+1}^{(x)} = \sigma_{t_{i+1}}^\gamma \frac{K(u_i)}{2 \alpha_{t_{i+1}}}, \quad (34)$$

$$1878 \quad C_i^{(\epsilon_\theta)} = \sigma_{t_{i+1}}^\gamma \left(-\frac{\sigma_{t_i}}{\alpha_{t_i}} \Delta L^{-1}(u_i) + \Delta L^{-1}(v_i) + \frac{\sigma_{t_i}}{2 \alpha_{t_i}} K(u_i) - \frac{1}{2} K(v_i) \right), \quad (35)$$

$$1879 \quad C_{i+1}^{(\epsilon_\theta)} = \sigma_{t_{i+1}}^\gamma \left(-\frac{\sigma_{t_{i+1}}}{2 \alpha_{t_{i+1}}} K(u_i) + \frac{1}{2} K(v_i) \right). \quad (36)$$

1888 Thus, for a noise–prediction backbone, the second–order corrector is a linear combination of \mathbf{x}_{t_i} ,
 1889 $\mathbf{x}'_{t_{i+1}}$, $\boldsymbol{\epsilon}_\theta(t_i)$, and $\boldsymbol{\epsilon}_\theta(t_{i+1})$.

1890 **Reparameterization to data prediction.** Assume the backbone outputs only the data prediction
 1891 $\mathbf{x}_\theta(t)$. Using the inverse relation
 1892

$$1893 \quad \epsilon_\theta(t_j) = \frac{\mathbf{x}_{t_j} - \alpha_{t_j} \mathbf{x}_\theta(t_j)}{\sigma_{t_j}}, \quad j \in \{i, i+1\}, \quad (37)$$

1895 we obtain
 1896

$$1897 \quad \Delta \epsilon_\theta(t_i) = \frac{\mathbf{x}'_{t_{i+1}} - \alpha_{t_{i+1}} \mathbf{x}_\theta(t_{i+1})}{\sigma_{t_{i+1}}} - \frac{\mathbf{x}_{t_i} - \alpha_{t_i} \mathbf{x}_\theta(t_i)}{\sigma_{t_i}}, \quad \Delta \mathbf{x}_\theta(t_i) = \mathbf{x}_\theta(t_{i+1}) - \mathbf{x}_\theta(t_i),$$

1900 where we denote $\mathbf{x}'_{t_{i+1}} = \mathbf{x}_{t_{i+1}}^{\text{1st-pred.}}$. Substituting into Eq. 30 and collecting terms with respect to \mathbf{x}_{t_i} ,
 1901 $\mathbf{x}'_{t_{i+1}}$, $\mathbf{x}_\theta(t_i)$, and $\mathbf{x}_\theta(t_{i+1})$ yields

$$1903 \quad \mathbf{x}_{t_{i+1}}^{\text{2nd-corr.}} = C_i^{(x)} \mathbf{x}_{t_i} + C_{i+1}^{(x)} \mathbf{x}'_{t_{i+1}} + C_i^{(x_\theta)} \mathbf{x}_\theta(t_i) + C_{i+1}^{(x_\theta)} \mathbf{x}_\theta(t_{i+1}), \quad (38)$$

1904 where
 1905

$$1906 \quad C_i^{(x)} = \left(\frac{\sigma_{t_{i+1}}}{\sigma_{t_i}} \right)^\gamma + \sigma_{t_{i+1}}^\gamma \left(\frac{\Delta L^{-1}(v_i)}{\sigma_{t_i}} - \frac{K(v_i)}{2\sigma_{t_i}} \right), \quad (39)$$

$$1909 \quad C_{i+1}^{(x)} = \sigma_{t_{i+1}}^\gamma \frac{K(v_i)}{2\sigma_{t_{i+1}}}, \quad (40)$$

$$1912 \quad C_i^{(x_\theta)} = \sigma_{t_{i+1}}^\gamma \left(\Delta L^{-1}(u_i) - \frac{\alpha_{t_i}}{\sigma_{t_i}} \Delta L^{-1}(v_i) - \frac{1}{2} K(u_i) + \frac{\alpha_{t_i}}{2\sigma_{t_i}} K(v_i) \right), \quad (41)$$

$$1915 \quad C_{i+1}^{(x_\theta)} = \sigma_{t_{i+1}}^\gamma \left(\frac{1}{2} K(u_i) - \frac{\alpha_{t_{i+1}}}{2\sigma_{t_{i+1}}} K(v_i) \right). \quad (42)$$

