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Abstract001

Large language models have consistently strug-002
gled with complex reasoning tasks, such as003
mathematical problem-solving. Investigating004
the internal reasoning mechanisms of these005
models can help us design better model ar-006
chitectures and training strategies, ultimately007
enhancing their reasoning capability. In this008
study, we constructed a symbolic multi-step009
reasoning task to investigate the information010
propagation mechanisms in Transformer mod-011
els when solving the task through direct an-012
swering and Chain-of-Thought (CoT) reason-013
ing. We introduced the concept of buffer mech-014
anism: the model stores various information015
in distinct buffers and selectively extracts it016
through the query-key matrix. We proposed017
a random matrix-based algorithm to enhance018
the model’s reasoning ability. This algorithm019
introduces only 132 trainable parameters, yet020
leads to significant performance improvements021
on 7 multi-step reasoning datasets, including022
PrOntoQA, LogicAsker, and LogicInference.023
These findings provide new insights into under-024
standing the large language models.025

1 Introduction026

In recent years, LLMs have emerged and demon-027

strated remarkable capability across various tasks028

(Vaswani et al., 2017; Liu et al., 2018; Devlin029

et al., 2018; Radford et al., 2019; Touvron et al.,030

2023; OpenAI, 2023; Liu et al., 2024; Guo et al.,031

2024, 2025). These models have shown impressive032

in-context learning abilities (Brown et al., 2020;033

Dong et al., 2022; Garg et al., 2022) and have034

been applied to logical reasoning problems, such as035

matching top human contestants at the International036

Mathematical Olympiad (IMO) level (Trinh et al.,037

2024) and solving math problems (Davies et al.,038

2021). However, even the most advanced models039

still struggle with complex reasoning tasks. To040

truly enhance the reasoning capability of LLMs, it041

is crucial to investigate their intrinsic mechanisms.042

Multi-step reasoning tasks encompass a broad 043

concept, typically referring to the ability of a model 044

to synthesize numerous complex conditions to an- 045

swer questions. Here, we consider a representative 046

class of syntactic structures within multi-step rea- 047

soning tasks: a sentence that includes both the ques- 048

tion and sufficient known information to answer it. 049

For example, “Given: [A]→[B]...[B]→[C]..., 050

Question: 2-step reasoning starting from [A]", 051

where “..." represents other textual content un- 052

related to logical reasoning. The answer to this 053

question is “[C]". When a sentence contains only 054

one logical reasoning step, it is often handled by the 055

so-called induction head in Transformer (Brown 056

et al., 2020; Olsson et al., 2022). However, multi- 057

step reasoning is not merely a linear accumulation 058

of multiple induction heads but involves more com- 059

plex mechanisms. 060

Large models employ two primary strategies for 061

logical reasoning. The first, known as the Verti- 062

cal Thinking Strategy (VTS), outputs reasoning re- 063

sults in a single forward based on their inherent 064

structure. This approach is efficient but demands 065

a high level of intelligence. As shown in Fig. 1, 066

current large models exhibit significant limitations 067

in their vertical thinking capability. Another rel- 068

atively less efficient approach is the (HTS), such 069

as Chain of Thought (CoT) (Wei et al., 2022; Ko- 070

jima et al., 2022) and Tree of Thought (ToT) (Yao 071

et al., 2024), Diagram of Thought (DoT) (Zhang 072

et al., 2024a). This strategy substantially enhances 073

the model’s reasoning performance. All models 074

can produce the correct answers for tasks depicted 075

in Fig. 1 with the help of CoT. Considering the 076

strengths and weaknesses of these two strategies, 077

the ideal approach should combine both: decom- 078

posing problems into several coarse-grained sub- 079

problems (HTS) and applying the VTS to each 080

subproblem. Thus, researching how to improve 081

vertical thinking capability and understanding why 082

the horizontal thinking strategy can significantly 083
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Figure 1: The interaction results of multi-step reasoning tasks with large models. We tested each model 25 times,
and when the number of reasoning steps exceeded three, these models exhibited random guessing. However, when
we allowed the models to use CoT prompting (by removing “directly" and “only return the answer"), all models
achieved 100% accuracy. Detailed interaction results are provided in the Appendix I.

enhance model reasoning ability are both crucial.084

In this work, we investigate the performance of085

Transformer models on a symbolic multi-step rea-086

soning dataset. Our work aims to uncover these087

mechanisms and provide insights into how Trans-088

formers process and integrate logical information089

across multiple layers to perform multi-step rea-090

soning, which can help develop more effective091

strategies for improving their multi-step reasoning092

abilities. Specifically, we found that Transformers093

utilize a Buffer Mechanism when engaging in sym-094

bolic multi-step reasoning tasks. The model stores095

different intermediate results in separate buffers, al-096

lowing for quick retrieval as needed. We elaborate097

on how the model leverages this buffer mechanism098

for vertical thinking, and we explain why the hori-099

zontal thinking strategy can significantly enhance100

the model’s multi-step reasoning capability from101

the perspective of the buffer mechanism. Finally,102

based on this understanding, we propose a method103

to improve the model’s reasoning abilities, leading104

to significant performance improvements for the105

GPT-2 model on 7 multi-step reasoning datasets,106

including Clutrr (Sinha et al., 2019), RuleTaker107

(Clark et al., 2020), StepGame (Shi et al., 2022),108

LogicInference (Ontanon et al., 2022), LogicAsker109

(Wan et al., 2024), PararulePlus (Bao et al., 2022),110

and PrOntoQA (Saparov and He, 2022).111

The concept of “buffer" or similar concepts112

has also been mentioned in other works (Reddy,113

2023; Bietti et al., 2024; Elhage et al., 2021). Our114

work provides a detailed description of the concept115

of buffer and applies this mechanism to enhance116

model performance. 117

The main contributions of this work are as fol- 118

lows: 119

• We propose a buffer mechanism and found 120

evidence that supports such a mechanism be- 121

ing employed by language models during the 122

reasoning process in symbolic multi-step rea- 123

soning tasks and provide a detailed analysis 124

of the model’s internal thinking process for 125

vertical and horizontal thinking from the per- 126

spective of the buffer. 127

• We propose a method to enhance the model’s 128

reasoning capability, improving data utiliza- 129

tion efficiency in 7 logical reasoning datasets. 130

Our research deepens the understanding of the rea- 131

soning mechanisms in Transformer models. 132

2 Reasoning Dataset and Transformer 133

Model 134

Dataset. To understand the mechanism of multi- 135

step reasoning in Transformers, we design an ab- 136

stract symbolic multi-step reasoning task. As 137

shown in Fig. 2, reasoning chains are serialized 138

into a sequence. Every two tokens in the sentence 139

represent a reasoning relation. The last token is 140

the reasoning start token, and the label is the re- 141

sult with a fixed-step reasoning starting from the 142

starting point. 143

Transformer Model. We employ a decoder-only 144

Transformer. Given an input sequence X in ∈ 145

Rn×d, where n is the sequence length and d is 146

the dictionary size, the model first applies an em- 147

bedding layer to obtain the input representation 148
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Figure 2: Illustration of the dataset. We investigate reasoning chains composed of digital tokens. In a serialized
representation, each pair of adjacent tokens (represented by the same color) forms a reasoning relation within the
reasoning chain. The order of the reasoning relations is random, thus a single reasoning chain can correspond to
various serialized representations. The model input consists of the serialized representation along with a reasoning
start token. The label is the result of performing a fixed number of reasoning steps starting from this start token.
This figure illustrates a 2-step reasoning task.

