
Are Large-scale Soft Labels Necessary for Large-scale
Dataset Distillation?

Lingao Xiao1,3 and Yang He1,2,3∗
1CFAR, Agency for Science, Technology and Research, Singapore
2IHPC, Agency for Science, Technology and Research, Singapore

3National University of Singapore
xiao_lingao@u.nus.edu, he_yang@cfar.a-star.edu.sg

Abstract

In ImageNet-condensation, the storage for auxiliary soft labels exceeds that of the
condensed dataset by over 30 times. However, are large-scale soft labels necessary
for large-scale dataset distillation? In this paper, we first discover that the high
within-class similarity in condensed datasets necessitates the use of large-scale
soft labels. This high within-class similarity can be attributed to the fact that
previous methods use samples from different classes to construct a single batch
for batch normalization (BN) matching. To reduce the within-class similarity, we
introduce class-wise supervision during the image synthesizing process by batching
the samples within classes, instead of across classes. As a result, we can increase
within-class diversity and reduce the size of required soft labels. A key benefit of
improved image diversity is that soft label compression can be achieved through
simple random pruning, eliminating the need for complex rule-based strategies.
Experiments validate our discoveries. For example, when condensing ImageNet-1K
to 200 images per class, our approach compresses the required soft labels from 113
GB to 2.8 GB (40× compression) with a 2.6% performance gain. Code is available
at: https://github.com/he-y/soft-label-pruning-for-dataset-distillation.

1 Introduction

0 20

10

40

20

60
Total Storage (GB, Image + Label)

A
cc

ur
ac

y
(%

)

SRe2L-10

SRe2L-20

SRe2L-50

SRe2L-100 SRe2L-200

30

80

40

100

50

120

60

70

0.75G 2.98GImage 138G
28.33G
0.71G

113.33G
2.91G

0G
0G

Label (Base)
Label (Ours)

IPC-50 IPC-200 ImageNet-1K

RDED (CVPR'24)SRe2L (NeurIPS'23) CDA OursG-VBSM (CVPR'24)

Ours-50

Ours-100

Ours-200
Ours-300

Ours-400

Figure 1: The relationship between performance and
total storage of auxiliary information needed. Our
method achieves SOTA performance with fewer soft
labels than images.

We are pacing into the era of ImageNet-level
condensation, and the previous works [1,
2, 3, 4, 5] fail in scaling up to large-scale
datasets due to extensive memory constraint.
Until recently, Yin et al.[6] decouple the tra-
ditional distillation scheme into three phases.
First, a teacher model is pretrained with full
datasets (squeeze phase). Second, images
are synthesized by matching the Batch Nor-
malization (BN) statistics from the teacher
and student models (recover phase). Third,
auxiliary data such as soft labels are pre-
generated from different image augmenta-
tions to create abundant supervision for post-
training (relabel phase).

However, the auxiliary data are 30× larger
than the distilled data in ImageNet-1K. To

∗Corresponding Author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/he-y/soft-label-pruning-for-dataset-distillation

(a) SRe2L [6]. (b) Ours (IPC=10).

Figure 2: Visual comparison between SRe2L and the proposed method. The classes are hammer
shark (top), pineapple (middle), and pomegranate (bottom). Our method is more visually diverse.

attain correct and effective supervision, the exact augmentations and soft labels of every training
epoch are stored [6, 7, 8, 9, 10]. The required soft label storage is the colored circles in Fig. 1.

In this paper, we consider whether large-scale soft labels are necessary, and what causes the excessive
requirement of these labels? To answer these questions, we provide an analysis of the distilled images
using SRe2L [7], and we find that within-class diversity is at stake as shown in Fig. 2. To be more
precise, we analyze the similarity using Feature Cosine Similarity and Maximum Mean Discrepancy
in Sec. 3.2. The high similarity of images within the same class requires extensive data augmentation
to provide different supervision.

To address this issue, we propose Label Pruning for Large-scale Distillation (LPLD). Specifically,
we modified the algorithms by batching images within the same class, leveraging the fact that
different classes are naturally independent. Furthermore, we introduce class-wise supervision to align
our changes. In addition, we have explored different label pruning metrics and found that simple
random pruning was performed on par with carefully selected labels. To further increase diversity,
we improve the label pool by introducing randomness in a finer granularity (i.e., batch-level). Our
method effectively distills the images while requiring less label storage compared to image storage,
as shown in Fig. 1.

The key contributions of this work are: (1) To the best of our knowledge, it is the first work to
introduce label pruning to large-scale dataset distillation. (2) We discover that high within-class
diversity necessitates large-scale soft labels. (3) We re-batch images and introduce class-wise
supervision to improve data diversity, allowing random label pruning to be effective with an improved
label pool. (4) Our LPLD method achieves SOTA performance using a lot less label storage, and it is
validated with extensive experiments on various networks (e.g., ResNet, EfficientNet, MobileNet,
and Swin-V2) and datasets (e.g., Tiny-ImageNet, ImageNet-1K, and ImageNet-21K).

2 Related Works

Dataset Distillation. DD [1] first introduces dataset distillation, which aims to learn a synthetic
dataset that is equally effective but much smaller in size. The matching objectives include performance
matching [1, 11, 12, 13, 14], gradient matching [4, 15, 16, 17], distribution or feature matching [5, 2,
18], trajectory matching [3, 19, 20], representative matching [21, 22], loss-curvature matching [23],
and Batch-Norm matching[6, 7, 9, 10].

Dataset Distillation of Large-Scale Datasets. Large-scale datasets scale up in terms of image size
and the number of total images, incurring affordable memory consumption for most of the well-
designed matching objectives targeted for small datasets. MTT [3] is able to condense Tiny-ImageNet
(ImageNet-1K subsets with images downsampled to 64× 64 and 200 classes). IDC [24] conducts
experiments on ImageNet-10, which contains an image size of 224× 224 but has only 10 classes.
TESLA [20] manages to condense the full ImageNet-1K dataset by exactly computing the unrolled

2

gradient with constant memory or complexity. SRe2L [6] decouples the bilevel optimization into
three phases: 1) squeezing, 2) recovering, and 3) relabeling. The proposed framework surpasses
TESLA [20] by a noticeable margin. CDA [7] improves the recovering phase by introducing
curriculum learning. RDED [8] replaces the recovering phase with an optimization-free approach by
concatenating selected image patches. SC-DD [10] uses self-supervised models as recovery models.
Existing methods [7, 8, 10] place high emphasis on improving the recovering phase; however, the
problem of the relabeling phase is overlooked: a large amount of storage is required for the relabeling
phase.

Label Compression. The problem of excessive storage seems to be fixed if the teacher model
generates soft labels immediately used by the student model on the fly. However, when considering
the actual use case of distilled datasets (i.e., Neural Architecture Search), using pre-generated labels
enjoys speeding up training and reduced memory cost. More importantly, the generated labels can be
repeatedly used. FKD [25] employs label quantization to store only the top-k logits. In contrast, our
method retains full logits, offering an orthogonal approach to quantization. A comparison to FKD
is provided in Appendix D.3. Unlike FerKD [26], which removes some unreliable soft labels, our
strategy targets higher pruning ratios.

Comparison with G-VBSM [9]. In one recent work, G-VBSM also mentioned re-batching the im-
ages within classes; however, the motivation is that having a single image in a class is insufficient [9].
It re-designed the loss by introducing a model pool, matching additional statistics from convolutional
layers, and updating the statistics of synthetic images using exponential moving averages (EMA).
Additionally, an ensemble of models is involved in both the data synthesis and relabel phase, requiring
a total of N forward propagation from N different models, where N = 4 is used for ImageNet-1K
experiments. On the other hand, we aim to improve the within-class data diversity for reducing
soft label storage. Furthermore, to account for the re-batching operation, we introduce class-wise
supervision while all G-VBSM statistics remain global.

3 Method

3.1 Preliminaries

The conventional Batch Normalization (BN) transformation is defined as follows:

y = γ

(
x− µ√
σ2 + ϵ

)
+ β, (1)

where γ and β are parameters learned during training, µ and σ2 are the mean and variance of the
input features, and ϵ is a small constant to prevent division by zero. Additionally, the running mean
and running variance are maintained during network training and subsequently utilized as µ (mean)
and σ2 (variance) during the inference phase, given that the true mean and variance of the test data
are not available.

The matching object of SRe2L [7] follows DeepInversion [27], which optimizes synthetic datasets by
matching the models’ layer-wise BN statistics:

LBN(x̃) =
∑
l

∥µl(x̃)− E (µl | T)∥2 +
∑
l

∥∥σ2
l (x̃)− E

(
σ2
l | T

)∥∥
2

≈
∑
l

∥∥∥µl(x̃)−BNRM
l

∥∥∥
2
+
∑
l

∥∥∥σ2
l (x̃)−BNRV

l

∥∥∥
2
,

(2)

where the BN’s running mean BNRM
l and running variance BNRV

l are used to approximate the
expected mean E (µl | T) and expected variance E

(
σ2
l | T

)
of the original dataset T , repsectively.

