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Abstract001

In-hospital text data contains valuable clinical002
information, yet deploying fine-tuned small lan-003
guage models (SLMs) for information extrac-004
tion remains challenging due to differences in005
formatting and vocabulary across institutions.006
Since access to the original in-hospital data007
(source domain) is often restricted, annotated008
data from the target hospital (target domain) is009
crucial for domain adaptation. However, clin-010
ical annotation is notoriously expensive and011
time-consuming, as it demands clinical and lin-012
guistic expertise. To address this issue, we013
leverage large language models (LLMs) to an-014
notate the target-domain data for the adapta-015
tion. We conduct experiments on four clinical016
information extraction tasks, including eight017
target-domain data. Experimental results show018
that LLM-annotated data consistently enhances019
SLM performance and, with a larger number of020
annotated data, outperforms manual annotation021
in three out of four tasks1.022

1 Introduction023

In-hospital text data often contains valuable clin-024

ical information not captured by structured fields025

in electronic health records (Zweigenbaum et al.,026

2007; Escudié et al., 2017; Wang et al., 2018).027

Fine-tuned small language models (SLMs) of-028

fer computationally efficient inference for extract-029

ing such information and have been shown to030

outperform prompt-based large language models031

(LLMs) (Naguib et al., 2024). However, SLMs032

fine-tuned on in-hospital data (i.e., the source do-033

main) often experience performance degradation034

when applied to data from a different hospital (i.e.,035

the target domain) due to domain-specific vocabu-036

lary and formatting (Wu et al., 2014; Bethard et al.,037

2017; Miller et al., 2017). Additionally, patient038

privacy regulations often restrict access to source-039

domain data, posing further challenges for domain040

1We plan to publish our code on Github

Figure 1: Overview of our SFDA approach. The goal
of SFDA is to adapt the SLM fine-tuned on the source-
domain data to unlabeled target-domain data. For the
adaptation, only the SLM is available from the source
domain due to data-sharing restrictions. The source
SLM struggles with target-specific formats, such as
“WELLBUTRIN (BUPROPION)”, which follows the
format “<brand name> (<generic name>).” Our ap-
proach adapts the source SLMs by (1) sampling target
data based on SLM’s high uncertainty, (2) annotating
them with an LLM as an alternative to manual annota-
tion, and (3) fine-tuning the source SLM with the newly
annotated data.

adaptation (Laparra et al., 2020). These challenges 041

are addressed by source-free domain adaptation 042

(SFDA), where adaptation must be performed us- 043

ing only a fine-tuned source model without direct 044

access to the source data (Laparra et al., 2021a). 045

Su et al. (2022) previously compared various for- 046

mulations of two major SFDA approaches in clini- 047

cal NLP. Self-training (Kumar et al., 2010; Li and 048

Zhang, 2019), which leverages the source SLM’s 049

own predictions as supervisions, failed to consis- 050

tently improve model performance, whereas active 051

learning (Settles, 2009), which relies on minimal 052

manual annotation, proved to be a reliable alter- 053

native. Nonetheless, clinical annotation demands 054

sufficient expertise and time from annotators (Luo 055

et al., 2020; Su et al., 2021), which can pose a bar- 056

rier to its application in real-world scenarios. This 057

highlights the critical need for robust, human-free 058
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annotation methods in SFDA, particularly within059

