
Under review as submission to TMLR

Learning Interpretable Models Using an Oracle

Anonymous authors
Paper under double-blind review

Abstract

We look at a specific aspect of model interpretability: models often need to be constrained
in size for them to be considered interpretable, e.g., a decision tree of depth 5 is easier
to interpret than one of depth 50. But smaller models also tend to have high bias. This
suggests a trade-off between interpretability and accuracy. Our work addresses this by: (a)
showing that learning a training distribution can often increase accuracy of small models,
and therefore may be used as a strategy to compensate for small sizes, and (b) providing a
model-agnostic algorithm to learn such training distributions. We also present a surprising
artifact: the learned training distribution may be different from the test distribution.

We pose the distribution learning problem as one of optimizing parameters for an Infinite
Beta Mixture Model based on a Dirichlet Process, so that the held-out accuracy of a model
trained on a sample from this distribution is maximized. To make computation tractable, we
project the training data onto one dimension: prediction uncertainty scores as provided by
a highly accurate oracle model. A Bayesian Optimizer is used for learning the parameters.

Empirical results using multiple real world datasets, various oracles and interpretable models
with different notions of model sizes, are presented. We observe significant relative improve-
ments in the F1-score in most cases, occasionally seeing improvements greater than 100%
over baselines.

Additionally we show that the proposed algorithm provides the following benefits: (a) its a
framework which allows for flexibility in implementation, (b) it can be used across feature
spaces, e.g., we show that the the text classification accuracy of a Decision Tree using
character n-grams improves when using a Gated Recurrent Unit as an oracle, which uses
a sequence of characters as its input, (c) it can be used to train models that have a non-
differentiable training loss, e.g., Decision Trees, and (d) reasonable defaults exist for most
parameters of the algorithm, which makes it convenient to use.

1 Introduction

In recent years, Machine Learning (ML) models have become increasingly pervasive in various real world
systems. In many of these applications, such as movie and product recommendations, it is sufficient that
the ML model is accurate. However, there is a growing emphasis on models to be understandable as well,
especially in domains where the cost of being wrong is prohibitively high, e.g., medicine and healthcare
(Caruana et al., 2015; Ustun & Rudin, 2016; J. Wang et al., 2022), defence applications (Gunning, 2016),
law enforcement (Angwin et al., 2016; Larson et al., 2016) and banking (Castellanos & Nash, 2018).

This requirement is met by either (a) constructing models that are inherently interpretable, such as decision
trees (Breiman et al., 1984; Quinlan, 1993; 2004; Hu et al., 2019) or decision sets (Lakkaraju et al., 2016), or
(b) by allowing for post-hoc interpretability via model explanations, which may be simple models themselves,
e.g., LIME (Ribeiro et al., 2016) or SHAP (Ribeiro et al., 2018). In either case, it would seem that model
size plays a role in interpretability. Intuitively, a linear model with 10 terms, against one with 100 terms, or
a decision tree (DT) of depth = 5 as opposed to one of depth = 50, is easier to parse by humans. This idea
is supported by the following research:
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• User studies indicate that small model size is one of a few important factors that makes a model
interpretable: Lage et al. (2019) show in the context of decision sets that small model sizes, in
conjunction with other properties, aid interpretability; Poursabzi-Sangdeh et al. (2021) find that
smaller model sizes aid in certain tasks (for humans) where performance depends on understanding
the workings of a model; Feldman (2000) notes that longer Boolean formulae are harder to learn by
humans.
While model size is important, Kulesza et al. (2013) caution against focusing on size in isolation,
arguing smaller model sizes can be detrimental to understanding if they are too simplistic. Freitas
(2014) highlights this aspect as well. Hence, size reductions that come at the cost of arbitrary
reductions in accuracy are not helpful.

• This role of model size is variously acknowledged in the design and analysis of interpretable models:
Herman (2017) refers to this as low explanation complexity, this is seen as important for simulability
- ease of simulating the reasoning process of a model by a human (Lipton, 2018; Murdoch et al.,
2019) - and is often listed as a desirable property in interpretable model representations. Some
examples of the latter are small trees for cluster explanations (Moshkovitz et al., 2020; Laber et al.,
2021), conciseness of decision sets in terms of number of rules and predicates per rule (Lakkaraju
et al., 2016) and number of terms with non-zero coefficients in linear models (Ribeiro et al., 2016;
Tibshirani, 1996).

Different algorithms constrain model size in a manner specific to their formulation, e.g., sparsity based loss
for linear models and early stopping in decision trees. In this work we propose a model-agnostic1 technique
to address this ubiquitous requirement of constraining model sizes while minimally trading off accuracy. This
provides the following practical value: instead of identifying an interpretable model family that is both (a)
suited for a task in terms of representation, and (b) is sufficiently accurate for an acceptable size range, a
practitioner now needs to just pick a suitable model family; the desired accuracy for their acceptable size
range may be obtained using our technique.

Clearly the key challenge here is that to build small models one often needs to sacrifice accuracy, since size
typically is inversely proportional to bias. We show that the accuracy of small models may be improved
by learning the training distribution - thus mitigating this trade-off. This property forms the basis of our
technique, and is shown to hold for multiple model families.

The parameters of the training distribution are learned using a form of adaptive sampling; they are iteratively
modified to maximize held-out accuracy. In general, the number of parameters depends on the dimensionality
of the data, which renders a naive execution of the strategy computationally expensive. We avoid this cost
by representing the data using a one-dimensional projection: each training instance is represented by the
uncertainty in its label prediction by an oracle model, a powerful probabilistic classifier2. The univariate
space makes it feasible to define a rich search space of distributions using a Dirichlet Process with Beta
mixture components. At a given iteration, the current distribution is used to sample training instances
(with replacement) to create a new training dataset, which is then used to train a model of a given size. No
synthetic instances are generated. Optimization over the space of distribution parameters is carried out by
a Bayeisan Optimizer.

Contributions. These are the key contributions of this work:

1. We propose an algorithm3 to find a training distribution that is optimal in terms of achieving high
test accuracy, for a provided model family and model size. This algorithm is extensible in certain
ways and therefore, may be seen as a framework.

1We adopt the common usage of the term (Ribeiro et al., 2016; Lundberg & Lee, 2017; Chen et al., 2018) to imply our
technique is agnostic to model families.

2We’ll often distinguish these two models using the terms (a) interpretable model - the size-constrained model that we are
interested in, and (b) oracle - the model we use to obtain uncertainty scores. The oracle is not size-constrained and can belong
to any model family; the only requirements are it should provide probabilistic scores for its predictions and it should be highly
accurate.

3NOTE: We have made this available as Python package today, but we don’t provide a link to preserve anonymity.
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2. Based on extensive and rigorous experiments we report the counter-intuitive observation that in
general, the optimal training distribution is not the same as the test distribution, especially at small
model sizes4.

Additionally, the following properties makes the proposed algorithm novel and practically valuable:

1. It is flexible in various ways: (a) it is model-agnostic in that the interpretable model and the oracle
may belong to arbitrary model families, e.g., these can be Linear Probability Model and a Random
Forest respectively, or even a decision tree and a Gated Recurrent Network (GRU), (b) it can be
used with non-differentiable training loss functions, and (c) it admits a flexible notion
of model size, e.g., scalars such as depth of a decision tree or number of terms with non-zero
coefficients in a linear model, and vectors such as both the number of trees and maximum depth per
tree in a GBM model.

2. Although the algorithm has multiple hyperparameters that may be specified by a user, in practice
only one hyperparameter needs to be set - reasonably good defaults exist for the rest.

3. The distribution is learned by solving an optimization problem that requires a fixed number of
seven optimization variables irrespective of the dimensionality of the data.

