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ABSTRACT

Diffusion models deliver state-of-the-art image quality. However, sampling is
costly at inference time because it requires many model evaluations (number of
function evaluations, NFEs). To reduce NFEs, classical ODE multistep methods
have been adopted. Yet differences in the choice of prediction type (noise/data/ve-
locity) and integration domain (half log-SNR/noise-to-signal ratio) lead to differ-
ent outcomes. We introduce Dual-Solver, which generalizes multistep samplers
by introducing learnable parameters that continuously (i) interpolate among pre-
diction types, (ii) select the integration domain, and (iii) adjust the residual terms.
It maintains the traditional predictor-corrector structure and guarantees second-
order local accuracy. These parameters are learned with a classification-based
objective using a frozen pretrained classifier (e.g., ViT or CLIP). On ImageNet
class-conditional generation (DiT, GM-DiT) and text-to-image (SANA, PixArt-
«), Dual-Solver improves FID and CLIP scores in the low-NFE regime (3 < NFE
< 9) across backbones.

1 INTRODUCTION

Generative modeling aims to learn a data distribution and draw new samples that resemble real
data. Classic approaches include autoregressive models that factorize likelihoods over pixels or to-
kens (Van den Oord et al., 2016; [Salimans et al., 2017), variational auto-encoders that optimize
an evidence lower bound (Kingma & Welling| 2013} [Vahdat & Kautz, [2020), flow-based models
that construct exact, invertible density maps (Dinh et al.| 2014; Kingma & Dhariwal, 2018)), and
generative adversarial networks that learn via a discriminator—generator (Goodfellow et al., 2020;
Arjovsky et al.| 2017). Diffusion models have emerged as a modern family in this landscape: the
seminal work of (Sohl-Dickstein et al.,[2015) have introduced diffusion probabilistic modeling with
a forward noising process and a learned reverse process trained by minimizing a KL-divergence
objective. Subsequent reformulations (Ho et al., 2020) have streamlined training and inference with
simple denoising objectives (e.g., noise or data prediction), leading to state-of-the-art fidelity and ro-
bust scaling. Today, diffusion models drive progress across modalities, including images (Dhariwal
& Nichol, 2021} Rombach et al., [2022)), audio (Kong et al., 2020; [Liu et al., [2023)), and video (Ho
et al.,[2022; [Kong et al., [2024]).

Diffusion models generate samples by advancing a Markov chain in the latent domain and repeat-
edly evaluating a neural network at each step, making inference cost scale with the number of func-
tion evaluations (NFEs). Leveraging the probability—flow formulation, which casts sampling as an
ordinary differential equation (Song et al. [2021b)), a large literature has pursued ODE-based ac-
celeration. Along one axis, classical numerical methods—singlestep Runge—Kutta (Runge, |1895)
and multistep Adams—Bashforth (Bashforth & Adams, |1883)—provide off-the-shelf accuracy—-NFE
trade-offs for a given evaluation budget (Butcher, [2016). Along a second axis, diffusion-dedicated
solvers exploit the structure of the denoising dynamics: they approximate noise/data predictions with
low-order Taylor expansions or Lagrange interpolation and derive closed-form updates (Lu et al.,
2022afb; |Qinsheng & Chenl, 2023} |Zhao et al., [2023; Xue et al., [2024). Lastly, there are learned
solvers that learn the timestep schedule and other sampling-related parameters (Zhou et al., [2024;
Shaul et al., [2023;2024; Wang et al., |2025). Because these parameters depend on the backbone and
the dataset, such solvers are typically confined to a fixed backbone and specific settings ((e.g., a
chosen NFE and CFG (Ho & Salimans| [2021)). Training also incurs substantial preparation over-
head, as it requires many teacher trajectories or final samples generated at high NFE. Nevertheless,
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(a) DPM-Solver++ (b) Dual-Solver (Ours) (c) BNS-Solver (d) DS-Solver
(Lu et al.,[2022b)) (Shaul et al.}2024) (Wang et al.| 2025)

Figure 1: Sampling results. SANA (Xie et al., 2024), NFE=3, CFG=4.5. See Fig. for further
results.

compared to the classical methods and dedicated solvers discussed above, learned solvers deliver
substantially better sample quality (e.g., lower FID) and are therefore an active area of research.

We introduce Dual-Solver, a learned solver for diffusion models with three types of learnable pa-
rameters:

* a prediction parameter -y that interpolates among noise, data, and velocity prediction types
(Sec.[3);

* a domain change parameter 7 that interpolates between the log and linear domains
(Sec.[322);

* aresidual parameter « that adjusts the residual term while preserving second-order accu-

racy (Sec.3.3).

We further propose a classification-based learning strategy that yields high-fidelity images even in
the low-NFE regime (Section[5.2). Unlike regression-based learning, which typically requires many
target samples at high NFE, our approach requires no target samples. Solver parameters are learned
using either pretrained image classifiers (He et al., [2016; [Dosovitskiy et al.l 2020; Howard et al.,
2017) or the zero-shot classifier (Radford et al., [2021)). For 3 < NFE < 9, it outperforms prior
state-of-the-art solvers (Section [6).

2 PRELIMINARIES

2.1 DIFFUSION MODELS

Training process. Diffusion models (Ho et al.,|2020;Song et al.,[2021b)) train a backbone network
as follows. We sample a clean sample xy from the data distribution and noise € from the standard
normal, then linearly combine them with weights «; and oy:

Ty = 04Ty + OtE, where Iy ~ Pdata; € NN(O’I)a 0 <t< T. (1)

Here, oy and oy are set by a predefined schedule. Common choices include variance-preserving
(VP), with a? + 07 = 1 (Sohl-Dickstein et al., 2015; Ho et al., 2020); variance-exploding (VE), with
oy =1, op > 0(Song & Ermonl 2019} |2020); and optimal transport (OT), with ay = 1 — ¢, 0y =
t, T = 1 (Lipman et al., 2022). The backbone is trained to take a noisy sample x; and the time ¢
as input and to predict one of the following: the noise €, the clean sample x( (Ho et al., 2020), or
the velocity vy = &y + o€ (Lipman et al.,[2022). By convention, the backbone parameters are
denoted 6, and the predictions are written as €y (noise), gy (data), and vy (velocity).

Sampling process. The dynamics in Eq. [T]can be written as the following stochastic differential
equation (SDE):

dlog oy do? dlog oy
de; = fixidt + g dwy, ft = “ar 9; = ditt -2 i 037

2)
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where w; is a standard Wiener process. For any time ¢, a probability-flow ODE that shares the same
marginal distribution as the SDE has been proposed (Song et al., [2021b):

dx 1 Ele | €g(xy,t
—t = fim, — =92 Valogq(z,), where Vglogg(z,) = _Elelz] ~ _co(@nt) )
dt 2 Ot Ot

3)

Given this ODE, one can perform sampling using classical numerical methods beyond Euler, such
as singlestep Runge—Kutta (Rungel [1895)) and multistep Adams—Bashforth schemes (Bashforth &
Adams}|1883)). Moreover, several works split the right-hand side into linear and non-linear parts, and
evaluate the non-linear term using finite-difference approximations (Lu et al., [2022a}b; [Zhao et al.,
2023) or via Lagrange interpolation (Qinsheng & Chenl 2023} Xue et al., [2024).

2.2 PREDICTION TYPES

— Noise
— Velocity
Data

Depending on the form of a model’s output, we distinguish
three prediction types: noise, data, and velocity. The diffusion
model of|Sohl-Dickstein et al.|(2015) was parameterized to pre-
dict the mean and covariance matrix of the next sample’s dis-
tribution. Following Ho et al.|(2020), it has become standard to
train networks that predict either the additive noise or the clean
data. In parallel, the flow matching literature (Lipman et al.,

velocity
tit1

2022)) proposes models that output a vector field; in this paper, . .
we refer to this as velocity prediction. Although these outputs a‘:c Zo
differ, they are mutually convertible through simple transfor- |- 10 _
mations. In particular, one can obtain the desired prediction g

Figure 2: Euler updates for noise,

from any other via . .
Y velocity, and data predictions.

dO’t

dt

— t d
zo(z0,t) = xtgt—eﬁ(m“), vo (24, 1) Ot

= —t t
o dt xG(mta ) +

€g(xy,t). )

Depending on which of the three predictions is used, we derive Eq. [3]in different forms. The resulting
integral expressions are summarized in Table

Discretization discrepancy. We ask a simple question: do the predictions yield the same up-
date? In continuous time, yes; in discrete time, no. Fig. [2] illustrates this discrepancy in two di-
mensions. For example, with a left-point first-order Euler rule in the A-domain (half log-SNR),

the noise-prediction update is m‘t‘:’ff = a;—t“ [:cf7 — oy, Ay, eg(mti,ti)}. If we take the Euler
update for the data prediction and rewrite it using ©g = (x:, — o, €9)/,, we obtain :c?ff:‘l =

a;l—:rl [(14+AN, e 2 @y —e Doy, ANy, €9(@y,, t;)]. Since e ™2 = 1—AN, +1 AN +- -,

a discrepancy appears at order O((A),)?). This naturally raises the question of which update is
preferable in practice.

Differential form Integral form on [t;,¢; 1]
dx; dlos o tiga
: _ e 12N _ i gy dA
Noise €y ? = T/ Ty — Ot ditt 69(:12757 t) :ct,’+l = o, Ty, — (e : oTi, Ttt 69((1!,57 t) dt
t ‘
1 dzy — doy doy _ i day doy
VelOClty Vo ﬂ = "a xg(irt, t) + dt €p (:I:t, t) $tl+l = Ty, + [7 :l?g(:l:z, t) + dt 69(113}7 t)} dt
! tit1
dze g1 ot *
b __ g0 dA¢ _ Ttigr ap dX
Data xy - = BRI 3y + ay Gt xp (T4, 1) Ty = o oy +04,,, o ot zo(xy,t) di

Table 1: Differential and integral forms for noise, data, and velocity predictions. (cy: signal rate, oy:
noise rate, \;: log a; /o)
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3 DUAL-SOLVER

3.1 DUAL PREDICTION WITH PARAMETER 7y

We propose a dual prediction scheme that uses both &y and €y together. We call it dual because
it treats &y and €y separately, unlike velocity prediction, which bundles them into vy. Moreover,
we introduce the following integral formulation parameterized by -, which interpolates between the
integral forms of noise, velocity, and data prediction.