X(1) = Xtgt +Xpos ∈ Rn×dm . The single-head149

attention in each layer is computed as follows:150

A(l)(X) = σ

(
mask(XW q(l)W k(l),TXT)√

dk

)
,151

Xqkv(l) = A(l)(X̄(l))X̄(l)W v(l)W o(l),152

where σ takes the softmax operator, and X̄(l) =153

Layernorm(X(l)). For simplicity of expression,154

we will abbreviate W q(l)W k(l),T as W qk(l) and155

W v(l)W o(l),T as W vo(l) in the following text. The156

output of the l-th layer is obtained as:157

Xao(l) = X(l) +Xqkv(l),158

X(l+1) = f (l)(X̄ao(l)) +Xao(l),159

where f (l)(·) represents the feedforward neural net-160

work of l-th layer. The final output (in the form of161

token indices within the vocabulary) is obtained as:162

Y = argmax(σ(X̄(L)W p)) ∈ Rn.163

In Distribution and Out of Distribution Data.164

With the settings of our dataset, if the model165

truly understands the underlying logic patterns,166

it should be able to find the correct answer to167

the sentence, even if this sentence has tokens that168

have never been encountered during the training.169

Therefore, we divided the data into two parts: in-170

distribution (ID) and out-of-distribution (OOD).171

Specifically, we define tokenID ∈ [20, 100] and172

tokenOOD ∈ [0, 120]\[20, 100]. In-distribution data173

(TrainID and TestID) is defined as sentences com-174

posed entirely of tokenID, while out-of-distribution175

data (TestOOD) consists of sentences containing one176

tokenOOD, which happens to be the previous reason-177

ing step of label. For the in-distribution data, we178

split the training set (TrainID) and test set (TestID) 179

according to the following rules: for the serialized 180

reasoning chain [x1][x2]· · · [xn] of the training 181

set, all tokens satisfy the following condition: 182

x2i − x2i-1 (mod m) ∈ G. 183

For the reasoning chains in the test set, all tokens 184

satisfy: 185

x2i − x2i-1 (mod m) ∈ {1, · · · ,m}\G, 186

where we take m = 5 and G = {0, 1, 4} in this 187

study. Under this setting, we ensure that each bi- 188

nary logical pair in the testing set has not previously 189

appeared in the training set. Therefore the Trans- 190

former is performing in-context learning (Brown 191

et al., 2020; Olsson et al., 2022), as each reasoning 192

pair is not seen during in-weight learning. 193

3 Vertical and Horizontal Thinking 194

Strategy 195

We illustrate how the Transformer model employs 196

vertical or horizontal thinking strategies for multi- 197

step reasoning. Fig. 3 depicts the schematic mech- 198

anisms by which these two strategies execute 199

multi-step inference. The critical logic circuits 200

highlighted in this figure were identified through 201

causal intervention experiments (Feng and Stein- 202

hardt, 2023; Meng et al., 2022; Vig et al., 2020; 203

Wang et al., 2024a) (Appendix H). From the figure, 204

one can discern the core distinction between VTS 205

and HTS. Under VTS, in every layer beyond the 206

first—termed a “reasoning layer”—the final token 207

attends to the token carrying the next inference 208

result, conditional on the existing result, thereby 209

effecting a single reasoning step. In contrast, HTS 210
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Figure 3: Illustration of how the Transformer employs the vertical and horizontal thinking strategies to solve the
multi-step reasoning task. The information crucial for the layer’s information transfer is highlighted in red text. The
first attention pairs tokens at odd positions with those at even positions. In the Vertical Thinking Strategy (VTS),
each layer conveys its newly derived reasoning result to the final token. In the Horizontal Thinking Strategy (HTS),
all information transfer is accomplished within a single layer.

accomplishes all logical inference within a single211

layer.212

This observation naturally prompts a key ques-213

tion: irrespective of whether VTS or HTS is em-214

ployed, each node in the Transformer stores mul-215

tiple pieces of information. For instance, the red216

node in Layer 1 encodes not only [a] but also [b].217

How, then, does the model consolidate diverse in-218

formation within a single node and accurately ex-219

tract and utilize the relevant subset? Addressing220

this question lies at the heart of our investigation221

into multi-step reasoning.222

4 Buffer Mechanism223

To address the above problem, we propose a mecha-224

nism employed by the Transformer, which we refer225

to as the “buffer mechanism”.226

Specifically, we observe that the information227

transmitted via the attention module differs from228

that conveyed through the residual connections. In229

the attention module, information [a] with dimen-230

sion dm is first mapped to a lower embedding di-231

mension dv through the matrix W v, and then it232

is projected back to dm dimensions via the matrix233

W o. Consequently, the information [a] after pass-234

ing through the attention layer becomes [a]W vo.235

In contrast, information transmitted through resid-236

ual connections does not require additional pro-237

cessing; thus, after the first layer, the information at238

even indices transforms to [x2i-1]W
vo(0)+ [x2i].239

Below, we introduce the buffer mechanism240

within the VTS framework. All theoretical re- 241

sults are supported by experimental validation (Sec- 242

tion 5). We observe that each token in Fig. 3(a) 243

stores various information in various forms (pro- 244

jected by different matrices W vo(l)), which leads to 245

a natural question: how does the attention layer ef- 246

fectively retrieve useful information while avoiding 247

interference from others? To address this question, 248

we introduce the following lemma (the proof can 249

be found in Appendix C): 250

Lemma 4.1. Suppose token x =
∑n

i=1 aiWi ∈ 251

Rdm and token y =
∑n

i=1 biWi ∈ Rdm , where 252

ai, bi ∈ Rdm , Wi ∈ Rdm×dm , i = 1, 2, · · · , n. 253

Each element of {ai}ni=1, {bi}ni=1 and {Wi}ni=1 254

follows N (0, 1/dm) and independent to others. 255

Then, we have: 256

xW T
i = ai +O

(√
n

dm

)
, 257

yW T
j = bj +O

(√
n

dm

)
, 258

259

xW T
i Wjy

T = aib
T
j +O

(
n√
dm

)
. 260

It can be observed that the matrices {Wi}ni=1 261

serve as a set of buffers for information. Each ele- 262

ment of {ai}ni=1 is located in different buffers, and 263

is almost unaffected by others. This property also 264

applies for {bi}ni=1. By selecting the matrices asso- 265

ciated with the relevant buffer, specific information 266

contained in token x and token y can be extracted. 267
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The concept of the buffer mechanism is useful268