The BN loss matches BN for layers l, and µl(x̃) and σ2
l (x̃) are the mean and variance of the synthetic

images x̃.

The BN loss term is used as a regularization term applied to the classification loss LCE. Therefore,
the matching objective is:

argmin
x̃

ℓ (θT (x̃) ,y)︸ ︷︷ ︸
LCE

+α · LBN (x̃) , (3)

where θT is the model pretrained on the original dataset T . The symbol α is a small factor controlling
the regularization strength of BN loss.

3

Table 1: The cosine similarity between image features. The
similarities are the average of 1K class on the synthetic ImageNet-
1K dataset. Features are extracted using pretrained ResNet-18.

IPC SRe2L CDA Ours Full Dataset

50 0.841 ± 0.023 0.816 ± 0.026 0.796 ± 0.029
0.695 ± 0.045100 0.840 ± 0.016 0.814 ± 0.019 0.794 ± 0.021

200 0.839 ± 0.011 0.813 ± 0.013 0.793 ± 0.015
0 200 400 600 800 1000

Class
0

5

10

15

20

25

M
ax

im
um

 M
ea

n
Di

sc
re

pa
nc

y SRe2L (Avg: 10.69)
CDA (Avg: 8.35)
Ours (Avg: 4.69)

Figure 3: MMD visualization.

3.2 Diversity Analysis on Synthetic Dataset

3.2.1 Similarity within Synthetic Dataset: Feature Cosine Similarity

A critical aspect of image diversity is how similar or different the images are within the same class. To
quantify this, we utilize the feature cosine similarity measure defined above. Lower cosine similarity
values between images within the same class indicate greater diversity, as the images are less similar
to one another. This relationship is formally stated as follows:
Proposition 1. The lower feature cosine similarity of images indicates higher diversity because the
images are less similar to one another.

Feature Cosine similarity can be formally put as:

cos similarity :=
f(x̃c) · f(x̃′

c)

∥f(x̃c)∥∥f(x̃′
c)∥

=

∑n
i=1 f(x̃c,i) f(x̃

′
c,i)√∑n

i=1 f(x̃c,i)2
√∑n

i=1 f(x̃
′
c,i)2

, (4)

where x̃c and x̃′
c are two images from the same class c, f(·) are the features extracted from a

pretrained model, and n is the feature dimension.

3.2.2 Similarity between Synthetic and Original Dataset: Maximum Mean Discrepancy

The similarity between images is not the only determinant of diversity since images can be dissimilar
to each other yet not representative of the original dataset. Therefore, to further validate the diversity
of our synthetic dataset, we consider an additional metric: the Maximum Mean Discrepancy (MMD)
between synthetic datasets and original datasets. This measure helps evaluate how well the synthetic
data represents the original data distribution. The following proposition clarifies the relationship
between MMD and dataset diversity:
Proposition 2. A lower MMD suggests that the synthetic dataset captures a broader range of features
similar to the original dataset, indicating greater diversity.

The empirical approximation of MMD can be formally defined as [28, 29],

MMD2 (P T ,P S) = K̂T ,T + K̂S,S − 2K̂T ,S (5)

where K̂X,Y = 1
|X|·|Y |

∑|X|
i=1

∑|Y |
j=1K (f (xi) , f (yj)) with {xi}|X|

i−1 ∼ X, {yi}|Y |
i=1 ∼ Y . T and S

denote real and synthetic datasets, respectively; K is the reproducing kernel (e.g., Gaussian kernel);
P is the feature (embedding) distribution, and f(·) is the feature representation extracted by model θ,
where f(T) ∼ PT , f(S) ∼ PS .

3.3 Label Pruning for Large-scale Distillation (LPLD)

3.3.1 Diverse Sample Generation via Class-wise Supervision

The previous objective function follows Eq. 3; it uses a subset of classes Bc to match the BN statistics
of the entire dataset, and images in the same class are independently generated, causing an low image
diversity within classes. However, inspired by He et al.[30], images in the same class should work
collaboratively, and images that are optimized individually (see Baseline B in work [30]) do not lead
to the optimal performance when IPC (Images Per Class) gets larger.

4

IPC
updateupdate

Synthetic Data

Class

CDA/ / SC-DD Ours

BN Layer

BN Layer
++

BN Layer
Global Stats.

Batch Stats.

Batch Stats. Batch Stats.

Stats. = (mean / variance)

Batch Stats.

Global Stats. Class Stats.

re-batching

Class Stats.

layerTrainable Layer (e.g., Conv) BN-Matching Loss

BN Layer

Figure 4: Illustration of existing methods (left, grey) and the proposed method (right, blue). Existing
methods (i.e., SRe2L, CDA) independently generate along the IPC (Image-Per-Class) dimension,
causing a high similarity between images of the same class. The proposed method allows images of
the same class to collaborate, leaving different classes naturally independent. In addition, synthetic
images are updated under class-wise supervision. The classification loss is omitted for simplicity.

Step 1: Re-batching Images within Class. Subsequently, to obtain a collaborative effect among
different images of the same class, we sample images from the same class and provide the images
with class-wise supervision [4, 24]. Fig. 4 illustrates the changes.

Step 2: Introducing Class-wise Supervision. However, the running mean and variance approximate
the original dataset’s expected mean and variance in a global aspect. The matching objective becomes
sub-optimal in class-wise matching situation. To this end, we propose to track BN statistics for each
class separately. Since we only track the running mean and variance, the extra storage is marginal
even when up to 1K classes in ImageNet-1K (see Appendix E.2 and E.4).

Step 3: Class-wise Objective Function. The new class-wise objective function is modified from
Eq. 3, which has two loss functions. First, we compute the classification loss (i.e., the Cross-Entropy
Loss) with BN layers using global statistics to ensure effective supervision. Second, we compute BN
loss by matching class-wise BN statistics. The modified parts are highlighted in blue color, and the
objective function is formally put as,

argmin
x̃c

(Cross-Entropy Loss with Global BN Statistics︷ ︸︸ ︷
−

N∑
i=1

yc,i log

softmax

θT

 x̃c,i −BNRM
global√

BNRV
global + ϵ

c

+ α ·

∑
l

(∥∥∥µl(x̃c)−BNRM
l,c

∥∥∥
2
+
∥∥∥σ2

l (x̃c)−BNRV
l,c

∥∥∥
2

)
︸ ︷︷ ︸

Batch Norm Loss with Class-wise BN Statistics

) (6)

We want to emphasize that even though we are adjusting the BN loss with class-wise statistics, the
global statistics of the dataset are still taken into account. The output logits for calculating CE loss
are produced using global statistics. This is because altering µ and σ without fine-tuning γ and β
could lead to a decline in model performance, resulting in less effective supervision.

Theoretical Number of Updates for Stable Class-wise BN Statistics. Traditional BN layers do not
compute class-wise statistics; therefore, we need to either keep track of the class-wise statistics while
training a model from scratch or compute these statistics using a pretrained model. We prefer the
latter as the former requires extensive computing resources. To understand how many BN statistics
updates are needed, we can first look at the update rules of BN running statistics for a class c:

BNRM
l,c ← (1− ϵ) ·BNRM

l,c + ϵ · µl(xc),

BNRV
l,c ← (1− ϵ) ·BNRV

l,c + ϵ · σ2
l (xc),

(7)

5

1st 1st

2nd 2nd

3rd 3rd

4th 4th 4th

5th 5th

6th 6th

7th

8th

9th

7th 7th

8th 8th

9th 9th 9th

10th 10th

11th 11th 11th

12th 12th

Batch EpochImage Augmentation (e.g., CutMix) Pruned Label

Generated Soft Labels Epoch-level Pruning

Random Pruning for Soft Label Pool Random Sampling for Training

Batch-level Pruning Training Epoch 1 Training Epoch 2

1st 1st 1st

2nd 2nd 2nd

3rd 3rd 3rd

4th 4th7th 7th10th 10th 10th

8th 8th11th 11th

9th 12th 12th 12th

5th 5th 5th

6th 6th 6th

Figure 5: Illustration of two random processes in label pruning with improved label pool. First, we
need a smaller soft label pool due to the storage budget. We can conduct pruning at two levels: (1)
epoch-level and (2) batch-level. Batch-level pruning can provide a more diverse label pool since
augmentations (e.g., Mixup or CutMix) are different across batches. The illustrated pruning ratio is
25%; the crossed-out labels denote the pruned labels, and the remaining form the label pool. Second,
we randomly sample soft labels for model training.

where ϵ is the momentum. Since the momentum factor for the current batch statistics is usually set
to a small value (i.e., ϵ = 0.1), we can theoretically compute existing running statistics that can be
statistically significant after how many updates, assuming all other factors are fixed.