Integral form of dual prediction.

%) o v, [ e wodt + [ L) e 220
oy, i tit1 " dt t " dt t ’ - Y

tit1 = tiy1 tit1
Xty ~ A 1gy d ¥
( o, ) x, + ooy, {/tq dt(at ) xo(t)dt + /tz dt(atat)@(t)dt , v <0.
®)

Here, we write x¢(t) := xg (s, t) and €4 (t) = €p(x¢, t).

* When v = —1, the integral reduces to the noise-prediction form (Table|T).

* When ~ = 0, the integral reduces to the velocity-prediction form (Table [)).

* When ~ = 1, the integral reduces to the data-prediction form (Table ).
From Eq. [3] we derive the differential form of dual prediction and, by integrating, obtain the integral

form given above; the full derivation is provided in Appendix [B.I] For brevity, in Secs.[3.2]and [3.3|
we consider only v > 0; the case 7 < 0 follows by the same steps.

3.2 LOG-LINEAR DOMAIN CHANGE WITH PARAMETER T

Domain change. Let L : (0,00) — Z be a C! diffeomorphism onto an interval Z C R. Applying
a change of variables to the two integrals in Eq.[5] define

u(t;me) = ooy 37u), v(t;T,) = L(Utl_’y;rv).
Here, 7, and 7, parametrize L in the u- and v-integrals, respectively. Denote u; = wu(t;), ui+1 =
u(tip1) and v; = v(t;), Vi1 = v(ti+1). By the chain rule, 4 L=1(u) = T(“) du and similarly

for v. Thus, for v > 0 we obtain

Y Ui41 -1 . Vi1 —1 .
(0t AL~ (u; ) AL (v; 7))
Tty = (Ut,; ) xy, + 07, [/u — xg(u)du+ e eg(v)dv]| .

i Vi
(6)
Here, () = @g(€,—1(y), u" " (u)) and €g(v) = €9(@y—1(y), v~ (v)). The full equation is given

in Eq.[T1]

Log-linear transform. Previous works (Dockhorn et al. 2022} |Qinsheng & Chen, [2023; Zhou
et al., 2024) adapt the linear transform L(y) = y with noise prediction. Because -~ L~ !(u) = 1, the
integrand carries no weighting factor, making it straightforward to develop approximations such as
Taylor expansions and Lagrange interpolation. By contrast, the other works (Lu et al.| 2022alb;[Zhao
et al., [2023; [ Xue et al.,2024)) use a logarithmic transform L(y) = log y. Because %L‘l(u) = e¥,
the integrand carries an exponential weight. A closed-form approximation can be obtained via an
exponential integrator (Hochbruck & Ostermann, [2010) or by using Lagrange interpolation. Moti-
vated by these works, we propose a log—linear transform that interpolates between the two via a
scalar parameter 7:

L{y;7) = M, 7>0. 7
This transform is invertible, with inverse L~ (u;7) = (e”‘ — 1)/7; its weighting factor is

d%Lfl (u; T) = e™. Consequently, it has the following properties:
e As7— 0" LL7Y(u;7) — 1 (no weight).
e When7 = 1: %L’l(u; T) = e* (exponential weight).

We apply the log-linear transform to Eq. [6] allowing separate parameters 7, and 7, for the u- and
v-integrals, respectively.
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3.3 SECOND-ORDER APPROXIMATION WITH PARAMETER Kk

On the interval [u;, u;41], we approximate gy by using the second-order forward-difference approx-
imation xg(u) = xg(u;) + A”:A"iéj”)(u — u;), where @ (u;) = ®o (-1 (u;), v (05)), Ao (u;) =
xg(uir1) — xg(u;), and Au; = u;1 1 — u;. We also introduce a function K (Au;; ky,) = ko (Au;)?,
an O((Au;)?) term, to allow additional flexibility in the residual term while preserving second-
order local accuracy. k., is a real scalar parameter that controls the magnitude of the residual term.

Applying the same approximations to €y yields the following second-order corrector :cfird;corr"

.
1 — A 7 —

mtziidl_corr' = (U;’: > Ty, + U;{Hl [IL’Q(U,‘) AL us; ) + % (AL Yugs ) + B(Aui; ky))
—1 Aeg(vi) -1

+eo(vi) AL (vi5 ) + 5 (AL (’Ui;TU)-f—B(A'Ui;Hv))}.

3

Here, xg(u;) = @o(@y-10u;) v " (u5)), Azg(u;) = xg(uip1) — @o(u;), AL (us37,) =

L™ Y(uiy1;7) — L7 (ui;m0), and Au; = wu;y1 — uy; the definitions for ey(v;), Aeq(v;),

ALY (vi;7,), and Av; are analogous. The first-order predictor and second-order predictor equa-
tions are provided in Appendix Note. In Eq. L™ (ui;7y) = ou,0,,", so there is no need to
invert L explicitly. The parameter 7, determines the scale of Awu;, which feeds into B. The same
applies to L™ (v;; 7).

Theorem 3.1 (Local truncation error). Assume that xy(u) and €g(v) are C? on [u;,u;41] and
[vi, Vit 1], respectively. Let £y denote the exact update in equation |§] and let x'’ “d o denote
the second—order corrector deﬁned in equation[8] Then we have

erxact 2nd—corr. H — O((Auz)g + (Avi)?’).

tig1 xt1+1

We provide the detailed proof in Appendix [B.4] and by the same argument the accuracies of the first-
and second-order predictors can also be shown.

4 IMPLEMENTATION DETAILS

Dual-Solver performs sampling using a predictor—corrector scheme (Butcher, 2016)) based on the
equations developed above. We examine this sampling scheme in detail in Sec.[4.1|and then present
the set of learnable parameters in Sec.[4.2]

4.1 SAMPLING SCHEME

Alg. [T details the sampling procedure of Dual-Solver. Sampling requires a backbone that provides
both &g and €4; when only one head is available, the other can be obtained via Eq. @ Given M
steps, we use timesteps {t; }M o With tg = T and draw the initial noise x;, ~ N(0,I). We also
maintain a list ¢ to store previous evaluations. Empirically, a first-order predictor with a second-
order corrector performs best (Sec.[6.2). At step 4, the first-order predictor takes the current state x;,
together with the model evaluations {xq(x¢,,t;), €g(x+,,t;)} and produces a provisional sample
m; 4 The second-order corrector then combines the evaluations at ¢; with fresh evaluations at ¢, 1,
e, {zg(zy,, . ti+1), €o(xy,,  tit1)}, to yield the next sample @y, , , . At the final stepi = M — 1,
the corrector is not applied. Explicit formulas for the first-order predictor and second-order corrector
are given in Eqs.[13]and 21]

4.2 LEARNABLE PARAMETERS

For each i-th predictor/corrector step, the parameter sets are qbpred =

{,Ylpred, Tl}z’ried’ TE;ed, Hgffd7 pred} and ¢corr — {,Ycorr’ 7301”7 Sc;rr, Kcuc,)zrr’ corr} Thus, each
step uses 2 X 5 = 10 parameters (The last step (2 = — 1) does not use the corrector, so it has

5 parameters.) Fig. [3] shows the learned parameters for the NFE=5 setting using a DiT (Peebles &
Xiel [2023) backbone. Assuming a noise-prediction backbone (the same reasoning applies to data-
or velocity-prediction) and a first-order predictor with a second-order corrector (Sec. , ¢§red
and ¢$°"" determine the coefficients for an update that combines the current state ;, and two model
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Algorithm 1 Dual-Solver predictor—corrector Algorithm 2 Hard-label classification for param-

sampling (Sec. [d.1) eter learning (Sec.[5.2)

Require: Diffusion backbone with dual predic- Require: Diffusion backbone with parameters
tion {xy, €y}, timesteps {t; } M, initial noise 0, VAE decoder D, pre-trained classifier C,
x4, , empty list £, parameters ¢ solver § with parameters ¢, label dataset ),

1: Evaluate {xg(x:,,%0), €o(x+,,%0)} and learning rate 7)

addto L 1: while not converged do

2: fori =0to M — 1do bred 2: Sample z7 ~ N(0,I) b initial noise

3 Ty,py Predictor(zy,, ;47 ) 3: Sample y ~ Y > class label

4: ifi>M-—1 tl/len break 4 xo  S(zr 1y, 0,0) > sampling

5: Evaluate {zp(z},, ,, tit1), 5: 2o + D(zo) > decoding
€9(wy,,, tiv1)} and add to £ 6: p + C(Zo) > class probabilities

6: xy, ., + Corrector(axy,, £; $7°) 7: L + CrossEntropy(p, y) > loss

7: end for 8: ¢ ¢ —nVsL > parameter update

8: return x;,, 9: end while

evaluations, €y(z},,t;) and €p(x4,, ,, ti+1), to produce @y, ,, (Appendix @) This may seem heavy,
but Sec. [6.2](B) shows it is necessary.

In addition to these parameters, we also learn the evaluation times {ti}f\ifl (with tg and tp; fixed),
where M denotes the number of steps. Following prior work (Tong et al., [2025; Wang et al., |[2025)),

we employ unnormalized step variables {At] il‘io_l and apply a softmax over ¢ = 0,...,M — 1
to obtain normalized step sizes {Atl}fﬁ 0_1 (nonnegative and summing to one). The timesteps are
obtained via a cumulative sum: ¢; = to + (tas — to) 22;10 Atp,i=1,...,.M —1.

5 SOLVER PARAMETER LEARNING

In this section, we review existing regression-based parameter learning methods, identify their lim-
itations, and introduce a classification-based approach. Fig. ] provides a schematic overview of all
these methods. We apply them to our proposed Dual-Solver and report FID results for each method

in Sec.[6.2](C).