for understanding the internal logic mechanisms of269

Transformer models. {W q(l)}Ll=1 and {W k(l)}Ll=1270

can be viewed as “information extractors", while271

{W vo(l)}Ll=1 can be considered as a set of buffers.272

We observe that in the final token of each reason-273

ing layer, each new intermediate result is always274

associated with a new W vo. If these {W vo(l)}Ll=1275

matrices are mutually orthogonal or random, then276

these intermediate results can be regarded as being277

stored in a new buffer.278

In each reasoning layer, the token at the last posi-279

tion contains the current intermediate result. Addi-280

tionally, there exists a token that contains both the281

current intermediate result and the next step’s rea-282

soning result, with these stored in different buffers.283

The role of W q and W k is to extract the current in-284

termediate results from these two tokens, enabling285

them to attend to each other due to having the same286

token. We refer to this feature as “same-token287

matching". To quantitatively characterize this prop-288

erty, we define the following match matrix:289

h(1)(X) = XW qk(1)W vo(0),TXT ≜ X Ker(1)XT,290

h(l)(X) (1)291

= (XW vo(l−1))W q(l)W k(l),T(XW vo(0))T292

= XW vo(l−1)W qk(l)W vo(0),TXT293

≜ X Ker(l)XT, l ≥ 2. (2)294

where295

Ker(1) = W qk(1)W vo(0),T,296

Ker(l) = W vo(l−1)W qk(l)W vo(0),T, l ≥ 2. (3)297

We temporarily ignore the effects introduced by the298

feedforward layers only in our analysis; a detailed299

version that includes the feedforward layers can be300

found in Appendix D.301

To achieve the same-token matching, it is suffi-302

cient for Ker(l) ≈ I , in which case303

h(l)(Xtgt) ≈ XtgtX
T
tgt = I +O

(
1√
dm

)
. (4)304

Eq.(4) means that the attention of all tokens is fo-305

cused on themselves.306

Furthermore, a much more remarkable observa-307

tion is that the same-token matching is indepen-308

dent of the specific value of Xtgt. For example,309

for Xtgt,OOD sampled from the untrained random310

vectors tokenOOD, h(l)(Xtgt,OOD) ≈ I still holds.311

Therefore, when Ker(l) ≈ I holds, the model ex- 312

hibits OOD generalization capability. 313

Understanding HTS With Buffer. Numerous 314

studies have shown that CoT, a canonical repre- 315

sentative of HTS, can significantly enhance logical 316

reasoning capability (Wei et al., 2022; Kojima et al., 317

2022). Fig. 3(b) presents a schematic diagram illus- 318

trating how the model implements this process. In 319

the previously mentioned VTS scenario, the model 320

needed to allocate new buffer W vo(1), W vo(2) for 321

storing the intermediate result [b] and [c], respec- 322

tively. In contrast, with CoT, the model generates a 323

new token to separately store the new intermediate 324

information, effectively replacing the information 325

[a] in the original buffer W vo(1), W vo(0) and I 326

(identity matrix, which can also be treated as a 327

buffer). Thus, CoT performs multi-step reasoning 328

tasks through buffer reuse. 329

Unlike the vertical thinking strategy, which re- 330

quires alignment across multiple weight matrices, 331

the horizontal thinking strategy only requires a few 332

layers to satisfy Ker(l) ≈ I . This significantly 333

reduces the difficulty of model training. These 334

architectural efficiencies potentially underlie the 335

empirically observed enhancement of reasoning 336

performance in large language models employing 337

CoT methodologies. 338

5 Experiments 339

This section presents the experimental validation of 340

the buffer theory. To demonstrate multi-step reason- 341

ing without introducing additional complexity, we 342

utilized a 3-layer, single-head Transformer model 343

to learn from a 2-step reasoning dataset. Specific 344

Experimental settings can be found in Appendix B. 345

After training, the Transformer exhibits generaliza- 346

tion capability in both in-distribution and out-of- 347

distribution data (Fig. 4). 348

Figure 4: Accuracy curve during VTS training. After
training, the Transformer exhibits generalization capa-
bility in in-distribution (100% accuracy) and out-of-
distribution data (82% accuracy).
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Fig. 5 presents the experimental validation of349

Eq.(3)(4). We visualize the computed values of350

h(1,2)(Xtgt) and Ker(1,2) with the model parame-351

ters after training. Notably, in the tokenOOD region,352

tokenOOD and h(2)(Xtgt) exhibit a diagonal struc-353

ture similar to an identity matrix I , ensuring the354

model’s OOD generalization capability.355

To establish a strong correlation between the356

model’s OOD generalization and its ability to use357

the buffer mechanism for same-token matching,358

we define a metric for this capability, the Matching359

Score (MS):360

MS(h(l)) = EX [Trace(σ(h(l)(X)))]/n, (5)361

where X ∈ Rn×dm is sampled from tokenID or362

tokenOOD for expectation EX , and σ takes the soft-363

max operation. The level of diagonalization of364

Ker(l) serves as the intrinsic driver for achieving365

same-token matching; thus, we also define the fol-366

lowing Kernel Score (KS):367

KS(Ker(l)) = Trace(σ(Ker(l)))/dm. (6)368

Figure 5: Heatmap of h(1,2)(Xtgt) and Ker(1,2). Ac-
cording to (c)(d), and Eq.(4), the diagonal structure of
the kernel matrix induces a diagonal structure in the
matching matrix, even when Xtgt is sampled from the
tokenOOD.

Fig. 4 and Fig. 6 illustrates the accuracy curve369

and the dynamic changes in the matching score370

and kernel score during training. It is observed371

that the increase in the model’s ID and OOD372

generalization coincide with the increases in the373

model’s matching score and kernel score. By374

computing the cosine similarity between different375

buffers (W vo(0),W vo(1),W vo(2) and I), we ob- 376

serve that these buffers are nearly pairwise orthogo- 377

nal(Appendix D). Based on the above experimental 378

analysis, we conclude that the Transformer model 379

indeed employs the buffer mechanism for vertical 380

thinking. 381

Figure 6: (a) The dynamic evolution of the model’s
matching score. The red and blue lines represent the
matching scores for the first and second layers, respec-
tively. Solid and dashed lines indicate the matching
scores when X is drawn from tokenID and tokenOOD,
respectively. (b) The kernel scores for the first (red) and
second (blue) layers.