the clinical domain.060

To address this gap, we explore active learning061

with LLM annotation in SFDA setting, inspired062

by recent studies (Liang et al., 2024; Xiao et al.,063

2023; Zhang et al., 2023; Liu et al., 2024). Fig. 1064

shows an overview of our approach. The objec-065

tive of SFDA is to adapt fine-tuned source-domain066

SLMs to unlabeled target-domain data. We formu-067

late SFDA as a three-step process: (1) sampling068

target-domain data with target-specific formats and069

vocabularies based on SLM’s uncertainty, (2) anno-070

tating the selected samples using an LLM as an al-071

ternative to manual annotation, and (3) fine-tuning072

the SLM with the newly annotated data.073

To evaluate the effectiveness of our approach, we074

conduct experiments on four clinical information075

extraction tasks encompassing eight source-target076

dataset pairs (summarized in Tables 1 and 2). In a077

preliminary experiment, we apply LLM’s zero-shot078

annotation in step (2) and observe a performance079

decline in clinical named entity recognition (NER).080

Upon analyzing annotation quality, we attribute this081

decline to the performance gap between the LLM082

and the fine-tuned source SLM, aligning with re-083

cent findings (Hu et al., 2024; Naguib et al., 2024).084

Motivated by the performance decline observed085

with zero-shot annotation, we introduce a novel086

LLM annotation method termed SLM-Assisted087

LLM Annotation (SALA). In this method, we088

guide an LLM to correct the SLM’s prediction089

on the sampled data in step (1) instead of gener-090

ating annotation from scratch. By doing so, we091

aim to maintain annotation quality that matches092

or exceeds the source SLM performance across093

various tasks. We evaluate our approach against094

unadapted SLMs, as well as the best-performing095

formulations of self-training and active learning de-096

rived from Su et al. (2022). Our results demonstrate097

that active learning with LLM annotation consis-098

tently enhances SLM performance across all tasks099

and, with a larger number of annotated samples,100

outperforms active learning with human annotation101

in three out of four tasks. Our contributions are102

summarized as follows:103

• To the best of our knowledge, we are the first104

to explore LLM annotation in the SFDA set-105

ting, evaluating its effectiveness for adapting the106

source SLMs fine-tuned on clinical data.107

• We propose a novel LLM annotation method that108

leverages SLM’s prediction to maintain improve-109

ments across various clinical information extrac-110

tion tasks. 111

• Through experiments on four tasks and eight tar- 112

get datasets, we demonstrate that active learning 113

with LLM annotation consistently improves SLM 114

performance and, with a larger number of anno- 115

tations, even outperforms active learning with 116

human annotation in three out of four tasks. 117

2 Related Work 118

Source-free Domain Adaptation: Unlike unsu- 119

pervised domain adaptation, source-free domain 120

adaptation (SFDA) adapts a fine-tuned model to 121

target-domain data without access to the source- 122

domain data (Laparra et al., 2020). While 123

SFDA (Liang et al., 2020) has recently gained trac- 124

tion in computer vision (see survey of Yu et al., 125

2023), it remains underexplored in NLP, with only 126

a few existing studies (Zhang et al., 2021; Yin et al., 127

2022; Shimizu et al., 2024; Zhao et al., 2024). In 128

the clinical domain, Su et al. (2022) compared 129

various formulations of self-training and active 130

learning using in-hospital data, finding that self- 131

training struggled to consistently improve model 132

performance. This suggests that manual annotation 133

remains the de facto standard for clinical SFDA. 134

To achieve reliable human-free adaptation, we ex- 135

plore SFDA with LLM annotation, conducting an 136

extensive evaluation across multiple clinical tasks. 137

LLM as Active Annotator: Recent advancements 138

have shown that large language models (LLMs) are 139

effective annotators for active learning (Liang et al., 140

2024; Xiao et al., 2023; Zhang et al., 2023; Liu 141

et al., 2024). These methods typically generate an- 142

notations with LLM and improve the performance 143

of yet-to-be-fine-tuned SLMs. On the other hand, 144

some research has shown that prompt-based LLMs 145

often underperform compared to fine-tuned SLMs 146

on specialized tasks such as clinical named entity 147

recognition (NER) (Hu et al., 2024; Naguib et al., 148

2024). It remains unknown whether LLM annota- 149

tion can enhance SLMs in clinical SFDA, particu- 150

larly considering the potential negative impact on 151

already fine-tuned clinical SLMs. We answer this 152

by evaluating LLM annotation in the SFDA setting 153

and proposing a novel LLM annotation method that 154

integrates the source SLM’s prediction. 155

3 Data 156

We base our experiments on four clinical informa- 157

tion extraction tasks summarized in Table 1, and 158

each task is associated with pairs of source and 159
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Task Description Example

Named Entity Recognition (NER) Given a text, predict spans for clinical
entities and their types.

Input: The patient seemed subdued.
Answer: {subdued: Problem}

Relation Extraction (RE) Given a sentence with two clinical en-
tities marked, classify their relation.

Input: <e>Penicillin</e> causes <e>rash</e>.
Answer: Treatment improves

Negation Detection (ND) Given a text with a clinical entity
marked, classify if it is negated or not.

Input: She did not complain of <e> any fever </e>.
Answer: Negated

Time Expression Recognition (TER) Given a text, predict spans for time
expressions and their types.

Input: The patient underwent surgery on July.
Answer: {July: Month-Of-Year}

Table 1: Overview of the four clinical information extraction tasks.

Task Data Source Source Dataset Size Target Dataset: Denotation Size

NER
i2b2 2010

Beth Clinical Notes 74 documents Partners Clinical Notes: Part 97 documents

Partners Clinical Notes 97 documents Beth Clinical Notes: Beth 74 documents

RE
Beth Clinical Notes 2,037 sentences Partners Clinical Notes: Part 1,264 sentences

Partners Clinical Notes 1,264 sentences Beth Clinical Notes: Beth 2,037 sentences

ND
SemEval 2021 Task 10

Mayo Clinical Notes 10,259 instances
i2b2 2010: i2b2 5,545 instances

MIMIC-III: mimic 9,580 sentences

TER Mayo Clinical Notes 278 documents
Food Security Reports: Food 17 documents

News Reports: News 99 documents

Table 2: Source and target-domain datasets used in this study. The source datasets are used for fine-tuning SLMs,
while the target datasets are used for adaptation and evaluation.

target datasets summarized in Table 2. Named En-160

tity Recognition (NER) and Relation Extraction161

(RE) tasks are derived from the i2b2 2010 (Uzuner162

et al., 2011), which provides clinical notes from163

two hospitals: Beth Israel Deaconess Medical Cen-164

ter and Partners Healthcare. We fine-tune SLMs on165

data from one hospital and treat the other hospital’s166

data as the target-domain data, yielding four tar-167

get datasets. Negation Detection (ND) and Time168

Expression Recognition (TER) tasks are based169

on SemEval 2021 Task 10 (Laparra et al., 2021b),170

which provides one source-domain SLM and two171

target datasets for each task. Using the provided172

source models, we adapt them to the respective173

target datasets, adding four more target datasets.174

Although the two target datasets for TER are non-175

clinical (Laparra et al., 2018), we demonstrate the176

performance degradation of the source SLMs on177

these datasets in Sect. 4. Thus, we include these178

target datasets to evaluate SFDA methods intended179

for clinical information extraction. In total, we180

adapt the source SLMs to eight target datasets.181

4 Motivation: Performance Degradation182

Our motivation is to address the performance degra-183

dation of source-domain fine-tuned SLMs when184

applied to target-domain data. In this section,185

we showcase the performance degradation on the186

Task Source Target ∆ Source Target ∆

NER Part Beth Beth Part
85.3 81.3 -4.0 89.4 80.9 -8.5

RE Part Beth Beth Part
70.2 56.1 -14.1 66.6 57.3 -9.3

ND Mayo i2b2 Mayo mimic
82.0 84.6 +2.6 82.0 63.5 -18.5

TER Mayo News Mayo Food
96.8 78.1 -18.7 96.8 78.4 -18.4

Table 3: The source SLM performance on source and
target-domain data in F1(%) scores and their difference.
Results are averaged over three runs with different seeds.
Scores on the source domain for ND and TER are cited
from Laparra et al. (2021a).