The remainder of the paper covers the algorithm and various empirical results in detail, and is structured as
follows: in Section 2, we illustrate results on a toy problem, introduce our notation, and discuss prior work.
Section 3 discusses the algorithm in detail while Section 4 presents extensive experimental validation using
real-world datasets. In Section 5 we discuss the results and their implications. Section 6 discusses directions
for future work and Section 7 concludes the paper.

2 Overview

In this section, we first illustrate our technique on a toy problem to provide intuition. Then we establish
terminology and notation, and provide a mathematical statement of the contributions. A discussion of
related work concludes this section.

2.1 Toy Problem

Figure 1 illustrates the technique on a two-dimensional two-label dataset. The dataset is shown in Figure
1(a). Figure 1(b) visualizes the generalization learned by a Gradient Boosted Model (GBM) using this dataset.
This serves as our oracle with an F1 score of = 0.84. Figure 1(c) shows what a CART (Breiman et al.,
1984) decision tree of depth = 5 learns; here F1 = 0.63. Finally, Figure 1(d) shows what a CART decision
tree of depth = 5 learns, when we supply the GBM as an oracle to our technique. There is a significant
improvement with F1 = 0.77. Visually, we observe that the boundaries in Figure 1(d) approximate the ones
learned by the oracle in Figure 1(b). We emphasize that both Figure 1(c) and (d) use the same training
algorithm, data and constraint on model size - the change in accuracy is caused solely by the difference in
their training distributions.

2.2 Terminology and Notation

We first define the notion of model size since it is critical for subsequent discussions. Model size is a model
parameter with the following properties:

1. model_size ∝ bias−1

2. The interpretability of a model decreases with increasing model size.
4This “small model effect” reaffirms the observations made in Ghose & Ravindran (2020).
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Figure 1: A demo of our technique using a GBM as an oracle. See text for explanation.

Only the first criteria above is required for using our technique. The second criteria specifies the practical
context in which this technique is useful5.

It must be noted that the notion of model size is subjective. Consider a GBM with DTs as base classifiers:
here, the depth of the individual trees, or the number of trees, or both collectively may be seen as representing
size. Even for a given notion of size, the value up to which a model is considered interpretable may be a
matter of opinion. For example, some might consider a DT with depth = 15 to be interpretable, while some
might decide depth = 10 to be the limit for interpretability. However, as long as the notion of size satisfies
the criteria above, the discussion in this paper applies.

We now introduce the notations6 used:

1. We denote a dataset, D, by a set of instance-label pairs, i.e.,
D = {(x1, y1), (x2, y2), ..., (xN , yN )}, where xi is the feature vector representing an instance and yi

is its corresponding label.
We occasionally use multisets to represent data, when we want to draw attention to repeated
instance-label pairs. Such usage is explicitly called out.

2. While we have referred earlier to the joint distribution of instances and labels, e.g., p(X, Y ) in
Equation 1, this is understood to represent the dataset that we are actually given, in the form of a
finite number of instance-label pairs.

3. We use the term original, as in original distribution or original data to denote the data that we are
given. This is in contrast with samples we generate. The distribution of test datasets or held-out
datasets is the original distribution for all models discussed in this paper.

5Another use-case for small models is for use on hardware-constrained low-powered devices, i.e., “tinyML” (Sanchez-Iborra
& Skarmeta, 2020; Gupta et al., 2017); however, this use-case is beyond the scope of analysis here.

6Some of our notation is borrowed and extended from Ghose & Ravindran (2020) - their work solves a similar problem, and
is discussed in Section 2.4, “Related Work”.
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4. Let accuracy(M, p) be the classification accuracy of model M on data represented by the joint
distribution p(X, Y ) of instances X and labels Y . The term “accuracy” is used in a generic sense to
represent prediction accuracy; depending on the application, this might be F1-score, AUC, lift, etc.
We’ll often overload this function to accept a dataset instead of a distribution, e.g., accuracy(M, D)
denotes that the accuracy on dataset D.

5. Let trainF,f (p, η) produce a model of size η (for some pre-decided notion of size) from the model
family F using a specific training algorithm f , e.g., F might represent DTs and f might be the
CART algorithm (Breiman et al., 1984), and the model size constraint might be depth = 5. p
represents the joint distribution p(X, Y ) of training instances X and labels Y . η = ∗ denotes there
are no limits placed on the model size.
Here too, we’ll overload the function to accept a dataset instead of a distribution, e.g., trainF,f (D, η)
implies dataset D is used for training.

6. The terms pdf and pmf denote probability density function and probability mass function respectively.
The term “probability distribution” may refer to either, and is made clear by the context.

2.3 Formal Statement

We now use the above terminology to rigorously state our claims. Let I and O represent specific interpretable
and oracle model families respectively, and let g and h denote their corresponding training algorithms. Then,
we claim, and empirically demonstrate, that the interpretable model trained on the sample generated by our
learned distribution is at least as accurate as one learned on the original training data, and is up to as
accurate as the oracle:

accuracy(trainI,g(p, η), p) ⪅ accuracy(trainI,g(q, η), p) ⪅ accuracy(trainO,h(p, ∗), p) (1)

p and q both denote joint distributions of X and Y . p(X, Y ) is the distribution we are provided, and all
our models use this as the test distribution. q(X, Y ) is the distribution we learn over the uncertainty scores
provided by the oracle; here, the oracle model is produced by trainO,h(p, ∗). The use of the “⪅” symbol
emphasizes these relationships are validated empirically using samples from the corresponding distributions
p and q.

Note that, typically, the train and test distributions are identical for a model, as in the first and third terms
in Equation 1. However, for the middle term, the train and test distributions, q and p respectively, differ.

We also observe that the accuracy improvements from our technique diminish with increase in model size.
In other words, Equation 1 may be deconstructed into two size-regimes: the interpretable model trained on
the new sample is more accurate than the baseline model only until a model size η∗. At sizes greater than
η∗ the model performances are equal:

accuracy(trainI,g(p, η), p) < accuracy(trainI,g(q, η), p), when η ≤ η∗ (2)
accuracy(trainI,g(p, η), p) = accuracy(trainI,g(q, η), p), when η > η∗ (3)

2.4 Related Work

We present a brief review of related work here - a detailed version appears in the Appendix (Section A.1).

While there is precedent to using different train and test distributions, such as when there is class imbalance
in the data (Japkowicz & Stephen, 2002; Chawla et al., 2002; He et al., 2008; Santhiappan et al., 2018), the
only work we are aware of that applies the principle to learn size-constrained models is Ghose & Ravindran
(2020). Their work uses a a specialized oracle, called density trees, to guide the learning phase. This work
may be seen as a non-trivial extension: an oracle from an arbitrary model family may be used for guidance
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(discussed in Section 3.1), resulting in greater flexibility and accuracy (Section 4.2.3). This also bestows an
additional benefit: the feature spaces of the these models may be different (Section 4.3.1).

Knowledge Distillation (KD), Explainable AI (XAI), Active Learning and Transfer learning also have a
notion of a teacher/oracle model. Relative to KD (Gou et al., 2021) and XAI, e.g., TREPAN (Craven &
Shavlik, 1995), Symbolic Metamodeling (Alaa & van der Schaar, 2019), LIME, SHAP, the primary difference
is that we ignore alignment/fidelity between the predictions of the oracle and the interpretable model. In
fact, the oracle’s label predictions are discarded. Also, the oracle is invoked exactly once to extract an
one-time input (uncertainty scores) for our algorithm, unlike multiple invocations for generated instances as
in LIME, SHAP or TREPAN. Essentially, the oracle plays a much more limited role here than in KD or
XAI.

We operate within the traditional supervised setting for both the oracle and the interpretrable model, and
they are presented with the same data. This differentiates us from Active Learning, where not all labels are
available and there is an acquisition cost for them, and Transfer Learning, where a model is adapted to a
different distribution/task.

Next, we look at our methodology.

3 Methodology

We describe our methodology in this section. We begin with the intuition, and then look at the algorithm
and various implementation details.

