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Abstract

Large language models have consistently strug-
gled with complex reasoning tasks, such as
mathematical problem-solving. Investigating
the internal reasoning mechanisms of these
models can help us design better model ar-
chitectures and training strategies, ultimately
enhancing their reasoning capability. In this
study, we constructed a symbolic multi-step
reasoning task to investigate the information
propagation mechanisms in Transformer mod-
els when solving the task through direct an-
swering and Chain-of-Thought (CoT) reason-
ing. We introduced the concept of buffer mech-
anism: the model stores various information
in distinct buffers and selectively extracts it
through the query-key matrix. We proposed
a random matrix-based algorithm to enhance
the model’s reasoning ability. This algorithm
introduces only 132 trainable parameters, yet
leads to significant performance improvements
on 7 multi-step reasoning datasets, including
PrOntoQA, LogicAsker, and LogicInference.
These findings provide new insights into under-
standing the large language models.

1 Introduction

In recent years, LLMs have emerged and demon-
strated remarkable capability across various tasks
(Vaswani et al., 2017; Liu et al., 2018; Devlin
et al., 2018; Radford et al., 2019; Touvron et al.,
2023; OpenAl, 2023; Liu et al., 2024; Guo et al.,
2024, 2025). These models have shown impressive
in-context learning abilities (Brown et al., 2020;
Dong et al., 2022; Garg et al., 2022) and have
been applied to logical reasoning problems, such as
matching top human contestants at the International
Mathematical Olympiad (IMO) level (Trinh et al.,
2024) and solving math problems (Davies et al.,
2021). However, even the most advanced models
still struggle with complex reasoning tasks. To
truly enhance the reasoning capability of LLMs, it
is crucial to investigate their intrinsic mechanisms.

Multi-step reasoning tasks encompass a broad
concept, typically referring to the ability of a model
to synthesize numerous complex conditions to an-
swer questions. Here, we consider a representative
class of syntactic structures within multi-step rea-
soning tasks: a sentence that includes both the ques-
tion and sufficient known information to answer it.
For example, “Given: [A1—[B]...[B]I—[C]...,
Question: 2-step reasoning starting from [A]",
where “..." represents other textual content un-
related to logical reasoning. The answer to this
question is “[C]". When a sentence contains only
one logical reasoning step, it is often handled by the
so-called induction head in Transformer (Brown
et al., 2020; Olsson et al., 2022). However, multi-
step reasoning is not merely a linear accumulation
of multiple induction heads but involves more com-
plex mechanisms.

Large models employ two primary strategies for
logical reasoning. The first, known as the Verti-
cal Thinking Strategy (VTS), outputs reasoning re-
sults in a single forward based on their inherent
structure. This approach is efficient but demands
a high level of intelligence. As shown in Fig. 1,
current large models exhibit significant limitations
in their vertical thinking capability. Another rel-
atively less efficient approach is the (HTS), such
as Chain of Thought (CoT) (Wei et al., 2022; Ko-
jima et al., 2022) and Tree of Thought (ToT) (Yao
et al., 2024), Diagram of Thought (DoT) (Zhang
et al., 2024a). This strategy substantially enhances
the model’s reasoning performance. All models
can produce the correct answers for tasks depicted
in Fig. 1 with the help of CoT. Considering the
strengths and weaknesses of these two strategies,
the ideal approach should combine both: decom-
posing problems into several coarse-grained sub-
problems (HTS) and applying the VTS to each
subproblem. Thus, researching how to improve
vertical thinking capability and understanding why
the horizontal thinking strategy can significantly



Question: We have established the following reasoning rules: (1) [a] to [b] represents that condition
[a] can derive condition [b]. (2) The sequence [a] to [b] | [b] to [c] indicates that the 2-step reasoning
result of [a] is [c]. For the following reasoning chain:

[elto [i] | [ to [w] | [n] to [a] | [o] to [p] | [i] to [r] | [p] to [e] | [W] to [p] | [X] to [i]

Please answer directly: What is the <s>-step reasoning result of [w]? (only return the answer)

Rule:  [a] to [b]: Accuracy:
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Figure 1: The interaction results of multi-step reasoning tasks with large models. We tested each model 25 times,
and when the number of reasoning steps exceeded three, these models exhibited random guessing. However, when
we allowed the models to use CoT prompting (by removing “directly" and “only return the answer"), all models
achieved 100% accuracy. Detailed interaction results are provided in the Appendix I.

enhance model reasoning ability are both crucial.

In this work, we investigate the performance of
Transformer models on a symbolic multi-step rea-
soning dataset. Our work aims to uncover these
mechanisms and provide insights into how Trans-
formers process and integrate logical information
across multiple layers to perform multi-step rea-
soning, which can help develop more effective
strategies for improving their multi-step reasoning
abilities. Specifically, we found that Transformers
utilize a Buffer Mechanism when engaging in sym-
bolic multi-step reasoning tasks. The model stores
different intermediate results in separate buffers, al-
lowing for quick retrieval as needed. We elaborate
on how the model leverages this buffer mechanism
for vertical thinking, and we explain why the hori-
zontal thinking strategy can significantly enhance
the model’s multi-step reasoning capability from
the perspective of the buffer mechanism. Finally,
based on this understanding, we propose a method
to improve the model’s reasoning abilities, leading
to significant performance improvements for the
GPT-2 model on 7 multi-step reasoning datasets,
including Clutrr (Sinha et al., 2019), RuleTaker
(Clark et al., 2020), StepGame (Shi et al., 2022),
LogicInference (Ontanon et al., 2022), LogicAsker
(Wan et al., 2024), PararulePlus (Bao et al., 2022),
and PrOntoQA (Saparov and He, 2022).

The concept of “buffer" or similar concepts
has also been mentioned in other works (Reddy,
2023; Bietti et al., 2024; Elhage et al., 2021). Our
work provides a detailed description of the concept
of buffer and applies this mechanism to enhance

model performance.

The main contributions of this work are as fol-

lows:

* We propose a buffer mechanism and found
evidence that supports such a mechanism be-
ing employed by language models during the
reasoning process in symbolic multi-step rea-
soning tasks and provide a detailed analysis
of the model’s internal thinking process for
vertical and horizontal thinking from the per-
spective of the buffer.

* We propose a method to enhance the model’s
reasoning capability, improving data utiliza-
tion efficiency in 7 logical reasoning datasets.

Our research deepens the understanding of the rea-
soning mechanisms in Transformer models.

2 Reasoning Dataset and Transformer
Model

Dataset. To understand the mechanism of multi-
step reasoning in Transformers, we design an ab-
stract symbolic multi-step reasoning task. As
shown in Fig. 2, reasoning chains are serialized
into a sequence. Every two tokens in the sentence
represent a reasoning relation. The last token is
the reasoning start token, and the label is the re-
sult with a fixed-step reasoning starting from the
starting point.

Transformer Model. We employ a decoder-only
Transformer. Given an input sequence X &
R™*4_ where n is the sequence length and d is
the dictionary size, the model first applies an em-
bedding layer to obtain the input representation
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Figure 2: Illustration of the dataset. We investigate reasoning chains composed of digital tokens. In a serialized
representation, each pair of adjacent tokens (represented by the same color) forms a reasoning relation within the
reasoning chain. The order of the reasoning relations is random, thus a single reasoning chain can correspond to
various serialized representations. The model input consists of the serialized representation along with a reasoning
start token. The label is the result of performing a fixed number of reasoning steps starting from this start token.