Since the running statistics are computed per class, we provide the theoretical number of updates
required to stabilize all class statistics (see Appendix A for the proof):

n ≥ max

−2 ln

(
T

2

)
δ2 min(qc)︸ ︷︷ ︸
Chernoff Bound

,

ln

(
C

τ

)
(1− δ)εmin(qc)︸ ︷︷ ︸

BN Convergence

 . (8)

where n is the number updates needed, qc is the probability that class c appears in a batch, T is a
probability threshold, ε is the momentum parameter in Batch Normalization, δ is the acceptable
relative deviation (where 0 ≤ δ ≤ 1), C is some constant, and τ is the desired convergence tolerance
for the BN statistics. How Eq. 8 guides our experiment design is detailed in Appendix E.3.

3.3.2 Random Label Pruning with Improved Label Pool

Excelling in Both Similarity Measures. By adopting the changes provided in Sec. 3.3.1, our
synthetic dataset is more diverse and representative than the existing methods. First, our dataset
exhibits smaller feature cosine similarity within classes compared to datasets produced by existing
methods, as shown in Table 1. This indicates that our synthetic images are less similar to each other
and, thus, more diverse. Second, our dataset exhibits a significantly lower MMD shown in Fig 3
compared to datasets produced by existing methods. This suggests that our synthetic dataset better
captures the feature distribution of the original dataset. After obtaining a diverse dataset, the next
move is to address superfluous soft labels.

Random Label Pruning. Different from dataset pruning metrics, which many wield training
dynamics [31, 32], label pruning is inherently different since the labels in different epochs are
independently generated or evaluated. Subsequently, these methods do not directly apply, and we
modify these metrics to determine which epochs contain the most useful augmentations and soft
labels. Through empirical study, we find that using soft labels carefully pruned from different metrics
is no better than simple random pruning. As a result, we can discard complex rule-based pruning
metrics, attaining both simplicity and efficiency. After obtaining the soft label pool, we have to decide
which labels will be used. Following the previous random pruning scheme, we randomly sample the
labels for model training in order to ensure diversity and avoid any prior knowledge.

Improved Label Pool. Considering that random selection may be the most efficient choice, we
rethink the diversity of the label pool, as labels at the epoch-level are not the finest elements.

6

Table 2: Tiny-ImageNet label pruning results. The standard deviation is attained from three different
runs. † denotes the reported results.

(a) Comparison between SOTA methods.

1× 10× 20× 30× 40×
ResNet-18 SRe2L CDA Ours SRe2L CDA Ours SRe2L CDA Ours SRe2L CDA Ours SRe2L CDA Ours

IPC50 41.1† 48.7† 48.8±0.4 40.3 45.0 46.7±0.6 39.0 41.2 44.3±0.5 34.6 35.8 40.2±0.3 29.8 30.9 38.4±1.3

IPC100 49.7† 53.2† 53.6±0.3 48.3 50.7 52.2±0.2 46.5 48.0 50.6±0.2 43.0 44.2 47.6±0.2 39.4 40.0 46.1±0.2

(b) Experiments on larger networks.

1× 10× 20× 30× 40×
ResNet-50 ResNet-101 ResNet-50 ResNet-101 ResNet-50 ResNet-101 ResNet-50 ResNet-101 ResNet-50 ResNet-101

IPC50 49.0±1.6 49.7±0.9 48.6±0.5 48.7±0.5 47.2±0.6 46.4±0.6 43.4±0.0 43.0±0.9 42.3±0.2 42.1±1.2

IPC100 55.3±0.2 55.4±0.4 54.0±0.3 54.1±0.8 52.7±0.3 53.7±0.4 51.0±0.5 51.1±0.2 50.3±0.5 48.7±1.7

Table 3: ImageNet-1K label pruning result. Our method consistently shows a better performance
under various pruning ratios. The validation model is ResNet-18. † denotes the reported results.

1× 10× 20× 30× 40×
ResNet-18 SRe2L CDA Ours SRe2L CDA Ours SRe2L CDA Ours SRe2L CDA Ours SRe2L CDA Ours

IPC10 20.1 33.3 34.6±0.9 18.9 28.4 32.7±0.6 16.0 21.9 28.6±0.4 14.1 14.2 23.1±0.1 11.4 13.2 20.2±0.3

IPC20 33.6 44.0 47.2±0.5 31.1 39.7 44.7±0.4 29.2 34.1 41.0±0.3 24.5 27.5 35.9±0.3 21.7 24.0 33.0±0.6

IPC50 46.8† 53.5† 55.4±0.3 44.1 50.3 54.4±0.2 41.5 46.1 51.8±0.2 37.2 41.8 48.6±0.2 35.5 38.0 46.7±0.3

IPC100 52.8† 58.0† 59.4±0.2 51.1 55.1 58.8±0.0 49.5 53.3 57.4±0.0 46.7 49.7 55.2±0.1 44.4 47.2 54.0±0.8

IPC200 57.0† 63.3† 62.6±0.3 56.5 59.4 62.4±0.7 55.1 58.3 61.7±0.7 52.9 56.0 60.1±0.5 51.9 54.4 59.6±0.6

The augmentations such as CutMix and Mixup are performed at the batch level, where the same
augmentations are applied to images within the same batch and are different across batches. Therefore,
we improve the label pool by allowing batches in different epochs to form a new epoch. The improved
label pool breaks the fixed batch orders and the fixed combination of augmentations within an epoch,
allowing a more diverse training process while reusing the labels. Our label pruning method is
illustrated in Fig. 5.

4 Experiments

4.1 Experiment Settings

Dataset details can be found in Appendix B and detailed settings are provided in Appendix C.
Computing resources used for experiments can be found in Appendix E.5.

Dataset. Our experiment results are evaluated on Tiny-ImageNet [33], ImageNet-1K [34], and
ImageNet-21K-P [35]. We follow the data pre-processing procedure of SRe2L [6] and CDA [7].

Squeeze. We modify the pretrained model by adding class-wise BN running mean and running
variance; since they are not involved in computing the BN statistics, they do not affect performance.
As mentioned in Sec. 3.3.1, we compute class-wise BN statistics by training for one epoch with
model parameters kept frozen.

Recover. We perform data synthesis following Eq. 6. The batch size for the recovery phase is the
same as the IPC. Besides, we adhere to the original setting in SRe2L.

Relabel. We use pretrained ResNet18 [36] for all experiments as the relabel model except otherwise
stated. For Tiny-ImageNet and ImageNet-1K, we use Pytorch pretrained model. For ImageNet-21K-P,
we use Timm pretrained model.

Validate. For validation, we adhere to the hyperparameter settings of CDA [7].

Pruning Setting. For label pruning, we exclude the last batch (usually with an incomplete batch size)
of each epoch from the label pool. There are two random processes: (1) Random candidate selection
from all batches. (2) Random reuse of candidate labels.

7

Table 5: Comparison between different pruning metrics. Results are obtained from ImageNet-1K
IPC10 and validated using ResNet-18.

(a) Random pruning vs. Pruning metrics at 40×.

IPC10 correct diff diff_signed cut_ratio confidence

Hard 19.6 18.9 19.2 19.5 19.0
Easy 19.3 18.7 19.3 19.5 17.9
Uniform 20.0 18.5 20.1 19.7 19.2

Random 20.2

(b) Calibration of label pool.

Easy Hard 20× 30× 50× 100×

0 -90% 25.5 22.8 17.4 10.3
0 -50% 28.2 22.5 17.8 9.7

-10% -30% 28.3 22.6 17.1 8.7
-30% -5% 27.8 21.5 16.0 7.9
-90% 0 27.7 22.1 16.3 8.6

0 0 28.6 23.1 17.6 9.6

4.2 Primary Result

Tiny-ImageNet. Table 2a presents a comparison between the label pruning outcomes on Tiny-
ImageNet for our approach, SRe2L [6], and the subsequent work, CDA [7]. Our method not only
consistently surpasses SRe2L across identical pruning ratios but also achieves comparable results
to SRe2L while using 40× fewer labels. When compared to CDA, our method exhibits closely
matched performance, yet it demonstrates superior accuracy preservation. For instance, at a 40×
label reduction, our method secures a notable 7.5% increase in accuracy over CDA, even though the
improvement stands at a mere 0.1% at the 1× benchmark. Table 2b provides the pruning results on
ResNet50 and ResNet101. Although there are consistent improvements observed when compared to
ResNet18, scaling to large networks does not necessarily bring improvements.