3.1 Intuition

Our intuition builds upon certain observations presented in Ghose & Ravindran (2020). There, to find an
optimal training distribution:

1. A specific form of decision trees, referred to as density trees is learned to capture neighborhood
information in the input space.

2. A node sampling distribution, defined over both internal nodes and leaves, is iteratively learned in
the following manner: nodes are sampled based on the current distribution, and then data is sampled
from within them. A classifier trained on this data is evaluated on a held-out set. This accuracy is
used to modify the node sampling distribution, so it leads to greater accuracy in the next iteration.
Thus, while the structure of the density trees are fixed, the flexibility of sampling from different
regions of the input space is instrumented using various learned distributions that are defined over
these trees.

It is shown that the learned distribution uses nodes from different depths. Since different depths represent
varying levels of information about the location of class boundaries - information increases from the root
towards the leaves - this indicates that a sampling distribution using this information necessarily needs to be
learned as opposed to using simple heuristics like only sampling near class boundaries. This finding informs
the key intuition behind this work: the class boundary information encoded in tree nodes is replaced by the
much more general notion of prediction uncertainty, and we now learn a distribution over uncertainty scores
instead, as provided by an oracle. An empirical comparison with density tree based sampling (Section 4.2)
shows that, in addition to being more general, this formulation also performs better.

Algorithm 1 presents our intuition at a high level.

The training, validation and test data splits, denoted as Dtrain, Dval, Dtest respectively, are provided as
input. The desired size of the interpretable model η, the training algorithm trainI,g() and the oracle MO

are also specified. Finally, the optimization budget, in terms of number of iterations, is specified as T . The
training distribution is parameterized by Φ, and our goal is to find the best parameters, denoted as Φ∗, in
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Algorithm 1: Algorithm sketch
Data: Data splits Dtrain, Dval, Dtest, model size η, trainI,g(), oracle MO, iterations T
Result: Optimal distribution parameters Φ∗, test set accuracy stest at Φ∗, and interpretable model M∗

at Φ∗

1 for t← 1 to T do
2 Φt ← suggest(s1, ...st−1, Φ1, ..., Φt−1) // randomly initialize s1, Φ1

3 Ds ← sample training instances, where the sampling probability of (xi, yi) ∈ Dtrain is proportional
to p(uMO

(xi); Φt)
4 Mt ← trainI,g(Ds, η)
5 st ← accuracy(Mt, Dval)
6 end
7 t∗ ← arg maxt {s1, s2, ..., sT −1, sT }
8 Φ∗ ← Φt∗

9 M∗ ←Mt∗

10 stest ← accuracy(M∗, Dtest)
11 return Φ∗, stest, M∗

T iterations. Recall that the distribution is defined over prediction uncertainty values, as provided by MO.
The uncertainty score for an instance x is denoted by uMO

(x).

The optimizer is denoted as suggest(), which, at iteration t, inspects the history of parameters explored,
Φ1, ..., Φt−1, and corresponding validation accuracies, s1, ...st−1, to propose the next most promising param-
eter Φt. This is used to create a training dataset Ds by sampling instances from the provided training split
Dtrain. The probability of sampling training instance (xi, yi) is proportional to p(uMO

(xi); Φt). Model Mt of
size η is trained using the dataset Ds, and its accuracy st is calculated using the validation split Dval. Once
the optimization budget is exhausted, i.e., T iterations are complete, the model with the highest validation
accuracy M∗, the corresponding distribution parameters Φ∗ and test score stest, are returned.

The next few sections further elaborate the various steps in Algorithm 1.

3.2 Measuring Uncertainty

Our technique critically depends on the measurement of uncertainty. We denote the uncertainty of prediction
by a model M on an instance x by uM (x), where uM (x) ∈ [0, 1]. A good uncertainty metric for our application
(a) should not exclusively consider the confidence of the predicted label (b) should result in a high value
even if the model is uncertain between two labels in a multi-class problem.

The margin uncertainty (Scheffer et al., 2001) metric satisfies these criteria. This is computed as:

uM (x)← 1− (pC1 − pC2) (4)

Here, pC1 and pC2 denote the probabilities of the most confident and next most confident classes, provided
by model M for instance x. Lower differences between the top two probabilities lead to higher scores for
this metric. We calibrate (Platt, 1999) our oracles for reliable probability estimates.

See Section A.5 for a discussion on alternative uncertainty metrics.

3.3 Sampling based on Uncertainty

Since we want to learn a distribution over uncertainties, p(uM (x)) needs to have a flexible representation.
A desiderata for such a distribution is:

1. Since we want to avoid any assumptions, we want the distribution to be able to assume an arbitrary
“shape”, unlike, say using a normal distribution that is unimodal, and the mode is centered.
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2. It should be defined over the bounded interval [0, 1] since uM (x) ∈ [0, 1].

3. A fixed set of parameters is preferred over a conditional parameter space. An example of a distribu-
tion with a conditional parameter space is the popular Gaussian Mixture Model (GMM), where the
number of parameters is determined by the number of components.
We list this requirement since the parameters of this distribution are to be learned via optimization,
and there are many more optimizers that can handle fixed than conditional parameter spaces. This
affords us the flexibility of exploring a much wider variety of optimizers. Further discussed in Section
3.5.

The Infinite Beta Mixture Model (IBMM) satisfies the above requirements. The IBMM is a Dirichlet Process
(DP) mixture model with Beta components. It may be seen as a variation of the Infinite Gaussian Mixture
Model (Rasmussen, 1999) and an example of prior use may be found in Ghose & Ravindran (2020).

A mixture model allows us to model an arbitrary distribution, satisfying our first requirement. Using Beta
components enables support for a bounded interval - this satisfies our second requirement. As a point of note,
a Beta mixture model can approximate any distribution in [0, 1] arbitrarily well given a sufficient number of
components (Diaconis & Ylvisaker, 1983). The DP is described by the concentration parameter α ∈ R>0,
which identifies the components that have at least one point assigned to them7. The shape parameters of
all the Beta components are drawn from shared prior distributions; the latter are also assumed to be Beta
distributions. Use of a DP, with shared priors, gives us a fixed parameter space; this satisfies our third
requirement.

In our representation, this is how we sample Ns points, from a dataset D, using an oracle MO:

1. Determine partitioning over the Ns points induced by the DP . We use Blackwell-MacQueen
sampling (Blackwell & MacQueen, 1973) for this. Let’s assume this step produces k partitions
{c1, c2, ..., ck} and quantities ni ∈ N where

∑k
i=1 ni = N . Here, ni denotes the number of points

that belong to partition ci.

2. We determine the Beta(Ai, Bi) component for each ci. We assume the priors for the Beta parameters
are also represented by Beta distributions, i.e., Ai ∼ scale×Beta(a, b) and Bi ∼ scale×Beta(a′, b′).
Since samples from the standard Beta are within [0, 1], we use a parameter scale as a common
multiplier to obtain a wide range of Ai, Bi.
Thus we have exactly two prior Beta distributions associated with our IBMM. Here, a, b, a′, b′ are
positive reals.

3. Repeat for each ci: for each instance-label pair (xj , yj) in our training dataset, we calculate the
oracle uncertainty score, uMO

(xj). We then calculate pj = Beta(uMO
(xj)|Ai, Bi). We scale the

probabilities across instances to sum to 1. These quantities are used as sampling probabilities for
various (xj , yj), and ni points are sampled with replacement based on them.

The parameters for the IBMM are collectively denoted by Ψ = {α, a, b, a′, b′}. The best values for Ψ are
learned via an optimization process detailed in Section 3.4.

The above procedure is summarized in Algorithm 2. Note that temp and D′ are multisets in the algorithm,
since we sample with replacement. Accordingly, line 13 uses the multiset sum, ⊎: if (xi, yi) occurs m times
in D′ and n times within temp, then D′ ← D′ ⊎ temp has m + n occurrences of (xi, yi).