This figure illustrates a 2-step reasoning task.

xM = Xigt + Xpos € R 4m_ The single-head
attention in each layer is computed as follows:

A0 (X) mask(X WIOWED.T xT)

= 0 y
Vi,

X0 = AO (X D) xOpreOpred

where o takes the softmax operator, and X0 =
Layernorm(X (). For simplicity of expression,
we will abbreviate WIOWHFD.T a5 Wak(l) and
WrOWeWD.T a5 Wrol) in the following text. The
output of the [/-th layer is obtained as:

x2ob = xO 4 xakv(®)
X(H—l) _ f(l)(Xao(l)) +Xao(l)7

where f()(.) represents the feedforward neural net-
work of [-th layer. The final output (in the form of
token indices within the vocabulary) is obtained as:

Y = argmaz(oc(XPIWP)) e R™.

In Distribution and Out of Distribution Data.
With the settings of our dataset, if the model
truly understands the underlying logic patterns,
it should be able to find the correct answer to
the sentence, even if this sentence has tokens that
have never been encountered during the training.
Therefore, we divided the data into two parts: in-
distribution (ID) and out-of-distribution (OOD).
Specifically, we define tokenrp € [20,100] and
tokengep € [0, 120]\ [20, 100]. In-distribution data
(Trainp and Testyp) is defined as sentences com-
posed entirely of tokenip, while out-of-distribution
data (Testoop) consists of sentences containing one
tokengop, which happens to be the previous reason-
ing step of label. For the in-distribution data, we

split the training set (Trainp) and test set (Testyp)
according to the following rules: for the serialized
reasoning chain [x;][x,]- - - [x,] of the training
set, all tokens satisfy the following condition:

X2i — X2i-1 (mod m) € G.

For the reasoning chains in the test set, all tokens
satisfy:

X2i — X2i-1 (modm) € {1,--- ,m}\G,

where we take m = 5 and G = {0, 1,4} in this
study. Under this setting, we ensure that each bi-
nary logical pair in the testing set has not previously
appeared in the training set. Therefore the Trans-
former is performing in-context learning (Brown
et al., 2020; Olsson et al., 2022), as each reasoning
pair is not seen during in-weight learning.

3 Vertical and Horizontal Thinking
Strategy

We illustrate how the Transformer model employs
vertical or horizontal thinking strategies for multi-
step reasoning. Fig. 3 depicts the schematic mech-
anisms by which these two strategies execute
multi-step inference. The critical logic circuits
highlighted in this figure were identified through
causal intervention experiments (Feng and Stein-
hardt, 2023; Meng et al., 2022; Vig et al., 2020;
Wang et al., 2024a) (Appendix H). From the figure,
one can discern the core distinction between VTS
and HTS. Under VTS, in every layer beyond the
first—termed a “reasoning layer”—the final token
attends to the token carrying the next inference
result, conditional on the existing result, thereby
effecting a single reasoning step. In contrast, HTS
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Figure 3: Illustration of how the Transformer employs the vertical and horizontal thinking strategies to solve the
multi-step reasoning task. The information crucial for the layer’s information transfer is highlighted in red text. The
first attention pairs tokens at odd positions with those at even positions. In the Vertical Thinking Strategy (VTS),
each layer conveys its newly derived reasoning result to the final token. In the Horizontal Thinking Strategy (HTS),
all information transfer is accomplished within a single layer.

accomplishes all logical inference within a single
layer.

This observation naturally prompts a key ques-
tion: irrespective of whether VTS or HTS is em-
ployed, each node in the Transformer stores mul-
tiple pieces of information. For instance, the red
node in Layer 1 encodes not only [a] but also [b].
How, then, does the model consolidate diverse in-
formation within a single node and accurately ex-
tract and utilize the relevant subset? Addressing
this question lies at the heart of our investigation
into multi-step reasoning.

4 Buffer Mechanism

To address the above problem, we propose a mecha-
nism employed by the Transformer, which we refer
to as the “buffer mechanism”.

Specifically, we observe that the information
transmitted via the attention module differs from
that conveyed through the residual connections. In
the attention module, information [a] with dimen-
sion d,, is first mapped to a lower embedding di-
mension d,, through the matrix W7, and then it
is projected back to d,,, dimensions via the matrix
W, Consequently, the information [a] after pass-
ing through the attention layer becomes [a]W"°.
In contrast, information transmitted through resid-
ual connections does not require additional pro-
cessing; thus, after the first layer, the information at
even indices transforms to [x;-1 JW () 4 [x,;].

Below, we introduce the buffer mechanism

within the VTS framework. All theoretical re-
sults are supported by experimental validation (Sec-
tion 5). We observe that each token in Fig. 3(a)
stores various information in various forms (pro-
jected by different matrices W°()), which leads to
a natural question: how does the attention layer ef-
fectively retrieve useful information while avoiding
interference from others? To address this question,
we introduce the following lemma (the proof can
be found in Appendix C):

Lemma 4.1. Suppose token x = >, a,W; €
R and token y = > biWi € R where
a;, b, € Rdm, W, € Rdedm = 1,2,

Each element of {a;}} ,, {bl} ', and {W }Z 1
follows N(0,1/d,,) and independent to others.
Then, we have:

n

i)

:cVViT—aZ-+(’)<

n
yvvazbj+0< d>,
n
W, Wiy = a;b] +0 <m> :

It can be observed that the matrices {W;}" ;
serve as a set of buffers for information. Each ele-
ment of {a;}}", is located in different buffers, and
is almost unaffected by others. This property also
applies for {b; }" ;. By selecting the matrices asso-
ciated with the relevant buffer, specific information
contained in token x and token y can be extracted.



The concept of the buffer mechanism is useful
for understanding the internal logic mechanisms of
Transformer models. {W9W}E | and {WHFOYL
can be viewed as “information extractors", while
{wve)}E | can be considered as a set of buffers.
We observe that in the final token of each reason-
ing layer, each new intermediate result is always
associated with a new W, If these {W (U1
matrices are mutually orthogonal or random, then
these intermediate results can be regarded as being
stored in a new buffer.

In each reasoning layer, the token at the last posi-
tion contains the current intermediate result. Addi-
tionally, there exists a token that contains both the
current intermediate result and the next step’s rea-
soning result, with these stored in different buffers.
The role of W7 and W is to extract the current in-
termediate results from these two tokens, enabling
them to attend to each other due to having the same
token. We refer to this feature as “same-token
matching". To quantitatively characterize this prop-
erty, we define the following match matrix:

A(X) = XWaEO w0 TxT 2 X Kerl) XT,
B®

(X) (D
— (vao(l—l))Wq(l)Wk‘(l),T(vao(O))T
— Xw’uo(l—l)qu(l)wvo(O),TXT

2 X Ker X7, 1> 2. )

where

Ker) = wak()yyvo(0).T
Ker(l) — W’UO(l—l)qu(l)wvo(O),T, [>2. (3)

We temporarily ignore the effects introduced by the
feedforward layers only in our analysis; a detailed
version that includes the feedforward layers can be
found in Appendix D.