target-domain datasets in Table 2. For each source 187

dataset, RoBERTa2 (Liu, 2019) is fine-tuned on the 188

training set and evaluated on the evaluation set. Ad- 189

ditionally, we evaluate the fine-tuned source SLMs 190

on the evaluation sets of the corresponding target 191

datasets. 192

Table 3 shows the results in F1(%) scores. To 193

summarize, there are noticeable performance de- 194

clines from the source to the target datasets in 195

nearly all source-target pairs. The degradation 196

ranges from 4.0% to 18.7%, with 11.1% on average. 197

This confirms previous findings on the performance 198

2https://huggingface.co/FacebookAI/
roberta-base
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degradation of clinical information extraction mod-199

els (Wu et al., 2014; Bethard et al., 2017; Miller200

et al., 2017) and underscores the importance of201

domain adaptation. To further illustrate the perfor-202

mance degradation of the source SLMs, we provide203

specific examples of prediction errors arising from204

differences in formats and vocabularies.205

NER: In NER, target-specific formats often lead to206

errors. Consider the following example from Part:207

Input: LANTUS (INSULIN GLARGINE) 35 UNITS...
208

Here, “LANTUS (INSULIN GLARGINE)” is a sin-209

gle medication, with a format “<brand name>210

(<generic name>).” However, since such format-211

ting is barely present in the source domain (Beth),212

the source SLM incorrectly identifies “LANTUS”213

and “INSULIN GLARGINE” as separate medica-214

tions.215

RE: Errors in RE are often caused by variations216

in the vocabulary used to describe relationships217

between concepts. Below is an example from Beth:218

Input: <e>diabetic ulcer</e> s/p <e>surgery</e> but

never healed.
219

In this example, “s/p” stands for “status post”, in-220

dicating that the “diabetic ulcer” did not improve221

after “surgery”. However, since this abbreviation222

is not used in the source domain (Part), the SLM223

fails to correctly interpret the relationship between224

the concepts and predicts “Treatment Improves”.225

ND: In ND, formatting differences between the226

source and target-domains often lead to errors. Be-227

low is an example from mimic:228

Input: Tobacco: no, <e>Alcohol</e>: no ...
229

The input lists the patient’s social history, indicat-230

ing the absence of alcohol use. The source SLM231

fails in detecting the negation for “Alcohol” since232

the source-domain data rarely includes this type of233

formatting.234

TER: The target datasets for TER are derived from235

non-clinical data, making vocabulary differences a236

frequent source of errors.237

Input: AP-NY-12-05-98 0942EST ...
238

In this example, “AP” and “NY” represent “Aso-239

ciate Press” and “New York”, respectively. How-240

ever, since such vocabularies are not present in the241

Mayo clinical notes, the source SLM fails to prop-242

erly recognize the temporal expression “12-05-98”243

as a standard Month-Date-Year format. The exam-244

Figure 2: Performance of the source SLMs adapted with
zero-shot annotations in F1(%) scores. Results are av-
eraged over three runs with different seeds. “Zero-shot”
refers to the performance of the general-domain LLM,
while “Zero-shot (Med)” refers to the performance of
the medical-domain LLM. The dotted lines represent
the performance of the unadapted source SLMs. While
the performance improves in ND with the increasing
annotations, it declines in NER.

ples above highlight the challenges of applying the 245

source SLMs to target domains. 246

5 Preliminary: Zero-shot Annotation 247

To mitigate performance degradation, we leverage 248

LLMs to annotate target-domain data within our 249

approach (Fig. 1). As a preliminary experiment, we 250

evaluate the effectiveness of zero-shot annotation 251

with the following specifications. 252

Active Learning with Zero-shot Annotation: In 253

step (1), we select target samples with the high- 254

est predictive entropy, following Su et al. (2022). 255

In step (2), we prompt LLMs with one of the se- 256

lected samples and a detailed task description at 257

a time to generate an annotation. In step (3), we 258

fine-tune the source SLM with the generated anno- 259

tations mapped to the SLM’s label space. Through- 260

out this study, we use downloaded open-source 261

LLMs to safeguard clinical data and prevent third- 262

party sharing in real-world applications. Specifi- 263

cally, we employ Llama-3.3-70B3 (Dubey et al., 264

2024), representing a general-domain LLM, and 265

Med42-70B4 (Christophe et al., 2024), represent- 266

ing a medical-domain LLM. Implementation de- 267

tails and example prompts are provided in the Ap- 268

pendix A.1. 269

Fig. 2 illustrates the performance of the source 270

SLMs adapted with zero-shot annotation for NER 271

and ND. For the evaluation, we experimented with 272

the number of selected samples from 96 to 384 in- 273

3https://huggingface.co/meta-llama/Llama-3.
3-70B-Instruct

4https://huggingface.co/m42-health/med42-70b
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Method # NER ND

Beth Part i2b2 mimic

Source 96 51.5 39.2 85.1 80.9
Zero-Shot 96 52.4 67.5 89.2 82.3
Zero-ShotMed 96 54.6 46.1 89.2 89.7

Source 384 64.1 66.8 88.8 65.2
Zero-Shot 384 49.3 58.5 94.3 90.5
Zero-ShotMed 384 49.9 44.2 94.5 92.8

Table 4: Performance comparison (F1% scores) be-
tween the source SLM and zero-shot LLM annotation
on the annotation targets. The scores are averaged
over three runs. The “#” column indicates the number
of annotations, and “Med” denotes the medical LLM.
Full results for all target datasets are available in Ap-
pendix A.2.

stances. As the number of annotations increases,274

performance in NER decreases, whereas it im-275

proves in ND. This result suggests that the scalabil-276

ity of LLM annotation can not be fully exploited277

with zero-shot annotation in tasks like NER.278

We hypothesize that the performance decline279

stems from a gap between the source SLM’s perfor-280

mance and zero-shot annotation. Table 4 shows the281

source SLM’s performance and the quality of zero-282

shot annotation on the sampled annotation targets.283

Since the targets are chosen from samples with284

lower uncertainty, the source SLM’s performance285

generally improves as the number of annotations286

increases. However, the quality of zero-shot anno-287

tation fails to meet the source SLM’s performance288

in NER. The performance gap between fine-tuned289

SLMs and LLMs aligns with previous findings (Hu290

et al., 2024; Naguib et al., 2024) and negatively291

affects the source SLM, resulting in a decline in292

performance after fine-tuning. This result empha-293

sizes the importance of ensuring that annotation294

quality matches or exceeds the source SLM perfor-295

mance for the scalability of LLM annotation.296

6 Proposed: SALA297

To improve the LLM annotation step, we intro-298

duce SALA, SLM-assisted LLM annotation. In-299

spired by recent studies (Yang et al., 2024; Xu et al.,300

2023), we incorporate the source SLM prediction301

into LLM’s in-context learning. As depicted in302

Fig. 3, we guide LLMs to generate annotations303

based on three inputs:304

• Task Description: A detailed explanation based305

on the annotation guidelines, providing the LLM306

with a clear reference for annotation.307

Figure 3: Overview of SALA. Instead of generating
LLM annotation from scratch, we prompt LLM to cor-
rect SLM’s low-confidence prediction, referencing a
detailed task description and high-confidence examples.