3.4 Learning Interpretable Models using an Oracle

We are now prepared to revisit the overall algorithm. We have already discussed the parameters Ψ for the
IBMM. We now introduce two additional parameters:

7In theory, the DP has an infinite number of components, with only a finite number of them actually representing instances
in the data.
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Algorithm 2: Sample based on uncertainties and Ψ
Data: Sample size Ns, oracle MO, dataset D = {(x1, y1), (x2, y2), ..., (xN , yN )}, IBMM parameters

Ψ = {α, a, b, a′, b′}
Result: Sample D′, where |D′| = Ns

1 D′ = {} // assumed to be a multiset

2 {(c1, n1), (c2, n2), ..., (ck, nk)} ← partition Ns using the DP // Here
∑k

i=1 ni = Ns.
3 for i← 1 to k do
4 Ai ∼ scale×Beta(a, b)
5 Bi ∼ scale×Beta(a′, b′)
6 for j ← 1 to N do
7 pj ← Beta(uMO

(xj); Ai, Bi)
8 end
9 for j ← 1 to N do

10 p′
j ← c · pj , where c = 1/

∑N
j=1 pj // normalize the probabilities

11 end
12 temp← sample with replacement ni instance-label pairs based on p′

j // assumed to be a multiset

13 D′ ← D′ ⊎ temp // ⊎ is the multiset sum

14 end
15 return D′

1. po ∈ [0, 1], proportion of instance-label pairs from the original training data. This parameter serves
two purposes: (1) it acts as a “shortcut” for the optimizer to sample from the original distribution,
as opposed to determining the right Ψ to do so (2) the relationship of po and model size enables us
to conveniently study the role of the original distribution at different sizes.

2. Ns ∈ N, sample size. Since the sample size can have a significant effect on model performance, we
allow the optimizer to determine its best value. Ns is constrained to be at least as large as what is
needed for statistically significant results.

The complete set of parameters is denoted by Φ = {Ψ, Ns, po}, where the IBMM parameters are denoted by
Ψ = {α, a, b, a′, b′}.

For a given Φ, our technique creates a sample based on Algorithm 2 and the original training data (based
on po), learns an interpretable model of size η on this sample, and evaluates it on a validation set. Based on
the validation score, an optimizer modifies the parameters Φ, and repeats the process. Our stopping criteria
is an iteration budget T . Algorithm 3 lists these steps.

Some details to note in Algorithm 3:

1. We will consider the initialization to happen at t = 0, while the iterations range from 1 to T . Φ0
is set to: α = 0.1, a = 1, b = 1, a′ = 1, b′ = 1, Ns = |Dtrain|, po = 1. A model is constructed based
on Φ0 and a score s0 is recorded. (Φ0, s0) serve as the history for the iteration at t = 1. The values
for α, a, b, a′, b′ carry no significance and are arbitrary, since setting po → 1 forces sampling only
from the original distribution8. Combined with Ns = |Dtrain|, this setting mimics the baseline, i.e.,
training the interpretable model without our algorithm, thus providing the optimizer with a good
initial reference point in its search space9.

2. The optimizer is represented by the function call suggest() which takes as input all past parameter
values and validation scores. suggest() denotes a generic optimizer; not all optimizers require this
extent of historical information.

8Note that this one setting is insufficient for the optimizer to discover the irrelevance of the values for a, b, a′, b′, α given
po = 1.

9This is still not equivalent to the baseline because since models are trained in a resource constrained environment within
the optimizer - as described in Section 4.1.1.
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Algorithm 3: Learning interpretable model using oracle
Data: Dataset D, model size η, trainO,h(), trainI,g(), iterations T
Result: Optimal parameters Φ∗, test set accuracy stest at Φ∗, and interpretable model M∗ at Φ∗

1 Create splits Dtrain, Dval, Dtest from D, stratified wrt labels
2 MO ← trainO,h(Dtrain, ∗)
3 for t← 1 to T do
4 Φt ← suggest(s0, s1, ...st−1, Φ0, Φ1, ..., Φt−1) // s0, Φ0 initialized at t = 0, see text

// Note: Φt = {Ψt, Ns,t, po,t} where Ψt = {αt, at, bt, a′
t, b′

t}.
5 No ← po,t ×Ns,t

6 Nu ← Ns_t −No

7 Do ← uniformly sample, with replacement, No points from Dtrain

8 Du ← sample Nu points from Dtrain using Algorithm 2 with input (Nu, MO, Dtrain, Ψt).
9 Ds ← Do ⊎Du // Do, Du are assumed to be multisets

10 Mt ← trainI,g(Ds, η)
11 st ← accuracy(Mt, Dval)
12 end
13 t∗ ← arg maxt {s1, s2, ..., sT −1, sT }
14 Φ∗ ← Φt∗

15 M∗ ←Mt∗

16 stest ← accuracy(M∗, Dtest)
17 return Φ∗, stest, M∗

3. While the training algorithm for the oracle, trainO,h() is taken as input, a pre-constructed oracle
MO may also be used. This would eliminate the oracle training step in line 2.

4. accuracy() on the validation data, Dval, serves as both the objective and fitness function.

5. Evaluation on the test set, Dtest is done only once, in line 16, with the model that produces the best
validation score.

6. Since we sample with replacement, both temporary datasets Do and Du, procured from uniformly
sampling the original training data and sampling based on uncertainties respectively, are multisets.
Accordingly, line 9 uses the multiset sum operator ⊎ to combine them.

7. Mt is created (line 10) with limited or no hyperparameter search using simple random validation,
i.e., a stratified (by labels) random sample of size 0.2Ns,t is used as the validation set. A restricted
search is performed because often hyperparameters are correlated with model size, and setting them
to particular values would fail to produce a model of the required size η. As an example, consider
DTs: setting a high threshold for the number of instances in a node for it be split (hyperparameter
min_samples_split in scikit-learn’s (Pedregosa et al., 2011) implementation) would produce only
short trees.
We don’t use cross-validation since at small values of Ns,t, the amount of training data, i.e., ( k−1

k )Ns,t

for k-folds, may become too small to obtain a good model. For example, for 3-folds, the training
data size is 0.67Ns,t. The data shortage problem can be addressed by increasing the number of folds,
but that also increases the running time per iteration owing to the larger number of models that
now need to be trained. As a practical compromise, we perform simple validation thrice and average
the outcomes. This number is configurable, and may be decreased for models that are expensive to
train.

8. Since the validation score st (line 11) needs to be reliable, in our implementation we repeat lines
7-10 thrice and use the averaged validation score as st.

9. Class imbalance is accounted for in our implementation when training model Mt in line 10. We either
balance the data by sampling (this is the case with a Linear Probability Model), or an appropriate
cost function is used to simulate balanced classes (this is the case with DTs and GBMs).

10
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It is important to note here that Dval and Dtest are not modified by our algorithm in any way, and therefore
st and stest measure the accuracy on the original distribution. The possibility of eliminating various repeated
trials - in fitting Mt and in calculating st - is discussed in Section 6.

Algorithm 3 presents the core contribution of the paper. Importantly, we note that the following properties
make it practical to use: (a) the optimization loop has a fixed set of seven variables, irrespective of the
dimensionality of the data or the number of mixture components, (b) trainI,g() is treated as a black-box
function; not only does this make the algorithm model-agnostic, but also it allows it to work with cases
of non-differentiable losses, e.g., DTs built using CART, and (c) the Dirichlet Process is purely used for
representation, and we do not need to perform any form of inferencing (which can be expensive).

Clearly, the choice of the optimizer suggest() is crucial - we discuss this next.

3.5 Choice of Optimizer

We list below the challenges faced by our optimizer:

1. Black-box objective function: Our objective function is accuracy(), which depends on the in-
terpretable model produced by trainI,g() in Algorithm 3. Since we want our technique to be model
agnostic, nothing is assumed about the form of trainI,g(). This effectively makes our objective a
black-box function.