5.1 REGRESSION-BASED PARAMETER LEARNING

In regression-based learning, a solver with trainable parameters is referred to as a student solver,
while an existing fixed solver is referred to as a teacher solver, and the student is trained to imitate the
behavior of the teacher running at a high NFE. Most prior works adopt trajectory regression (Shaul
et al.| 2023} Zhou et al., [2024; [Wang et al., 2025)), which compares the trajectories generated by the
teacher and the student, or sample regression (Shaul et al., [2024), which compares only the final
samples. Since comparisons in the trajectory or sample space often show a mismatch with visual
perceptual quality, feature regression has been proposed (Tong et al, 2025)), where the measure is
computed in a feature space using metrics such as LPIPS (Zhang et al.| 2018). However, all of these
methods require a teacher solver and incur substantial overhead to prepare the supervision targets,
and they tend to perform poorly in the very low NFE regime (e.g., NFE < 5; see Table 3).

value
o

step step step step step

Figure 3: Learned parameters. Values of {v,7,, Ty, Ky, Ky} across sampling steps, learned on
DiT (Peebles & Xie, [2023) at NFE= 5. See Figs. EI, EI’ @ andlﬂlfor further results.
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Student solver S(z1 ;y, ¢, 0) Hard-label classification (proposed, Alg.m
———<> Step0 nalV Sma Step M —1 ————» Decoder D —— » Classifier C probabilities p
e : latent o image &g A
. A A .
' ! ' '
class label y | Trajectory 1 Sample | Feature | Soft-label
noise : regression H regression . regression . classification
1 ! 1 1
1 * 1
; latent ") image 2 ' M
L——» Step0 7 — Step L—1 ——» 0

Decoder D Classifier C ———— probabilities p(*)

Teacher solver S® (x7; y, 0)

Figure 4: Solver parameter learning methods. It schematically illustrates trajectory, sample, and
feature regression, as well as soft- and hard-label classification methods.

5.2 CLASSIFICATION-BASED PARAMETER LEARNING

Beyond feature regression, we consider soft-label classification, where we apply a cross-entropy
loss between the classifier outputs (probabilities) of the student and the teacher. This approach yields
improved results in the low-NFE regime (Table [3), but it still requires a teacher solver to generate
the target probabilities.

To remove this dependency, we further propose hard-label classification, which compares the stu-
dent’s classifier outputs (probabilities) against the input class label using a cross-entropy loss, with-
out any teacher solver. The overall training procedure is described in Alg. 2] The sample @ gener-
ated by the solver § is passed through the decoder D and the classifier C to obtain class probabilities
p. We then compute a cross-entropy loss between p and the class label y ~ ), and update the
solver parameters ¢ for all time steps via backpropagation. For text-to-image tasks, the class labels
are replaced with text prompts, which can be obtained from datasets such as MSCOCO 2014 (Lin
et al., 2014) or MJHQ-30K (L1 et al., 2024), and the cross-entropy loss is replaced with the CLIP
loss (Radford et al . [2021)).

Unlike regression to teacher targets, this method focuses on whether the generated samples lie on the
correct side of the classifier’s decision boundary, enabling more flexible training. A potential issue is
a mismatch between the distribution learned by the classifier and the ground-truth data distribution,
but this can be mitigated by selecting an appropriate classifier. In Sec. [6.2] (D), we analyze the
relationship between the classifier’s accuracy and the resulting FID scores.

6 EXPERIMENTS
We benchmark Dual-Solver against two families of baselines:

* Dedicated solvers: DDIM (Song et al.,|[2021a), DPM-Solver++ (Lu et al., [2022b)).
* Learned solvers: BNS-Solver (Shaul et al.| 2024), DS-Solver (Wang et al., [2025)).

We select backbones that span diffusion and flow matching, covering ImageNet (Deng et al., 2009)
conditional generation and text-to-image:

* DiT-XL/2-256x256 (Peebles & Xiel 2023)): diffusion, ImageNet.

* PixArt-ao XL-2-512 (Chen et al.| [2023)): diffusion, text-to-image.

* GM-DiT 256x256 (Chen et al.|[2025): flow matching, ImageNet.

* SANA 600M-512px (Xie et al., 2024): flow matching, text-to-image.

Solver implementations are taken from official sources or reimplemented, and the backbones can
be run easily via the diffusers library (von Platen et al.|, |2022). Further details are provided in Ap-

pendix [C|

6.1 MAIN QUANTITATIVE RESULTS

We evaluate quantitative performance using FID (Heusel et al.l [2017) and CLIP score (Radford
et al., [2021). For DiT and GM-DiT, FID is computed on 50k images uniformly sampled across
the 1,000 ImageNet (Deng et al., [2009) classes. For SANA and PixArt-«, FID and CLIP are com-
puted on the MSCOCO 2014 (Lin et al., 2014) validation set (30k image—caption pairs). The CLIP
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100 N =—e— Dual-Solver
N BNS-Solver
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-+ DPM-Solver++

FID ¢
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== Dual-Solver
BNS-Solver

#— DS-Solver

-+ DPM-Solver++

—+— Dual-Solver
BNS-Solver

@ DS-Solver

-+ DPM-Solver++
DDIM

steps

(a) DiT, FID | (Table ).

~a— Dual-Solver
BNS-Solver

#— DS-Solver

=+ DPM-Solver++
DDIM

FID ¢

FID ¢

(b) PixArt-r, FID | (Table[6).

3

5 6 7 8 9 3 4 5 6 7 8 9

steps Steps

(¢) PixArt-c, CLIP 1 (Table|6).

0.485
—— Dual-Solver (C)

BNS-Solver
#— DS-Solver
-+ DPM-Solver++
DDIM

0.480

0.475

~—e— Dual-Solver
BNS-Solver

=~ DS-Solver

-4+ DPM-Solver++
DDIM

0.470

04651 &

steps

(d) GM-DiT, FID | (Table[5).

(e) SANA, FID | (Table[7).

/
/
—_— - . - 1
e N i s = St
{

6 7 8 9 3 4 5 6 7 8 9
Steps

(f) SANA, CLIP 7 (Table 7).

Steps

Figure 5: Main quantitative results. FID and CLIP score; evaluated on 50k (DiT/GM-DiT) and
30k (SANA/PixArt-) samples; CFG: DiT=1.5, GM-DiT=1.4, SANA=4.5, PixArt-a=3.5.

score is computed as the cosine similarity between text and image features. As described in Sec. [3
we train Dual-Solver with a classification-based objective. For DiT and GM-DiT, MobileNetV3-
Large (Howard et al.,2019) is used, and for SANA and PixArt-«, CLIP(RN101) is used. Fig. E]plots
the measured FID and CLIP scores. Across all evaluated NFEs, Dual-Solver outperforms competing
solvers on both FID and CLIP for DiT, SANA, and PixArt-a.. For GM-DiT, Dual-Solver underper-
forms at NFE 7-9; however, when trained with a trajectory regression-based objective, it surpasses
the baselines at NFE 8 and 9 (Table[5).

6.2 ABLATION STUDY

We conduct ablations to determine (A) the predictor—corrector order, (B) how much to constrain the
degrees of freedom within the parameter set ¢ = {~, 7, k}, (C) the choice of learning method, and
(D) the choice of classifier. Ablations are conducted with DiT (Peebles & Xiel 2023)).

Cross entropy ({)

NFE 3 5 7 9
(A) Predictor, Corrector Order

pl 0.667 0.225 0.183 0.175
plc2 0.574 0.197 0.178 0.173
p2 1.023  0.253 0.222 0.181
p2¢c2 5.009 0317 0.203 0.191
(B) Parameters (v, 7, k) Setting

~ =1 fixed 0.816 0.223 0.182 0.176
~ =0 fixed 0.600 0.202 0.183 0.180
~v=—1fixed 7.871 7.676 0.238 0.196
7 =1 fixed 0.601 0217 0.175 0.178
k= 0 fixed 0.944 0.256 0.202 0.190
T, k shared 0.667 0.221 0.177 0.169
global 0.593 0213 0.181 0.177
global 7 0.596 0219 0.186 0.179
global k 0.612 0240 0.185 0.182
all learnable  0.574 0.197 0.178 0.173

Table 2: Ablation Study

(A) Predictor-corrector order. We ablate the pre-
dictor/corrector order: pl (first-order predictor),
plc2 (first-order predictor + second-order correc-
tor), p2 (second-order predictor), and p2c2 (second-
order predictor + second-order corrector). The equa-
tions for each predictor and corrector are given in
Egs. and As shown in Table [2] (A),
plc2 achieves superior performance across NFE =
3,5,7,9. We therefore adopt plc2 as the default
configuration for Dual-Solver (Sec. [4.1).

(B) Parameters (v, 7, k) setting. We ablate the pa-
rameterization by fixing selected values or sharing
them across parameters to reduce degrees of free-
dom. Choosing v as 1, 0, or —1 recovers data, ve-
locity, and noise prediction, respectively; 7 = 1
gives the log transform; and 0 disables the
second-order residual term. We also tie 7, = T,
and k, = K, to share parameters between the inte-
grations for oy and €y. Additionally, we consider a
global setting in which each of ~, 7, and & is shared
across all sampling steps.

As shown in Table [2] (B), at low NFE (3 and 5), leaving all parameters free yields the best
performance. At higher NFEs (7 and 9), configurations that fix or share certain parameters can oc-
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casionally perform better. Since gaps are small and our focus is low NFE, we adopt the all-learnable
setting by default.