• High-confidence Examples: Examples retrieved 308

from demonstration pool of high-confidence 309

SLM predictions and LLM annotations. 310

• Low-confidence Prediction: The source SLM 311

prediction on the low-confidence annotation tar- 312

get. 313

For the annotation, we prompt LLMs to correct 314

errors in the low-confidence prediction while ref- 315

erencing the task description and high-confidence 316

examples. This correction-based approach helps 317

maintain annotation quality that matches or ex- 318

ceeds the source SLM’s performance across various 319

tasks by constraining LLM annotation to improve 320

upon the SLM prediction. In this section, we elabo- 321

rate on how high-confidence examples are retrieved 322

(Sect. 6.1) and how low-confidence predictions are 323

corrected (Sect. 6.2). Finally, we present the over- 324

all algorithm of SALA to iteratively improve the 325

annotation quality (Sect. 6.3). 326

Notations: We denote the source SLM as S, the 327

LLM as P , a target-domain sample as xi ∈ D, and 328

an annotation target as x̄i ∈ D̄. 329

6.1 Retrieving High-confidence Examples 330

To retrieve high-confidence examples, we initial- 331

ize a class-wise demonstration pool with high- 332

confidence SLM predictions. First, we pseudo- 333

label the target-domain data D with the source 334

SLM to construct a class-wise target data Dc for 335

each class c ∈ C in the SLM’s label space. Then, a 336

class-wise demonstration pool Dc
demo is initialized 337

via: 338

Dc
demo = {(xi, c)) | rank(hi) ≤ R%} (1) 339

where hi is the SLM’s predictive entropy for a 340

sample xi and rank(hi) ≤ R% selects the bot- 341

tom R% of the class-wise target-domain data Dc 342
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with the lowest entropy. From each of this class-343

wise demonstration pool, we retrieve a single high-344

confidence example ec ∈ Dc
demo based on the high-345

est embedding similarity with the annotation target346

x̄i. The full set of high-confidence examples for x̄i347

is denoted as E = {ec | c ∈ C}.348

6.2 Correcting Low-confidence Prediction349

To maintain annotation quality across various tasks,350

we adopt a correction-based approach rather than351

generating annotations from scratch. Specifically,352

we query the LLM with a prompt t to correct the353

SLM prediction S(x̄i), using a task description d354

and high-confidence examples E as references:355

t = T (d,E, x̄i,S(x̄i)) (2)356

where T is a manually-designed template that357

guides the baseline correction process. The LLM-358

annotated data D̃llm are then generated as follows:359

D̃llm = {(x̄i, ỹllm
i ) | x̄i ∈ D̄, ỹllm = R(P(t))}, (3)360

where P(t) represents the LLM’s response to the361

prompt t, and R is a resolver that maps the LLM-362

generated output to the source SLM’s label space.363

Algorithm 1:
Input :D: The unlabeled target dataset

P: The LLM
S: The source SLM
R: The resolver
K: The number of annotations
Niter: The maximum iteration number
τ : The filtering threshold

Output :D̃llm: The LLM-annotated data
1 # Select uncertain samples
2 D̄ = [xi for xi ∈ top K entropy in D]
3 # Initialize the class-balanced demonstration pool
4 Ddemo = ∪c∈CD

c
demo

5 for iter ← 0 to Niter do
6 # LLM annotation
7 Construct a prompt t as Eq.(2)
8 D̃llm = {(x̄i, ỹ

llm
i ) | x̄i ∈ D̄, ỹllm = R(P(t))}

9 # Fine-tune SLM
10 Fine tune S with D̃llm
11 # Annotation filtering with cross entropy loss li
12 D̃llm = {(x̄i, ỹ