2. Noisy objective function: The interpretable model is trained on a sample based on the current
parameters Φt. This implies two models constructed for the same Φt may not be identical. There
might be other sources of noise intrinsic to the learning algorithm too, e.g., local search with random
initialization used for training.

3. Expensive objective function: Every evaluation of the objective function requires an inter-
pretable model to be trained, which is expensive. We want our optimizer to be conservative in its
calls to the objective function.

We use Bayesian Optimization (BO10) to implement suggest(). Such optimizers build their own model of
the response surface as a function of the optimization variables, that is refined over multiple iterations. They
optimize this surrogate objective. This strategy enables them to work with black-box objective functions,
satisfying our first requirement. BOs explicitly model variability (due to noise or lack of information)
in the response surface model, by using appropriate representations such as Gaussian Processes (GP) or
Kernel Density Estimators (KDE); this satisfies our second requirement. The evolving response surface
(over iterations) allows BOs to balance exploitation and exploration to make well-informed proposals for the
best next point to evaluate, making it sample-efficient. This satisfies our third requirement.

BO has enjoyed continued success for hyperparameter optimization (Feurer & Hutter, 2019; Turner et al.,
2021), a domain with similar optimization challenges as ours. This makes it an attractive choice over other
promising candidates such as Particle Swarm Optimization (Kennedy & Eberhart, 1995) and evolutionary
algorithms like CMA-ES (Hansen & Ostermeier, 2001; Hansen & Kern, 2004). A known limitation of BO
is its inability to handle high-dimensional spaces: Frazier (2018) and Moriconi et al. (2020) warn that BO
works well up to 20 dimensions. However, this does not affect us since we have only seven optimization
variables. See the reference Brochu et al. (2010) for further details on BO. We use BO with box constraints
- these are discussed in Section 4.1.5.

Among BO techniques, of which there are many today, e.g., Hutter et al. (2011); Bergstra et al. (2011);
Malkomes & Garnett (2018); Dai et al. (2019); Tiao et al. (2021), we use the Tree Structured Parzen Estimator
(TPE) algorithm (Bergstra et al., 2011) since it scales linearly with the number of evaluations11 and has a
popular and mature library: Hyperopt (Bergstra et al., 2013).

10We use the abbreviation BO for both Bayesian Optimization and Bayesian Optimizers; it should be clear from the context
which is intended.

11The runtime complexity of a naive BO algorithm is cubic in the number of evaluations (Shahriari et al., 2016).

11
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However, let us emphasize that any optimizer that satisfies the criteria listed at the beginning of this section
may be used to implement suggest(), and in fact, we show examples of this in Section A.8, with the optimizers
pySOT (Eriksson et al., 2019) and LIPO (Malherbe & Vayatis, 2017). We note again that the design choice
of a fixed parameter space is what enables this extensibility12 - the universal support for such spaces allows
us to explore the use of various optimizers. This also allows us to create faster and better implementations
of Algorithm 3 over time as newer optimizers become available.

3.6 Smoothing the Optimization Landscape

We conclude our discussion on algorithm design with a practical consideration: can we facilitate finding the
maxima Φ∗ in Algorithm 3?

Since BOs model the response surface of the actual objective function using a finite number of evaluations (st

in Algorithm 3), a certain degree of smoothness is assumed (Shahriari et al., 2016; Brochu et al., 2010). Here,
the optimization variables Φ influence the objective value s via this indirect chain: Φt → Ds → Mt → st

(symbols as in Algorithm 3), and for BO to work well, it is required that small changes in Φt result in small
changes in st.

However, we have noticed that an oracle might produce uncertainty score distributions that are “spiky” or
“jagged” - as an example, see the curve labelled “original” in Figure 2(a); which leads us to hypothesize
that this principle is violated in general. A spiky distribution implies that small shifts Φt + ∆Φt may lead
to sampling of instances with very different uncertainties; and since such instances may occur in regions far
from those indicated by Φt, they produce models with different class prediction behavior. This indirectly
causes a disproportionate shift in st. While, in theory, a good BO algorithm should adapt to such problem
characteristics, in practice they make the optimization problem harder, especially when the optimization
budget is small.

To address this, we “flatten” the distribution13 within [0, 1]. Our transformation is simple: we divide
the interval [0, 1] into B bins, and map approximately |Dtrain|/B uncertainty scores to each bin, while
maintaining order between the original and mapped scores. Within a bin, the mapped scores are linearly
spread across its range. This distributes the mapped scores approximately uniformly in the range [0, 1]. The
algorithm is detailed in Section A.6.

Figure 2 visualizes the process of flattening. The original and modified uncertainty distributions for the
datasets Sensorless and covtype.binary are shown in Figure 2(a) and 2(b) respectively.

While Sensorless appears to have a non-smooth distribution, and flattening here might help, this seems
redundant for covtype.binary. However, since this step is computationally cheap, we perform this for all
our experiments, saving us the effort of assessing its need. The benefits from flattening are evaluated in
Section 5.

Our transformation is invertible, which is useful in analyzing the observations from our experiments. Note
however, it is not differentiable because of the discontinuities at the bin-boundaries; we also don’t require
this property.

The transformation affects line 7 in Algorithm 2. Instead of sampling based on the actual oracle uncertainty
scores:

pj ← Beta(uMO
(xj); Ai, Bi) (5)

we sample based on the transformed uncertainty scores, u′
MO

(xj):

12TPE supports conditional parameter spaces, which would have allowed us to use a finite mixture model such as GMMs by
setting the number of mixture components as the top level optimization variable - but we deliberately ignore this feature in the
interest of extensibility.

13Distribution transformations have a long history in statistics, e.g., power transforms like the Box-Cox (Box & Cox, 1964)
and Yeo-Johnson (Yeo & Johnson, 2000) transforms. Within ML, Batch Normalization (Ioffe & Szegedy, 2015) is a popular
example of a distribution transformation applied to a loss landscape (Santurkar et al., 2018).
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(b) covtype.binary, GBM(a) Sensorless, GBM

Figure 2: Example of curve-flattening, for datasets (a) Sensorless and (b) covtype.binary. The uncer-
tainty scores shown are obtained using the GBM oracle.

pj ← Beta(u′
MO

(xj); Ai, Bi) (6)

This concludes our discussion of algorithmic details. In summary, we require seven parameters Φ =
{Ψ, Ns, po}, where Ψ = {α, a, b, a′, b′}. Hyperparameters are discussed in Section 4.1.5. Our experimen-
tal validation of the technique is discussed next.

4 Experiments

We now look at extensive evaluation of our technique. Our experiments maybe categorized into the following
types:

1. Validation, Section 4.1: this set of experiments exhibit statistically significant improvements across
multiple datasets, using different models and oracles (Section 4.1.6). Various properties of the learned
distributions are analyzed (Section 4.1.7). The relationship between model capacity and the efficacy
of our technique is also discussed (Section 4.1.9).

2. Comparisons, Section 4.2: here we compare the improvements produced by our technique with (a)
a supervised version of uncertainty sampling and (b) using density trees.

3. Additional applications, Section 4.3: fundamentally, our technique learns a sampling distribution
that leads to effective training. This can be used as a tool for the following interesting applications
- (a) different feature representations may be used across the interpretable model and the oracle,
e.g., a DT as the interpretable model with n-grams as input, and a Gated Recurrent Unit the oracle,
that operates on a sequence of tokens, (b) a minimal sample for effective learning maybe identified
using our technique and (c) a multivariate notion of model size may be used.

The section on validation experiments is the most comprehensive, empirically demonstrating various prop-
erties of our technique. A discussion of running times appears in Section A.8 of the Appendix.

4.1 Validation

To empirically validate our technique we consider different real-world datasets, on which we train Linear
Probability Models (LPM) and DTs, using Gradient Boosted Models (GBM) and Random Forests (RF) as

13
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oracles. The experimental setup is described in the following sections in terms of the metrics used, data,
models, baselines and oracles, and the optimization search space explored.