ImageNet-1K. Table 3 compares the ImageNet-1K pruning results with SOTA methods on ResNet18.
Our method outperforms other SOTA methods at various pruning ratios and different IPCs. More
importantly, our method consistently exceeds the unpruned version of SRe2L with 30× less storage.
Such a result is not impressive at first glance; however, when considering the actual storage, the
storage is reduced from 29G to 0.87G. In addition, we notice the performance at 10× (or 90%)
pruning ratio degrades slightly, especially for large IPCs. For example, merely 0.2% performance
degradation on IPC200 using ResNet18. Pruning results of larger IPCs can be found in Appendix D.2.

4.3 Analysis

Table 4: Ablation study of the proposed method. C
denotes using class-wise matching. CS denotes suing
class-wise supervision. ILP denotes using an improved
label pool. (IPC50, ResNet18, ImageNet-1K).

+C +CS +ILP 1× 10× 20× 30× 50× 100×

- - - 52.0 49.4 46.4 41.1 34.8 25.4
✓ - - 54.7 51.9 48.5 42.9 37.7 22.6
✓ ✓ - 55.3 53.2 49.9 45.7 39.7 29.1
✓ ✓ ✓ 55.4 54.4 51.8 48.6 43.1 33.7

Ablation Study. Table 4 presents the ab-
lation study of the proposed method. Row
1 is the implementation of SRe2L under
CDA’s hyperparameter settings. Row 2 is
simply re-ordering the loops, and the per-
formance at 1× is improved; nevertheless,
when considering the extreme pruning ra-
tio (i.e., 100×), it falls short of the existing
method. Row 3 computes class-wise BN
running statistics in the “squeeze” phase,
and these class-wise statistics are used as supervision in the “recover” phase. A steady improvement
is observed. Row 4 allows pre-generated labels to be sampled at batch level from different epochs,
further boosting the performance. Refer to Appendix D.1 for an expanded version of ablation.

Label Pruning Metrics. From Table 5a, we empirically find that using different metrics explained
in Appendix E.1 is no better than random pruning. In addition, as mentioned in FerKD [25],
calibrating the searching space by discarding a portion of easy or hard images can be beneficial. We
conduct a similar experiment to perform random pruning on a calibrated label pool, and the metric for
determining easy or hard images is “confidence”. However, as shown in Table 5b, no such range
can consistently outperform the non-calibrated ones (last row). An interesting observation is that
the label pruning law at large pruning ratio seems to coincide partially with data pruning, where
removing hard labels becomes beneficial [37].

Generalization. Table 6a shows the performance under large compression rates. Smaller IPC
datasets suffer more from label pruning since it requires more augmentation and soft label pairs
to boost data diversity. Furthermore, label pruning results on ResNet50 are provided in Table 6b.

8

Table 6: Additional ImageNet-1K label pruning results.

(a) Large pruning rate.

ResNet-18 50× 100×

IPC10 17.6 9.6
IPC20 30.0 17.9
IPC50 43.1 33.7
IPC100 52.0 44.7
IPC200 57.7 52.6

(b) Label pruning results on ResNet-50.

ResNet-50 1× 10× 20× 30× 50× 100×

IPC10 41.7 37.7 35.4 27.5 22.6 11.0
IPC20 54.4 52.3 48.9 45.4 39.5 24.0
IPC50 62.2 61.2 58.8 56.2 52.3 44.7
IPC100 65.7 65.1 63.9 62.0 59.8 54.2
IPC200 67.8 67.1 66.7 65.4 64.1 60.1

(c) Cross-architecture result. IPC50.

Model Size Full Acc 1× 10× 30×

ResNet-18 [36] 11.7M 69.76 55.44 54.45 48.62
ResNet-50 [36] 25.6M 76.13 62.24 61.22 56.24
EfficientNet-B0 [38] 5.3M 77.69 55.51 54.69 52.10
MobileNet-V2 [39] 3.5M 71.88 49.12 49.26 45.80
Swin-V2-Tiny [40] 28.4M 82.07 40.59 37.35 29.54

Table 7: Label pruning result on ImageNet-21K-
P, using ResNet-18. I denotes image storage. L
denotes label storage. † denotes reported results.

1× 10× 40×
IPC I L SRe2L CDA Ours L Ours L Ours

IPC10 3G 643G 18.5† 22.6† 25.4 65G 24.1 16G 21.3
IPC20 5G 1285G 20.5† 26.4† 30.3 129G 31.3 32G 29.4

Table 8: Label pruning for optimization-free
method. “Ours” uses improved label pool.

10× 20× 30× 40×
ResNet-18 RDED Ours RDED Ours RDED Ours RDED Ours

IPC10 37.9 39.1 32.5 35.7 25.4 30.8 24.0 29.1
IPC20 45.8 48.1 41.2 44.3 36.2 39.5 32.9 38.4
IPC50 53.2 54.3 49.9 52.7 48.8 49.7 44.3 48.7
IPC100 57.3 57.8 55.3 57.1 55.2 55.3 51.4 54.2

Not only scaling to large networks of the same family (i.e., ResNet) but Table 6c also demonstrates
the generalization capability of the proposed method across different network architectures. An
analogous trend is evident in the context of label pruning: comparable performance is achieved with
10× fewer labels. This reinforces the statement that the necessity for extensive augmentations and
labels can be significantly reduced if the dataset exhibits sufficient diversity.

Large Dataset. ImageNet-21K-P has 10,450 classes, significantly increasing the disk storage as each
soft label stores a probability of 10,450 classes. The IPC20 dataset leads to a 1.2 TB (i.e., 1285 GB)
label storage, making the existing framework less practical. However, with the help of our method, it
can surpass SRe2L [6] by a large margin despite using 40× less storage. For example, we attain an
8.9% accuracy improvement on IPC20 with label storage reduced from 1285 GB to 32 GB.

Pruning for Optimization-Free Approach. RDED [8] is an optimization-free approach during the
“recover” phase. However, extensive labels are still required for post-evaluation. To prune labels,
consistent improvements are observed using the improved label pool, as shown in Table 8.

Table 9: Compare with G-
VBSM [9]. “Ours+” uses en-
semble and MSE+GT loss.

IPC10 G-VBSM Ours Ours+

1× 31.4 35.7 39.0
10× 28.4 32.7 37.6
20× 26.5 28.6 34.8
30× 22.5 23.1 30.3
40× 18.8 20.2 27.9

Comparison with G-VBSM [9]. Compared to G-VBSM [9], which
uses an ensemble of 4 models to recover and relabel, our method
outperforms it at various pruning ratios with only a single model
(see Table 9). Furthermore, the techniques used for G-VBSM apply
to our method. By adopting label generation with ensemble and
a loss function of “MSE+0.1 × GT” [9], our method can be fur-
ther improved by a large margin on IPC10 of ImageNet-1K, using
ResNet18. Implementation details can be found in Appendix C.4.

Visualization. Fig. 2b visualizes our method on three classes. More
visualizations are provided in Appendix F.

5 Conclusion

To answer the question “whether large-scale soft labels are necessary for large-scale dataset dis-
tillation?”, we conduct diversity analysis on synthetic datasets. The high within-class similarity is
observed and necessitates large-scale soft labels. Our LPLD method re-batches images within classes
and introduces class-wise BN supervision during the image synthesis phase to address this issue.
These changes improve data diversity, so that simple random label pruning can perform on par with
complex rule-based pruning metrics. Additionally, we randomly conduct pruning on an improved
label pool. Finally, LPLD is validated by extensive experiments, serving a strong baseline that takes
into account actual storage. Limitations and future works are provided in Appendix E.6. The ethics
statement and broader impacts can be found in Appendix E.7.

9

Acknowledgement

This work was supported in part by A*STAR Career Development Fund (CDF) under C233312004,
in part by the National Research Foundation, Singapore, and the Maritime and Port Authority of
Singapore / Singapore Maritime Institute under the Maritime Transformation Programme (Maritime
AI Research Programme – Grant number SMI-2022-MTP-06). The computational work for this article
was partially performed on resources of the National Supercomputing Centre (NSCC), Singapore
(https://www.nscc.sg).

References
[1] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation.

arXiv preprint arXiv:1811.10959, 2018.

[2] Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan
Bilen, Xinchao Wang, and Yang You. Cafe: Learning to condense dataset by aligning features.
In Proc. IEEE Conf. Comput. Vis. Pattern Recog., pages 12196–12205, 2022.

[3] George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A. Efros, and Jun-Yan Zhu.
Dataset distillation by matching training trajectories. In Proc. IEEE Conf. Comput. Vis. Pattern
Recog., 2022.

[4] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching.
In Proc. Int. Conf. Learn. Represent., 2021.

[5] Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In Proc. IEEE
Winter Conf. Appl. Comput. Vis., pages 6514–6523, 2023.