To achieve the same-token matching, it is suffi-
cient for Ker®) ~ I , in which case

1
h(l)(xtgt) ~ thtXtTgt =I+0 (@) . (4

Eq.(4) means that the attention of all tokens is fo-
cused on themselves.

Furthermore, a much more remarkable observa-
tion is that the same-token matching is indepen-
dent of the specific value of X;,. For example,
for Xt4t.00p sampled from the untrained random
vectors tokengop, h")(Xygt.00p) = I still holds.

Therefore, when Ker) ~ I holds, the model ex-
hibits OOD generalization capability.
Understanding HTS With Buffer. Numerous
studies have shown that CoT, a canonical repre-
sentative of HTS, can significantly enhance logical
reasoning capability (Wei et al., 2022; Kojima et al.,
2022). Fig. 3(b) presents a schematic diagram illus-
trating how the model implements this process. In
the previously mentioned VTS scenario, the model
needed to allocate new buffer W), Wvo) for
storing the intermediate result [b] and [c], respec-
tively. In contrast, with CoT, the model generates a
new token to separately store the new intermediate
information, effectively replacing the information
[a] in the original buffer W”o(l), Wvo0) and I
(identity matrix, which can also be treated as a
buffer). Thus, CoT performs multi-step reasoning
tasks through buffer reuse.

Unlike the vertical thinking strategy, which re-
quires alignment across multiple weight matrices,
the horizontal thinking strategy only requires a few
layers to satisfy Ker ~ I. This significantly
reduces the difficulty of model training. These
architectural efficiencies potentially underlie the
empirically observed enhancement of reasoning
performance in large language models employing
CoT methodologies.

S Experiments

This section presents the experimental validation of
the buffer theory. To demonstrate multi-step reason-
ing without introducing additional complexity, we
utilized a 3-layer, single-head Transformer model
to learn from a 2-step reasoning dataset. Specific
Experimental settings can be found in Appendix B.
After training, the Transformer exhibits generaliza-
tion capability in both in-distribution and out-of-
distribution data (Fig. 4).

Accuracy

e—@ Traing

A—A Testyp

B Testpgp

Epoch

Figure 4: Accuracy curve during VTS training. After
training, the Transformer exhibits generalization capa-
bility in in-distribution (100% accuracy) and out-of-
distribution data (82% accuracy).



Fig. 5 presents the experimental validation of
Eq.(3)(4). We visualize the computed values of
h1:2) (X ,,) and Ker!?) with the model parame-
ters after training. Notably, in the tokenggp region,
tokengop and h(? (X1g¢) exhibit a diagonal struc-
ture similar to an identity matrix I, ensuring the
model’s OOD generalization capability.

To establish a strong correlation between the
model’s OOD generalization and its ability to use
the buffer mechanism for same-token matching,
we define a metric for this capability, the Matching
Score (MS):

MS(h)) = Ex[Trace(o(h)(X)))]/n, (5)
where X € R"%dm jg sampled from tokenp or
tokenggp for expectation E x, and o takes the soft-
max operation. The level of diagonalization of
Ker(") serves as the intrinsic driver for achieving
same-token matching; thus, we also define the fol-
lowing Kernel Score (KS):

KS(Ker®) = Trace(o(Ker'")) /dpm.  (6)

Tt okenggp ’ Tt okenggp

l tokenyp
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Figure 5: Heatmap of h1?)(X;,;) and Ker(:?). Ac-
cording to (c)(d), and Eq.(4), the diagonal structure of
the kernel matrix induces a diagonal structure in the
matching matrix, even when Xy is sampled from the
tokenOOD.

Fig. 4 and Fig. 6 illustrates the accuracy curve
and the dynamic changes in the matching score
and kernel score during training. It is observed
that the increase in the model’s ID and OOD
generalization coincide with the increases in the
model’s matching score and kernel score. By
computing the cosine similarity between different

buffers (Wve(0) wve) Wve2) and I), we ob-
serve that these buffers are nearly pairwise orthogo-
nal(Appendix D). Based on the above experimental
analysis, we conclude that the Transformer model
indeed employs the buffer mechanism for vertical
thinking.

(b)
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Figure 6: (a) The dynamic evolution of the model’s
matching score. The red and blue lines represent the
matching scores for the first and second layers, respec-
tively. Solid and dashed lines indicate the matching
scores when X is drawn from tokenp and tokenggp,
respectively. (b) The kernel scores for the first (red) and
second (blue) layers.

According to the Buffer mechanism, in theory,
by setting the model’s weights in the following
way, an L-layer model can achieve (L — 1)-step
reasoning without the extra training process:

wa© — wa) — 1w — peel-1DT |~ o

[Eseq /2]
Wk(o) — Z p2ip;—i_1’ Wk(l) — WUO(O)7T7 l Z 1’
=1

where {Wv}E are set as random matri-
ces and the projection layer satisfies WP =
wvol), Tyyemb,T - Experimental validation can
be found in Appendix D.

Real World LLMs. In Appendix G, we provide
additional definitions for methods to compute the
matching score and kernel score in multi-head mod-
els and perform these calculations in the real world
LLMs such as GPT, Phi, Llama, and Qwen. Simi-
lar phenomena, such as weight alignment, provide
evidence for the presence of the buffer mechanism
in real language models.

Horizontal Thinking Experiments. For HTS, we
will demonstrate that a Transformer model utiliz-
ing CoT can achieve arbitrary multi-step reasoning
with only 2 layers. We trained a 2-layer Trans-
former with the 13-length single-step reasoning
data. During the testing phase, we fed the model’s
output back into the model. Through this CoT pro-
cess, the model can perform 2-step, 3-step, or even
higher-step reasoning and it can also generalize to



sentence lengths beyond the 13th position. Fig. 7
shows the relationship between the number of rea-
soning steps and CoT accuracy. Our 2-layer model
is able to maintain an accuracy of over 57.6% even
when performing complex 6-step reasoning tasks.
The specific information flow can be found in Ap-
pendix F.
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Figure 7: The relationship between the number of rea-
soning steps and CoT accuracy. The CoT accuracy curve
represents the performance when all reasoning steps are
predicted correctly using CoT, while the CoT last token
accuracy curve records the performance based solely
on whether the final reasoning step is correct when the
previous correct reasoning result is given.

6 Improving Transformer’s
Data-Efficiency

In this section, we discuss how to improve data
efficiency when employing the vertical think-
ing strategy, specifically, by enabling the model
to learn the essence of logical reasoning with
less data or training epoch. As mentioned
in Section 3, this can be achieved by setting
Wvo(l—l),quk(l) Wvo(O),T ~ I

A more intuitive approach is to replace W+()
and WO with W0 4 o] and Wl +
BT, where {a(D} | and {8V} | are learn-
able parameters. This Identity Matrix-Based Al-
gorithm (denoted as IMBA) was first proposed in
Boix-Adsera et al. (2023) and has been validated
from both theoretical and empirical perspectives
for its role in facilitating the model’s learning of
one-step reasoning data. However, in multi-step
reasoning tasks, IMBA may lead to information
interference. For instance, if wvol) jg replaced
with W) 1 B(D T the storage representation
of the two pieces of information transitions from
[a]Wv+[b] to [a]W +(3¥ [al+[b]), which
introduces interference among the different pieces
of information. Therefore, this approach may not
be effective in enhancing the model’s ability to

perform multi-step reasoning.