4.1.1 Metrics

We measure two quantities - improvements in model accuracy and their statistical significance:

1. To measure accuracy() as in Equation 1 or Algorithm 3, our metric of choice is the F1 (macro)
score, evaluated on Dtest. We use this since it accounts for class imbalance, e.g., it doesn’t allow
good results for a majority class to eclipse poor results for a minority class.
To measure the improvements obtained from our technique, we record the percentage relative im-
provement in the test F1 score compared to a baseline model (described later in this section):

δF1 = 100× (F1new − F1baseline)
F1baseline

(7)

Here F1new and F1baseline represent averages over five runs of Algorithm 3. In other words, if
the runs are indexed by i, and F1baseline,i and F1new,i are the test F1 scores at run i produced
by the baseline and our techniques respectively, then F1new =

∑5
i=1 F1new,i/5 and F1baseline =∑5

i=1 F1baseline,i/5.
We take an average of the scores first since F1baseline can be a small value, especially at smaller
model sizes, and being in the denominator, slight changes to it across runs can produce outsize
differences in the per-run δF1 scores.

2. To measure statistical significance of our results we use the Wilcoxon signed-rank test, where the
paired set of samples are F1baseline and F1new scores (from Equation 7) for a dataset. The p-value
is reported. This test is separately performed for different model sizes.

There are two kinds of baseline models we use, resulting in slightly different values for δF1; this allows us to
highlight different aspects of our technique. These are described below. It is relevant to note that the data
split ratios in our experiments are |Dtrain| : |Dval| : |Dtest| :: 60 : 20 : 20.

1. Improvements in accuracy (Section 4.1.6): Here, the baseline is a model trained with stratified
3-fold cross-validation (which we’ll denote by Mbase). The lower bound of δF1 is set to 0, since in
a setting with a larger optimization budget (or a score-based stopping criteria, e.g., Nguyen et al.
(2017); Makarova et al. (2022)), the learned distribution Ψ would perfectly approximate the original
distribution due to the flexibility of the Beta mixture model (Diaconis & Ylvisaker, 1983), leading
naturally to14 δF1 = 0. This setting also simulates the practical outcome that a user cannot do
worse than Mbase.
Here, δF1 ∈ [0,∞).
Of course, this leaves open the question of well does the BO perform relative to random chance.
The differences in environments available to the baseline model vs the within-iteration model limit
the resolution of such an analysis based on a direct comparison. We describe these differences next,
and propose an alternative measurement strategy.

2. Optimizer performance (Section 4.1.8): Recall from the description of Algorithm 3 in Section 3.4
that the per-iteration model Mt is allowed to train on only 80% of Ns,t instances during training.
Being an optimization variable, Ns,t can be quite small at an iteration (the lower bound is a user
setting, discussed in Section 4.1.5) and is drawn entirely from Dtrain. Compare this to Mbase, where

14It is possible to have some irreconcilable difference between F 1new and F 1baseline due to the difference in statistical
properties of the validation sets, based on which the respective models are selected, and the common test set, based on which
the δF 1 is reported. However, we expect the resultant score differences, just arising from this factor, to be negligible, and to
entirely disappear with large enough samples or enough runs.
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the training algorithm is provided Dtrain and Dval pooled together for constructing the best model
with hyperparameters determined via cross-validation.
In terms of data diversity, Mbase uses 80% (i.e., |Dtrain|+ |Dval|) of the total dataset, while Mt can
use a maximum of 60% (i.e., |Dtrain|). Also consider that the hyperparameter search space of Mt

is possibly restricted (described in Section 3.4). Taken together these facts indicate that Mbase has
inherent advantages over Mt, and therefore, is not a fair reference for a fine-grained analysis.
However, the model constructed at initialization, which we’ll denote15 as Minit, can serve as a fair
reference, since: (a) it has the same resource constraints (wrt hyperparameter space and data) as any
Mt, and (b) its use of po → 1 and Ns,0 = |Dtrain| (described in Section 3.4) mimics the distributional
setup for Mbase.
Section 4.1.8 presents δF1 computed with Minit as the baseline. Additionally, we account for
variability across runs in the following manner:

(a) Let runs be denoted by index i. We denote the model at t = 0 for various runs by Minit,i. Let
their respective validation and test F1 scores be denoted by F1val

init,i and F1test
init,i.

(b) Let the best model found in each run by Algorithm 3 be denoted by M∗
i . Let their respective

validation and test F1 scores be denoted by F1val
∗,i and F1test

∗,i .
(c) Then, we define the quantities:

F1baseline =
∑5

i=1 F1test
init,i

5 and F1∗ =
∑5

i=1 F1test
∗,i

5 (8)

(d) An independent t-test is conducted between the sets of validation scores {F1val
init,i}1≤i≤5 and

{F1val
∗,i }1≤i≤5, with the null hypothesis that the validation scores produced by M∗

i are not
significantly different from those produced by Minit,i. Based on the p-value of the test we set:

F1new = F1baseline if p ≥ 0.1 (9)
F1new = F1∗ if p < 0.1 (10)

These values for F1baseline and F1new are used in Equation 7 to calculate δF1.
Here, δF1 ∈ (−∞,∞). Negative values can occur when the validation scores of M∗

i are picked in
the t-test, and therefore F1new = F1∗, but test scores are lower, i.e., F1new < F1baseline.

Thus we present metrics - δF1 and its statistical significance - corresponding to two baselines, Mbase and
Minit, from the same set of experiments. For experiments not pertaining to validation, i.e., for comparisons
(Section 4.2) and additional applications (Section 4.3), Mbase is used as the baseline because we believe that
to be closer to the expected interpretation of δF1. For comparison to the density tree based approach, Mbase

is required as a baseline, since this is what they use to report their results (Section 4.1 in Ghose & Ravindran
(2020)).

4.1.2 Data

We use 13 real-world datasets to validate our technique. Table 1 lists relevant details. These are picked to
vary in their dimensions, number of labels and label distribution, enabling a broad validation of our technique.
Although we use the version of data available on the LIBSVM website (Chang & Lin, 2011), we mention
their original source in Table 1. 10000 instances from each dataset are used. We use a train : val : test split
ratio of 60 : 20 : 20 to create Dtrain, Dval and Dtest in all our experiments (line 1, Algorithm 3). The data
splits are stratified wrt class labels.

In terms of the label distribution, we are interested in knowing whether a dataset is balanced wrt labels. We
quantify this with the “Label Entropy”, which is computed for a dataset with N instances and C labels in

15This is technically M0 since its created at t = 0, but we use the term Minit to avoid confusion with MO, the symbol for
the oracle model.

15



Under review as submission to TMLR

the the following manner:

Label Entropy =
∑

j∈{1,2,...,C}

−pj logC pj (11)

Here, pj = |{xi|yi = j}|
N

Label Entropy ∈ [0, 1], where values close to 1 denote the dataset is nearly balanced, and values close to 0
represent relative imbalance.

4.1.3 Models

For interpretable models I, we consider the following model families:

1. Linear Probability Model (LPM) (Mood, 2010): This is a linear classifier. We use the commonly
accepted notion of model size here: the number of terms in the model, i.e., features from the
original data, with non-zero coefficients. We use the Least Angle Regression (Efron et al., 2004)
algorithm, that grows the model one term at a time, to enforce the size constraint. We use our own
implementation based on the scikit-learn library (Pedregosa et al., 2011).
Since LPMs inherently handle only binary class data, for a multiclass problem, we construct a one-
vs-rest model, comprising of as many binary classifiers as there are distinct labels. The given size
is enforced for each binary classifier. For instance, consider the dataset letter in Table 1, with 26
classes. A model size of 10 implies we construct 26 binary classifiers, each with 10 terms. We
have not used the more common Logistic Regression classifier because: (1) from the perspective of
interpretability, LPMs provide a better sense of variable importance (Mood, 2010) (2) the technique
is well validated for the case of linear classification by any standard linear classifier.