llm
i ) | li < τ }

13 Ddemo = D̃llm

14 # Update D̄

15 D̄ = D̄ \{x̄i | (x̄i, ỹ
llm
i ) ∈D̃llm}

16 end

6.3 Overall Algorithm364

The overall pipeline of SALA is detailed in Alg. 1.365

The algorithm builds upon the work of Xiao et al.366

(2023), with the key distinction being the incorpo- 367

ration of task-specific knowledge from the source 368

SLM. As described in Sect. 2, we first select the top 369

K samples with the highest entropy as the annota- 370

tion targets D̄ (line 2). These annotation targets are 371

then annotated to obtain LLM-annotated data D̃llm 372

(line 8). We iteratively apply LLM annotation, fine- 373

tuning, and annotation filtering to progressively 374

enhance the quality of the final LLM-annotated 375

data D̃llm. 376

Fine-tuning: Once D̃llm is generated, the source 377

SLM S is fine-tuned on D̃llm at each iteration 378

(line 10). The fine-tuning serves two purposes: (1) 379

to improve the low-confidence predictions by up- 380

dating S, and (2) to distill recurring patterns from 381

D̃llm. While (1) directly improves the annotations, 382

(2) is used to filter outliers in D̃llm. 383

Annotation Filtering: We filter D̃llm based on a 384

cross-entropy loss li between output logits of S and 385

the LLM annotation ỹllm
i for each (x̄i, ỹ

llm
i ) ∈D̃llm. 386

LLM-annotated data with a loss li below a thresh- 387

old τ are considered clean annotations and used 388

in the demonstration pool for the next iteration 389

(lines 12 and 13), while the rest are re-annotated 390

(line 15). By using the updated SLM, annota- 391

tion targets that are inconsistent with other LLM- 392

annotated data and incompatible with the SLM’s 393

knowledge are filtered out. 394

7 Experiment 395

We conduct an experiment comparing our approach 396

against existing SFDA baselines. With SALA used 397

for the LLM annotation, the proposed method is 398

denoted as “Active + SALA”. Our focus is on the 399

performance of the SLMs, as computationally effi- 400

cient inference is crucial for processing in-hospital 401

text data. A comparison with LLM zero-shot and 402

few-shot inferences is provided in Appendix A.3. 403

7.1 Setup 404

Baselines: We consider the most robust SFDA 405

formulations from Su et al. (2022), both with and 406

without human annotation, alongside the unadapted 407

source SLM. For the human-free approach, we in- 408

clude self-training, which uses an iterative training 409

and dataset construction strategy. For the approach 410

with human annotation, we include active learning, 411

which also follows an iterative training and dataset 412

construction strategy. 413

Datasets: Experiments are conducted on all source- 414

target pairs listed in Table 2. For each pair, the 415
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Method Human-free
NER RE ND TER Avg

Beth Part Beth Part i2b2 mimic Food News

Full-supervision (skyline) × 88.7 86.7 75.4 65.7 89.8 88.7 85.8 83.0 83.0

Source ✓ 81.3 80.9 56.1 57.3 84.6 63.5 78.1 78.4 72.5
Self-training ✓ 81.9⋆ 72.7 39.5 49.0 86.1⋆ 70.7⋆ 78.7⋆ 78.0 69.6
Active learning × 84.1⋆ 82.9⋆ 66.2⋆ 57.1 86.5⋆ 76.9⋆ 84.0⋆ 82.4⋆ 77.5⋆

Active + SALAMed ✓ 83.2⋆ 81.3⋆ 72.2⋆ 57.6⋆ 88.3⋆ 79.6⋆ 79.6⋆ 78.7⋆ 77.6⋆

Active + SALA ✓ 84.2⋆ 83.2⋆ 72.3⋆ 66.2⋆ 88.0 ⋆ 78.6⋆ 79.9⋆ 75.1 78.4⋆

Table 5: F1(%) scores for the SLM performance on the evaluation sets of target datasets. Results are averaged
over three runs with different seeds. The last column shows the average score across all datasets. “Source” refers
to the performance of unadapted source SLMs, while “Full-supervision (skyline)” represents the performance of
fully fine-tuned models using all labeled target data. “Med” indicates the medical-domain LLM. The “Human-free”
column indicates whether human annotations are used. ⋆ indicates improvement from the source SLMs. “Active +
SALAMed” outperforms the source SLM in all tasks, while “Active + SALA” outperforms active learning with
human annotation in three out of four tasks.

source SLMs are adapted using the unlabeled de-416

velopment set of the target datasets and evaluated417

on the evaluation sets.418

Implementation Details: For self-training and ac-419

tive learning, we adopt the implementation from Su420

et al. (2022), setting the annotation budget to 12421

per iteration over eight iterations for active learning.422

LLMs used are the same as those in Sect. 5. As423

for the hyper-parameters of SALA, the maximum424

iteration number Niter and filtering threshold τ in425

Alg. 1 are set to 5 and 5e-3, respectively. The num-426

ber of annotations K is set to 384, which accounts427

for nearly all instances in the development sets of428

the TER target domain. Additional implementa-429

tion details and example prompts are provided in430

Appendix A.1.431

7.2 Results432

Table 5 show results in F1(%) scores across dif-433

ferent target datasets. Self-training fails to consis-434

tently improve the performance of the source SLM,435

confirming previous findings (Su et al., 2022). In436

contrast, active learning provides a strong baseline,437

improving the source SLMs across nearly all tar-438

get datasets with a limited annotation budget. Our439

approach consistently improves the source SLMs,440

with “Active + SALAmed” outperforming the un-441

adapted source SLMs across all target datasets. No-442

tably, “Active + SALA” outperforms even active443

learning with human annotation in three out of four444

tasks. In summary, LLM annotation offers a re-445

liable alternative to human annotation in SFDA446

settings by consistently enhancing the performance447

of source SLMs.448

NER RE ND TER Avg

Random 82.9 69.1 81.6 76.9 77.6
Entropy 83.7 69.3 83.3 77.5 78.4

Table 6: Performance comparison between random and
entropy-based sampling used in “Active + SALA”. The
results are averaged over three runs with different seeds.

8 Discussion 449

In this section, we address remaining questions re- 450

garding the effectiveness of our approach, particu- 451

larly in the sampling method for annotation targets 452

(Sect. 8.1), the utilization of SLM assistance in 453

LLM annotation (Sect. 8.2), and the performance 454

improvement with an increased number of annota- 455

tions (Sect. 8.3). 456

8.1 Entropy-based vs. Random Sampling 457

To select annotation targets where the SLM is likely 458

to produce prediction errors, we use the source 459

SLM’s predictive entropy as a criterion. To evalu- 460

ate the effectiveness of this sampling method, we 461

compare the performance of “Active + SALA” us- 462

ing random and entropy-based sampling. 463

Table 6 presents the F1% scores averaged for 464

each task. In all tasks, entropy-based sampling out- 465

performs random sampling. This result indicates 466

that the source SLM’s predictive entropy is effec- 467

tive in selecting annotation targets that benefit from 468

LLM correction, confirming the existing compari- 469

son of sampling methods (Zhang et al., 2023). 470

8.2 LLM Annotation Quality 471

To maintain consistent annotation quality across 472

various tasks, we incorporate the source SLM pre- 473
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Method Iteration
NER RE ND TER Avg

Beth Part Beth Part i2b2 mimic Food News

Zero-Shot - 49.3 58.5 56.2 67.8 94.3 90.5 55.1 37.4 63.6
LLM-active First 51.5 57.4 52.6 62.7 93.7 93.3 46.7 36.8 61.8

Last 53.0 59.0 56.3 64.8 94.8 89.9 49.4 45.0 64.0
SALA First 63.1 74.3 53.0 67.0 92.4 85.6 78.4 68.0 72.7