Based on the understanding of buffer mecha-
nism, we propose a Random Matrix-Based Al-
gorithm (RMBA), specifically by substituting
WD) and Wvol) with Wk 1 o0 z(0=1)
and Wl + g z0 where {a®}} and
{BW}F_ are learnable parameters and {Z )}/ |
is a set of fixed random matrix following
N(0,1/dy,). In this case, the information stor-
age representation changes from [a]W°+[b] to
[alW" +[alZ+[b], effectively creating a new
buffer.

Fig. 8 illustrates the different results of the two
methods. The baseline is a three-layer transformer
model, which fails to learn a two-step reasoning
task with only 30,000 samples. Under various
hyperparameter settings, when ozi([llg . 6&) > 0,
the RMBA algorithm significantly enhances the
model’s generalization ability, while the IMBA
shows no effect. This experiment validates our
buffer mechanism understanding. To strengthen the
credibility of our results, we conducted a compre-
hensive sweep of hyperparameters such as weight
decay, learning rate, and hidden dimensions (d,,
and dy). The findings indicate that RMBA parame-
terization can more robustly reach a high accuracy
by a certain number of training steps across a wider
range of hyperparameters. Detailed experimental
results can be found in Appendix E.

These results also demonstrate that multi-step

reasoning is not achieved by simply “stacking" mul-
tiple single-step reasonings. An algorithm that en-
hances single-step reasoning may not be applicable
to multi-step reasoning. Therefore, investigating
the multi-step reasoning is an important and mean-
ingful topic.
Validation of Algorithm Performance on Mul-
tiple Real Multi-Step Reasoning Datasets. In
this section, we evaluate the performance of our
algorithm using published real-world datasets. The
datasets used include Clutrr, RuleTaker, StepGame,
LogicInference, LogicAsker, PararulePlus, and
PrOntoQA. These datasets assess the model’s multi-
step reasoning capabilities from different perspec-
tives and scenarios. Examples of the datasets and
their corresponding training curves are provided in
Appendix E.

The 12-layer GPT-2 model is employed for
this task. For RMBA, we replace W2¢(:h)
and Wvolbh) with Wak(bh) 4 o (Lh) Z(1=1h) and
wvelh) 1 g(bh) Z(Lh) | respectively. To demon-
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be found in Appendix E.

strate the effectiveness of our method, we train
each dataset for 5 epochs using a learning rate of
le-5. The additional hyperparameters introduced
in RMBA are initialized to 0.05. Training results
are summarized in Table 1. For tasks including
Clutrr, RuleTalker, StepGame, and LogicInference,
RMBA significantly improves model performance.
For relatively simpler tasks such as LogicAsker,
PararulePlus, and PrOntoQA, although both the
base model and RMBA achieve nearly 100% accu-
racy, the training curves presented in Fig. 16 (Ap-
pendix E) show differences in the cost required to
reach generalization capability. Table 2 reports the
number of epochs required to reach 95% accuracy.
As shown, RMBA reduces computational costs by
more than 65% compared to the base model.

Table 1: Final-State Accuracy (%) Comparison. The
training curves for all datasets are shown in Fig. 16
(Appendix E).

Dataset Baseline RMBA
Clutrr 343 42.8
RuleTaker 67.0 83.5
StepGame 359 38.9
LogiclInference 68.1 78.3
LogicAsker 99.7 100.0
PararulePlus 99.8 99.8
PrOntoQA 100.0 100.0

7 Discussion

In this study, we investigated the vertical and hori-
zontal thinking strategy employed by Transformer
in a symbolic multi-step reasoning task from the

ﬁi(nli) > 0, the model’s reasoning capability can be enhanced. Detailed settings can

Table 2: Epochs required to reach 95% accuracy and
cost savings comparison

Dataset Baseline RMBA Savings
LogicAsker 3.16 0.88 72%
PararulePlus 2.71 0.73 73%
PrOntoQA 0.95 0.32 66%

perspective of the buffer mechanism. When utiliz-
ing the vertical thinking strategy, the model stores
different intermediate results in separate buffers
and transfers the reasoning results with the same-
token matching. In contrast, when applying the
horizontal thinking strategy, the model reuses the
existing buffers to store intermediate results. We
validated that the buffer mechanism is a key factor
in enabling the model’s ID and OOD generaliza-
tion capabilities. Based on the buffer mechanism,
we proposed a tailored approach, RMBA, to en-
hance the model’s multi-step reasoning ability, sig-
nificantly improving data efficiency when training
GPT-2 on 7 reasoning datasets.

8 Limitation

Our current work lacks an in-depth theoretical anal-
ysis. In future work, we aim to conduct deeper
theoretical modeling for multi-step reasoning prob-
lems and extend the buffer mechanism to other
types of multi-step reasoning tasks.
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A Related Work

Language model reasoning There have been numerous experimental and theoretical studies on language
model reasoning. (Abbe et al., 2022) examines the reasoning capabilities of neural networks using the
Pointer Value Retrieval (PVR) benchmark, which was originally introduced in (Zhang et al., 2021).
(Sharma et al., 2023) demonstrates that applying low-rank approximation of certain weight layers to
themselves can enhance reasoning performance across various tasks, and (Chen et al., 2024a) explains
this phenomenon in a two-layer Transformer model. (Wang et al., 2024a) investigates both ID and
OOD reasoning abilities on two synthetic tasks involving composition and comparison. (Jiang et al.,
2024) reveals that the reasoning process in Large Language Models (LLMs) is influenced by token
bias and that these models continue to face challenges when dealing with more complex logical tasks.
(Abbe et al., 2024) introduces the distribution locality and shows that Transformers require low locality.
(Zhang et al., 2024b; Luo et al., 2021; Zhou et al., 2022) shows that small initialization can facilitate
model reasoning. Brinkmann et al. (2024) investigates the mechanism by which language models output
intermediate reasoning paths in multi-step reasoning tasks. Aubry et al. (2024) uncover a transformer
block coupling phenomenon in a variety of LLMs by tracing the trajectories of individual tokens as they
pass through transformer blocks. Recently, the multi-hop reasoning abilities of models have garnered
attention in the LLM field. Kil et al. (2024); Li et al. (2024a) promote the use of Chain-of-Thought (CoT)
reasoning by models to perform multi-step thinking through appropriate prompt engineering. Zhang
et al. (2023) proposes a new retrieval framework for multiple reasoning paths. Dar et al. (2022); Li et al.
(2024b); Yang et al. (2024); Shalev et al. (2024) pinpoint where models execute multi-step reasoning by
causal intervention and observing neuron activation. Biran et al. (2024) introduces a method to enhance
models’ reasoning abilities by repeatedly invoking intermediate layers. These works, especially the
causal intervention experiments, have inspired our research. However, existing studies primarily conduct
macro-level statistical analyses on actual complex large language models. While causal intervention
methods can help us identify critical paths, our work builds upon this foundation by further exploring how
models leverage their own weights to generate these key paths. Experiments on our symbolic datasets
also facilitate more in-depth experimental and theoretical investigations.