[6] Zeyuan Yin, Eric Xing, and Zhiqiang Shen. Squeeze, recover and relabel: Dataset condensation
at imagenet scale from a new perspective. In Proc. Adv. Neural Inform. Process. Syst., 2023.

[7] Zeyuan Yin and Zhiqiang Shen. Dataset distillation in large data era. arXiv preprint
arXiv:2311.18838, 2023.

[8] Peng Sun, Bei Shi, Daiwei Yu, and Tao Lin. On the diversity and realism of distilled dataset:
An efficient dataset distillation paradigm. arXiv preprint arXiv:2312.03526, 2023.

[9] Shitong Shao, Zeyuan Yin, Muxin Zhou, Xindong Zhang, and Zhiqiang Shen. Generalized
large-scale data condensation via various backbone and statistical matching. In Proc. IEEE
Conf. Comput. Vis. Pattern Recog., 2024.

[10] Muxin Zhou, Zeyuan Yin, Shitong Shao, and Zhiqiang Shen. Self-supervised dataset distillation:
A good compression is all you need. arXiv preprint arXiv:2404.07976, 2024.

[11] Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset meta-learning from kernel
ridge-regression. In Proc. Int. Conf. Learn. Represent., 2021.

[12] Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. Dataset distillation with
infinitely wide convolutional networks. In Proc. Adv. Neural Inform. Process. Syst., pages
5186–5198, 2021.

[13] Yongchao Zhou, Ehsan Nezhadarya, and Jimmy Ba. Dataset distillation using neural feature
regression. In Proc. Adv. Neural Inform. Process. Syst., 2022.

[14] Noel Loo, Ramin Hasani, Alexander Amini, and Daniela Rus. Efficient dataset distillation using
random feature approximation. In Proc. Adv. Neural Inform. Process. Syst., 2022.

[15] Zixuan Jiang, Jiaqi Gu, Mingjie Liu, and David Z Pan. Delving into effective gradient matching
for dataset condensation. arXiv preprint arXiv:2208.00311, 2022.

[16] Saehyung Lee, Sanghyuk Chun, Sangwon Jung, Sangdoo Yun, and Sungroh Yoon. Dataset
condensation with contrastive signals. In Proc. Int. Conf. Mach. Learn., pages 12352–12364,
2022.

10

https://www.nscc.sg

[17] Noel Loo, Ramin Hasani, Mathias Lechner, and Daniela Rus. Dataset distillation with convexi-
fied implicit gradients. In Proc. Int. Conf. Mach. Learn., 2023.

[18] Ganlong Zhao, Guanbin Li, Yipeng Qin, and Yizhou Yu. Improved distribution matching for
dataset condensation. In Proc. IEEE Conf. Comput. Vis. Pattern Recog., pages 7856–7865,
2023.

[19] Jiawei Du, Yidi Jiang, Vincent TF Tan, Joey Tianyi Zhou, and Haizhou Li. Minimizing the
accumulated trajectory error to improve dataset distillation. In Proc. IEEE Conf. Comput. Vis.
Pattern Recog., 2023.

[20] Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Scaling up dataset distillation to imagenet-
1k with constant memory. In Proc. Int. Conf. Mach. Learn., pages 6565–6590. PMLR, 2023.

[21] Yanqing Liu, Jianyang Gu, Kai Wang, Zheng Zhu, Wei Jiang, and Yang You. DREAM: Efficient
dataset distillation by representative matching. arXiv preprint arXiv:2302.14416, 2023.

[22] Murad Tukan, Alaa Maalouf, and Margarita Osadchy. Dataset distillation meets provable subset
selection. arXiv preprint arXiv:2307.08086, 2023.

[23] Seungjae Shin, Heesun Bae, Donghyeok Shin, Weonyoung Joo, and Il-Chul Moon. Loss-
curvature matching for dataset selection and condensation. In International Conference on
Artificial Intelligence and Statistics, pages 8606–8628, 2023.

[24] Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo Yun, Hwanjun Song, Joonhyun Jeong,
Jung-Woo Ha, and Hyun Oh Song. Dataset condensation via efficient synthetic-data parameteri-
zation. In Proc. Int. Conf. Mach. Learn., 2022.

[25] Zhiqiang Shen and Eric Xing. A fast knowledge distillation framework for visual recognition.
In Proc. Eur. Conf. Comput. Vis., pages 673–690, 2022.

[26] Zhiqiang Shen. Ferkd: Surgical label adaptation for efficient distillation. In Proc. Int. Conf.
Comput. Vis., pages 1666–1675, 2023.

[27] Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong Li, Arun Mallya, Derek Hoiem,
Niraj K Jha, and Jan Kautz. Dreaming to distill: Data-free knowledge transfer via deepinversion.
In Proc. IEEE Conf. Comput. Vis. Pattern Recog., pages 8715–8724, 2020.

[28] Hansong Zhang, Shikun Li, Pengju Wang, Dan Zeng, and Shiming Ge. M3d: Dataset conden-
sation by minimizing maximum mean discrepancy. In Proc. AAAI Conf. Artif. Intell., pages
9314–9322, 2024.

[29] Tian Qin, Zhiwei Deng, and David Alvarez-Melis. Distributional dataset distillation with
subtask decomposition. arXiv preprint arXiv:2403.00999, 2024.

[30] Yang He, Lingao Xiao, Joey Tianyi Zhou, and Ivor Tsang. Multisize dataset condensation. In
Proc. Int. Conf. Learn. Represent., 2024.

[31] Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
and Geoffrey J. Gordon. An empirical study of example forgetting during deep neural network
learning. In Proc. Int. Conf. Learn. Represent., 2019.

[32] Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet:
Finding important examples early in training. In Proc. Adv. Neural Inform. Process. Syst., pages
20596–20607, 2021.

[33] Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

[34] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proc. IEEE Conf. Comput. Vis. Pattern Recog., pages 248–255.
Ieee, 2009.

[35] Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-21k pretraining
for the masses. arXiv preprint arXiv:2104.10972, 2021.

11

[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proc. IEEE Conf. Comput. Vis. Pattern Recog., pages 770–778, 2016.

[37] Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond
neural scaling laws: beating power law scaling via data pruning. In Proc. Adv. Neural Inform.
Process. Syst., pages 19523–19536, 2022.

[38] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In International conference on machine learning, pages 6105–6114. PMLR, 2019.

[39] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proc. IEEE Conf. Comput. Vis.
Pattern Recog., pages 4510–4520, 2018.

[40] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 12009–12019,
2022.

[41] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
pages 9729–9738, 2020.

[42] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural
networks with cutout. arXiv preprint arXiv:1708.04552, 2017.

[43] Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In Proc. Int.
Conf. Mach. Learn., pages 10096–10106. PMLR, 2021.

[44] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In Proc. IEEE Conf. Comput. Vis. Pattern
Recog., pages 6848–6856, 2018.

[45] Geoff Pleiss, Tianyi Zhang, Ethan Elenberg, and Kilian Q Weinberger. Identifying mislabeled
data using the area under the margin ranking. In Proc. Adv. Neural Inform. Process. Syst., pages
17044–17056, 2020.

12

A Proof

We aim to determine a lower bound on the number of batches (updates) n required to ensure that
the Batch Normalization (BN) statistics for each class in the ImageNet dataset converge within a
specified tolerance τ , with high probability. The dataset has a varying number of images per class,
affecting the probability of each class appearing in a batch during sampling.

A.1 Preliminary Analysis

Defining Class Probabilities: Let pc denote the probability that a randomly selected image from the
dataset belongs to class c:

pc =
Number of images in class c

Total number of images in the dataset
.

Due to the unequal distribution of images across classes, pc varies among classes.

Probability of Class Appearance in a Batch: When sampling a batch of size B, the probability that
class c does not appear in the batch is (1− pc)

B . Therefore, the probability that class c appears in
the batch is:

qc = 1− (1− pc)
B .

This represents the likelihood that at least one image from class c is included in a given batch.

Number of Batches: Let n be the total number of batches sampled during training.

We assume that batches are sampled independently with replacement from the dataset. Under this
assumption, each batch is an independent trial where class c appears with probability qc. Therefore,
the number of batches M where class c appears follows a binomial distribution:

M ∼ Binomial(n, qc).

Remark: In practice, batches are often sampled without replacement within an epoch, introducing
dependency between batches. However, for large datasets where the total number of images N is
significantly larger than the batch size B and the number of batches n, the dependence becomes
negligible. In such cases, the binomial distribution serves as a reasonable approximation.

The expected value of M is:

E[M] = nqc.