(C) Parameter learning methods. Table re- FID ()

ports the results of applying the regression- and Npg 3 5 7 9
classification-based parameter learning methods dis-
cussed in Sec. [5] to Dual-Solver. Feature regression

Regression-based learning (Sec.

is implemented using LPIPS (Zhang et al.| 2018)), %;?epi[eory 18(7)3143 Hgé ggg %gz
and it generally performs better than regression in  Feature (AlexNet) 4775 724 342 2091
the trajectory or sample space. The improvement Feature (VGG) 4158 548 323 2.88

is particularly pronounced in the very low NFE Feature (SqueezeNet) 44.00  7.07 331 2.79
regime (NFE = 3, 5). Depending on which classi- Classification-based learning (Sec.[5.2}

fier (AlexNet (Krizhevsky et all 2012), VGG (Si-  soft-1abel 25.13 490 337 3.01
monyan & Zisserman), [2014), SqueezeNet (landola] Hard-label 2491 352 275 2.67
et al., 2016)) is used to extract features, the results
vary significantly, underscoring the importance of Table 3: Comparison of parameter learning
classifier choice in feature space. methods

Classification-based methods further widen the performance gap relative to feature regression in
the low NFE regime (NFE = 3, 5). In particular, the method that uses only hard labels achieves
substantially superior results across all NFEs, which we attribute to the choice of an appropriate
classifier; we investigate this in the next paragraph.

%8 o[ i Legend P (D) Classifier model selection. A natural

- %g 1 @iienehs ® NFE=3 o question for classifier-based learning is which

i NFE=9 [ . . . .

& i @ o b g A o classifier to use. To investigate this, we eval-

w 1 = B w . . .

2127 @™y e 13-11GFLOPS = uate 20 pretrained classifiers from TorchVi-

= 13 1 in_vZ | = -:;- . 5 = = .

212 ] et L Sl g sion (maintainers & contributors| 2016). Fig.[f]

R o T by plots FID (on 10k samples) versus classifier

—~ 91 e —

2 3] onet y_ 3208 [ 2 top-5 accuracy for each model, ordered by

£~ i gnet ¥ 8gf | < . g o

& 4] L4 bierefie & rank. Interestingly, the curve exhibits a clear

regnet_y_400mf . ..

o 2] et T V-shape: as accuracy decreases, FID initially
3] | i Beshe® vy e | improves, but beyond ranks 14—16 the FID de-
1t o il A grades sharply. This suggests that neither very

12345678 91011121314151617181920 high nor very low classifier accuracy is opti-

Classifier accuracy rank (1 = best) . .
mal; a moderate level is most beneficial for

Figure 6: Top-5 accuracy vs. FID (Table . FID.

Based on this observation, we choose mobilenet_v3_large, which consistently yields low
FID at NFE = 3 and 9, as the classifier for parameter learning with both DiT (Peebles & Xie}
2023) and GM-DiT (Chen et al., [2025). A detailed analysis linking this pattern to precision and
recall (Kynkdanniemi et al.l 2019) is provided in Appendix [D}

6.3 PARAMETER INTERPOLATION ACROSS NFES

From the learned parameters of Dual-Solver (Ap-
pendix |E), we observe that their overall shapes remain
similar across different NFEs. Motivated by this, we
test the robustness of the learned parameters by apply-
ing them to other NFEs. To obtain the parameters for

&/ —e— Dual-Solver
#— DS-Solver
BNS-Solver
AN i ol DPM-Solver++
N —»- DDIM
»,

10 4

‘\

FID L

AN
an unseen NFE, we interpolate the parameters of its two ] R T
neighboring NFEs and then take their weighted average. T (7'9)‘:3;:,;.”
The detailed formulas are provided in the Appendix 3 -r interp. (3,6, (6,9) . S—
Fig. [7] reports the results. Interp. (3,5), (5,7), (7,9) de- L e B ‘ | | |
notes that we interpolate between the parameter pairs 3 4 5 6 7 8 s

Steps

at NFEs (3,5), (5,7), and (7,9) to obtain the parameters
for the intermediate NFEs 4, 6, and 8, respectively; the . , .
other interpolation schemes are defined analogously. Al- Polation across NFEs with a DiT (Peebles
though these interpolated parameters do not match the (& X1€;2023) backbone.

performance of parameters directly optimized for each NFE, the gaps are modest, and the resulting
FID scores still outperform those of other solvers.

Figure 7: FID results for parameter inter-
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(a) DPM-Solver++ (b) Dual-Solver (Ours) (c) BNS-Solver (d) DS-Solver

(Eecal) 20275 ShaTetal 20 (Wangeral] 2075
Figure 8: Sampling results. PixArt-« (Chen et al.| 2023), NFE=5, CFG=3.5. See Fig.[22]for further
results.

(a) Dual-Solver (Ours)

Figure 9: Sampling results. GM-DiT (Chen et al., 2025), NFE=3, CFG=1.4. See Fig. [20|for more.

6.4 TRAINING TIME

Fig. reports per-step training time, decomposed

Dual .-I 72 into sampling, decoding, classifier, and backward,
— Sampc:'.ng measured at NFE = 5 using GM-DiT

BNS : Ef.;if'i';f 483 as the backbone. Dual-Solver adds decoding
Backward and classifier overheads; the latter is modest thanks

DS 437 to lightweight choices, as discussed in Sec. D).

) T T T T Overall, total per-step time increases by about 8%
0 100 200 300 400 versus BNS-Solver [2024) and DS-

Figure 10: Training time per step (ms) (Ta-01Ver (Wang et al| 2025). See Appendix [E] for
ble. convergence-time details.

7 CONCLUSIONS AND LIMITATIONS

This paper introduces Dual-Solver, a predictor—corrector sampler that achieves second-order nu-
merical accuracy, featuring per-step learnable parameters (7, 7, ) that govern the prediction param-
eterization (noise/velocity/data), a change of variables, and a second-order residual adjustment. All
solver parameters are optimized end-to-end with a classification-based objective using a pretrained
image classifier. Across diverse diffusion and flow matching backbones, experiments show substan-
tial improvements over competing solvers in the low-NFE regime (3 < NFE < 9), measured by
both FID and CLIP score. Limitations include the absence of unconditional backbones and a lack of
analysis beyond second-order accuracy; both are left for future work.

10
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REPRODUCIBILITY STATEMENT

In Sec.[6|and Appendix [C] we report detailed information regarding the backbones, solvers, training,
and evaluation used in our experiments. All datasets employed, such as ImageNet (Deng et al., 2009)
and MSCOCO (Lin et al.| |2014), are publicly available under their respective licenses.
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A LLM USAGE

We disclose that Large Language Models (LLMs) were used as assistive tools for:

* verifying the consistency of mathematical derivations,
* assisting literature search and surfacing related work,
* helping with formal writing (style, grammar, typos),

* drafting figure and table scripts.

All scientific ideas, methods, and results originate from the authors, who take full responsibility for
the content of this paper.

B DERIVATIONS

B.1 DERIVATION OF DUAL PREDICTION

Differential Form of Dual Prediction. The differential form corresponding to the integral form
in Eq.[3is given by

dx dlog « dlogo
d7tt = fx; + at(idgt L B)wG(fcht) + Ut(id% t - ﬁ) €o(x,1). ©)
To derive this form, we start from the probability-flow ODE in Eq.
dx 1
7; = fize — 59? Vi log q(z:),
dlog a d €g(xy,t
where fi = N2 2 = Lot 2707, Valogalan) = — L0,
Substituting f;, g2, and V, log q(x;) yields:
dxy dlogaoy 1 /d , dloga; 4
oot _ [ Z52_9
dt at ' 2\t a0t )eol@nt)
_dlogoy dlogo;  dlogay
= dt Tt —|— O¢ ( dt — dt €9 (wt, t)

Introducing an arbitrary 8 € R, we can rewrite:

d dl dl dl
i (B ) (o o)

dt dt dt dt

dlog o dlogo dlog «
= Bz + ( d%f t *5) (atwe(mtat) +Ut€9(mt7t)) +Ut< dgt t - dgt; t> 59(mtvt)
— B, + (dlogat *5)3’3 (@0nt) + (dlogot *5)6 (1)
= t T Qg di 0\ Lt, Ot dt o\ L, ).

Thus we obtain the differential form of dual prediction. It is straightforward to verify that choosing
8= % log av; recovers the noise-prediction form, 5 = di log o recovers the data-prediction form,
and 8 = 0 recovers the velocity-prediction form in Table

Integral Form of Dual Prediction. We next apply the variation-of-constants method to Eq. [9] to
obtain the following integral representation:

ts s ti
X, = eXp(ftz g du) z, + ‘[tl+1 exp(fS iy du) [Oés (dlf’% _ 55> xy + as(dl‘;% _ ﬁs) 59] ds.
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We reparameterize /3 in terms of a new variable v € R as follows:

dl )
C:igtat = Vﬁv v =0,
_ o
ply) = dlog oy ! o
- = =7 '7<0
dt Qg

Then we obtain the following ~y-interpolated integral form of dual prediction:

Yy tit1 tita
Ttita ol d - d( 14
(Tu) Ty, + oy, {/tl a(atat )(E@dt+ . £<Ut )egdt , v >0,

tig1 = - tit1 tiv1
at,; — d 1+ + d
(—a:> i, + oztll [/t %(at 7) Todt + /t. a(at o)) €pdt|, v <.

(10)
B.2 CHANGE OF VARIABLES
Using the transform L defined in Sec.[3.2] we define
L(Oétati’y;'ru% ’Y>Ov L(O-tl_’y;Tv)v ’Y>07
tyTy) = = t;Ty) = B
u(t; ) {L(atHV;Tu), v <0, vt ) L(O’t ag;Tv), ~v < 0.
Using these variables, applying a change of variables to the integral in Eq.|10]yields
- Y Uit del Tw "Vi41 del Ty
(%) e+ o [ a1 [ @] 20
Ltipr = ) - ' it J1,=1(y: vit1 L= 1 (p-
(%) T, + a;zl{/m %wg(u)du + /UL %69(1))(1’[}} (v<0).
(1D

B.3 DERIVATION OF SAMPLING EQUATIONS

B.3.1 DERIVATION OF FIRST-ORDER PREDICTOR

First, we take a first-order approximation of ¢ and €y in Eq.[TI] For the case v > 0, this yields

., = (“;:‘ )thl + gg“[z@(ui) (AL (us; 7)) + O((Aus)?)) + €o(vi) (AL~ (vis 7) + O((Av)?)) | (7> 0).