Understanding the mechanism of neural model Our work builds upon previous studies on the
attention mechanism (Voita et al., 2019; Vig, 2019; Kovaleva et al., 2019; Kobayashi et al., 2020).
Numerous researchers have proposed various approaches to identify the roles of different heads in
Transformers (Vig et al., 2020; Jeoung and Diesner, 2022; Wang et al., 2022; Conmy et al., 2023; Merullo
et al., 2023; Guo et al., 2023; Wang and Weinan, 2024; Amsel et al., 2024; Li et al., 2024c; Wang et al.,
2024c). These methods predominantly employ the concept of perturbation. Similar to the observations
made by Wang et al. (2023) and Dutta et al. (2024), who noted that large language models typically
perform information aggregation in shallow layers and information induction in deeper layers, we have
also observed comparable phenomena in our study. The idea of symbolic datasets is inspired by Poli et al.
(2024); Zhang et al. (2024c). There have also been some insightful theoretical works on feedforward
neural networks. A series of studies have explored neural network preferences and generalization from
the perspectives of regularization and frequency, etc. (Xu et al., 2019; Wang et al., 2024b; Jacot et al.,
2018, 2020; Arora et al., 2019a, 2018). And Wu and Su (2023); Wang and Wu (2023); Arora et al. (2022);
Li et al. (2021); Wu et al. (2018); Zhu et al. (2018); Arora et al. (2019b) investigates the dynamical
behavior of neural networks, while Ren et al. (2024) examines the factors influencing neural network
generalization.

In-context learning and induction head Our work primarily investigates the model’s ability to
perform in-context learning. The concept of in-context learning (ICL) was first introduced by Brown
et al. (2020). Since then, a series of studies have utilized induction heads to investigate ICL, yielding
remarkable research outcomes (Olsson et al., 2022; Garg et al., 2022; Wang et al., 2022; Miiller et al.,
2021; Goldowsky-Dill et al., 2023; Bietti et al., 2024; Nichani et al., 2024; Edelman et al., 2024; Chen
et al., 2024b; Todd et al., 2023; Chen and Zou, 2024). It is worth noting that induction heads can be
considered as a special case of multi-step reasoning tasks with the reasoning step equal to 1. However,
multi-step reasoning is not a simple linear combination of single-step reasoning. In our work, we study
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the mechanism that enables multi-step reasoning, which has not been explored in previous studies.
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B Experimental settings

In our experiments (Section 3), the vocabulary size is set to d = 201, and the hidden space dimension is
set to d,, = 400 and dy = d}, = d,, = 64. We use 200,000 2-step reasoning sequences (with sequence
length equal to 13). The learning rate is set to 2e-5 and linearly warms up to 1e-4 within 400 epochs and
then decays to le-5 within 3600 epochs. The batch size is set to 100. We use the AdamW optimizer with
default parameters as set in PyTorch 2.3.0.

The experiments were conducted on a server with the following configuration:

* 64 AMD EPYC 7742 64-Core Processor.

* 256GB of total system memory.

* 2 NVIDIA A100 GPUs with 40GB of video memory each and 8 NVIDIA GeForce RTX 4080 GPUs

with 16GB of video memory each.

* The experiments were run using the Ubuntu 22.04 LTS operating system.
The task shown above can be completed within 2 hours with a single NVIDIA A100 GPU. For other,
more complex examples, they can be finished within 24 hours.

C Proof of Lemma 4.1

Lemma 1 Suppose token x = 31 | a;W; € R and tokeny = >, b;W; € R, where a;, b; €
Riém, W; € Rdm>xdm § =12 ... n. Each element of {a;}?_,, {b;}?_, and {W;}1"_, follows a normal
distribution N'(0,1/d,,) and independent to others. Then, we have:

T n T n
n
aW,Wiy" =ab] +0 ( %> : €))

Proof. We first show that W/}VVJ-T (denoted as Z (i )) is also a random matrix with elements following a
normal distribution A/(0,1/d,,,) when ¢ # j. In fact,

d'm d’lﬂ

[WW] )] = oS (Wt (Wy)iel = 3 el(Wi)rel(W)ue] = 0,
k=1 k=1

which indicate {Z(%7)} follows the same distribution as {W;}_,. Therefore,
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= Z(al)ke [(Z(z Z))kt] = (a;)s,
k=1



Var{w } Z Var{z(a DY A ))
=W = (0,2
dm n dm

= (a;);Var [(Z(M))kt} + D (a;)iVar [(Z(j7i))kt}
=1 k=1

k=1 =1 k=
J#

dm n  dm

Zmnkw (Z260)] + 33 ()}

k= mr 1 k=1
J#

— (a;)?Var {( Zisi tt] + Z a;)iVar [( z0 i))kt] + di ZZ(“J‘)%
= i

n  dm

Therefore, Var [(zW]T),] = Var, [Var{w.} (W), ]} — n/dy +1/d2,. And Chebyshev’s inequality

implies that tW," = a; + O (1 [ 1= ) which also holds for yWT
Assume that anViT =a; + z1, ijT = b; + 292, 21, 22 are random vector with the elements follow

the normal distribution NV (n, 1/d,, ), then,

Var [mmTijT] = Var [aib} +aiz] +21b] +212)
1 1 1 n n o n (n+1)
—d, 4 2dy ety = )
A T T

Thus we have mWTW]y = ale + 0 (f)
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D Further Discussion on the Vertical Thinking Strategy

D.1 Information Fusion

In our symbolic dataset task, as mentioned in Section 3, the first layer facilitates the fusion of token
information at odd and even positions. We find that positional encoding plays a crucial role in the
features of the first layer of attention. Fig. 9(a)(b) illustrates a comparison between the original attention
mechanism and the positional attention mechanism calculated with eq. 9. As shown, there is minimal
difference between the two approaches.

®

AD(XP%) = softmax <maSk(XPOSquXPOS7T)> :

Vi

(a) A(O) (thteros) (b) A(O) (Xpos)

Figure 9: A comparison between the original attention (a) and the positional attention (b) of the first Transformer
blOCk, where tht+pos = tht + Xpos'

D.2 Detailed Matching Matrix

In Section 3, for simplicity of analysis, we ignored the impact of the feedforward layer. Here, we define a
detailed version of the matching matrix as follows:

A (X) = fOX)w e T O (x woe©)) k) TT (10)
(X)) = fOrO (X )ywre w7 [f(l) o fO(XWre W) T T. an

As shown in Fig. 10, the detailed matching matrices still maintain the diagonal element property in
most cases, even for the out-of-distribution tokens.

D.3 Independence of Buffers

To verify the independence between buffers, we computed and visualized the cosine similarity between
row vectors of different buffers (W”O(O), W”O(l), Wvo@ and T ). As shown in Fig. 11, apart from
exhibiting a certain similarity within itself (so-called condense phenomenon(Luo et al., 2021)), each
buffer remains nearly orthogonal to the others.