A.2 Chernoff Bound

To ensure that M is not significantly less than its expected value E[M], we apply the Chernoff bound:

Pr (M ≤ (1− δ)E[M]) ≤ exp

(
−δ2E[M]

2

)
,

where δ ∈ (0, 1) represents the acceptable relative deviation from the expected value. This bound
provides a way to quantify the probability that a random variable deviates from its expected value,
which is crucial for making high-confidence guarantees.

To ensure the probability that M is less than (1− δ)E[M] is at most T1, we set:

exp

(
−δ2nqc

2

)
≤ T1.

Solving for n:

13

n ≥ −2 ln(T1)

δ2qc
.

To ensure this condition holds for all classes, we use the minimum value of qc:

n ≥ −2 ln(T1)

δ2 min(qc)
.

A.3 BN Convergence

BN Statistics Update: Batch Normalization updates its running statistics using an exponential
moving average. The update rule for the BN statistics of class c at iteration t+ 1 is:

BNt+1
c = (1− ε)BNt

c + εB̂N
t+1

c ,

where ε is the momentum parameter, and B̂N
t+1

c is the BN statistics estimated from the current batch
for class c.

Since BN statistics for class c are updated only when class c appears in the batch, we consider only
the updates corresponding to those batches. After M such updates:

BNt+M
c = (1− ε)MBNt

c + ε

M∑
k=1

(1− ε)M−kB̂N
k

c ,

where B̂N
k

c is the BN statistics estimated in the k-th batch containing class c.

Assuming B̂N
k

c is an unbiased estimator of the true BN statistics µc when class c appears, the expected
value is:

E[BNt+M
c] = (1− ε)MBNt

c + µc

[
1− (1− ε)M

]
.

Convergence Within Tolerance: To ensure that the BN statistics converge within a tolerance τ of
the true statistics µc:

∣∣E[BNt+M
c]− µc

∣∣ ≤ τ.

Since:

∣∣E[BNt+M
c]− µc

∣∣ = (1− ε)M
∣∣BNt

c − µc

∣∣ ,
and assuming

∣∣BNt
c − µc

∣∣ ≤ C for some constant C, we have:

(1− ε)MC ≤ τ.

Taking natural logarithms:

M ln(1− ε) + ln(C) ≤ ln(τ).

Using the approximation ln(1− ε) ≈ −ε for small ε:

−Mε+ ln(C) ≤ ln(τ).

Solving for M :

14

M ≥M0 =

ln

(
C

τ

)
ε

.

Origin of M0: Here, M0 is derived from the BN convergence requirement that ensures:

(1− ε)M0
∣∣BNt

c − µc

∣∣ ≤ τ.

It represents the minimum number of updates required for the BN statistics of class c to converge
within the desired tolerance τ .

A.4 Combining Bounds

Event Definitions:

• Let E1 be the event that class c appears in sufficient batches (as guaranteed by the Chernoff
bound).

• Let E2 be the event that the BN statistics for class c converge within the desired tolerance τ .

Target Probability: We aim to ensure that both events occur simultaneously with high probability:

P (E1 ∩ E2) ≥ 1− T.

Union Bound Application: For any two events, the probability of their intersection satisfies:

P (E1 ∩ E2) = 1− P (E1 ∩ E2)

= 1− P (E1 ∪ E2)

≥ 1− P (E1)− P (E2).

Error Probability Allocation: For simplicity, we allocate the total acceptable failure probability T
equally between the two events:

P (E1) ≤
T

2
(allocated to Chernoff bound),

P (E2) ≤
T

2
(allocated to BN convergence).

Chernoff Bound Analysis: For event E1, we require that the probability of class c appearing in
fewer than the expected number of batches is at most T

2 :

P (M ≤ (1− δ)nqc) ≤
T

2
.

Applying the Chernoff bound:

exp

(
−δ2nqc

2

)
≤ T

2
.

Solving for n:

−δ2nqc
2
≤ ln

(
T

2

)
,

n ≥
−2 ln

(
T
2

)
δ2qc

.

BN Convergence Requirement: For event E2, we require that the number of batches M where class
c appears is sufficient for BN convergence:

M ≥M0 =

ln

(
C

τ

)
ε

.

15

To ensure that this condition holds when event E1 occurs, we use the fact that, with probability at
least 1− T

2 , we have:
M ≥ (1− δ)nqc.

Therefore, to guarantee M ≥M0, we require:

(1− δ)nqc ≥M0 =

ln

(
C

τ

)
ε

.

Solving for n:

n ≥
ln

(
C

τ

)
(1− δ)εqc

.

Final Combined Bound: To ensure that both conditions hold for all classes, we use min(qc):

n ≥ max

−2 ln

(
T

2

)
δ2 min(qc)︸ ︷︷ ︸
Chernoff Bound

,

ln

(
C

τ

)
(1− δ)εmin(qc)︸ ︷︷ ︸

BN Convergence

 ,

where δ represents the acceptable relative deviation from the expected number of batches, ε is the
momentum parameter in BN updates, T denotes the acceptable total failure probability (T = T1+T2),
τ is the convergence threshold for BN statistics, C represents an upper bound on

∣∣BNt
c − µc

∣∣ at
initialization, and min(qc) represents the minimum probability that a class appears in a batch.

This bound ensures:

• With probability at least 1− T
2 , each class c appears in at least (1− δ)nqc batches (event

E1 occurs).
• With probability at least 1− T

2 , the BN statistics for each class c converge within tolerance
τ (event E2 occurs).

• By the union bound, both events E1 and E2 occur simultaneously with probability at least
1− T .

B Dataset Details

We perform experiments on the following three datasets:

• Tiny-ImageNet [33] is the subset of ImageNet-1K containing 500 images per class of a total
of 200 classes, and spatial sizes of images are downsampled to 64× 64.

• ImageNet-1K [34] contains 1,000 classes and 1,281,167 images in total. The image sizes
are resized to 224× 224.

• ImageNet-21K-P [35] is the pruned version of ImageNet-21K, containing 10,450 classes
and 11,060,223 images in total. Images are sized to 224× 224 resolution.

C Hyperparameter Settings

C.1 ImageNet-1K

Table 10: Squeezing and class-wise BN statistics of ImageNet-1K.
Info Detail

Total Images 1,281,167
Batch Size 256
BN Updates 5005
Source https://github.com/pytorch/vision/tree/main/references/classification

16

https://github.com/pytorch/vision/tree/main/references/classification

Table 11: Data Synthesis of ImageNet-1K.
Config Value Detail

Iteration 4,000 -
Optimizer Adam β1, β2 = (0.5, 0.9)
Image LR 0.25 -
Batch Size IPC-dependent e.g., 50 for IPC50
Initialization Random -
BN Loss (α) 0.01 -

Table 12: Relabel and Validation of ImageNet-1K.
Config Value Detail

Epochs 300 -
Optimizer AdamW -
Model LR 0.001 -
Batch Size 128 -
Scheduler CosineAnnealing -
EMA Rate Not Used -

Augmentation
RandomResizedCrop scale ratio = (0.08, 1.0)

RandomHorizontalFlip probability = 0.5
CutMix -

We use Pytorch pretrained ResNet-18 [36], with a Top-1 accuracy of 69.76%, as both the recovery
and relabeling model. Class-wise BN statistics are computed using a modified version of the training
script of the source provided in Table 10. The recovery, or data synthesis, phase is provided in
Table 11, which follows CDA [7] except by changing the batch size to an IPC-dependent size. Relabel
and validation processes share the same setting as provided in Table 12.

C.2 Tiny-ImageNet

Table 13: Squeezing and class-wise BN statistics of Tiny-Imagenet.
Info Detail

Total Images 100,000
Batch Size 256
BN Updates 391
Source https://github.com/zeyuanyin/tiny-imagenet

Table 14: Data Synthesis of Tiny-ImageNet.
Config Value Detail

Iteration 4,000 -
Optimizer Adam β1, β2 = (0.5, 0.9)
Image LR 0.1 -
Batch Size IPC-dependent e.g., 50 for IPC50
Initialization Random -
BN Loss (α) 0.05 -

17

https://github.com/zeyuanyin/tiny-imagenet

Table 15: Relabel and Validation of Tiny-ImageNet.
Config Value Detail

Epochs 100 -
Optimizer SGD ρ = 0.9, ϵ = 0.0001
Model LR 0.2 -
Batch Size 64 -
Warm-up Scheduler Linear epoch = 5, ϵ = 0.01
Scheduler CosineAnnealing -
EMA Rate Not Used -

Augmentation RandomResizedCrop scale ratio = (0.08, 1.0)
RandomHorizontalFlip probability = 0.5

Following SRe2L and CDA [7], we use a modified version of ResNet-18 [41] for Tiny-ImageNet. We
modify the training script from Table 13 to compute class-wise BN statistics. The pretrained model
has a Top-1 accuracy of 59.47%, and the model is used for data synthesis and relabel/validation as
shown in Table 14 and Table 15, respectively. Note that for the validation phase, a warm-up of 5
epochs is added with a different learning rate scheduler (i.e., linear).