(12)
Here, we write g(u;) = @o(@y-104;),u (1)), and AL Hug;7,) = L7 H(uig137u) —
L~ (u;; 7,); the definitions for €y (v;) and AL~ (v;; 7,,) are analogous.
Next, while preserving first-order accuracy, we incorporate the B(Au;;k,) = O((Au;)?) and

B(Av;; ky) = O((Awv;)?) correction terms and include the v < 0 case, which yields the following
first-order predictor of Dual-Solver.

=
("0—) @i, + 07, (o ()AL (i) + B(Aui w.) + €o(0)( AL (vsm) + B(Avisk,)) ], 720,
1st—pred. __ ti
tit1 - -
Lo ) tag Y g (u (AL (ug ) + B(Auis ) + €o(vi)( AL (03 7) + B(Avi; k)] v <0.
a i tit1
s
13)

B.3.2 DERIVATION OF SECOND-ORDER PREDICTOR

First, we approximate xy(u) and €p(v) near u; and v; by a second-order backward-difference ex-
pansion. For the case v > 0, this yields

7 A i Witt ALY (u;
Ty, N (%) @, + Uziﬂ[wo(ui)ALfl(ui;Tu)+M/ (u,ui)wdu

o, Au;_q du
_ Aeg(vi—y) [Vt dL=(v;T,)
) 1/, . 0\Vi-1 . s T >
+ €g(vi) AL™ (v3; 1) + Ao /v (v vz)idv dv| (y>0).
(14)
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Using
1 Wit1 dL=Y(u;T,) 1 dL=Y(u;7,)
—u) —————du = : Au; + O((Au;)?
1
= (AL_l(ui; Tu) =+ (’)((Auz)2))

27“2(“)

where (") 1= A%i=1 4nq p(¥) . A1 e obtain

i T Aug i T Avg
v v
T, N (%) Ty, + U;H{mg(ui)AL_l(ui;Tu) + % (AL‘l(ui;Tu) +O((Au7;)2))
: T

i
Aeg(vi-1)

+ €g(v)) ALY (v5; 7,) + @
2r;

(AL (v5;7) + O((Av)2) | (7> 0).
(16)

Next, while preserving second-order accuracy, we incorporate the B(Au;; k,) = O((Au;)?) and
B(Av;; ky) = O((Awv;)?) correction terms and include the v < 0 case, which yields the following
second-order predictor of Dual-Solver.

Axg(ui—1)
27‘1(11)
Aeg(v;—
+eg AL (g5 m,) + %;1)
2nd—pred. _ QTi

Ltia @ - A
tig1 —y —1y,, .. "1"9(“71—1)
<Tétl ) Ty, ooy, [a:g AL (us; o) + o
1

AE@ (’Uj,, 1)
27'5“

=
<&> xy, + UZH [a:g AL’I(ui; Tu) + (AL’I(ui; Tu) + B(Aug; Hu))

O¢;

(Aquvum)+zwa”%»]7wzo,

(ALil(uﬁ Tu) + B(Aui? Hu))

+eg AL (g3 7,) + (AL (vs;70) + B(Av;; Kv))} , v <0.

a7

B.3.3 DERIVATION OF SECOND-ORDER CORRECTOR

First, we approximate xy(u) and €4(v) near u; and v; by a forward-difference expansion. For the
case v > 0, this yields

v A i Uit 1 dL=Y(u: .
Ty, N <%> x:, + O'Z+1|:iﬂ9(ui)AL_1(ui§Tu) + Zo(u )/ (ufui)wdu

oy, Au; du
X Vit1 —1(,,.
Fel)AL in) + S5 [ - T ] >0
Z (18)
Using
1 Wit1 AL (u;7,) 1 { dL=Y(u; ) 9
Au /u’i (u— ui)idu du = 3 (du . Au; + O((Au;)?) )
1 _
=5 (AL Y (u; m,) + O((Aw;)?))
we obtain
’Y .
e (%0) e+ o o)A i) + A28 (AL )+ 0(80?)
t;
+ eg(v)) AL vy 1) + Ae(;(vi) (A[fl(vi;ﬂ,) + (’)((Avi)2)) (y>0).

(20)

Next, while preserving second-order accuracy, we incorporate the B(Au;; k,) = O((Au;)?) and
B(Av;; ky) = O((Awv;)?) correction terms and include the v < 0 case, which yields the following
second-order corrector of Dual-Solver.
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AWT(W) (AL~ (uss ) + B(Dugs )

Aeg(v;)
2

Otiq K v AL (-
— ) Ty t 0p,, (T (wis Tu) +

Tt;

+eg AL Y (vi; 1) +

. - A )
(%) @+ oo, {me AL M uiym) + ng(ul) (AL (ui; 7) + B(Aus; 5y))
ti

Aeg(v;)
2

2nd—corr. __ (AL—l(’Ui; TU) + B(Avi; /i'l‘))} » Y > 0)
tit1 -

+eg AL M wi; 1) +

(AL_l(’Ui;Tv) + B(AU“ ’{v))], v < 0.
2D

B.4 PROOF OF LOCAL TRUNCATION ERROR

Proof. We begin by rewriting the exact solution in Eq.[6]as follows:

o, v
Lt = (?4:1) Ty; + U’tyi+1 (Ix + IS)’
with

L= [T wewd, L= [T @ )

We then demonstrate the accuracy of the proposed second-order corrector :ciﬂ_co”' in equation
by using the approximation for I, and I, with third-order accuracy.

We take second—order Taylor expansions of xg(u) and (L~1)’(u) at u;:

(1) = o (ui)+xh(w) s+ o ()5, (L7 (w) = (L7 (w)+(L71)" (ua)s+3 (L1 (C)s?,
where s = u — u; and &, (, € (u;, u;+1). Then the integral I, can be represented in terms of the
integral of s as

JANTY)
Ix - / (AO + AlS + 0(52)) dS = Ao Auz + %Al (Auz)Q + O((AUZ)B)
0

with
, Ay = (L) () (ui) + (L7 () o (us),
(u;). Furthermore, I, can be expressed in terms of @ (u;) and

= (LY (ui)zo (us)
and AL~ (u ) LY (ujpq1)— L7t
its derivative as

I = @o(us) (L7 (u) Ay + 5L () (Au)?) +@h () (L7 () 3 (Awi)? + O((Auy)?)
= AL~ (u)+0((Aus)?)
= @ (ui) AL (w;) + (i) (L) (wi) 5(Aui)? + O((Aw;)?).
From the definition of second-order corrector approximation in equation 8] let us denote the last part
of the approximation with I, and I as

T = @(us) AL (us) + L Azg (u;) (AL‘l(ui) + Bm(Aui)),

I, = €9(v;) AL™ (v;) + %Aeg(@ﬁ(AL*l(W) + Be(Avi)).
Here, we remark that B, (Au;) = O((Au;)?) and B.(Av;) = O((Av;)?). Using the fact
Azg(u;) = xo(uit1) — zo(us) = x)(u) Auy + O((Auy)?),
I, can be rewritten as
T = @p(us) ALY (us) + @) (us) LA, (AL‘l(ui) + Bx(Aui)) + O((Aw)?).
Then
I = T = daus) [ (L7 () (D) = AL (us) Aui| = § @ (us) Bu(Aui) Aus + O((Aui)?).
Since~AL’1(ui) = (L7Y (u;)Au; + O((Au;)?) and By (Au;) = O((Au;)?), we conclude that
I, — I, = O((Auw;)3). By the same argument, I, — I, = O((Av;)3). Therefore, it follows that
gt _ gZnd—cor — o8 (1 — L)+ (I — I.)] = O((Aw;)® + (Avy)?).

i+1 i+1
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C EXPERIMENTAL DETAILS

C.1 SETUP

Environment details We run all experiments on a single NVIDIA RTX pro 6000
(Driver 575.57.08) under Ubuntu 24.04 with Python 3.11.13, PyTorch 2.8.0, and CUDA 12.9.

Backbone Details We evaluate DiT-X1./2 (Peebles & Xie) [2023)), GM-DIT (Chen et al., 2025)),
SANA (Xie et al.| [2024), and PixArt-« (Chen et al.,2023)). All models are obtained via the Hugging
Face Diffusers (von Platen et al.|[2022) pipelines and run in evaluation mode with bf loat16.
The model identifiers are:

* DiT: facebook/DiT-XL-2-256

* GM-DiT: Lakonik/gmflow_imagenet_k8_ema

e SANA: Efficient-Large—-Model/Sana_600M_512px_diffusers
* PixArt-a: PixArt-alpha/PixArt-XL-2-512x512

Solver Details The solvers used in our experiments are the diffusion-dedicated DDIM (Song et al.,
2021a)), the second-order multistep DPM-Solver++ (Lu et al., 2022b), and the learned solvers BNS-
Solver (Shaul et al.,[2024) and DS-Solver (Wang et al.,[2025). We use DDIM as the first-order coun-
terpart of DPM-Solver++ (as proposed in [Lu et al.| (2022a)). lementations of DPM-Solver++
and DS-Solver are taken from their official GitHub repontoneﬂﬂ?and BNS-Solver is implemented
according to the paper.

Learning Details We train with AdamW (Loshchilov & Hutter, 2017) using 5 = (0.9,0.999),
€ = le—8, and weight decay 0.01. The learning rate decays from 2 x 1073 to 1 x 10~* over
20k steps via cosine annealing (Loshchilov & Hutter, 2016). The batch size is fixed to 10 for all
experiments. For regression-based learning, the teacher trajectory is a 200-step DDIM [Song et al.
(2021a) method on 1k samples.