According to the Buffer mechanism, in theory, 382

by setting the model’s weights in the following 383

way, an L-layer model can achieve (L − 1)-step 384

reasoning without the extra training process: 385

W q(0) = W q(1) = I, W q(l) = W vo(l−1),T, l ≥ 2, 386
387

W k(0) =

[lseq/2]∑
i=1

p2ip
T
2i−1, W

k(l) = W vo(0),T, l ≥ 1, 388

where {W vo(l)}Ll=1 are set as random matri- 389

ces and the projection layer satisfies W p = 390

W vo(L),TW emb,T. Experimental validation can 391

be found in Appendix D. 392

Real World LLMs. In Appendix G, we provide 393

additional definitions for methods to compute the 394

matching score and kernel score in multi-head mod- 395

els and perform these calculations in the real world 396

LLMs such as GPT, Phi, Llama, and Qwen. Simi- 397

lar phenomena, such as weight alignment, provide 398

evidence for the presence of the buffer mechanism 399

in real language models. 400

Horizontal Thinking Experiments. For HTS, we 401

will demonstrate that a Transformer model utiliz- 402

ing CoT can achieve arbitrary multi-step reasoning 403

with only 2 layers. We trained a 2-layer Trans- 404

former with the 13-length single-step reasoning 405

data. During the testing phase, we fed the model’s 406

output back into the model. Through this CoT pro- 407

cess, the model can perform 2-step, 3-step, or even 408

higher-step reasoning and it can also generalize to 409
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sentence lengths beyond the 13th position. Fig. 7410

shows the relationship between the number of rea-411

soning steps and CoT accuracy. Our 2-layer model412

is able to maintain an accuracy of over 57.6% even413

when performing complex 6-step reasoning tasks.414

The specific information flow can be found in Ap-415

pendix F.416

Figure 7: The relationship between the number of rea-
soning steps and CoT accuracy. The CoT accuracy curve
represents the performance when all reasoning steps are
predicted correctly using CoT, while the CoT last token
accuracy curve records the performance based solely
on whether the final reasoning step is correct when the
previous correct reasoning result is given.

6 Improving Transformer’s417

Data-Efficiency418

In this section, we discuss how to improve data419

efficiency when employing the vertical think-420

ing strategy, specifically, by enabling the model421

to learn the essence of logical reasoning with422

less data or training epoch. As mentioned423

in Section 3, this can be achieved by setting424

W vo(l−1),TW qk(l)W vo(0),T ≈ I .425

A more intuitive approach is to replace W qk(l)426

and W vo(l) with W qk(l) + α(l)I and W vo(l) +427

β(l)I , where {α(l)}Ll=1 and {β(l)}Ll=1 are learn-428

able parameters. This Identity Matrix-Based Al-429

gorithm (denoted as IMBA) was first proposed in430

Boix-Adsera et al. (2023) and has been validated431

from both theoretical and empirical perspectives432

for its role in facilitating the model’s learning of433

one-step reasoning data. However, in multi-step434

reasoning tasks, IMBA may lead to information435

interference. For instance, if W vo(l) is replaced436

with W vo(l) + β(l)I , the storage representation437

of the two pieces of information transitions from438

[a]W vo+[b] to [a]W vo+(β(l)[a]+[b]), which439

introduces interference among the different pieces440

of information. Therefore, this approach may not441

be effective in enhancing the model’s ability to442

perform multi-step reasoning. 443

Based on the understanding of buffer mecha- 444

nism, we propose a Random Matrix-Based Al- 445

gorithm (RMBA), specifically by substituting 446

W qk(l) and W vo(l) with W qk(l) + α(l)Z(l−1) 447

and W vo(l) + β(l)Z(l), where {α(l)}Ll=1 and 448

{β(l)}Ll=1 are learnable parameters and {Z(l)}Ll=1 449

is a set of fixed random matrix following 450

N(0, 1/dm). In this case, the information stor- 451

age representation changes from [a]W vo+[b] to 452

[a]W vo+[a]Z+[b], effectively creating a new 453

buffer. 454

Fig. 8 illustrates the different results of the two 455

methods. The baseline is a three-layer transformer 456

model, which fails to learn a two-step reasoning 457

task with only 30,000 samples. Under various 458

hyperparameter settings, when α
(l)
ini · β(l)

ini ≥ 0, 459

the RMBA algorithm significantly enhances the 460

model’s generalization ability, while the IMBA 461

shows no effect. This experiment validates our 462

buffer mechanism understanding. To strengthen the 463

credibility of our results, we conducted a compre- 464

hensive sweep of hyperparameters such as weight 465

decay, learning rate, and hidden dimensions (dm 466

and dk). The findings indicate that RMBA parame- 467

terization can more robustly reach a high accuracy 468

by a certain number of training steps across a wider 469

range of hyperparameters. Detailed experimental 470

results can be found in Appendix E. 471

These results also demonstrate that multi-step 472

reasoning is not achieved by simply “stacking" mul- 473

tiple single-step reasonings. An algorithm that en- 474

hances single-step reasoning may not be applicable 475

to multi-step reasoning. Therefore, investigating 476

the multi-step reasoning is an important and mean- 477

ingful topic. 478

Validation of Algorithm Performance on Mul- 479

tiple Real Multi-Step Reasoning Datasets. In 480

this section, we evaluate the performance of our 481

algorithm using published real-world datasets. The 482

datasets used include Clutrr, RuleTaker, StepGame, 483

LogicInference, LogicAsker, PararulePlus, and 484

PrOntoQA. These datasets assess the model’s multi- 485

step reasoning capabilities from different perspec- 486

tives and scenarios. Examples of the datasets and 487

their corresponding training curves are provided in 488

Appendix E. 489

The 12-layer GPT-2 model is employed for 490

this task. For RMBA, we replace W qk(l,h) 491

and W vo(l,h) with W qk(l,h) + α(l,h)Z(l−1,h) and 492

W vo(l,h) + β(l,h)Z(l,h), respectively. To demon- 493
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Figure 8: The accuracy comparison for the Baseline model, RMBA model, and IMBA model. The solid lines
represent the training accuracy, while the dashed lines denote the test accuracy. When the training data is limited, the
Baseline model lacks generalization capability. For both RMBA and IMBA models, we set 9 different initialization
parameter values α(l)

ini and β
(l)
ini and each experiment was conducted with 5 random seeds (each seed corresponds to

one line). When α
(l)
ini = 0 or α(l)

ini · β
(l)
ini > 0, the model’s reasoning capability can be enhanced. Detailed settings can

be found in Appendix E.

strate the effectiveness of our method, we train494

each dataset for 5 epochs using a learning rate of495

1e-5. The additional hyperparameters introduced496

in RMBA are initialized to 0.05. Training results497

are summarized in Table 1. For tasks including498

Clutrr, RuleTalker, StepGame, and LogicInference,499

RMBA significantly improves model performance.500

For relatively simpler tasks such as LogicAsker,501

PararulePlus, and PrOntoQA, although both the502

base model and RMBA achieve nearly 100% accu-503

racy, the training curves presented in Fig. 16 (Ap-504

pendix E) show differences in the cost required to505

reach generalization capability. Table 2 reports the506

number of epochs required to reach 95% accuracy.507

As shown, RMBA reduces computational costs by508

more than 65% compared to the base model.509

Table 1: Final-State Accuracy (%) Comparison. The
training curves for all datasets are shown in Fig. 16
(Appendix E).