Sizes: For a dataset with dimensionality d, we construct models of sizes:
{1, 2, ..., min(d, 15)}. We end up with sizes less than 15 only for the dataset cod-rna, which has
d = 8. All other datasets have d > 15 (see Table 1).
Hyperparameters: The specified size is used for training both Mbase and the models within
iterations. No other hyperparameters are explored.

2. Decision Trees (DT): We use the implementation of CART in the scikit-learn library. Our notion
of size here is the depth of the tree.

Sizes: For a dataset, we first learn a tree (with no size constraints) with the highest F1-score (macro)
using standard 5−fold cross-validation. We refer to this as the optimal tree Topt, and its depth is
denoted by depth(Topt). We then experiment with model sizes η ∈ {1, 2, ..., min(depth(Topt), 15)}.
This is controlled by setting the values of CART’s max_depth to η.
Stopping early makes sense since the model is saturated in its learning from the data; changing the
input distribution is not helpful beyond this point.
Note that while our notion of size is the actual depth of the tree produced, the parameter we
vary is max_depth; this is because decision tree libraries do not allow specification of an exact
tree depth16. This is important to remember since we might not see actual tree depths take all
values in {1, 2, ..., min(depth(Topt), 15)}, e.g., max_depth = 5 might give us a tree with depth = 5,
max_depth = 6 might also result in a tree with depth = 5, but max_depth = 7 might give us a
tree with depth = 7. We report improvements at actual depths, although the parameter controlled
is max_depth.
Hyperparameters: In learning Mbase, in addition to the specified max_depth, the parameter
space min_impurity_decrease ∈ {0, 0.25, 0.5, 0.75, 1} is explored. This setting allows a node to be
split only if it decreases impurity by an amount that is greater than or equal to set value. Within
an iteration, only max_depth is used as hyperparameter.

16The training phase may be declared complete before growing till max_depth, based on other settings like leaf purity,
minimum number of samples required at a leaf, etc.
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Table 1: We use the following datasets available on the LIBSVM website (Chang & Lin, 2011). Their
original source is mentioned in the “Description” column. 10000 instances from each dataset are used. A
train : val : test split ratio of 60 : 20 : 20 is used for Dtrain, Dval and Dtest in Algorithm 3. The splits are
stratified wrt labels.

S.No. Dataset Dimensions # Classes Label Entropy Description

1 cod-rna 8 2 0.92 Predict presence of non-coding RNA common to
a pair of RNA sequences, based on individual
sequence properties and their similarity (Uzilov
et al., 2006).

2 ijcnn1 22 2 0.46 Time series data produced by an internal combus-
tion engine is used to predict normal engine firings
vs misfirings (Prokhorov, 2001). Transformations
as in Chang & Lin (2001).

3 higgs 28 2 1.00 Predict if a particle collision produces Higgs
bosons or not, based on collision properties (Baldi
et al., 2014).

4 covtype.binary 54 2 1.00 Modification of the covtype dataset (see row 12),
where classes are divided into two groups (Col-
lobert et al., 2002).

5 phishing 68 2 0.99 Various website features are used to predict if the
website is a phishing website (Mohammad et al.,
2012). Transformations used as in Juan et al.
(2016)

6 a1a 123 2 0.80 Predict whether a person makes over 50K a year,
based on census data variables (Dua & Graff,
2017). Transformations as in Platt (1998).

7 pendigits 16 10 1.00 Classify handwritten digit samples into the digits
0-9 (Alimoglu & Alpaydin, 1996; Dua & Graff,
2017).

8 letter 16 26 1.00 Images of the capital letters A-Z were produced
by random distortion of these characters from 20
fonts. The task is to classify these character im-
ages as one of the original letters (Michie et al.,
1995). Transformations as in Hsu & Lin (2002).

9 Sensorless 48 11 1.00 Based on phase current measurements of an
electric motor, predict different error conditions
(Paschke et al., 2013). We use the transforma-
tions from Wang et al. (2018).

10 senseit_aco 50 3 0.95 Predict vehicle type using acoustic data gathered
by a sensor network (Duarte & Hu, 2004).

11 senseit_sei 50 3 0.94 Predict vehicle type using seismic data gathered
by a sensor network (Duarte & Hu, 2004).

12 covtype 54 7 0.62 Predict forest cover type from cartographic vari-
ables (Dean & Blackard, 1998; Dua & Graff,
2017).

13 connect-4 126 3 0.77 Predict if the first player wins, loses or draws,
based on board positions of the board game Con-
nect Four (Dua & Graff, 2017).
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4.1.4 Oracles

We want our oracle models O to be fairly accurate, so that the derived uncertainty information is reliable.
Hence we pick the following model families:

1. Gradient Boosted Models (GBM): We used a gradient boosting model with DTs as our base classifiers.
The LightGBM library (Ke et al., 2017) is used in our experiments. Effective parameters were
determined using a validation set. NOTE: This is not Dval from Algorithm 3, since that would
constitute data leakage. A sample, stratified by labels, from within Dtrain was held out for learning
good GBM parameters.

2. Random Forests (RF): We used the implementation available in scikit-learn. Parameters were learned
using 5-fold cross-validation over Dtrain.

The above oracles were calibrated (Platt, 1999) for reliable probability estimates.

4.1.5 Optimization Search Space

The optimizer we use, TPE, requires box constraints. Here we specify our search space for the optimization
variables, Φ in Algorithm 3:

1. po: We want to allow the algorithm to pick an arbitrary fraction of samples from the original data;
we set po ∈ [0, 1].

2. Ns: We set Ns ∈ [400, 10000]. The lower bound ensures we have statistically significant results. The
upper bound is set to a reasonably large value.

3. {a, b, a′, b′}: Each of these parameters are allowed a range [0.1, 10] to allow for a wide range of shapes
for the component Beta distributions.

4. scale: We fix scale = 10000 for our experiments, to allow for Ai and Bi to model skewed distributions
where shape parameter large values might be required. For small values, the algorithm adapts by
learning the appropriate {a, b, a′, b′}.

5. α: For a DP, α ∈ R>0. We use a lower bound of 0.1.
To determine the upper bound, we rely on the following empirical relationship (Ohlssen et al., 2007)
between the number of components k and α:

E[k|α] ≈ 5α + 2 (12)

We empirically estimated a fairly inclusive upper bound on the number of components to be 500,
which provides us the α upper bound of 99.6. Thus, we use α ∈ [0.1, 99.6].
We draw a sample from the IBMM using Blackwell-MacQueen sampling (Blackwell & MacQueen,
1973).
We use a flattening transformation (discussed in Section 3.6) on the original uncertainty distribu-
tions, with a fixed number of 20 bins. However, all visualizations of distributions in the following
sections were prepared after performing an inverse transformation; hence, in studying them, it might
be convenient to assume that no transformation was applied.

Hyperparameters: In theory, the box constraints and the iteration budget required by the optimizer
constitute our hyperparameters, which may be tuned for a specific task. However, as we note above, we
don’t need to estimate a range for po and reasonable defaults may be applied to Ns, {a, b, a′, b′}, scale and α.
This results in the practical convenience of having to set the value for only a single hyperparameter: T , the
iteration budget. This was set to T = 1000 for LPMs and T = 3000 for DTs based on limited search. Since
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the LPMs we use construct multiple one-vs-rest classifiers, higher iteration budgets are computationally
expensive to use.

This completes our discussion of the experimental setup; we present our observations next.

4.1.6 Improvements in Accuracy

Here, we use Mbase as the baseline model, and δF1 ∈ [0,∞).

Figure 3 shows the improvements for different combinations of interpretable and oracle models, {LPM, DT}×
{GBM, RF}. The model size is on the x-axis, and is normalized to be in [0, 1], so that performance across
datasets may be conveniently compared in the same plot.