D.4 Weight Construction Method for Multi-Step Reasoning Networks

In Section 3, we mentioned that by setting the weights in the following manner, we can enable an L-layer
Transformer model to possess (L — 1)-step reasoning capability.

w0 — pwa) — I, wal) — V[/*vo(lfl)fr7 1>2, (12)
[lseq /2]

W) — Z inp;i_h wkO — o0, T | > 1, (13)
i=1
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tokenggp tokengop

tokenrp tokenip

tokenggp tokenggp
(@) R0 (Xege) (b) A (Xege)

Figure 10: (a) Heatmap of h (Xtg¢) and h2 (Xg¢). The diagonal elements exhibit the largest values, confirming
the matching operation.

cosine similarity

1.00

W vo(0) 0.75
0.50

W vo(1) 0.25
0.00

Wvo(2) -0.25
—-0.50

—0.75

-1.00

WO pue) () I

Figure 11: The cosine similarity between row vectors of different buffers (W v°(0), Wvo(h) Wwvo(2) and I).

where { W”O(l)}f: ; are random matrices and the projection weight WP = WvolL), Tyyremb, T,

The specific construction method is as follows: To ensure that each buffer in the model has adequate
robustness against interference, we set d,,, = dy = dj, = d, = 10000. The feedforward layers are
assigned zero weights so that the residual connection dominates. Since all the weight matrices we use
are untrained random matrices, the layer normalization will have no effect. Fig. 12 shows the multi-step
reasoning ability of an 8-layer Transformer. We tested natural order, reverse order, random order sentences,
and sentences with inserted irrelevant tokens (i.e., token [20]), and the model was able to output the
correct answer [8] in all cases. Each sentence begins with token [20] to prevent .A[()l’)o from always
equaling 1, which could affect the buffer.
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Figure 12: The test results for the 8-layer Transformer we constructed. The gray lines represent attention values that
do not affect the final outcome. The width of all lines is positively correlated with the attention weights.
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E Details for RMBA Experiment

This section provides supplementary details on the experimental setup for the RMBA experiment. We
use a 3-layer single-head Transformer with d, = dj, = d,, = 64 and d,;, = 400. The training set consists
of 30,000 2-step reasoning chains. We trained the model for 200 epochs in total. In this setting, the
Transformers have poor generation ability even in the in-distribution test dataset.

We replace W2¢() and WvoU) with Wak() 4 o) Z(=1) and Wel) 4 30 Z() | respectively, where
o and B are learnable parameters, and {Z()}% | is a set of random matrix following N(0,1/d,,).
Therefore, 6 extra learnable parameters are added to this 3-layer single-head model in total. Fig. 13 shows
the loss of the Transformer under different settings. Fig. 14 shows the changes of the learnable parameters
a®) and SO during training.
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Figure 13: The impact of different learnable parameters’ initial values, o(*) and (), on the model’s reasoning
ability. The solid lines represent the training loss, while the dashed lines denote the test loss. Each experiment was
conducted with 5 random seeds.

(a) Layer 0 (b) Layer 1 (c) Layer 2

Figure 14: Changes of the learnable parameters o{") and 3(") during training. The solid lines represent the ("),
while the dashed lines denote the 5("). Each experiment was conducted with 5 random seeds.

We further tested the performance of the three algorithms under different hyperparameter configurations.

We investigated the effects of weight decay, learning rate, and hidden dimension on training. For the
RMBA and IMBA algorithms, we set ai(Q: l(rfl) =0.01. As shown in Fig. 15, under various settings, the

RMBA algorithm consistently facilitated the model’s ability to generalize.
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Figure 15: A comparison of the training results for RMBA, IMBA, and the Baseline model under different
hyperparameters is presented. We investigated learning rates ranging from 2e-5 to le-4 and weight decay values
from 0.01 to 1. We considered four configurations of the hidden space dimension. For each hyperparameter setting,
we conducted experiments using 3 different random seeds, totaling 720 experiments.
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Dataset Example Result
Statement:
Stella's husband, Albertus, surprised her with tickets to a football game for their anniversary. Albertus R
rushed to the hospital to find out that his wife had already given birth to a boy and had named him
Pleasant. Frank told a secret to her sister, Blanche. Blanche passed it along to her brother, Pleasant. aumf
Pleasant took his Aunt Frank out for her favorile meal. Barnelt is Frank’s older brother. He has never z
Clutrr liked any of her boyfriends. Blanche and her aunt, Frank, went to the deli. They got half a pound of 2 o
corned beef and two pounds of salami. Gina asked her daughter, Frank, if she had fun at school that *
day. Frank answered that she and her sister, Frank, had lots of fun together. Albertus went to the game
with his sister Frank. Albertus took his daughter Gertie to the park that afternoon to play. Pleasant’s 2onr
wife, Celestia, surprised him on his birthday. He couldn’t believe she pulled it off. Florence and her + + + +
son's wife, Celestia, flew first class to see the concert. Epoch
Query: Blanche is who of Stella
Answer: daughter
=T
Statement: | _ |~
Cow sees mouse. Cow likes tiger. Bear is cold. Cow is big. If X visits bald eagle and X is kind then X is b —
RuleTaker nice. )
Query: AT
Cow sees bear?
Answer: False | r/
v 0 ¥ g
Epoch
amw, —
Story: 3
The object labeled Y is positioned to the left of the object labeled G. Z is at the bottom of B. B is above K | e
with a small gap between them. N is at the 9 o'clock position relative to Z. F is to the left of K and is on 7 ,"’ Wil
StepGame the same horizontal plane. Y presents right to N. 5 aen T -
Question: * h
What is the relation of the agent Y to the agent B? amp
Label: |
Below e T B T O s
Epoch
N SN o
Fact: N
Cansider the following premises. exists x15: R15(x15) — U1(x15). forall x15: Q15(x15) — Q10{x15). st
z forall x15: "P15(x15) or R15(x15). forall x15: P15(x15) or Q15(x15). forall x15: Q(x15). forall x15: H
Logiclnference Q10(x15) — U1(x15). Jep
Query: o -
Can we infer exists x15: U1(x15) and Q(x15) from them?
Answer: yes =r
T 3
Epoch
0% - ——
Statement: e
For all x12, x12 will go running. For all x12, x12 is a police officer. There is at least one x12 for which if A
LogicAsker g\i:«:re a scientist, then x12 is not a police officer. ; e 7/
Can we infer the following from them? Answer yes or no: There is at least one x12 for which x12 is not a
scientist e o S
Answer: yes — Grmanes
T 3 0 T
Epoch
Fact:
The wolf is tired. The wolf is dull. The wolf is rough. The wolf needs the dog. The bear sees the rabbit. -
The bear is fierce. The bear is awful. The dog is kind. The dog is smart. The dog is round. The rabbit is
cute. The rabbit is lovely. The rabbit is furry. Kind animals are cute. If something is dull then it visits the bl
dog. If something visits the dog then it is slow. If something is tired and dull then it is rough. If something = %
PararulePlus is cute and lovely then it is adorable. If something is fierce and awful then it is obese. If something is H ’
rough then it is lazy. All lazy animals are sleepy. If something is cute then it is lovely. All lovely animals e
are furry. If something is obese then it is strong. All strong animals are heavy. If something is adorable ont
then it is beautiful. All beautiful animals are small. All slow animals are big. -
Query: L
The bear is nat heavy ‘ * epoen
Answer: false
Fact: o [T
Every slerpus is transparent. Sterpuses are brimpuses. Every sterpus is a lorpus. Brimpuses are L
melodic. Brimpuses are zumpuses. Each brimpus is a shumpus. Every shumpus is not fruity. Lorpuses f— \ |
PrOntoQA are moderate. Gorpuses are metallic. Vumpuses are not melodic. Gorpuses are lempuses. Faeis a ,
gorpus. Fae is a sterpus. ¥ mp |
Query: b
Fae is not melodic. | — wm
stnf eredd — Gmaanen

Answer: false
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Figure 16: Examples from each dataset, along with their training curves.