1918 Therefore, for a data-prediction backbone, the corrector is a linear combination of \mathbf{x}_{t_i} , $\mathbf{x}'_{t_{i+1}}$, $\mathbf{x}_\theta(t_i)$,
 1919 and $\mathbf{x}_\theta(t_{i+1})$.
 1920

1921 **Reparameterization to velocity prediction.** Assume the backbone outputs only the velocity pre-
 1922 diction $\mathbf{v}_\theta(t)$. Eq. 4 implies the linear system
 1923

$$1924 \quad \begin{bmatrix} \mathbf{x}_{t_j} \\ \mathbf{v}_\theta(t_j) \end{bmatrix} = M_{t_j} \begin{bmatrix} \mathbf{x}_\theta(t_j) \\ \epsilon_\theta(t_j) \end{bmatrix}, \quad M_{t_j} := \begin{bmatrix} \alpha_{t_j} & \sigma_{t_j} \\ \dot{\alpha}_{t_j} & \dot{\sigma}_{t_j} \end{bmatrix}, \quad j \in \{i, i+1\}, \quad (43)$$

1926 where $\dot{\alpha}_{t_j} := \frac{d\alpha_{t_j}}{dt}$ and $\dot{\sigma}_{t_j} := \frac{d\sigma_{t_j}}{dt}$, and

$$1928 \quad \det M_{t_j} = \alpha_{t_j} \dot{\sigma}_{t_j} - \sigma_{t_j} \dot{\alpha}_{t_j}.$$

1930 Inverting Eq. 43 gives

$$1931 \quad \mathbf{x}_\theta(t_j) = (\det M_{t_j})^{-1} \left(\dot{\sigma}_{t_j} \mathbf{x}_{t_j} - \sigma_{t_j} \mathbf{v}_\theta(t_j) \right), \quad \epsilon_\theta(t_j) = (\det M_{t_j})^{-1} \left(-\dot{\alpha}_{t_j} \mathbf{x}_{t_j} + \alpha_{t_j} \mathbf{v}_\theta(t_j) \right). \quad (44)$$

1934 Accordingly,

$$1935 \quad \Delta \mathbf{x}_\theta(t_i) = \mathbf{x}_\theta(t_{i+1}) - \mathbf{x}_\theta(t_i), \quad \Delta \epsilon_\theta(t_i) = \epsilon_\theta(t_{i+1}) - \epsilon_\theta(t_i),$$

1937 where each $\mathbf{x}_\theta(t_j)$ and $\epsilon_\theta(t_j)$ is a linear combination of \mathbf{x}_{t_j} and $\mathbf{v}_\theta(t_j)$ via Eq. 44. Substituting
 1938 Eq. 44 into Eq. 30 and collecting terms with respect to \mathbf{x}_{t_i} , $\mathbf{x}'_{t_{i+1}}$, $\mathbf{v}_\theta(t_i)$, and $\mathbf{v}_\theta(t_{i+1})$ yields

$$1939 \quad \mathbf{x}_{t_{i+1}}^{\text{2nd-corr.}} = C_i^{(x)} \mathbf{x}_{t_i} + C_{i+1}^{(x)} \mathbf{x}'_{t_{i+1}} + C_i^{(v_\theta)} \mathbf{v}_\theta(t_i) + C_{i+1}^{(v_\theta)} \mathbf{v}_\theta(t_{i+1}), \quad (45)$$