Dataset Baseline RMBA

Clutrr 34.3 42.8
RuleTaker 67.0 83.5
StepGame 35.9 38.9
LogicInference 68.1 78.3
LogicAsker 99.7 100.0
PararulePlus 99.8 99.8
PrOntoQA 100.0 100.0

7 Discussion510

In this study, we investigated the vertical and hori-511

zontal thinking strategy employed by Transformer512

in a symbolic multi-step reasoning task from the513

Table 2: Epochs required to reach 95% accuracy and
cost savings comparison

Dataset Baseline RMBA Savings

LogicAsker 3.16 0.88 72%
PararulePlus 2.71 0.73 73%
PrOntoQA 0.95 0.32 66%

perspective of the buffer mechanism. When utiliz- 514

ing the vertical thinking strategy, the model stores 515

different intermediate results in separate buffers 516

and transfers the reasoning results with the same- 517

token matching. In contrast, when applying the 518

horizontal thinking strategy, the model reuses the 519

existing buffers to store intermediate results. We 520

validated that the buffer mechanism is a key factor 521

in enabling the model’s ID and OOD generaliza- 522

tion capabilities. Based on the buffer mechanism, 523

we proposed a tailored approach, RMBA, to en- 524

hance the model’s multi-step reasoning ability, sig- 525

nificantly improving data efficiency when training 526

GPT-2 on 7 reasoning datasets. 527

8 Limitation 528

Our current work lacks an in-depth theoretical anal- 529

ysis. In future work, we aim to conduct deeper 530

theoretical modeling for multi-step reasoning prob- 531

lems and extend the buffer mechanism to other 532

types of multi-step reasoning tasks. 533
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A Related Work 942

Language model reasoning There have been numerous experimental and theoretical studies on language 943

model reasoning. (Abbe et al., 2022) examines the reasoning capabilities of neural networks using the 944

Pointer Value Retrieval (PVR) benchmark, which was originally introduced in (Zhang et al., 2021). 945

(Sharma et al., 2023) demonstrates that applying low-rank approximation of certain weight layers to 946

themselves can enhance reasoning performance across various tasks, and (Chen et al., 2024a) explains 947

this phenomenon in a two-layer Transformer model. (Wang et al., 2024a) investigates both ID and 948

OOD reasoning abilities on two synthetic tasks involving composition and comparison. (Jiang et al., 949

2024) reveals that the reasoning process in Large Language Models (LLMs) is influenced by token 950

bias and that these models continue to face challenges when dealing with more complex logical tasks. 951

(Abbe et al., 2024) introduces the distribution locality and shows that Transformers require low locality. 952

(Zhang et al., 2024b; Luo et al., 2021; Zhou et al., 2022) shows that small initialization can facilitate 953

model reasoning. Brinkmann et al. (2024) investigates the mechanism by which language models output 954

intermediate reasoning paths in multi-step reasoning tasks. Aubry et al. (2024) uncover a transformer 955

block coupling phenomenon in a variety of LLMs by tracing the trajectories of individual tokens as they 956

pass through transformer blocks. Recently, the multi-hop reasoning abilities of models have garnered 957

attention in the LLM field. Kil et al. (2024); Li et al. (2024a) promote the use of Chain-of-Thought (CoT) 958

reasoning by models to perform multi-step thinking through appropriate prompt engineering. Zhang 959

et al. (2023) proposes a new retrieval framework for multiple reasoning paths. Dar et al. (2022); Li et al. 960

(2024b); Yang et al. (2024); Shalev et al. (2024) pinpoint where models execute multi-step reasoning by 961

causal intervention and observing neuron activation. Biran et al. (2024) introduces a method to enhance 962

models’ reasoning abilities by repeatedly invoking intermediate layers. These works, especially the 963

causal intervention experiments, have inspired our research. However, existing studies primarily conduct 964

macro-level statistical analyses on actual complex large language models. While causal intervention 965

methods can help us identify critical paths, our work builds upon this foundation by further exploring how 966

models leverage their own weights to generate these key paths. Experiments on our symbolic datasets 967

also facilitate more in-depth experimental and theoretical investigations. 968

Understanding the mechanism of neural model Our work builds upon previous studies on the 969

attention mechanism (Voita et al., 2019; Vig, 2019; Kovaleva et al., 2019; Kobayashi et al., 2020). 970

Numerous researchers have proposed various approaches to identify the roles of different heads in 971

Transformers (Vig et al., 2020; Jeoung and Diesner, 2022; Wang et al., 2022; Conmy et al., 2023; Merullo 972

et al., 2023; Guo et al., 2023; Wang and Weinan, 2024; Amsel et al., 2024; Li et al., 2024c; Wang et al., 973

2024c). These methods predominantly employ the concept of perturbation. Similar to the observations 974

made by Wang et al. (2023) and Dutta et al. (2024), who noted that large language models typically 975

perform information aggregation in shallow layers and information induction in deeper layers, we have 976

also observed comparable phenomena in our study. The idea of symbolic datasets is inspired by Poli et al. 977

(2024); Zhang et al. (2024c). There have also been some insightful theoretical works on feedforward 978

neural networks. A series of studies have explored neural network preferences and generalization from 979

the perspectives of regularization and frequency, etc. (Xu et al., 2019; Wang et al., 2024b; Jacot et al., 980

2018, 2020; Arora et al., 2019a, 2018). And Wu and Su (2023); Wang and Wu (2023); Arora et al. (2022); 981

Li et al. (2021); Wu et al. (2018); Zhu et al. (2018); Arora et al. (2019b) investigates the dynamical 982

behavior of neural networks, while Ren et al. (2024) examines the factors influencing neural network 983

generalization. 984

In-context learning and induction head Our work primarily investigates the model’s ability to 985

perform in-context learning. The concept of in-context learning (ICL) was first introduced by Brown 986

et al. (2020). Since then, a series of studies have utilized induction heads to investigate ICL, yielding 987

remarkable research outcomes (Olsson et al., 2022; Garg et al., 2022; Wang et al., 2022; Müller et al., 988

2021; Goldowsky-Dill et al., 2023; Bietti et al., 2024; Nichani et al., 2024; Edelman et al., 2024; Chen 989

et al., 2024b; Todd et al., 2023; Chen and Zou, 2024). It is worth noting that induction heads can be 990

considered as a special case of multi-step reasoning tasks with the reasoning step equal to 1. However, 991

multi-step reasoning is not a simple linear combination of single-step reasoning. In our work, we study 992
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the mechanism that enables multi-step reasoning, which has not been explored in previous studies.993
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B Experimental settings 994