Sampling Details We use an NFE grid of {3,4,5,6,7,8,9} for all backbones. Classifier-free
guidance (CFG;Ho & Salimans, [2021)) is fixed per backbone as follows: DiT = 1.5, GM-DiT = 1.4,
SANA = 4.5, and PixArt-a = 3.5. For FID, we use the publicly released ImageNet training-set
statistics (Dhariwal & Nichol, |2021), while for SANA and PixArt-a we compute the FID statistics
from 30k samples drawn from the MSCOCO 2014 (Lin et al.,|2014) evaluation set (Lin et al.,[2014));
CLIP is computed with the official RN101 variant (Radford et al.,2021)). We generate 50,000 images
for ImageNet and 30,000 images for text-to-image (MSCOCO 2014 (Lin et al., |2014) evaluation
prompts).

C.2 QUANTITATIVE RESULTS

Table 4: DiT (Peebles & Xie, [2023): FID ({) vs. NFE. ImageNet generation, 50k samples.

Method 3 4 5 6 7 8 9

DDIM (Song et al., [2021al) 89.33  56.33 3291 20.06 13.64 955 7.42
DPM-Solver++(Lu et al.,2022b) 88.46 47.64 22.19 11.49 7.06 5.19 443
BNS-Solver(Shaul et al.,2024)  103.26 38.20 14.53 6.37 4.25 3.37 3.05
DS-Solver(Wang et al., [2025)) 67.31 1731 7.66 546 3.79 3.08 3.02

Dual-Solver (Ours) 2491 6.05 352 313 275 260 2.67

"nttps://github.com/LuChengTHU/dpm-solver
https://github.com/MCG-NJU/NeuralSolver
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Table 5: GM-DIT Chen et al.| (2025): FID ({) vs. NFE. ImageNet generation, 50k samples.

Method 3 4 5 6 7 8 9

DDIM (Song et al.,[2021a) 70.15 3598 19.70 12,55 9.03 7.01 5.78
DPM-Solver++(Lu et al.,2022b) 63.24 19.53 7.85 4.74 3.65 3.15 2.89
BNS-Solver(Shaul et al., [2024)  57.88 26.64 10.31 5.02 3.43 2.66 244
DS-Solver(Wang et al., 2025) 3415 11.60 5.64 349 270 248 241

Dual-Solver-R (Ours) 4553 1443 749 375 277 244 232
Dual-Solver-C (Ours) 681 376 3.09 297 277 270 2.60

R = trajectory regression-based; C = classification-based.

Table 6: PixArt-a (Chen et al) [2023): FID (}) and CLIP score (1) vs. NFE. Text-to-image on
MSCOCO 2014 (Lin et al., |2014) with 30k samples.

Method 3 4 5 6 7 8 9
FID (1)
DDIM (Song et al.|2021a) 71.37 4521 3512 3092 28.60 2739  26.58

DPM-Solver++ (Lu et al.|[2022b)  76.01  41.77 3148 27.83 2656 2582 2548
BNS-Solver (Shaul et al.|[2024) 125.65 6694 4131 3255 2855 2518  24.15

DS-Solver (Wang et al.|[2025) 118.01 66.09 43.62 2974 28.25 2657 2522
Dual-Solver (Ours) 66.61 31.61 24.68 2239 22,51 2196 22.01
CLIP (RN101, 1)

DDIM (Song et al.|[2021a) 0.4469 0.4670 0.4739 0.4764 0.4763 0.4778 0.4779

DPM-Solver++ (Lu et al.|[2022b)  0.4422 0.4676 0.4746 0.4763 0.4768 0.4771 0.4771
BNS-Solver (Shaul et al.|[2024) 0.4320 0.4582 0.4694 04733 0.4746 04755 0.4757
DS-Solver (Wang et al.|[2025) 0.4303 0.4568 0.4692 0.4748 0.4754 0.4762 0.4764

Dual-Solver (Ours) 0.4499 0.4732 0.4784 0.4803 0.4806 0.4814 0.4815

Table 7: SANA (Xie et al., |2024): FID () and CLIP score (RN101, 1) vs. NFE. Text-to-image on
MSCOCO 2014 (Lin et al.} 2014} with 30k samples.

Method 3 4 5 6 7 8 9
FID (})
DDIM (Song et al.|[2021a) 45.05 27.72 23.93 23.06 22.99 22.96 22.97

DPM-Solver++ (Lu et al.;[2022b)  45.33  26.12  22.56 2248 2279 2290 23.11
BNS-Solver (Shaul et al.|[2024) 48.16 2637 21.04 20.66 20.79 21.13 21.64

DS-Solver (Wang et al.| 2025) 4865 29.15 21.66 2065 2143 21.80 2227
Dual-Solver (Ours) 21,79 1940 1881 1852 19.57 1943  19.77
CLIP (1)

DDIM (Song et al.| 2021a) 04656 0.4782 04813 04821 0.4824 04824 0.4824

DPM-Solver++ (Lu et al.|[2022b)  0.4652 0.4779 0.4813 0.4821 0.4822 0.4820 0.4820
BNS-Solver (Shaul et al.|[2024) 0.4651 0.4772 0.4800 0.4807 0.4808 0.4809 0.4808
DS-Solver (Wang et al.|[2025) 0.4635 0.4765 0.4808 0.4816 0.4818 0.4818 0.4816

Dual-Solver (Ours) 0.4795 0.4801 0.4821 0.4837 0.4843 0.4844 0.4849
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D CLASSIFIER ACCURACY VS. SAMPLE QUALITY

As examined in Sec. [6.2] we study the relationship between classifier accuracy and FID. In this
section, Table [§] provides detailed numerical results, and Fig. [TT] analyzes the trend from the per-
spectives of precision and recall (Kynkddnniemi et al., 2019). Table§|reports the pretrained weights
from TorchVision (maintainers & contributors, 2016) and the results of training Dual-Solver with
each set of weights. Using a GM-DiT (Chen et al., backbone, we present FID, precision, and
recall at NFE= 3 and 9. The best value for each metric is highlighted in bold. In Fig.[I2] we show
NFE=3 samples from Dual-Solver trained with the classifiers listed in Table[8] ordered by increasing
FID (lower is better).

Table 8: ImageNet per-classifier metrics. Top-5 accuracy, FID, precision/recall at NFE=3 and 9,
and GFLOPs; FID is measured on 10k samples after training Dual-Solver for each classifier.

Weightﬂ Top-5 Acc. (%) FID@3 FID@9 Pr 3 Pr 9 Recall@3 Recall@9 GFLOPS
ViT_H_14 Weights.IMAGENET1K_SWAG_E2E V1 98.694 10.71 6.72 0.8376 0.8960 0.7420 0.7311 1016.72
RegNet_Y_128GF_Weights.IMAGENET1K_SWAG_LINEAR.V1 97.844 12.99 5.61 0.8230 0.8996 0.7327 0.7336 127.52
RegNet _Y_16GF _Weights.IMAGENET1K_SWAG_LINEAR V1 97.244 9.97 5.32 0.8573 0.9007 0.7392 0.7467 1591
ConvNeXt_Base_Weights.IMAGENET1K V1 96.870 10.28 5.78 0.8529 0.9040 0.7359 0.7327 15.36
EfficientNet_B5_Weights.IMAGENET1K.V1 96.628 11.53 6.01 0.8379 0.9048 0.7393 0.7310 10.27
RegNet_Y_16GF_Weights.IMAGENET1K V2 96.328 9.63 5.21 0.8559 0.9061 0.7396 0.7455 15.91
SwinV2_T_Weights.IMAGENET1K V1 96.132 9.73 534 0.8555 0.9078 0.7439 0.7410 5.94
Swin_T_Weights.IMAGENET1K V1 95.776 9.65 529 0.8559 0.9055 0.7448 0.7425 4.49
RegNet_Y_32GF_Weights.IMAGENET1K V1 95.340 9.55 5.04 0.8520 0.9043 0.7464 0.7455 32.28
RegNet_Y_8GF_Weights.IMAGENET1K V1 95.048 9.54 5.10 0.8559 0.9074 0.7438 0.7414 8.47
RegNet_Y_3_2GF Weights.IMAGENET1K V1 94.576 9.50 5.01 0.8564 0.9065 0.7448 0.7436 3.18
ResNet152 Weights.IMAGENET1K.V1 94.046 9.49 5.03 0.8537 0.9089 0.7493 0.7459 11.51
ResNet101 Weights.IMAGENET1K V1 93.546 9.59 4.98 0.8529 0.9067 0.7459 0.7454 7.80
RegNet_Y_800MF_Weights.IMAGENET1K V1 93.136 9.40 4.99 0.8532 0.9081 0.7508 0.7437 0.83
MobileNet V3_Large Weights.IMAGENET1K V2 92.566 9.44 4.87 0.8523 0.9062 0.7467 0.7475 0.22
RegNet_Y_400MF_Weights.IMAGENET1K V1 91.716 9.50 4.87 0.8560 0.9082 0.7470 0.7489 0.40
RegNet _X_400MF_Weights.IMAGENET1K V1 90.950 9.60 4.93 0.8553 0.9091 0.7448 0.7410 0.41
MobileNet V2 Weights.IMAGENET1K V1 90.286 9.52 5.03 0.8541 09118 0.7471 0.7331 0.30
ShuffleNet_V2_X1_0_Weights.IMAGENET1K V1 88.316 11.57 5.51 0.8368 0.9017 0.7388 0.7436 0.14
AlexNet_Weights.IMAGENET1K V1 79.066 11.20 6.22 0.8300 0.9163 0.7455 0.7187 0.71
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Figure 11: Accuracy vs. precision/recall. We select 20 TorchVision classifiers sorted by accuracy,
learn the Dual-Solver for each, and report precision/recall at NFE=3 and 9 on 10k samples.

Shttps://docs.pytorch.org/vision/main/models.html
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Classifier accuracy vs. precision and recall. Fig.|[l11](a) and (b) plot precision and recall versus
classifier accuracy at NFE= 3, respectively. The results show little relationship between accuracy
and precision, while accuracy versus recall follows the V-shape seen in Fig. [6] In other words,
neither very high nor very low accuracy helps recall; a moderate level yields higher recall. The
pattern differs at NFE= 9. Fig.|11|(c) and (d) plot precision and recall versus classifier accuracy at
NFE= 9. Unlike the NFE= 3 case, precision exhibits a strong negative correlation with accuracy,
and accuracy appears largely unrelated to recall.