1941 where
 1942

$$1943 \quad C_i^{(x)} = \left(\frac{\sigma_{t_{i+1}}}{\sigma_{t_i}} \right)^\gamma + \sigma_{t_{i+1}}^\gamma \frac{\dot{\sigma}_{t_i} \Delta L^{-1}(u_i) - \dot{\alpha}_{t_i} \Delta L^{-1}(v_i) - \frac{1}{2} \dot{\sigma}_{t_i} K(u_i) + \frac{1}{2} \dot{\alpha}_{t_i} K(v_i)}{\det M_{t_i}}, \quad (46)$$

$$1944 \quad C_{i+1}^{(x)} = \sigma_{t_{i+1}}^\gamma \frac{\frac{1}{2}\dot{\sigma}_{t_{i+1}}K(u_i) - \frac{1}{2}\dot{\alpha}_{t_{i+1}}K(v_i)}{\det M_{t_{i+1}}}, \quad (47)$$

$$1945 \quad C_i^{(v_\theta)} = \sigma_{t_{i+1}}^\gamma \frac{-\sigma_{t_i}\Delta L^{-1}(u_i) + \alpha_{t_i}\Delta L^{-1}(v_i) + \frac{1}{2}\sigma_{t_i}K(u_i) - \frac{1}{2}\alpha_{t_i}K(v_i)}{\det M_{t_i}}, \quad (48)$$

$$1946 \quad C_{i+1}^{(v_\theta)} = \sigma_{t_{i+1}}^\gamma \frac{-\frac{1}{2}\sigma_{t_{i+1}}K(u_i) + \frac{1}{2}\alpha_{t_{i+1}}K(v_i)}{\det M_{t_{i+1}}}. \quad (49)$$

1952 Thus, for a velocity–prediction backbone, the second–order corrector is a linear combination of x_{t_i} ,
 1953 $x'_{t_{i+1}}$, $v_\theta(t_i)$, and $v_\theta(t_{i+1})$.