In our experiments (Section 3), the vocabulary size is set to d = 201, and the hidden space dimension is 995

set to dm = 400 and dq = dk = dv = 64. We use 200,000 2-step reasoning sequences (with sequence 996

length equal to 13). The learning rate is set to 2e-5 and linearly warms up to 1e-4 within 400 epochs and 997

then decays to 1e-5 within 3600 epochs. The batch size is set to 100. We use the AdamW optimizer with 998

default parameters as set in PyTorch 2.3.0. 999

The experiments were conducted on a server with the following configuration: 1000

• 64 AMD EPYC 7742 64-Core Processor. 1001

• 256GB of total system memory. 1002

• 2 NVIDIA A100 GPUs with 40GB of video memory each and 8 NVIDIA GeForce RTX 4080 GPUs 1003

with 16GB of video memory each. 1004

• The experiments were run using the Ubuntu 22.04 LTS operating system. 1005

The task shown above can be completed within 2 hours with a single NVIDIA A100 GPU. For other, 1006

more complex examples, they can be finished within 24 hours. 1007

C Proof of Lemma 4.1 1008

Lemma 1 Suppose token x =
∑n

i=1 aiWi ∈ Rdm and token y =
∑n

i=1 biWi ∈ Rdm , where ai, bi ∈ 1009

Rdm , Wi ∈ Rdm×dm , i = 1, 2, · · · , n. Each element of {ai}ni=1, {bi}ni=1 and {Wi}ni=1 follows a normal 1010

distribution N (0, 1/dm) and independent to others. Then, we have: 1011

xW T
i = ai +O

(√
n

dm

)
, yW T

j = bj +O
(√

n

dm

)
, (7) 1012

1013

xW T
i Wjy

T = aib
T
j +O

(
n√
dm

)
. (8) 1014

Proof. We first show that WiW
T
j (denoted as Z(i,j)) is also a random matrix with elements following a 1015

normal distribution N (0, 1/dm) when i ̸= j. In fact, 1016

e[(WiW
T
j )s,t] = e[

dm∑
k=1

(Wi)sk(Wj)kt] =

dm∑
k=1

e[(Wi)sk]e[(Wj)kt] = 0, 1017

1018

Var
[
(WiW

T
j )s,t

]
= e

( dm∑
k=1

(Wi)sk(Wj)kt

)2
 1019

=

dm∑
k=1

e
[
(Wi)

2
sk

]
e
[
(Wj)

2
kt

]
= dm × (

1

dm
)2 =

1

dm
, 1020

which indicate {Z(i,j)} follows the same distribution as {Wi}ni=1. Therefore, 1021

e{Wj}

[
(xW T

i )t

]
=

n∑
j=1

e{Z(j,i)}j

[
(ajZ

(j,i))t

]
1022

=

dm∑
k=1

(ai)ke
[
(Z(i,i))kt

]
+

n∑
j=1
j ̸=i

dm∑
k=1

(aj)ke
[
(Z(j,i))kt

]
1023

=

dm∑
k=1

(ai)ke
[
(Z(i,i))kt

]
= (ai)t, 1024
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Var{Wj}

[
(xW T

i )t

]
=

n∑
j=1

Var{Z(j,i)}j

[
(ajZ

(j,i))t

]
1025

=

dm∑
k=1

(ai)
2
kVar

[
(Z(i,i))kt

]
+

n∑
j=1
j ̸=i

dm∑
k=1

(aj)
2
kVar

[
(Z(j,i))kt

]
1026

=

dm∑
k=1

(ai)
2
kVar

[
(Z(i,i))kt

]
+

1

dm

n∑
j=1
j ̸=i

dm∑
k=1

(aj)
2
k1027

= (ai)
2
tVar

[
(Z(i,i))tt

]
+

dm∑
k=1
k ̸=t

(ai)
2
kVar

[
(Z(i,i))kt

]
+

1

dm

n∑
j=1
j ̸=i

dm∑
k=1

(aj)
2
k1028

=
2

dm
(ai)

2
t +

1

dm

dm∑
k=1
k ̸=t

(ai)
2
k +

1

dm

n∑
j=1
j ̸=i

dm∑
k=1

(aj)
2
k1029

=
1

dm
(ai)

2
t +

1

dm

n∑
j=1

dm∑
k=1

(aj)
2
k.1030

Therefore, Var
[
(xW T

i )t
]
= Vara

[
Var{Wj}

[
(xW T

i )t
]]

= n/dm+1/d2m. And Chebyshev’s inequality1031

implies that xW T
i = ai +O

(√
n
dm

)
, which also holds for yW T

j .1032

Assume that xW T
i = ai + z1, yW

T
j = bj + z2, z1, z2 are random vector with the elements follow1033

the normal distribution N (n, 1/dm), then,1034

Var
[
xW T

i Wjy
T
]
= Var

[
aib

T
j + aiz

T
2 + z1b

T
j + z1z

T
2

]
1035

= dm · 1

dm
· 1

dm
+ 2 · dm · 1

dm
· n

dm
+ dm · n

dm
· n

dm
=

(n+ 1)

dm
.1036

Thus we have xW T
i Wjy

T = aib
T
j +O

(
n√
dm

)
.1037
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D Further Discussion on the Vertical Thinking Strategy 1038

D.1 Information Fusion 1039

In our symbolic dataset task, as mentioned in Section 3, the first layer facilitates the fusion of token 1040

information at odd and even positions. We find that positional encoding plays a crucial role in the 1041

features of the first layer of attention. Fig. 9(a)(b) illustrates a comparison between the original attention 1042

mechanism and the positional attention mechanism calculated with eq. 9. As shown, there is minimal 1043

difference between the two approaches. 1044

A(0)(Xpos) = softmax

(
mask(XposW qkXpos,T)√

dk

)
. (9) 1045

Figure 9: A comparison between the original attention (a) and the positional attention (b) of the first Transformer
block, where Xtgt+pos = Xtgt +Xpos.