Last 65.8 74.6 56.9 66.3 93.7 86.7 78.6 70.2 74.1

Table 7: Annotation quality of different LLM annotation methods in F1(%) scores. Results are averaged over three
runs with different seeds. The “Iteration” column indicates the results from either the first or last iteration. SALA
achieves high-quality annotation across various tasks and the highest score on average.

diction into LLM annotation. We compare SALA474

with LLM annotation without SLM assistance to475

evaluate its effectiveness.476

For LLM annotation without SLM assistance,477

we consider zero-shot annotation (Zero-shot) from478

Sect. 5 and LLM-only active annotation (LLM-479

active), which employs Alg. 1 as SALA with two480

modifications. First, following Xiao et al. (2023),481

the demonstration pool (line 4) is initialized with482

LLM-generated examples and annotations based on483

randomly selected unlabeled target samples. Sec-484

ond, the prompting process uses the same template485

as SALA (Eq. 2), but source SLM predictions are486

omitted. Further implementation details for this487

baseline are provided in the Appendix A.1.488

Table 7 presents the comparison of annotation489

quality in F1(%) scores on the target development490

sets. Full results, including a medical-domain491

LLM, are presented in the Appendix A.5. While all492

three LLM annotation methods perform similarly493

in RE and ND, both Zero-shot and LLM-active suf-494

fer from lower annotation quality in NER and TER.495

SALA successfully mitigates this issue, maintain-496

ing relatively high-quality annotations in both NER497

and TER. Also, the annotation qualities at the last498

iteration are generally improved over those at the499

first iteration, indicating the effectiveness of the500

iterative approach in Alg. 1. In summary, SALA501

achieves high-quality annotations across various502

tasks, demonstrating the effectiveness of SLM as-503

sistance for LLM annotation in the SFDA setting.504

8.3 Performance with Increasing Annotations505

Using zero-shot annotation, we observed a perfor-506

mance decline of the source SLMs in NER (see507

Sect. 2). Fig. 4 shows the performance of “Active +508

SALA” with the number of annotations increasing509

from 96 to 384. The SLM performance consistently510

improves with increasing annotations, showing the511

scalability of SALA in various clinical information512

Figure 4: Performance of “Active + SALA” on NER
and ND in F1(%) scores. Results are averaged over
three runs with different seeds. The dotted horizontal
line is the performance of the unadapted source SLM.
The performance improves with increasing annotations
for both tasks.

extraction tasks. 513

9 Conclusion 514

In this paper, we explore active learning with 515

LLM annotation, adapting SLMs fine-tuned on the 516

source domain to the target domain’s specific for- 517

mats and vocabularies. To improve annotation qual- 518

ity, we introduce a novel LLM annotation method, 519

SALA, which incorporates the source SLM predic- 520

tion into the LLM annotation through in-context 521

learning. Through experiments across four clini- 522

cal information extraction tasks and eight target 523

datasets, we demonstrate that the proposed ap- 524

proach consistently enhances the performance of 525

source SLMs and outperforms active learning with 526

human annotation in three out of four tasks with a 527

larger annotation number. Furthermore, we show 528

that SLM assistance improves the quality of LLM- 529

generated annotations in challenging tasks such as 530

clinical NER. These results highlight the potential 531

of LLM annotation as a scalable and effective al- 532

ternative to human annotation in clinical SFDA, 533

where clinical and linguistic expertise is typically 534

required. 535
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10 Limitations536

Due to the limited availability of publicly accessi-537

ble clinical corpora, our study utilizes data from538

three clinical institutions. Our qualitative error anal-539

ysis of the source SLMs (see Sect. 4) suggests that540

the primary differences among these institutions541

are limited to variations in formatting and vocabu-542

lary. While our experimental results demonstrate543

performance improvements, residual performance544

degradation persists when adapting across differ-545

ent clinical specialties and languages. Future work546

should explore more extensive evaluations across547

diverse institutions and language settings to better548

facilitate the deployment of clinical information549

extraction models in real-world scenarios.550

Another limitation of this study is the use of551

fixed hyperparameters in LLM annotation, which552

may result in suboptimal annotation quality. For in-553

stance, on the mimic dataset in the ND task, SALA554

shows lower annotation quality compared to other555

methods, potentially due to biases introduced by556

SLM predictions. This issue could be mitigated557

by searching the optimal number of annotations.558

Notably, the performance of the SLM continues559

to improve even at an annotation number of 384560

(see Fig. 4), indicating that further exploration of561

the number of annotations could yield better re-562

sults. Another example is the filtering threshold τ .563

Although annotation quality improved in the last564

iteration of Alg. 1 compared to the first iteration565

(see Table 7), identifying the optimal number of566

iterations could further enhance annotation quality.567

We leave the search for such hyperparameters for568

future work.569

Lastly, the performance gains from “Active +570

SALA” are limited in the TER task. TER is partic-571

ularly challenging as it involves token classification572

across 56 classes. This limitation could potentially573

be addressed through more robust fine-tuning (Xiao574

et al., 2023; Zhang et al., 2023) or by leveraging575

a more capable LLMs (Bi et al., 2024) to enhance576

annotation quality.577

11 Ethics Statement578

While our proposed SALA method offers a scal-579

able and effective approach to annotation in clinical580

SFDA, the use of large language models (LLMs)581

for annotation may inherit biases present in the582

LLMs and the fine-tuned source SLMs. These583

biases could potentially affect annotations and pre-584

dictions related to sensitive characteristics such as585

race, gender, disabilities, and other protected at- 586

tributes. Moreover, the clinical context amplifies 587

the importance of ethical considerations, as inaccu- 588

rate or biased annotations could adversely impact 589

downstream applications in healthcare. To miti- 590

gate these risks, we recommend that users apply 591

rigorous bias evaluation and mitigation strategies, 592

including techniques for bias reduction in LLM 593

outputs and thorough post-hoc analysis of model 594

predictions. 595
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A Appendix 807

A.1 Implementation Details 808

A.1.1 Source SLMs Training 809

For NER and RE tasks, we fine-tune the source 810

SLMs on the respective source datasets. Specifi- 811

cally, we fine-tune the RoBERTa-base model using 812

Huggingface Trainer5. The key hyperparameters 813

are listed in Table 8, while default values are used 814

for the remaining hyperparameters. 815

Parameter Value

Learning rate 2e-5
Number of training epochs 10
Weight Decay 0.01
Max length (RE) 340
Max length (NER) 500
Training batch size 4

Table 8: Training hyperparameters for the source SLMs.