OpenCLIP accuracy vs. FID. Table [ reports the FID evaluation used to select the CLIP model
for learning Dual-Solver on the text-to-image task. All weights are from OpenCLIP (Ilharco et al.,
2021) and are available from the official repositoryﬂ Using the SANA (Xie et al., |2024) backbone
we trained the Dual-Solver for 20k steps. At NFE=3 and NFE=6, we generated 10k samples with
MSCOCO 2014 (Lin et al.,|2014) prompts and measured FID on the evaluation set. Based on these
results, we chose the RN101 weights—which achieved an FID of 18.52 at NFE=6—as the model
for learning the Dual-Solver in the main text-to-image experiment. Notably, this result also indicates
that models with somewhat lower classification accuracy can yield lower FID.

Table 9: OpenCLIP per-classifier metrics. MSCOCO accuracy, FID at NFE=3 and 6, and
GFLOPs; FID is measured on 30k samples after learning Dual-Solver for each classifier.

Weights MSCOCO Acc. (%) FID@3 FID@6 GFLOPs
ViT-H-14-378-quickgelu, dfn5b 63.76 23.98 23.28 1054.05
coca ViT-L-14, mscoco_finetuned_-laion2b_s13b_b90k 60.28 23.09 21.22 214.52
EVA02-E-14, laion2b_s4bbll5k 58.92 22.41 21.12 1007.93
convnext_xxlarge, laion2b_s34b_b82k_augreg 58.34 21.05 20.86 800.88
ViT-B-16-SigLIP-256, webli 57.24 21.03 19.87 57.84
EVA02-1L-14-336, merged2b_s6b b6lk 56.05 23.15 23.28 167.50
ViT-L-14, commonpool_xl_laion_s13b_b90k 55.13 23.46 22.81 175.33
convnext base_w, laion_aesthetic_s13b_b82k 52.38 20.97 19.86 49.38
convnext_basew_320, laion_aesthetic_sl3b_b82k._augreg 51.42 20.69 20.26 175.33
ViT-B-16-plus—-240, laion400m_e32 49.79 21.66 21.18 64.03
ViT-B-32, laion2b.elé6 47.68 23.75 23.49 14.78
ViT-B-32-quickgelu, metaclip_fullcc 46.62 22.46 21.42 14.78
RN50x16, openai 45.38 22.49 21.36 33.34
ViT-B-32, laion400m_e31 43.27 22.40 21.70 14.78
RN101, openai 40.25 21.78 18.52 25.50
ViT-B-16, commonpool_l_text_slb b8k 37.30 23.50 23.54 41.09
ViT-B-16, commonpool_1l_slb_ b8k 28.55 22.94 24.73 41.09
ViT-B-32, commonpool m text_s128mbdk 14.52 22.39 22.55 14.78
ViT-B-32, commonpool_s_clip_sl3m_b4dk 2.24 22.32 21.31 14.78
coca ViT-B-32, mscoco_finetuned_ laion2b_s13b_b90k 0.60 23.76 23.14 33.34

*nttps://github.com/mlfoundations/open_clip
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RegNet_Y_3_2GF _Weights.

)

MobileNet V2 Weights.T

FID: 9.40

FID: 9.44

046% FID: 9.49
FID: 9.50

FID: 9.50

FID: 9.52

FID: 9.55
FID: 9.59

FID: 9.60

Figure 12: Sampling results by classifier. Classifier weights, top-5 accuracy, and FID are reported;

entries are sorted by ascending FID.
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RegNet_Y_16GF_Weights.IMAGENET1K V2
Qr——

Top-5 Acc.: 96.328% FID: 9.63

o .
7 ) /|

. FID: 9.65

244%

Figure 12: Sampling results by classifier. (continued).
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E ANALYSIS OF CONVERGENCE TIME
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Figure 13: FID vs. training step for three solvers on GM-DiT (CFG=1.4): Dual-Solver (Ours),
BNS-Solver (Shaul et al.| [2024), and DS-Solver (Wang et al., 2025).

In Sec. @n;a/e ana}lyze the per-step cpmputational Stage Dual-Solver BNS-Solver DS-Solver
cost. Table prov@es the correspondmg summary - 135.39 14057 138.33
statistics. In this section, we analyze the time to con-  decoding 73.67 _ _
vergence. As reported in Appendix[C| we train up to ~ classifier 10.19 - -
20k steps, but the best-performing checkpointis typ- _backward — 253.04 296.82 297.02
ically found earlier. Because FID evaluates a differ- sum 472.29 437.39 43535

ent criterion than the regression- and classification-

based objectives, training longer does not ensure Lable 10: Training time per step (ms; batch
better FID. size = 10, GM-DiT). Means over 100 runs.

Fig.[13]reports FID evaluated every 1k steps during training up to 20k. We use GM-DiT (Chen et al.|
2025) as the backbone and compute FID over 10k samples. All three models—Dual-Solver (ours),
BNS-Solver (Shaul et al. 2024)), and DS-Solver (Wang et al.l [2025)—reach their minimum FID
before 20k steps.

For NFE= 3, Dual-Solver attains its minimum at 6k steps, DS-Solver at 7k steps, and BNS-Solver at
16k steps. For NFE= 5, Dual-Solver at 9k, BNS-Solver at 12k, and DS-Solver at 15k. For NFE= 7,
Dual-Solver at 3k, BNS-Solver at 7k, and DS-Solver at 19k. For NFE= 9, Dual-Solver at 2k, DS-
Solver at 7k, and BNS-Solver at 13k.

For Dual-Solver, FID often increases after the first minimum, which we attribute to overfitting to-
ward classifier decision regions that reduces recall (Appendix [D). Across NFE= 3,5,7,9, Dual-
Solver converges faster; we attribute this to the classification objective, which only requires samples
to enter the correct decision region rather than matching per-sample targets.
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F LEARNED PARAMETERS

In Figs.[T4] [T3] we plot the Dual-Solver parameters learned via classification-based learning
(Sec. , as defined in Sec. @ For the DiT, GM-DiT, SANA, and PixArt-o backbones, we set
CFG to 1.5, 1.4, 4.5, and 3.5, respectively, and train for 20k steps. We plot results at NFE =3, 5, 7,
9 for DiT and GM-DiT, and at NFE = 3, 4, 5, 6 for SANA and PixArt-«. Separate parameter sets
are learned for the predictor and the corrector, and they are shown in different colors. Within the
same backbone, the parameter curves are similar even across different NFEs. We conjecture that this
arises from the backbone’s intrinsic trajectory.

1 2 2 2 2
B A N (A
1 I . 1 :/I——/' 1 v 1
'/.\‘ Ll
[ o

1&g 1

.——-—-/\_

o 1 2 3 4 0 1 2 3 4 o 1 é 3 4 o 1 2 3 4 o 1 2 3 4
step step step step step
(b) NFE =5

value
o

0123456 78 6123458678 0123458678 0123458678 0123458678
step step step step step
(d) NFE =9

Figure 14: Learned parameters. {7, 7, 7, fu, kv } for DiT (Peebles & Xie} 2023).
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Figure 15: Learned parameters. {v, 7, 7, fu, kv } for GM-DIT (Chen et al.,
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Figure 16: Learned parameters. {v, 7, 7, fu, kv } for SANA (Xie et al., [2024).
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Figure 17: Learned parameters. {7, 7, Ty, fu, £y } for PixArt-o (Chen et al., [2023).
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G DETAILS OF PARAMETER INTERPOLATION ACROSS NFES

In this section, we describe how to interpolate the parameters discussed in Sec.[6.3]so that they can
be used at other NFEs. The parameters of Dual-Solver,

_ pred _pred _pred ,.pred ,.pred .corr _corr _corr ,COrr , .COrr
¢—{7 aTu 7Tv 7’%11, 7531) a’Y 7Tu 77-1; aK/u 7'%1; }7

are given as arrays whose length equals the NFE. (The corrector parameters have length NFE—1,
and we match the length to NFE by repeating the last element.) For example, yP™d =

(yhred, .. ARred ). To interpolate these parameters, we consider the following linear interpo-
lation scheme for a generic array.
Definition G.1 (Linear interpolation). Let f(M) = ( (EM), R J(évi)l) be an array of length M. The

linearly interpolated array Interp(f(™); N') of length N is defined as follows. First, set
7

N -1

and foreach ¢ =0,..., N — 1 define

i = (M - 1)’ .71 = LtiJ7 o; =1 _ji7

Interp(f ) N)[i] = (1 — ) £ + s 1),

Definition G.2 (Averaged linear interpolation). Let M < N < L be three NFEs, and let f (M) ¢

RM and (&) € R” be the corresponding arrays. We first obtain their linearly interpolated versions
of length N,

FM) = Interp(f™M); N), fE) = Interp(f&); N).
We then use the relative position of N between M and L as weights and define
L—-N N-M
wy = wy, =
M L. — M’ L L — M’

and, foreachi =0,...,N — 1,
Interp(f(M),f(L);N)[i] = wys f(M)[i] + wy, f(L)[i].

Using this procedure, we obtain the array for an intermediate NFE from the two arrays at neighboring
NFEs, and apply the same construction to every parameter in ¢. Examples of interpolated parameters

are shown in Fig.[T8] Specifically, we obtain the parameters for NFE=4 by interpolating those learned
at NFE=(3, 5), for NFE=6 from NFE=(5, 7), and for NFE=8 from NFE=(7, 9).
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Figure 18: Interpolated parameters. {7, 7,,, 7o, ki, £, } for DiT (Peebles & Xie, [2023).
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H SINGLE PREDICTION REPARAMETERIZATION

In this section, we show that the first-order predictor in Eq. [I3] and the second-order corrector in
Eq.[21]can each be expressed using a single prediction type (noise, data, or velocity).