F Details for Horizontal Thinking Strategy

We trained a 2-layer Transformer model and investigated its ability to perform multi-step reasoning with
horizontal thinking. Specifically, we trained the Transformer model on 20,000 samples of length 13, each
labeled with the result of a one-step reasoning process.

As shown in Fig. 17, when we fed the model’s output back into the model, it was able to generate the
next step’s reasoning result, even though it had never been exposed to sentences longer than length 13
during training.

Output seq
Layer 2

Layer 1

Layer 0
Input seq

Output seq
Layer 2

Layer 1

20—

Layer O
Input seq 34 56 83 64 47 34 70 47 56 83 63 70 34

Output seq 34 34

Layer 2 Q O

Layerl ©° O 0]

Layer0 © @ @ o
Input seq 34 56 83 64 47 34 70 47 56 83 63 70 34 56 83

(c) 3rd-step reasoning

Figure 17: An illustration of the process of performing 3-step reasoning using a 2-layer Transformer model with
CoT. The width of the connections in the diagram is based on the attention weights.
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G Matching Score and Kernel Score for Real World LLMs

In this section, we calculate the matching score and kernel score of the large language model Phi-3(Abdin
et al., 2024).

We focus on whether W° and W ?* function as the information buffer and the information extractor,
respectively. To simplify our analysis, we temporarily disregard the effects of the feedforward layers.
Following the method described in the main text, we compute Ker(:l2) = Wwak(l)) pyrvo(l2),T gand observe
whether it exhibits a dominant diagonal characteristic. For multi-head models, the above equation is
modified as:

Ker(hl2) — (Z Wq(h,h)Wk:(ll,h),T) wvoll2), T (14)
h

We define the Kernel Score (KS) as
KS(Ker1:2)) = Trace (o (Ker'12))) /d,,, (15)

which measures the ability of layer /; in the model to extract information cached at layer l. As shown
in Fig. 18(a), when l; > [9, the kernel score is nearly zero, which aligns with the logical sequence of
information processing. When [ < o, the kernel score decreases as (lo — [1) increases, indicating that
the model tends to extract the most recently acquired information for further processing. In Fig. 18(b), we
plot o(Ker(!/2)) and highlight the regions where the Kernel Score> 0.3.

To further verify that the diagonal structure of Ker("+2) arises from the alignment of model weights
rather than the intrinsic diagonal structure of ), Wl Wk(h)T and Weel2).T | we conducted a
small experiment, as illustrated in Fig. 18(d). In this experiment, we assume that both matrices A and B
are noise-added identity matrices, where the noise scale is denoted by a. We then compute the kernel
scores of A, B, and their product C' = AB. The results show that when max(KS(A),KS(B)) < 0.3, the
Kernel score of the product, KS(C'), is less than 0.025. However, as shown in Fig. 18(c), we observe that
for many heads, even when max(KS(>", W WkER).T) KS(WvoT)) < 0.3, the Ker(!12) still has a
large kernel score. This indicates that the alignment of model weights is the key factor driving the diagonal
structure of Ker("-2)_ In Fig. 18(f), we present an example where both >on walh) Wk(luh) T and
Wvell): T gppear relatively disordered individually, but their product exhibits a clear diagonal structure.

Another straightforward method is to directly set the diagonal elements of ) -, walh) k(i) T

and Wv°(2):T to zero, and then calculate the kernel score based on the resulting K~er(l1’l2). Fig. 18(e)
illustrates this result, showing that it is approximately the same as that in Fig. 18(a).

Moreover, without loss of generality, we consider the case that includes LayerNorm(LLN) and feed-
forward(FNN) layers. We compute the matching score for each head in each layer, with the specific

calculation formula as follows:

X = LN, P (x) W=D Tyre-1.T (16)

xvol = xv° 4 FNNC-D (NG (X)), (17

XM = LNy (X YWD, as

x/ = LN (X) + ENNCD NG (NG D (x0)), (19)

xh) — xIyyah) (20)

matching matrix: h(-" (X)) = X 9(M) xvok(h).T, (21)

We visualized the matching score of each head in each layer (Fig. 18(b)) and found that the matching
scores were highest in layers 5 to 20. This aligns with the conclusion mentioned in (Dutta et al., 2024),
namely that the reasoning layers of large language models generally appear in the middle portion.

To further validate that Phi-3 might employ a buffer mechanism, we computed the pairwise cosine
similarity of the matrices {W ()} (each matrix is flattened as a long vector). The results indicate that
these matrices are nearly orthogonal to each other, suggesting that they can be treated as independent
buffers.

24



—
Q
N—"
)
O
N—"

0 05
0.8
5 0.7 0.4
<]
= 10 0.6
= 03
=] [ ]
0.5 -
315 " g
2 1 0.4 8
- 0.2
220 0.3
5
25 02 0.1
0.1
30
0 10 20 30 0.0

Layer Index of WV°

—~
(@)
~

°
Ll —— A=/+aN(0,0.1)
~ B=1/+aN(0,0.1)
m C=AB
< 0.8
- g

o

©
~ 50.6
© o
2 50.4
o 4
o

U 0.2

 m

.
<
S

S =9 0.0

3 = 0 5

2= a
@

5 - (e)

8 g 0
- 0.8
o 5
] 0.7
QL 210 0.6
: R os
n al5 .
: 2 e 04
o %20 n 03
I K
B 2 02
] 0.1
o 30
o 0 10 20 EC
B

Layer Index of W*©

01 2 3 456 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Layer Index of WV

(f) (g ) cosine similarity of T (%)

Wak(4) Wvo12) W ak(14) prvo(12),T

Figure 18: The calculation results of the kernel score and matching score for the Phi-3 model. (a) Visualization
of J(Ker(ll’l"’)). (b) Visualization of the matching score calculations for each head in each layer, indicating that
reasoning is concentrated in the middle layers of the model. (c) Visualization of the kernel matrix between layers,
where the subgraphs enclosed in red boxes correspond to KS(Ker) > 0.3 and the subgraphs enclosed in darkred
boxes correspond to KS(Ker) > 0.3 but max(KS(>_, Wam WM. T) KS(WvoT)) < 0.3. (d) The kernel score
of a noise-added identity matrix(A and B) and the kernel score of the product of two noise-added identity matrices(C).
It can be observed that for two unrelated matrices, when their individual kernel scores are less than 0.3, the kernel
score of their product is less than 0.025. (e) The kernel score obtained after setting the diagonal elements of
S, WIWWER.T and WooT to zero. (f) Visualization of the Y, W14 WHEALR.T and the Wvo(2)T in the
Phi-3 model, along with their inner product. Despite their weak diagonal structure individually, their inner product
exhibits a clear diagonal structure. (g) Cosine similarity of flattened W*°() and Wvo(2) [ 1, € {0,---,31}.
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Except for the phi-3 large model, the above definitions of the multi-head matching score and kernel
score are equally applicable to other models that do not employ group query attention. The corresponding
experimental results are shown in Fig. 19.