C.3 ImageNet-21K-P

Table 16: Squeezing and class-wise BN statistics of Imagenet-21K-P.
Info Detail

Total Images 11,060,223
Batch Size 1,024
BN Updates 10,801
Source https://github.com/Alibaba-MIIL/ImageNet21K

Table 17: Data Synthesis of ImageNet-21K-P.
Config Value Detail

Iteration 2,000 -
Optimizer Adam β1, β2 = (0.5, 0.9)
Image LR 0.05 -
Batch Size IPC-dependent e.g., 20 for IPC20
Initialization Random -
BN Loss (α) 0.25 -

Table 18: Relabel and Validation of ImageNet-21K-P.
Config Value Detail

Epochs 300 -
Optimizer AdamW decay = 0.01
Model LR 0.002 -
Batch Size 32 -
Scheduler CosineAnnealing -
Label Smoothing 0.2 -
EMA Rate Not Used -

Augmentation RandomResizedCrop scale ratio = (0.08, 1.0)
CutOut -

Following CDA [7], we use ResNet-18 trained for 80 epochs initialized with well-trained ImageNet-
1K weight [35]. Class-wise BN statistics are computed using a modified version of the training
script of the source provided in Table 16. The pretrained ResNet-18 on ImageNet-21K-P has a
Top-1 accuracy of 38.1%, and the model is used for data synthesis and relabel/validation as shown
in Table 17 and Table 18, respectively. Note that CutMix used in ImageNet-1K is replaced with
CutOut [42], and a relatively large label smooth of 0.2 is used during the ImageNet-21K-P pretraining
phase. We incorporate the same changes to the relabel/validation phase of the synthetic dataset.

18

https://github.com/Alibaba-MIIL/ImageNet21K

C.4 Implementation of Baselines

RDED. RDED [8] has several different changes to the SRe2L settings. (1) The batch size is adjusted
according to the IPC size (i.e., 100 for IPC10 and 200 for IPC50). (2) It uses additional augmentation
(i.e., ShufflePatch to shuffle the position of patches). Such augmentations are considered additional
storage since the exact order of patch shuffling needs to be stored. (3) Weaker augmentation (i.e., a
larger lower bound for the random area of the resized crop). (4) A smoothed learning rate scheduler.
We adhere to all the changes for experiments regarding RDED.

G-VBSM. In Table 9, we adopt the several techniques used for G-VBSM [9]. (1) Soft labels are
generated with an ensemble of models. Specifically, we use ResNet18 [36], MobileNetV2 [39],
EfficientNet-B0 [43], ShuffleNetV2-0.5 [44]. (2) Logit Normalization is used to keep the same label
storage. (3) A different MSE+γ×GT loss replaces KL divergence, where γ = 0.1.

D Additional Experiments

D.1 Ablation

Table 19: Ablation study of the proposed method. C denotes using class-wise matching. CS de-
notes suing class-wise supervision. ILP denotes using an improved label pool. (IPC50, ResNet18,
ImageNet-1K).

+C +CS +ILP 1× 10× 20× 30× 50× 100×
- - - 52.0 49.4 46.4 41.1 34.8 25.4
✓ - - 54.7 51.9 48.5 42.9 37.7 22.6
✓ - ✓ 54.7 52.9 49.9 46.2 40.7 27.0
✓ ✓ - 55.3 53.2 49.9 45.7 39.7 29.1
✓ ✓ ✓ 55.4 54.4 51.8 48.6 43.1 33.7

Table 19 presents an expanded version of Table 4. The row highlighted in grey outlines the ablation
study on class-wise supervision, demonstrating that the ILP component (Improved Label Pool)
enhances performance independently of class-wise supervision.

D.2 Scaling on Large IPCs

Table 20: Experiment on the scalability of large IPCs. T denotes the total storage of images and
labels, and storage is measured in GB. The validation model is ResNet18.

1× T 30× T 40× T
IPC300 65.3 178 62.6 10 61.9 9
IPC400 67.4 237 65.2 13 64.6 12

ImageNet-1K 69.8 138 - - - -

Table 20 demonstrates that our method exhibits commendable scalability across large IPCs. We
observe non-marginal enhancements when deploying even larger IPCs, such as IPC300 and IPC400.
Moreover, our approach achieves nearly identical accuracy levels — specifically, 65.3% vs. 65.2%
— when comparing the use of IPC300 at 1× with IPC400 at 30× less labels. Compared to the full
ImageNet-1K dataset, our method preserves a large portion of the accuracy with 10× less storage.
This performance is achieved despite the vastly different storage requirements of 178G and 13G,
respectively, indicating a higher flexibility of IPC choice with a fixed storage budget.

D.3 Comparison with Fast Knowledge Distillation [25]

The label quantization technique mentioned in Fast Knowledge Distillation (FKD) [25] is orthogonal
to the proposed method for several reasons. Firstly, as demonstrated in Table 21, there are six
components related to soft labels. FKD only compresses the prediction logits (component 6), while
the our method addresses all six components.

19

Secondly, even for the overlapping storage component (component 6: prediction logits), the compres-
sion targets differ between FKD and our method, as shown in Table 22. The total stored prediction log-
its can be approximated by the formula: number_of_condensed_images× number_of_augmentations
× dimension_of_logits. FKD’s label quantization focuses on compressing the dimension_of_logits,
whereas the proposed label pruning method focuses on compressing the number_of_augmentations.

Table 21: Different storage components between FKD and the proposed method. FKD, originally for
model distillation, requires storage only for components 1, 2, and 6. Adapting it to dataset distillation
requires additional storage for components 3, 4, and 5.

Components of Storage FKD Proposed Method

1. coordinates of crops × ✓
2. flip status × ✓
3. index of cutmix images × ✓
4. strength of cutmix × ✓
5. coordinates of cutmix bounding box × ✓
6. prediction logits ✓ ✓

Table 22: Breakdown explanation for component 6 (prediction logits) storage between FKD’s label
quantization and the proposed label pruning. The number of condensed images is computed by N =
IPC × number_of_classes. FKD’s compression target is dimension_of_logits, while the proposed
method’s target is number_of_augmentations.

Method Number of Dimension of Total Storage for
Augmentations per Image Logits per Augmentation Prediction Logits

Baseline (no compression) 300 1,000 N × 300 × 1000
Label Quantization (FKD) 300 10 N × 300 × 10
Label Pruning (Proposed) 3 1,000 N × 3 × 1000

Although FKD’s approach is orthogonal to our method, a comparative analysis was conducted to
better understand their relative performance. Table 23 presents a detailed comparison between FKD’s
two label quantization strategies (Marginal Smoothing and Marginal Re-Norm) and the proposed
method. It is important to note that FKD only compresses component 6, with the compression rate
related to hyper-parameter K. Components 1-5 remain uncompressed (1× rate) in FKD. Additionally,
FKD’s quantized logits store both values and indices, so their actual storage is doubled, and their
compression rate is halved.

This analysis has yielded two key observations. First, our method demonstrates higher accuracy at
comparable compression rates. For IPC10, our method achieves 32.70% accuracy at 10× compres-
sion, while FKD only reaches 18.10% at 8.2× compression. Second, our method exhibits better
compression at similar accuracy levels. On IPC10, our method attains 20.20% accuracy at 40×
compression, whereas FKD achieves 19.04% at just 4.5x compression.

Table 23: Comparison between FKD’s two label quantization strategies (Marginal Smoothing and
Marginal Re-Norm) and ours.

Method Compression Rate of Full Accuracy (%)
Component 1-5 Component 6 Compression Rate on IPC10

Baseline (no compression) 1× 1× 1× 34.60

FKD (Smoothing, K=100) 1× (10/2)=5× 4.5× 18.70
FKD (Smoothing, K=50) 1× (20/2)=10× 8.2× 15.53
FKD (Smoothing, K=10) 1× (100/2)=50× 23.0× 9.20
FKD (Re-Norm, K=100) 1× (10/2)=5× 4.5× 19.04
FKD (Re-Norm, K=50) 1× (20/2)=10× 8.2× 18.10
FKD (Re-Norm, K=10) 1× (100/2)=50× 23.0× 15.52

Ours (10×) 10× 10× 10× 32.70
Ours (20×) 20× 20× 20× 28.60
Ours (40×) 40× 40× 40× 20.20

20

E Additional Information

E.1 Label Pruning Metrics

We determine labels according to the statistics of the auxiliary information:

1. correct: the number of correctly classified images [31]
2. diff: the absolute difference between the Top-2 outputs
3. signed_diff: the signed difference between Top-2 output [45]
4. cut_ratio: the cut-mix ratio
5. confidence: the value of the largest output [26].