H.1 FIRST-ORDER PREDICTOR

For v > 0, Eq.[I3] gives:

O¢.

o v
et = <t”+1 > @y, + o7, {aze(ti) K(u;) + €a(t:) K(w)}, (22)
where for brevity we denote
we(ti) = w@(wtwti)v 69(ti) = 60(331&1-7751')’
and
K(u;) = AL_l(ui;Tu) + B(Au;; ky), K(v;) := AL_l(’Ui;TU) + B(Av;; ky).

The case v < 0 admits an analogous derivation by replacing ¢” with =" as in Eq.

Reparameterization to noise prediction. Assume the backbone outputs only the noise prediction
€y(t). Using the deterministic transform between predictions from Eq.

wo(ts) = i, — u€olts) (23)

Qg

7

Eq.[22]becomes

o4 v — oy €9(ty
glstpred. _ (tl“) Ty, + UZH lmtlgtl o (t:) K (u;) + eg(t;) K(v;)

tit1 (6T
v
_ Otips +o7 K (u;)
g¢; tit1 g,

Ot;
Thus, for a noise-prediction backbone, the predictor is a linear combination of x;, and €4 (¢;).

Ty, +

O-;/iJrl (K(Ul) -

Qg

Reparameterization to data prediction. Assume the backbone outputs only the data prediction
@y (t). From Eq.[d we have the inverse relation

Ty, — oy, xo(t;)

€(t;) = (25)

¢,

Substituting Eq. [23]into Eq. 22]yields
@y, — o, xo(t;)

3

1st-pred. It

zopred (Ut“) T, + 0], [we(ti)K(“i) +
;

o\ K (v
_ [( t1+1> _’_O_Z/H—l ( z)
Ot; : Ot;

Therefore, for a data-prediction backbone, the predictor is a linear combination of x;, and x¢(¢;).

o) K (Ui)]

3

Ty, +

ol (K(ui) _ o K(vi))] zo(t).  (26)

O¢,

Reparameterization to velocity prediction. Assume the backbone outputs only the velocity pre-
diction vy (t). Eq. 4| gives the linear relations

{w“‘ }thi [“’9(“)}, My, = [O‘“ ‘.’“‘}, @7)

Vo (tl) €y (tz) dt Tt

i

. da . . do,
where ¢y, == —* and 7y, := % Let

det Mti = 0,0, — O, Oy, .
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Inverting Eq. 27] gives

2o(t:) = (det My,) " (60, @1, — o, wo(t) ), ealti) = (det My,) ™" (=, 1, + v, wo(t))
(28)
Substituting Eq. 28]into Eq. 22] yields
stopre O, v .
ottt = (252) a0l (ot M) [K (0G0, — 01,00(00) + K (0 (b1, + vl

tit1

Tt
_ % K(uz)atl - K(’U,‘)O.éti ~ atiK(Ui) _ atiK(ui) ‘
- [( oy, ) o det M,, Lot | Ty, det M, vo (L)

(29)

Thus, for a velocity-prediction backbone, the predictor is a linear combination of x;, and vy (¢;).

H.2 SECOND-ORDER CORRECTOR

For v > 0, Eq.[21] gives:

.
agndeon (”U) w0l [eo(t) AL )+ 2200 g (1) AL 0+ 20 ()],
1 (30)
where
Axmg(t;) = zo(tit1) — xo(ts), Aeg(t;) == €g(tiy1) — €o(ts),
and

K(u;) == ALil(ui) + B(Aui; ky), K(v;):= ALil(vi) + B(Av;; ky).

As in standard predictor— corrector schemes, the predictions at ¢;4; are evaluated using the
Ist-pred.

first-order predictor x, " "

Reparameterization to noise prediction. Assume the backbone outputs only the noise prediction
€o(t). Using Eq.[4]

Ty — 0. €g(t;
tj
we obtain
xy — o €0(tiv1) @y, — oy, €9(t
Azg(t;) =~ nollirr) @, — on sl Z), Aeg(t;) = €o(tip1) — €g(ti),

Qg Qg

Vi

i+1

where we denote ;| = w;:ip"’d Substituting these into Eq. [30|and collecting terms with respect

toxe,, Ty, €o(ti), and €q(t;+1) yields

zc?:irdl corr. CZ-( 2) Ty, + o +1 wtbﬂ + CZ-(E") €o(t;) + Cl-(fl) €o(tiv1), (32)
where
K AL Y u;)  K(uy)
C(z) _ Ot o4 i) % 33
7 ( oy, + Uti+1 ay, D) ay, ) ( )
K (u;)
o =07, Yo (34)
i+1
(e0) _ Ot; -1 -1 Ot; 1
G =0/, < - osz.AL (ui) + AL (v;) + QatiK(Uz‘) - QK(Uz‘)>7 (35)
o) =7 [ = T g(u) + K(vl) (36)
e bt ( 2ata+l

Thus, for a noise—prediction backbone, the second—order corrector is a linear combination of x+,,

m;iﬂ, €g(t;), and €g(t;11).
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Reparameterization to data prediction. Assume the backbone outputs only the data prediction
x¢(t). Using the inverse relation

Xy, — o, To(ly)

eolty) =~ jefiit), (37
j
we obtain
x o To(tiv1) @y — oy, et
Aey(t;) = —+ 01 ®0tbit) Ty — 0nol 1)7 Axg(t;) = xo(tiyr) — xo(ti),
Ot;q1 O,

Ist-pred.

where we denote wgiﬂ =, , .Substituting into Eq.and collecting terms with respect to x+,,

xy, . xo(ti), and xp(t; 1) yields
aideort: — 0 g 4 O @), 4+ O ag(ty) + O @o(tis), (38)
where

Ci(x) _ (O’ti.H >7 s <AL1(vi) B K(w))7 (39)

o, oy, 20,
i =0, QKU(i) , (40)
o =o) (AL‘l(ui) - %AL*(W) - %K(ui) + ;‘;t K(vi)>7 @1)
iy =al,, (;K (u;) — %K (m)) : (42)
Therefore, for a data—prediction backbone, the corrector is a linear combination of x,, :c;+ L xo(ti),

and xg(t;11).

Reparameterization to velocity prediction. Assume the backbone outputs only the velocity pre-
diction v (t). Eq.[d]implies the linear system

L, xe(tj)] |:05t,- Ut~:| . .
7| = My, , My =|.7 7|, e{i, 1+ 1}, 43
Lg(tj)} t Lg(m b= o, 60 JEITD “43)
where &y, 1= % and 64 := %, and

det Mtj = Oétj (")'15‘7 — Utj O.ét]. .
Inverting Eq. @3] gives
IEg(tj) = (det Mtj)_l (é'tj l’tj — O'tj ’U@(tj)), Gg(tj) = (det Mtj)_l ( — dtj wtj + Oétj ’Ug(tj)).

(44)
Accordingly,

Azg(ti) = zo(tiv1) —To(ti),  Dep(ti) = €altiv1) — €o(ts),
where each mgﬁ and €y(t;) is an linear combination of x;, and vy(t;) via Eq. @) Substituting
+

Eq. into Eq.[30|and collecting terms with respect to @4, a:;iﬂ, vy(t;), and vy (t;11) yields
apndeor — O g+ O @), + O wg(ts) + O w(tiga), (45)
where
C(I) _ Otipn v ol (')'tiALfl(ui) — O'ztiALfl(vi) - %Jt7K(ul) + %Ozth(’Ul) (46)
v O¢; tit1 det Mt,; ’
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1 1.
(I) _ " §Uti+lK(ui) - iati+1K(vi)
Civi =04, det M;, ; (47)
) y —oy, ALY (u;) + ay, ALY (v;) + %atiK(ui) - %atiK(vi) 48)
A =0
i tiss det M;, ’
—Lop K(ug) + tay,, K(v;
cp = oy, 22l 3 K] (49)

det Mt

i1
Thus, for a velocity—prediction backbone, the second—order corrector is a linear combination of x+,,
a:;t+1 , vg(t;), and vo(t;y1).
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(@ DS-Sover (Wang e} 2079

Figure 19: Additional sampling results. DiT-XL/2 256 x256 (NFE=4, CFG=1.5)

38



Under review as a conference paper at ICLR 2026

(@ DS-Sover (Wang e} 2029

Figure 20: Additional sampling results. GM-DiT 256 x256 (NFE=3, CFG=1.4)
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Golden autumn park of falling leaves, graceful girl playing violin,
flowing satin dress, Iimpressionist brush strokes

R

Towering neon-1it cyberpunk skyline, armored samurai with glowing katana,
chrome textures, cinematic digital art

Remote desert oasis at sunrise, powerful white stallion galloping, glossy
mane and muscles, hyperreal photo realism
o= [r——

Vibrant tropical beach at sunset, pirate ship anchored offshore,
weathered wood hull, playful cartoon illustration

Overgrown jungle temple ruins, spotted leopard stalking prey, sleek fur
patterns, painterly realism concept art

&

(a) DPM-Solver++ (b) Dual-Solver (Ours) (c) BNS-Solver (d) DS-Solver

(Luetal} 2022 Shaleral 0% (Vangeral] B0y
Figure 21: Additional sampling results. SANA (Xie et al.,[2024), NFE=3, CFG=4.5.
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In a misty emerald forest clearing, a majestic golden wolf with silky
glowing fur, painted in luminous oil style

Towering neon-1it cyberpunk skyline, armored samurai with glowing katana,

chrome textures, cinematic digital art

Vast desert beneath a starry cosmos, colossal sphinx carved in sandstone,
rough surface, surreal dreamlike painting

Sleek futuristic laboratory interior, humanoid AI robot in motion,
polished steel surfaces, sci-fi blueprint style

Storm-drenched battlefield ruins, giant mech rising from fire, rusted
armor plates, gritty photorealistic concept art

(a) DPM-Solver++ (b) Dual-Solver (Ours) (c) BNS-Solver (d) DS-Solver

(Luetal} 2022 Shaleral 0% (Vangeral] B0y
Figure 22: Additional sampling results. PixArt-ov (Chen et al.,2023), NFE=5, CFG=3.5.
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