0.0

h

25 50 75 10.0

(a) GPT2

(e) Qwen1.5-7B

]

5

10

15

30

0 10 20 30
(b) Llama2-7B

0

5

10 ="

15 L3

20 'a

25 L

30

35 !
0 10 20 30

Figure 19: Weight alignment phenomenon for real-world LLM:s.
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H Causal Intervention

This section presents causal intervention experiments conducted to verify that the model uses a buffer
mechanism when performing symbolic multi-step reasoning tasks. We assume readers are familiar with
the content of Section 3. The causal intervention experiments were conducted using a 3-layer Transformer
model trained as described in Section 5.

First, we identified critical tokens and logical circuits by observing output changes when masking
specific attention or residual paths. Fig. 20(left) illustrates the logical circuit of the 3-layer Transformer per-
forming the symbolic 2-step reasoning task. Subsequently, we conducted causal intervention experiments
on the information stored in each token.

[ [bI WO VO 4 []WVOD 4 [a] WO VO 4 [H]WVOD) 4 [a] ]
Layer 3 E]
| bW @+ [c] | | [l W@ Vo 4 WO 4[] | | [x] W@ VO 4[]0 4 [a] |
Layer 2 D D D

enforce attn pattern
) Y
[([alw™@+[b] | [[61W"°@+[c] | =W+ [b]

Layer 1 D D D D D
attn residual

Layer 0 a b [ @ @ E] E] a' b b'| |c' @ @ E] E]

Position 1 2 3 4 5 6 7 8 13 T

Intervention

Figure 20: Logical circuit for 2-step reasoning (left) and illustration of causal intervention(right). We achieve the
goal of intervening in information stored in a specific buffer by modifying the input sequence and enforcing the
same attention pattern as before. The figure illustrates how the information [a] stored in the final token’s buffer
W@ Wwve() in layer 2 can be changed to [x].

Unlike prior works where causal intervention replaced all information within a token with alternative
information(Feng and Steinhardt, 2023; Meng et al., 2022; Vig et al., 2020; Wang et al., 2024a), we refined
the perturbation scope to target a specific buffer within a token. Specifically, we individually replaced the
information in each buffer of critical tokens with alternative information to observe the model’s output.
For example, as shown in Fig. 20(right), suppose we want to change the information [a] stored in the
final token’s buffer W) Wv°(1) in layer 2 to [x]. This can be achieved by simply modifying the

input sentence [a’J[b’1[b’1[c’1[allbl[bllc]...[alto [a’]1[b’1[b’1[c’1[x1[bI[bIlc]. . .[a],
(1)

and enforcing Attn;; 5

tokens.

The results reveal that, in layer [, the information stored in buffer W *°(—1) of the final token is crucial.
Modifying information in other buffers does not affect the model’s output. Combined with the observation
in Appendix D that the cosine similarities between W0 Wve(l) Wve() T are nearly zero, we can
confidently assert that the model performs reasoning by leveraging different buffers. This experiment also
rules out the possibility of the model only using an overwrite mechanism to perform reasoning.

same as before. Fig. 21 shows the intervention results for all buffers of all critical
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Position Buffer Intervened Info Method Output

E— — — Input [a][b][b][c'][a][b][b][c]...[a] [c]
Layerl Token5 Wre©) [a] — [x] Input [a'][b'][b'][c"][x][b][b][c]...[a] Random
Layerl Token5 I [b] — [b'] Input [a"][b'][b"][c'][a][b'][b][c]...[a] [c']
Layerl Token8 WO [b] — [b'] Input [a'][b'][b'][c'][a][b][b"][c]...[a] Random
Layerl Token8 I [c] — [x] Input [a'][b'][b'][c |[a][b][b][x]--.[a] [x]
Layer2 Token8 Wre© [b] — [b1] Input [a'][b'][b'][c"][a][b][b'][c]...[a] Random
Layer2 Token8 I [e] = [x] Input [a'][b'][b'][c'][a][b][b][x]...[a] [x]
Layer2 Tokenl3 — WOW() [a] = [x] In:rlllfto[r?:g[Ik:gt[rkl)(vl])[[i:]][)s(z]tii[gg[E(J:(]e.f.c.)[r?’ [c]
Layer2 Tokenl3 we) [b] — [b'] Input [a'][b'][b'][c'][a][b'][b][c]...[a] [c']
Layer2 Tokenl3 wreth) [b] — [x] Input [a'][b'][b'][c'[a][x][b][c]...[a] Random

Input [a'[[b'][b'][c'][a][b][b][c]...[x],
Layer2 Tokenl3 I [a] = [x] enforce AttnVj13;) same as before [c]
Layer3 Tokenl3  WOW® [b] — [x] T e Eiiii’]»f“? PO Rt [c]
Layer3 Token13 W@ [c] — [x] Input [a'][b][b'][¢'][a][b][b][x]...[a] [x]
i e ol OEOSNGS
Layerd Tokenl3 W™ (b= [ ooree Attt e e beiore. 1
Layer3 Tokenl3 I [a] — [x] Input [a][b][b'][c'][a][b][b][c]...[x], [c]

enforce AttnV)(13: same as before

Figure 21: Causal Intervention Experiment. We performed interventions on the information stored in every buffer
of every critical token individually. Here, [x] represents a token that does not appear in the original input. For the
final token, only modifying the buffer W*°(:~1) in layer [ affects the final output. In this experiment, the tokens in
the original sentence are selected from the range [20, 40], while token [x] traverses the range [40, 100]. Attnﬁé:]

refers to the attention score corresponding to the last token at layer /. For the original input, we have Atnl) =1

(13,6]
and Attnfig g1 = 1. Instances labeled as “Random"” indicate that the output varies erratically as [x] changes. In all

other cases, the probability of the model output deviating from the value presented in the table is less than le-15.
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4-step reasoning (Correct: [r]) 3-step reasoning (Correct: [i]) 2-step reasoning (Correct: [e])
Claude3.5-  Clauld3.5- Claude3.5-  Clauld3.5- Claude3.5-  Clauld3.5-
ChatGPT4 ChatGPT4o0 haiku- sonnet- ChatGPT4 ChatGPT4o0 haiku- sonnet- ChatGPT4 ChatGPT4o haiku- sonnet-
20241022 20241022 20241022 20241022 20241022 20241022
a i a n a a a e a e e e
a i a e a n a a e a a e
a a a e € € a a a n a €
a a a a a a € n € a € €
a T T e a a r e € e a €
a a a a e i e r e e e e
a a a i a e a a a e e e
a a a w a a a a € a a €
o a a w a a a a € a a €
a a a r a o a e e P a €
a a a e a a a e a e a €
a a a i a a a a a a e e
a a a e a a € a a a a €
a i n w a e a i a e a e
a a a o a a a e € a a €
a a a T a a € a € a a €
a a a a € € a a a e a €
a a a e € € a a a e a €
a a € e a n a a a a € €
a a a a a o a n € a a €
a a n e a a a a € e a €
a a a T a a a n a a a €
a a a a a a a a € a a €
a a a a € a a a a € a €
a € a = a n a a € = a €

Figure 22: Detailed interaction results with large models. For each type of reasoning task, we tested each large
model 25 times. The versions of Claude are Claude 3.5-haiku-20241022 and Claude 3.5-sonnet-20241022.
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