These metrics serve for the baselines compared to random label pruning in Table 5 After knowing
the metric, knowing which data type to prune (i.e., “easy”, “hard”, or “uniform") is important.
Additionally, FerKD [26] argues the reliability of generated soft labels and proposes to use neither
too easy nor too hard samples.

E.2 Image and Label Storage

Table 24: Image and label storage. I denotes image storage. L denotes label storage. “Ratio” is
label-to-image ratio.

ImageNet-1K (GB)

Storage I L Ratio

IPC10 0.15 5.67 37.0
IPC20 0.30 11.33 37.6
IPC50 0.75 28.33 37.9
IPC100 1.49 56.66 38.0
IPC200 2.98 113.33 38.0
IPC300 4.76 172.63 36.3
IPC400 6.33 229.80 36.3

Tiny-ImageNet (MB)

Storage I L Ratio

IPC50 21 449 21.4
IPC100 40 898 22.5

ImageNet-21K-P (GB)

Storage I L Ratio

IPC10 3 643 214.3
IPC20 5 1285 257.1

Table. 24 shows that stored labels are more than 10×, 30×, and 200× sized of the image storage,
depending on the number of classes of the dataset.

E.3 Theoretical Analysis on the Number of Updates

Our experiments are grounded in a careful analysis of the number of updates required for stable Batch
Normalization (BN) statistics. We begin by examining the derived bound from Eq. 8:

n ≥ max

−2 ln

(
T

2

)
δ2 min(qc)︸ ︷︷ ︸
Chernoff Bound

,

ln

(
C

τ

)
(1− δ)εmin(qc)︸ ︷︷ ︸

BN Convergence

 .

To evaluate this bound, we substitute the following values:

• T = 0.05 (acceptable total failure probability, corresponding to 95% confidence)
• δ = 0.2 (acceptable relative deviation from the expected number of batches)
• ε = 0.1 (momentum parameter in BN)

• min(pc) =
732

1, 281, 167
≈ 0.0005711 (ratio of the least number of images in a class to total

images)
• B = 256 (batch size)
• min(qc) = 1− (1−min(pc))

B (minimum probability that any class appears in a batch)

21

First, we compute min(qc):

min(qc) = 1− (1−min(pc))
B

= 1− (1− 0.0005711)
256

= 1− (0.9994289)
256

≈ 1− e−256×0.0005711 (since min(pc) is small)

= 1− e−0.1462

≈ 1− 0.8639 = 0.1361.

Thus, min(qc) ≈ 0.1361.

Next, we compute the two parts of the bound separately.

From Chernoff Bound Term: Given that we allocate the total failure probability T equally between
the two events, we have T/2 = 0.025.

n ≥
−2 ln

(
T

2

)
δ2 min(qc)

=
−2 ln(0.025)

(0.2)2 × 0.1361

=
−2× (−3.6889)
0.04× 0.1361

(since ln(0.025) = −3.6889)

=
7.3778

0.005444
≈ 1, 355.2.

From BN Convergence Term: We need to specify C and τ . Let’s assume:

• C = 1 (an upper bound on
∣∣BNt

c − µc

∣∣ at initialization, as the running mean is typically
initialized to zero)

• τ = 0.01 (desired convergence tolerance)

Compute the numerator:

ln

(
C

τ

)
= ln

(
1

0.01

)
= ln(100) = 4.6052.

Now, compute the denominator:

(1− δ)εmin(qc) = (1− 0.2)× 0.1× 0.1361 = 0.8× 0.1× 0.1361 = 0.010888.

Compute the second part:

n ≥
ln

(
C

τ

)
(1− δ)εmin(qc)

=
4.6052

0.010888
≈ 423.08.

Final Bound:

n ≥ max (1, 355.2, 423.08) = 1, 355.2 ≈ 1, 356 (rounding up to the nearest whole number).

22

This theoretical result indicates that approximately 1, 356 batches are needed for stable BN statistics
with the specified parameters.

Practical Implications: This observation leads to a key insight: pretrained models have already
undergone sufficient updates to achieve stable BN statistics. Specifically, in the context of ImageNet-
1K:

Updates per epoch =
1, 281, 167

256
≈ 5, 005 updates > 1, 356.

Since one epoch consists of approximately 5, 005 updates, which is substantially more than the
theoretical requirement of 1, 356 batches, we can confirm that a single epoch of training is sufficient
for the BN statistics of each class to converge within the desired tolerance with high probability.

E.4 Class-wise Statistics Storage

Table 25: Additional storage required for class-wise statistics. The model is ResNet-18, and storage
is measured in MB.

Tiny-ImageNet ImageNet-1K ImageNet-21K-P

Original 43.06 44.66 247.20
+ Class Stats 50.41 81.30 445.87

Diff. 7.35 36.64 198.67

The additional storage allocation for class-specific statistics is detailed in Table 25. It is observed
that this storage requirement escalates with an increase in the number of classes. However, this
is a one-time necessity during the recovery phase and becomes redundant once the synthetic data
generation is completed.

E.5 Computing Resources

Experiments are performed on 4 A100 80G GPU cards. We notice that for Tiny-ImageNet, there
is a slight performance drop when multiple GPU cards are used with DataParallel in PyTorch.
Therefore, we use 4 GPU cards for ImageNet-1K and ImageNet-21K-P experiments and 1 GPU card
for all Tiny-ImageNet experiments.

E.6 Limitation and Future Work

We recognize that there are several limitations and potential areas for further investigation. Firstly,
while our work significantly reduces the required storage, the process for generating the soft labels is
still necessary, as we randomly select from this label space. Secondly, reducing the required labels
may not directly lead to a reduced training speed, as the total training epochs remain the same in
order to achieve the best performance. Future work is warranted to reduce label storage as well as the
required training budget simultaneously.

E.7 Ethics Statement and Broader Impacts

Our research study focuses on dataset distillation, which aims to preserve data privacy and reduce
computing costs by generating small synthetic datasets that have no direct connection to real datasets.
However, this approach does not usually generate datasets with the same level of accuracy as the full
datasets.

In addition, our work in reducing the size of soft labels and enhancing image diversity can have a
positive impact on the field by making large-scale dataset distillation more efficient, thereby reducing
storage and computational requirements. This efficiency can facilitate broader access to advanced
machine learning techniques, potentially fostering innovation across diverse sectors.

23

F Visualization

In this section, we present visualizations of the datasets used in our experiments. Due to the different
matching objectives, datasets of different IPCs should have distinct images. Therefore, we provide
the visualization of different IPCs. Figure 6 shows randomly sampled images from ImageNet-1K at
various IPC. Figure 7 depicts the Tiny-ImageNet dataset with IPC50 and IPC100. Figure 8 provides
visualizations of ImageNet-21K-P at IPC10 and IPC20.

F.1 ImageNet-1K

(a) IPC10 (b) IPC50

(c) IPC100 (d) IPC200

Figure 6: Visualization of ImageNet-1K. Images are randomly sampled.

24

F.2 Tiny-ImageNet

(a) IPC50 (b) IPC100

Figure 7: Visualization of Tiny-ImageNet. Images are randomly sampled.

F.3 ImageNet-21K-P

(a) IPC10 (b) IPC20

Figure 8: Visualization of ImageNet-21K-P. Images are randomly sampled.

25

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: [TODO]

26

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include experiments.

27

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

28

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

29

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper poses no such risks.

30

https://neurips.cc/public/EthicsGuidelines

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [TODO]

31

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

32

	Introduction
	Related Works
	Method
	Preliminaries
	Diversity Analysis on Synthetic Dataset
	Similarity within Synthetic Dataset: Feature Cosine Similarity
	Similarity between Synthetic and Original Dataset: Maximum Mean Discrepancy

	Label Pruning for Large-scale Distillation (LPLD)
	Diverse Sample Generation via Class-wise Supervision
	Random Label Pruning with Improved Label Pool

	Experiments
	Experiment Settings
	Primary Result
	Analysis

	Conclusion
	Proof
	Preliminary Analysis
	Chernoff Bound
	BN Convergence
	Combining Bounds

	Dataset Details
	Hyperparameter Settings
	ImageNet-1K
	Tiny-ImageNet
	ImageNet-21K-P
	Implementation of Baselines

	Additional Experiments
	Ablation
	Scaling on Large IPCs
	Comparison with Fast Knowledge Distillation shen2022fast

	Additional Information
	Label Pruning Metrics
	Image and Label Storage
	Theoretical Analysis on the Number of Updates
	Class-wise Statistics Storage
	Computing Resources
	Limitation and Future Work
	Ethics Statement and Broader Impacts

	Visualization
	ImageNet-1K
	Tiny-ImageNet
	ImageNet-21K-P