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

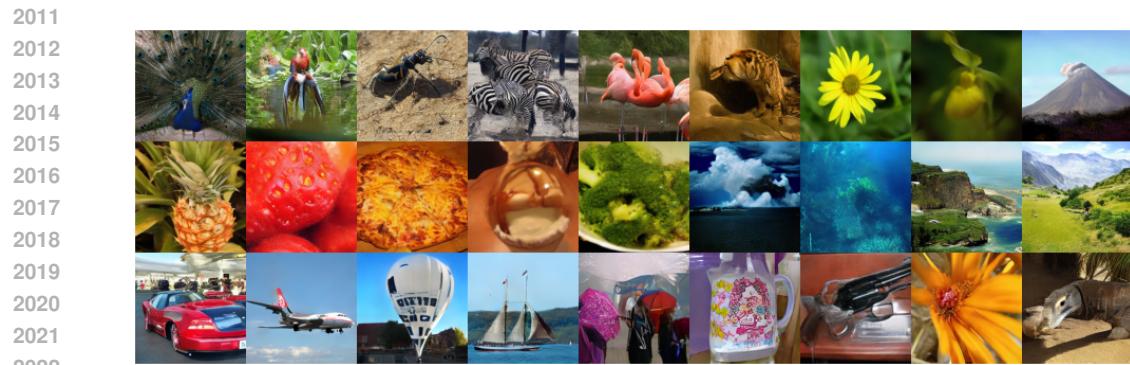
1994

1995

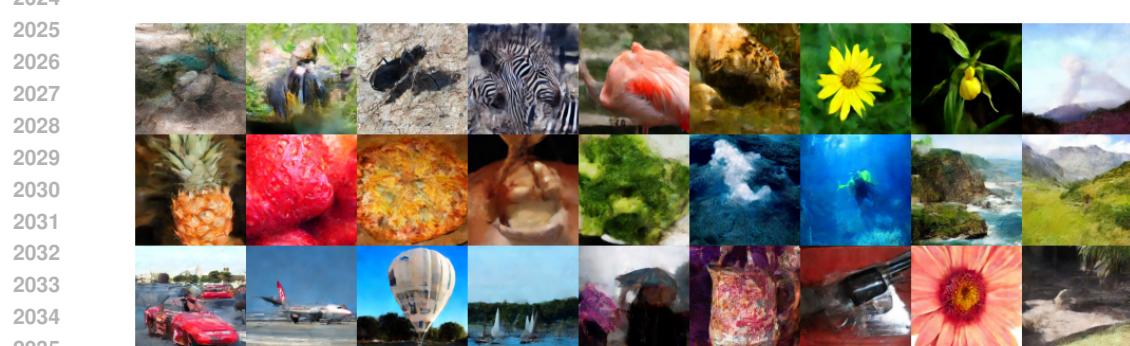
1996

1997

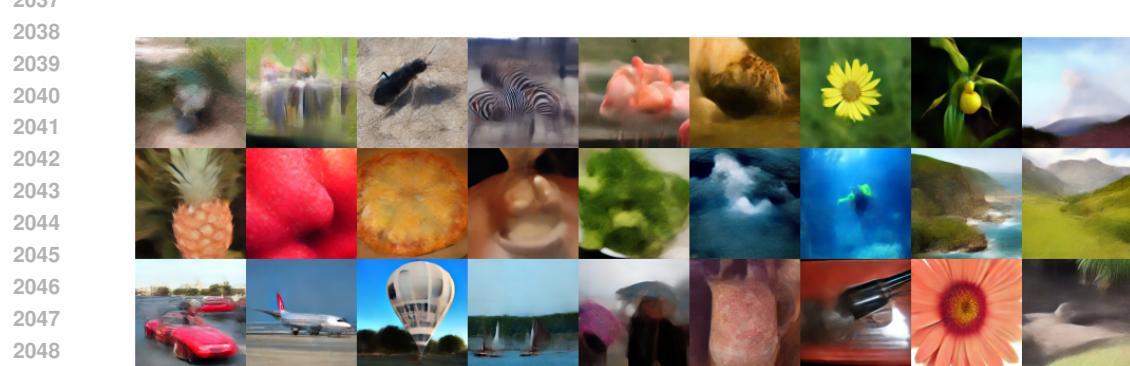
(a) DPM-Solver++ (Lu et al., 2022b)



(b) Dual-Solver (Ours)



(c) BNS-Solver (Shaul et al. 2024)



(d) DS-Solver (Wang et al., 2025)

Figure 19: **Additional sampling results.** DiT-XL/2 256×256 (NFE=4, CFG=1.5)

2052

(a) DPM-Solver++ (Lu et al., 2022b)

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

(b) Dual-Solver (Ours)

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

(c) BNS-Solver (Shaul et al., 2024)