A.1.2 Entropy-based Sampling 816

We calculate per-sample entropy using Scipy6 (Vir- 817

tanen et al., 2020) based on the softmax proba- 818

bilities of target samples. For text classification 819

tasks (ND and RE), entropy is computed directly 820

from the softmax probabilities of each instance. 821

For token classification tasks, per-token entropy is 822

first calculated using the softmax probabilities of 823

individual tokens, and the average entropy across 824

tokens is used as the instance-level entropy. 825

A.1.3 LLM Annotation 826

For annotation with LLMs, we used the Hugging- 827

face Transformers pipeline7 with default genera- 828

tion hyperparameters and set the temperature to 829

0.1. LLMs were queried using templates exempli- 830

fied in the Fig 5, 6, 7 and 8. We present templates 831

for NER and RE as examples of token and text clas- 832

sification tasks, respectively. For NER and TER 833

tasks, we generated annotations in JSON format, 834

inspired by (Kim et al., 2024). In the LLM-active 835

method, we first generated example texts and their 836

annotations using prompts in the figures. Specifi- 837

cally, 100 texts were randomly sampled from the 838

5https://huggingface.co/docs/transformers/en/
main_classes/trainer

6https://scipy.org/
7https://huggingface.co/docs/transformers/en/

main_classes/text_generation
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development set of the target datasets for the exam-839

ple texts. Example prompts are presented in Fig. 9840

and 10.841

A.1.4 Fine-tuning of Source SLMs842

The implementation of fine-tuning with LLM-843

annotated data follows the same procedure as the844

source SLM training for NER and RE tasks. For845

ND and TER tasks, we adopted the hyperparame-846

ters from Su et al. (2022).847

A.2 Full Comparison of Zero-shot Annotation848

Quality and Source SLM performance849

Table 9 presents the full comparison of zero-shot850

annotation quality and source SLM performance,851

as discussed in Sect 2. Zero-shot annotation sur-852

passes the source SLM performance in text classifi-853

cation tasks (RE and ND) at an annotation budget854

of 384 but falls short in token classification tasks855

(NER and TER). This observation motivated us to856

improve LLM annotation with SLM assistance.857

A.3 LLM Inference on Evaluation Sets858

Table 10 compares “Active + SALA” with LLM in-859

ference on the evaluation sets of the target datasets.860

While LLM inference achieves high F1 scores in861

simpler tasks like ND, it struggles with more com-862

plex tasks such as NER and TER, even with few-863

shot examples. This highlights the advantage of864

using fine-tuned SLMs for clinical information ex-865

traction, particularly given their computationally866

efficient inference when processing large-scale clin-867

ical data.868

A.4 Additional Evaluation of SLM869

Performance870

Table 11 presents the additional results of SLM871

performance for active learning using various LLM872

annotation methods. With the number of annota-873

tions set to 96, SALA has no clear advantage over874

other LLM annotation methods. However, with an875

increased number of annotations, SALA demon-876

strates an overall advantage, as all methods per-877

form comparably in text classification tasks, while878

SALA exhibits a prominently better performance879

in token classification tasks.880

A.5 Additional Evaluation of Annotation881

Quality882

Table 12 presents the additional results of annota-883

tion quality for various LLM annotation methods884

on annotation targets, with the number of anno- 885

tations set to 384 instances. The results include 886

comparisons between medical domain and general 887

domain LLMs for each annotation method. A sim- 888

ilar trend is observed as in the SLM performance, 889

providing additional evidence of the effectiveness 890

of SALA. 891
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Method NER RE ND TER Avg
# Beth Part Beth Part i2b2 mimic Food News

Source 96 51.5 39.2 23.2 39.2 85.1 80.9 75.1 70.1 58.0
Zero-Shot 96 52.4 67.5 50.0 72.3 89.2 82.3 44.5 31.7 61.2
Zero-ShotMed 96 54.6 46.1 56.4 66.1 89.2 89.7 31.9 20.4 56.8

Source 384 64.1 66.8 32.8 51.8 88.8 65.2 79.3 74.5 65.4
Zero-Shot 384 49.3 58.5 56.2 67.8 94.3 90.5 55.1 37.4 63.6
Zero-ShotMed 384 49.9 44.2 60.9 68.6 94.5 92.8 39.1 24.4 59.3

Table 9: Performance comparison of zero-shot annotation and the source SLMs.

Method Human-free
NER RE ND TER Avg

Beth Part Beth Part i2b2 mimic Food News

Full-supervision (skyline) × 88.7 86.7 75.4 65.7 89.8 88.7 85.8 83.0 83.0

Source ✓ 81.3 80.9 56.1 57.3 84.6 63.5 78.1 78.4 72.5
Zero-shot ✓ 57.8 50.6 59.3 71.5 91.1 81.2 53.4 52.0 64.6
Few-shot × 61.2 55.6 62.2 66.7 92.9 80.3 62.5 69.9 68.9
Active + SALAMed ✓ 83.2 81.3 72.2 57.6 88.3 79.6 79.6 78.7 77.6
Active + SALA ✓ 84.2 83.2 72.3 66.2 88.0 78.6 79.9 75.1 78.4

Table 10: LLM inference performance on the evaluation set of the target datasets.