D.2 Detailed Matching Matrix 1046

In Section 3, for simplicity of analysis, we ignored the impact of the feedforward layer. Here, we define a 1047

detailed version of the matching matrix as follows: 1048

h̃(1)(X) = f (0)(X)W q(1),T[f (0)(XW vo(0))W k(1),T]T (10) 1049

h̃(2)(X) = f (1)[f (0)(X)W vo(1)]W q(2),T
[
f (1) ◦ f (0)(XW vo(0))W k(2),T

]T
. (11) 1050

As shown in Fig. 10, the detailed matching matrices still maintain the diagonal element property in 1051

most cases, even for the out-of-distribution tokens. 1052

D.3 Independence of Buffers 1053

To verify the independence between buffers, we computed and visualized the cosine similarity between 1054

row vectors of different buffers (W vo(0),W vo(1),W vo(2) and I). As shown in Fig. 11, apart from 1055

exhibiting a certain similarity within itself (so-called condense phenomenon(Luo et al., 2021)), each 1056

buffer remains nearly orthogonal to the others. 1057

D.4 Weight Construction Method for Multi-Step Reasoning Networks 1058

In Section 3, we mentioned that by setting the weights in the following manner, we can enable an L-layer 1059

Transformer model to possess (L− 1)-step reasoning capability. 1060

W q(0) = W q(1) = I, W q(l) = W vo(l−1),T, l ≥ 2, (12) 1061
1062

W k(0) =

[lseq/2]∑
i=1

p2ip
T
2i−1, W

k(l) = W vo(0),T, l ≥ 1, (13) 1063
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Figure 10: (a) Heatmap of h̃(1)(Xtgt) and h̃(2)(Xtgt). The diagonal elements exhibit the largest values, confirming
the matching operation.

Figure 11: The cosine similarity between row vectors of different buffers (W vo(0),W vo(1),W vo(2) and I).

where {W vo(l)}Ll=1 are random matrices and the projection weight W p = W vo(L),TW emb,T.1064

The specific construction method is as follows: To ensure that each buffer in the model has adequate1065

robustness against interference, we set dm = dq = dk = dv = 10000. The feedforward layers are1066

assigned zero weights so that the residual connection dominates. Since all the weight matrices we use1067

are untrained random matrices, the layer normalization will have no effect. Fig. 12 shows the multi-step1068

reasoning ability of an 8-layer Transformer. We tested natural order, reverse order, random order sentences,1069

and sentences with inserted irrelevant tokens (i.e., token [20]), and the model was able to output the1070

correct answer [8] in all cases. Each sentence begins with token [20] to prevent A(l)
0,0 from always1071

equaling 1, which could affect the buffer.1072
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Figure 12: The test results for the 8-layer Transformer we constructed. The gray lines represent attention values that
do not affect the final outcome. The width of all lines is positively correlated with the attention weights.
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E Details for RMBA Experiment1073

This section provides supplementary details on the experimental setup for the RMBA experiment. We1074

use a 3-layer single-head Transformer with dq = dk = dv = 64 and dm = 400. The training set consists1075

of 30,000 2-step reasoning chains. We trained the model for 200 epochs in total. In this setting, the1076

Transformers have poor generation ability even in the in-distribution test dataset.1077

We replace W qk(l) and W vo(l) with W qk(l) + α(l)Z(l−1) and W vo(l) + β(l)Z(l), respectively, where1078

α(l) and β(l) are learnable parameters, and {Z(l)}Ll=1 is a set of random matrix following N(0, 1/dm).1079

Therefore, 6 extra learnable parameters are added to this 3-layer single-head model in total. Fig. 13 shows1080

the loss of the Transformer under different settings. Fig. 14 shows the changes of the learnable parameters1081

α(l) and β(l) during training.1082

Figure 13: The impact of different learnable parameters’ initial values, α(l) and β(l), on the model’s reasoning
ability. The solid lines represent the training loss, while the dashed lines denote the test loss. Each experiment was
conducted with 5 random seeds.

Figure 14: Changes of the learnable parameters α(l) and β(l) during training. The solid lines represent the α(l),
while the dashed lines denote the β(l). Each experiment was conducted with 5 random seeds.

We further tested the performance of the three algorithms under different hyperparameter configurations.1083

We investigated the effects of weight decay, learning rate, and hidden dimension on training. For the1084

RMBA and IMBA algorithms, we set α(l)
ini =β

(l)
ini =0.01. As shown in Fig. 15, under various settings, the1085

RMBA algorithm consistently facilitated the model’s ability to generalize.1086
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Figure 15: A comparison of the training results for RMBA, IMBA, and the Baseline model under different
hyperparameters is presented. We investigated learning rates ranging from 2e-5 to 1e-4 and weight decay values
from 0.01 to 1. We considered four configurations of the hidden space dimension. For each hyperparameter setting,
we conducted experiments using 3 different random seeds, totaling 720 experiments.
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Figure 16: Examples from each dataset, along with their training curves.
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F Details for Horizontal Thinking Strategy 1087

We trained a 2-layer Transformer model and investigated its ability to perform multi-step reasoning with 1088

horizontal thinking. Specifically, we trained the Transformer model on 20,000 samples of length 13, each 1089

labeled with the result of a one-step reasoning process. 1090

As shown in Fig. 17, when we fed the model’s output back into the model, it was able to generate the 1091

next step’s reasoning result, even though it had never been exposed to sentences longer than length 13 1092

during training. 1093

Figure 17: An illustration of the process of performing 3-step reasoning using a 2-layer Transformer model with
CoT. The width of the connections in the diagram is based on the attention weights.

23



G Matching Score and Kernel Score for Real World LLMs1094

In this section, we calculate the matching score and kernel score of the large language model Phi-3(Abdin1095

et al., 2024).1096

We focus on whether W vo and W qk function as the information buffer and the information extractor,1097

respectively. To simplify our analysis, we temporarily disregard the effects of the feedforward layers.1098

Following the method described in the main text, we compute Ker(l1,l2) = W qk(l1)W vo(l2),T and observe1099

whether it exhibits a dominant diagonal characteristic. For multi-head models, the above equation is1100

modified as:1101

Ker(l1,l2) =

(∑
h

W q(l1,h)W k(l1,h),T

)
W vo(l2),T. (14)1102

We define the Kernel Score (KS) as1103

KS(Ker(l1,l2)) = Trace(σ(Ker(l1,l2)))/dm, (15)1104

which measures the ability of layer l1 in the model to extract information cached at layer l2. As shown1105

in Fig. 18(a), when l1 ≥ l2, the kernel score is nearly zero, which aligns with the logical sequence of1106

information processing. When l1 < l2, the kernel score decreases as (l2 − l1) increases, indicating that1107

the model tends to extract the most recently acquired information for further processing. In Fig. 18(b), we1108

plot σ(Ker(l1,l2)) and highlight the regions where the Kernel Score> 0.3.1109

To further verify that the diagonal structure of Ker(l1,l2) arises from the alignment of model weights1110

rather than the intrinsic diagonal structure of
∑

hW
q(l1,h)W k(l1,h),T and W vo(l2),T, we conducted a1111

small experiment, as illustrated in Fig. 18(d). In this experiment, we assume that both matrices A and B1112

are noise-added identity matrices, where the noise scale is denoted by α. We then compute the kernel1113

scores of A, B, and their product C = AB. The results show that when max(KS(A),KS(B)) < 0.3, the1114