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

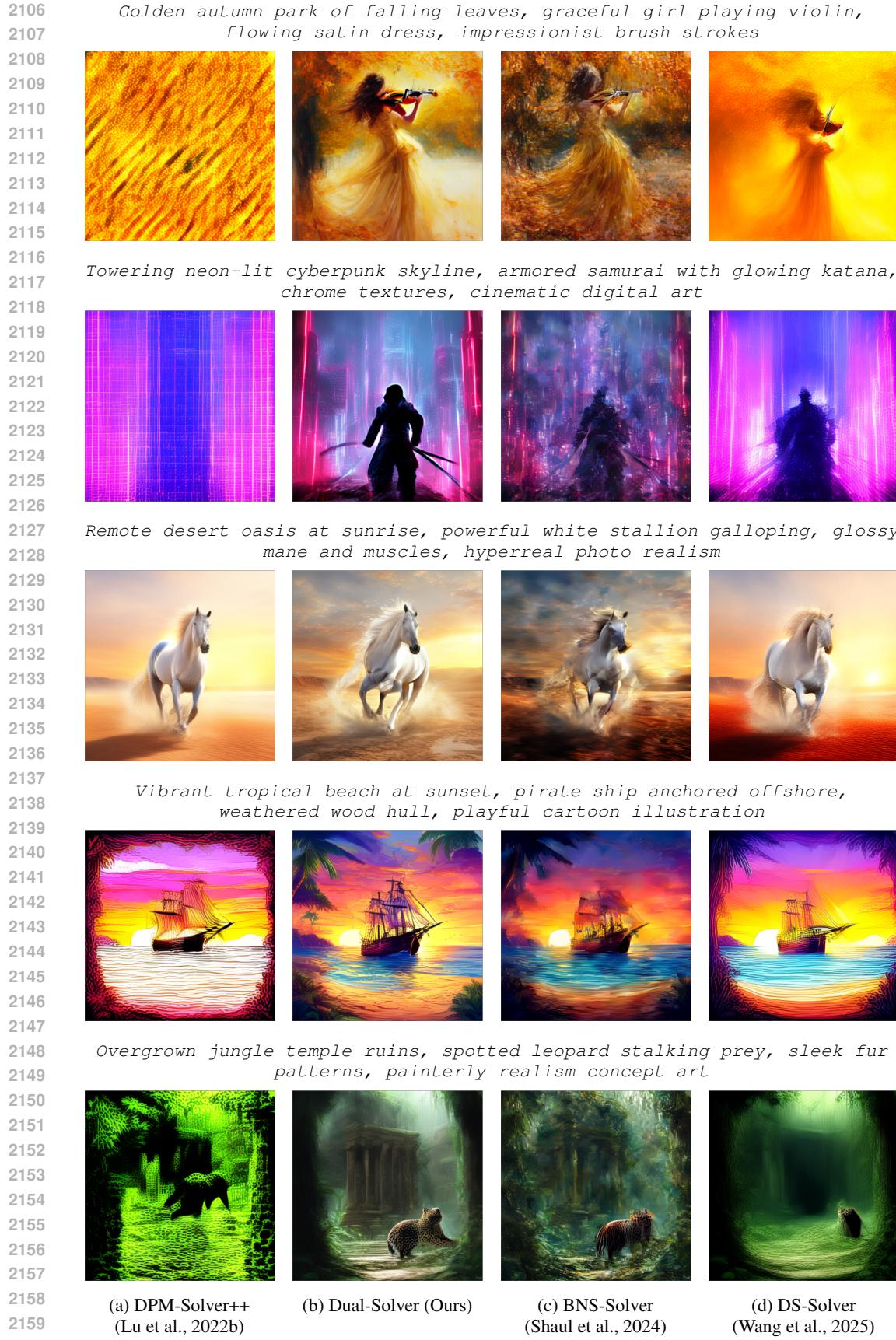
(d) DS-Solver (Wang et al., 2025)

2103

2104

2105

Figure 20: **Additional sampling results.** GM-DiT 256×256 (NFE=3, CFG=1.4)

Figure 21: **Additional sampling results.** SANA (Xie et al., 2024), NFE=3, CFG=4.5.

2160 *In a misty emerald forest clearing, a majestic golden wolf with silky
 2161 glowing fur, painted in luminous oil style*

2170 *Towering neon-lit cyberpunk skyline, armored samurai with glowing katana,
 2171 chrome textures, cinematic digital art*

2181 *Vast desert beneath a starry cosmos, colossal sphinx carved in sandstone,
 2182 rough surface, surreal dreamlike painting*

2191 *Sleek futuristic laboratory interior, humanoid AI robot in motion,
 2192 polished steel surfaces, sci-fi blueprint style*

2202 *Storm-drenched battlefield ruins, giant mech rising from fire, rusted
 2203 armor plates, gritty photorealistic concept art*

2212 (a) DPM-Solver++
 2213 (Lu et al., 2022b)

2212 (b) Dual-Solver (Ours)

2212 (c) BNS-Solver
 2213 (Shaul et al., 2024)

2212 (d) DS-Solver
 2213 (Wang et al., 2025)

Figure 22: **Additional sampling results.** PixArt- α (Chen et al., 2023), NFE=5, CFG=3.5.