Method #
NER RE ND TER Avg

Beth Part Beth Part i2b2 mimic Food News

Full-supervision (skyline) Full 88.7 86.7 75.4 65.7 89.8 88.7 85.8 83.0 83.0
Source - 81.3 80.9 56.1 57.3 84.6 63.5 78.1 78.4 72.5
Active + Zero-shotMed 96 82.6 81.2 63.9 61.5 87.9 75.7 75.0 72.5 75.0
Active + Zero-shot 96 83.4 80.0 61.0 59.3 87.9 75.6 76.9 59.0 72.9
Active + LLM-activeMed 96 83.6 79.1 63.1 61.6 87.9 75.7 75.2 67.2 74.2
Active + LLM-active 96 83.1 82.2 61.4 59.5 88.2 76.0 74.6 74.6 75.0
Active + SALAMed 96 82.5 80.1 63.9 59.0 87.8 68.1 80.3 77.5 74.6
Active + SALA 96 81.9 81.5 60.2 61.3 85.0 71.1 79.3 76.8 74.6

Active + Zero-shotMed 384 71.6 63.0 63.3 67.2 88.5 81.4 74.7 64.1 71.7
Active + Zero-shot 384 69.5 68.7 69.5 66.5 88.0 82.8 75.2 55.8 72.0
Active + LLM-activeMed 384 66.9 62.6 64.2 58.8 88.3 80.2 70.0 37.5 66.1
Active + LLM-active 384 70.7 62.8 66.4 56.5 88.1 80.6 71.9 63.0 70.0
Active + SALAMed 384 83.2 81.3 72.2 57.6 88.3 79.6 79.6 78.7 77.6
Active + SALA 384 84.2 83.2 72.3 66.2 88.0 78.6 79.9 75.1 78.4

Table 11: Performance comparison of the adapted SLMs with varous LLM annotation methods.
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Method NER RE ND TER Avg
Beth Part Beth Part i2b2 mimic Food News

Few-shot 56.3 61.7 57.6 65.0 93.7 92.3 52.4 47.4 65.8
Zero-shot 49.3 58.5 56.2 67.8 94.3 90.5 55.1 37.4 63.6
Zero-shotMed 49.9 44.2 60.9 68.6 94.5 92.8 39.1 24.4 59.3
LLM-active 53.0 59.0 56.3 64.8 94.8 89.9 49.4 45.0 64.0
LLM-activeMed 50.9 47.5 57.6 68.3 94.8 90.6 48.0 22.9 60.1
SALA 65.8 74.6 56.9 66.3 93.7 86.7 78.6 70.2 74.1
SALAMed 65.2 69.5 56.8 70.4 93.7 90.6 81.6 73.8 75.2

Table 12: Annotation quality comparison of various LLM annotation methods.

Instructions: You are an intelligent clinical language model.
Given the entity label set: [<label set>], please recognize the named entities in the given clinical text.
<task description>
Here are examples of the annotation.
<high-confidence examples>
Provide the answer in the following lines of JSON format:
{entity name1: entity type1}
{entity name2: entity type2}
Extract the entity name from the text exactly.
Be sure to choose the entity type from [<label set>].
Be sure to keep the order of the entities as they appear in the text.
If there are no entities in the entire text, return the empty JSON: {}.
Now, please recognize the named entities in the following clinical text
Text: "<input>"
Here is the base answer
Answer:
<SLM prediction>
If the base answer needs modification, please return the modified answer based on the annotation task
description and the examples.
If the base answer is correct, please return the answer as it is.
Answer:

Figure 5: The template of SALA prompt for NER.

14



Instructions: You are an intelligent clinical language model.
Given the entity label set: [<label set>], please recognize the named entities in the given clinical text.
<task description>
Provide the answer in the following lines of JSON format:
{entity name1: entity type1}
{entity name2: entity type2}
Extract the entity name from the text exactly.
Be sure to choose the entity type from [<label set>].
Be sure to keep the order of the entities as they appear in the text.
If there are no entities in the entire text, return the empty JSON: {}.
Now, please recognize the named entities in the following clinical text
Text: "<input>"
Answer:

Figure 6: The template of zero-shot prompt for NER.

Instructions: You are an intelligent clinical language model.
<task description>
Here are examples of the annotation.
<high-confidence examples>
Classify the relation of the two concepts marked with <e1> </e1> and <e2> </e2>.
Provide the answer by choosing one word from the following categories: [<label set>]
Do not include anything other than the category in the answer.
Now, please classify the following text
Text: "<input>"
Here is the base answer
Answer:
<SLM prediction>
If the base answer needs modification, please return the modified answer based on the annotation task
description and the examples.
If the base answer is correct, please return the answer as it is.
Answer:

Figure 7: The template of SALA prompt for RE.

Instructions: You are an intelligent clinical language model.
<task description>
Classify the relation of the two concepts marked with <e1> </e1> and <e2> </e2>.
Provide the answer by choosing one word from the following categories: [<label set>]
Do not include anything other than the category in the answer.
Now, please classify the following text
Text: "<input>"
Answer:

Figure 8: The template of zero-shot prompt for RE.
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Instructions: You are an intelligent clinical language model.
Given an annotation guideline and example texts below, please generate an example text with annotations.
<task description>
Here are the example texts.
<examples>
Provide the answer in the following lines of JSON format:
{entity name1: entity type1}
{entity name2: entity type2}
Extract the entity name from the text exactly.
Be sure to choose the entity type from [<label set>].
Be sure to keep the order of the entities as they appear in the text.
If there are no entities in the entire text, return the empty JSON: {}.
The generated text and answer should be in the format:
Text: "Example text here"
Answer:
{entity name1: entity type1}
{entity name2: entity type2}
Now, please generate an example text with annotations.
Text:"

Figure 9: The template of prompt for generating example texts and their annotations in NER.

Instructions: You are an intelligent clinical language model.
Given an annotation guideline and example texts below, please generate an example text with an annotation.
<task description>
Here are the example texts.
<examples>
Classify the relation of the two concepts marked with <e1> </e1> and <e2> </e2>.
Provide the answer by choosing one word from the following categories: [<label set>]
Do not include anything other than the category in the answer.
The generated text and answer should be in the format:
Text: "Example text here"
Answer: <answer>
Now, please generate an example text with an annotation.
Text:"

Figure 10: The template of prompt for generating example texts and their annotations in RE.
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