Kernel score of the product, KS(C), is less than 0.025. However, as shown in Fig. 18(c), we observe that1115

for many heads, even when max(KS(
∑

hW
q(h)W k(h),T),KS(W vo,T)) < 0.3, the Ker(l1,l2) still has a1116

large kernel score. This indicates that the alignment of model weights is the key factor driving the diagonal1117

structure of Ker(l1,l2). In Fig. 18(f), we present an example where both
∑

hW
q(l1,h)W k(l1,h),T and1118

W vo(l2),T appear relatively disordered individually, but their product exhibits a clear diagonal structure.1119

Another straightforward method is to directly set the diagonal elements of
∑

hW
q(l1,h)W k(l1,h),T1120

and W vo(l2),T to zero, and then calculate the kernel score based on the resulting K̃er(l1,l2). Fig. 18(e)1121

illustrates this result, showing that it is approximately the same as that in Fig. 18(a).1122

Moreover, without loss of generality, we consider the case that includes LayerNorm(LN) and feed-1123

forward(FNN) layers. We compute the matching score for each head in each layer, with the specific1124

calculation formula as follows:1125

Xvo = LN(l−1)
attn (X)W v(l−1),TW o(l−1),T, (16)1126

Xvof = Xvo + FNN(l−1)(LN(l−1)
FNN (Xvo)), (17)1127

Xvok(h) = LN(l)
attn(X

vof )W k(l,h), (18)1128

Xf = LN(l−1)
attn (X) + FNN(l−1)(LN(l−1)

FNN (LN(l−1)
attn (X))), (19)1129

Xq(h) = XfW q(l,h), (20)1130

matching matrix: h(l,h)(X) = Xq(h)Xvok(h),T. (21)1131

We visualized the matching score of each head in each layer (Fig. 18(b)) and found that the matching1132

scores were highest in layers 5 to 20. This aligns with the conclusion mentioned in (Dutta et al., 2024),1133

namely that the reasoning layers of large language models generally appear in the middle portion.1134

To further validate that Phi-3 might employ a buffer mechanism, we computed the pairwise cosine1135

similarity of the matrices {W vo(l)} (each matrix is flattened as a long vector). The results indicate that1136

these matrices are nearly orthogonal to each other, suggesting that they can be treated as independent1137

buffers.1138
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Figure 18: The calculation results of the kernel score and matching score for the Phi-3 model. (a) Visualization
of σ(Ker(l1,l2)). (b) Visualization of the matching score calculations for each head in each layer, indicating that
reasoning is concentrated in the middle layers of the model. (c) Visualization of the kernel matrix between layers,
where the subgraphs enclosed in red boxes correspond to KS(Ker) > 0.3 and the subgraphs enclosed in darkred
boxes correspond to KS(Ker) > 0.3 but max(KS(

∑
h W

q(h)W k(h),T),KS(W vo,T)) < 0.3. (d) The kernel score
of a noise-added identity matrix(A and B) and the kernel score of the product of two noise-added identity matrices(C).
It can be observed that for two unrelated matrices, when their individual kernel scores are less than 0.3, the kernel
score of their product is less than 0.025. (e) The kernel score obtained after setting the diagonal elements of∑

h W
q(h)W k(h),T and W vo,T to zero. (f) Visualization of the

∑
h W

q(14,h)W k(14,h),T and the W vo(l2),T in the
Phi-3 model, along with their inner product. Despite their weak diagonal structure individually, their inner product
exhibits a clear diagonal structure. (g) Cosine similarity of flattened W vo(l1) and W vo(l2), l1, l2 ∈ {0, · · · , 31}.
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Except for the phi-3 large model, the above definitions of the multi-head matching score and kernel1139

score are equally applicable to other models that do not employ group query attention. The corresponding1140

experimental results are shown in Fig. 19.1141

Figure 19: Weight alignment phenomenon for real-world LLMs.
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H Causal Intervention 1142

This section presents causal intervention experiments conducted to verify that the model uses a buffer 1143

mechanism when performing symbolic multi-step reasoning tasks. We assume readers are familiar with 1144

the content of Section 3. The causal intervention experiments were conducted using a 3-layer Transformer 1145

model trained as described in Section 5. 1146

First, we identified critical tokens and logical circuits by observing output changes when masking 1147

specific attention or residual paths. Fig. 20(left) illustrates the logical circuit of the 3-layer Transformer per- 1148

forming the symbolic 2-step reasoning task. Subsequently, we conducted causal intervention experiments 1149

on the information stored in each token.

Figure 20: Logical circuit for 2-step reasoning (left) and illustration of causal intervention(right). We achieve the
goal of intervening in information stored in a specific buffer by modifying the input sequence and enforcing the
same attention pattern as before. The figure illustrates how the information [a] stored in the final token’s buffer
W vo(0)W vo(1) in layer 2 can be changed to [x].

1150

Unlike prior works where causal intervention replaced all information within a token with alternative 1151

information(Feng and Steinhardt, 2023; Meng et al., 2022; Vig et al., 2020; Wang et al., 2024a), we refined 1152

the perturbation scope to target a specific buffer within a token. Specifically, we individually replaced the 1153

information in each buffer of critical tokens with alternative information to observe the model’s output. 1154

For example, as shown in Fig. 20(right), suppose we want to change the information [a] stored in the 1155

final token’s buffer W vo(0)W vo(1) in layer 2 to [x]. This can be achieved by simply modifying the 1156

input sentence [a’][b’][b’][c’][a][b][b][c]...[a] to [a’][b’][b’][c’][x][b][b][c]...[a], 1157

and enforcing Attn(1)[13:] same as before. Fig. 21 shows the intervention results for all buffers of all critical 1158

tokens. 1159

The results reveal that, in layer l, the information stored in buffer W vo(l−1) of the final token is crucial. 1160

Modifying information in other buffers does not affect the model’s output. Combined with the observation 1161

in Appendix D that the cosine similarities between W vo(0),W vo(1),W vo(2), I are nearly zero, we can 1162

confidently assert that the model performs reasoning by leveraging different buffers. This experiment also 1163

rules out the possibility of the model only using an overwrite mechanism to perform reasoning. 1164
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Figure 21: Causal Intervention Experiment. We performed interventions on the information stored in every buffer
of every critical token individually. Here, [x] represents a token that does not appear in the original input. For the
final token, only modifying the buffer W vo(l−1) in layer l affects the final output. In this experiment, the tokens in
the original sentence are selected from the range [20, 40], while token [x] traverses the range [40, 100]. Attn(l)

[13:]

refers to the attention score corresponding to the last token at layer l. For the original input, we have Attn(1)[13,6] = 1

and Attn(2)[13,8] = 1. Instances labeled as “Random" indicate that the output varies erratically as [x] changes. In all
other cases, the probability of the model output deviating from the value presented in the table is less than 1e-15.
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I Interaction Results with Large Language Models 1165

Figure 22: Detailed interaction results with large models. For each type of reasoning task, we tested each large
model 25 times. The versions of Claude are Claude 3.5-haiku-20241022 and Claude 3.5-sonnet-20241022.
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