For LPMs, the model sizes for a dataset, i.e., number of non-zero terms, are multiplied by 1/min(d, 15),
where d is the dimensionality of the data. For DTs, the model sizes are multiplied by 1/min(depth(Topt), 15).
All δF1 values are averaged over five runs, in the manner described in Section 4.1.1.

Table 2 enumerates the observations corresponding to the plots in Figure 3. The column model_ora repre-
sents the model and oracle combination used. For example, dt_gbm implies DT was used as the model and
GBM as an oracle.

(b)

(c) (d)

(a)

Figure 3: For different combinations of models and oracles: {LPM, DT} × {GBM, RF}, these plots show
improvements in δF1, averaged over five runs, for different model sizes and data. Table 2 shows the
corresponding improvement scores.
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We observe that the oracle based approach indeed works on a variety of datasets, across different combinations
of interpretable and oracle models. In some cases, such as the dataset Sensorless, for the LPM and RF
combination, improvements are as high as δF1 = 238.94%. The general trend seems to be that δF1 decreases
as model sizes increase, with eventually δF1 ≈ 0. This decrease seems to be faster for DT s, which makes
intuitive sense given that a unit increase in size for a DT adds more representational power (a layer of nodes)
than for an LPM (another term), making it harder to beat the baseline performance of DTs.

This decrease empirically verifies the property expressed by Equations 2 and 3.

We note that δF1 does not strictly monotonically decrease for all datasets, possibly due to the optimization
terminating at a local maxima, e.g., in Table 2 see the entry for letter, lpm_rf, size = 2 (improvement =
64.36%) and size = 3 (improvement = 67.06%). But it largely appears to follow the general trend of
decrease even in these cases.
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Table 2: This table shows the average improvements, δF 1, over five runs for different combinations of models and
oracles: {LP M, DT } × {GBM, RF }. The best improvement for a model size and oracle is indicated in bold. See
Section A.8 for a discussion on running times.

dataset model_ora 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
cod-rna lpm_gbm 1.11 12.65 14.80 15.36 16.18 11.60 8.41 2.61 - - - - - - -

lpm_rf 2.95 13.37 14.31 15.49 15.78 12.53 5.89 0.18 - - - - - - -
dt_gbm 1.09 9.80 1.09 1.84 0.44 0.75 1.08 0.42 0.00 0.28 - - - - -
dt_rf 0.57 2.78 1.81 2.58 0.13 0.46 0.40 0.70 0.31 0.00 - - - - -

ijcnn1 lpm_gbm 0.59 2.84 3.71 2.39 4.97 4.61 3.85 3.97 3.46 2.34 3.00 2.74 2.85 3.46 2.62
lpm_rf 0.50 3.26 3.22 3.88 3.43 2.17 3.50 3.21 3.43 4.05 2.84 4.37 3.99 3.48 4.23
dt_gbm 2.10 11.75 7.07 8.95 8.47 3.89 2.67 2.36 0.60 0.39 0.02 0.29 0.67 0.74 0.39
dt_rf 4.24 14.43 10.77 11.00 10.38 5.46 4.74 2.32 2.76 1.25 1.72 1.31 1.70 1.24 1.70

higgs lpm_gbm 29.54 17.59 10.79 6.81 2.88 2.69 3.12 2.91 2.86 2.39 2.59 1.59 2.17 1.96 0.76
lpm_rf 23.18 18.59 15.03 7.96 4.33 3.61 2.29 2.55 1.78 1.34 2.02 2.22 2.79 1.63 1.51
dt_gbm 1.62 0.59 1.22 0.75 0.01 1.41 - - - - - - - - -
dt_rf 3.98 0.85 1.90 1.63 1.69 0.79 - - - - - - - - -

covtype.binary lpm_gbm 86.19 66.39 27.19 13.19 7.26 5.47 4.01 3.95 3.26 3.36 3.20 3.06 2.49 2.39 1.46
lpm_rf 87.10 63.38 12.76 8.33 6.25 3.75 2.49 2.41 2.76 2.77 2.41 2.67 2.42 2.34 2.19
dt_gbm 1.24 0.62 2.09 0.99 0.52 1.02 0.15 0.50 0.06 - - - - - -
dt_rf 0.68 0.40 1.61 2.01 1.70 1.45 1.04 1.30 0.97 0.50 - 0.00 - - -

phishing lpm_gbm 0.00 1.88 2.88 3.05 3.22 3.37 2.86 1.61 1.37 1.44 1.21 1.03 1.07 0.84 0.86
lpm_rf 0.00 2.14 3.29 3.22 3.59 3.79 3.29 1.85 1.46 1.46 1.18 1.18 1.22 1.27 1.08
dt_gbm 0.00 0.57 0.33 0.13 0.44 0.11 0.48 0.33 0.13 0.00 0.01 0.00 0.00 0.00 0.05
dt_rf 0.00 0.72 0.61 0.44 0.44 0.08 0.12 0.42 0.13 0.07 0.10 0.06 0.04 0.01 0.00

a1a lpm_gbm 0.00 2.55 7.58 9.11 9.03 7.87 8.72 8.86 8.56 7.90 7.38 7.14 5.78 6.15 5.56
lpm_rf 0.02 4.17 8.81 10.24 10.46 9.11 9.18 9.52 8.97 9.70 8.98 8.50 7.34 7.67 6.77
dt_gbm 0.01 5.67 2.10 4.33 3.53 2.91 0.40 0.64 0.27 - - - - - -
dt_rf 0.00 6.62 3.44 5.14 4.36 5.70 4.99 5.14 5.92 4.43 3.02 2.94 - - 3.16

pendigits lpm_gbm 52.66 22.62 16.88 8.34 9.73 6.90 5.12 2.03 2.44 2.21 2.31 2.13 3.26 3.03 2.39
lpm_rf 50.10 21.68 20.70 7.77 8.16 6.15 7.04 1.61 3.38 2.97 2.45 2.48 2.75 2.65 2.97
dt_gbm 13.70 6.98 4.92 12.72 6.21 4.68 2.40 0.87 0.48 0.04 0.00 0.19 0.00 0.00 0.01
dt_rf 18.93 4.26 4.36 13.70 6.67 4.58 2.38 0.32 0.00 0.02 0.00 0.00 0.00 0.00 0.00

letter lpm_gbm 59.54 44.83 58.49 29.47 35.49 17.43 21.06 16.47 17.48 15.02 16.88 15.98 18.10 17.24 15.30
lpm_rf 62.61 64.36 67.06 24.71 36.95 24.14 19.88 21.70 20.63 19.64 18.42 20.65 17.93 17.71 17.67
dt_gbm 2.10 10.91 25.55 33.11 30.04 15.54 11.32 4.47 3.59 3.06 1.85 1.26 1.08 0.62 0.35
dt_rf 0.12 12.53 34.24 37.39 35.43 16.14 5.82 1.22 2.30 0.71 0.49 0.16 0.00 0.00 0.00

Sensorless lpm_gbm 221.53 259.30 195.99 121.89 94.41 83.82 75.07 67.90 59.42 51.98 56.11 55.86 58.70 65.27 60.88
lpm_rf 238.94 238.83 143.82 103.65 85.69 71.32 74.25 65.22 66.78 61.20 59.88 56.84 60.67 69.39 72.12
dt_gbm 0.04 46.99 66.38 54.79 22.65 10.67 2.28 1.69 0.84 0.85 0.41 0.14 0.16 0.16 0.07
dt_rf 0.01 52.54 57.27 44.33 16.26 6.49 2.23 0.69 0.27 0.06 0.29 0.08 0.00 0.23 0.16

senseit_aco lpm_gbm 173.63 175.44 68.21 44.09 35.41 24.18 20.83 15.80 11.39 8.09 5.83 5.21 4.77 4.21 3.95
lpm_rf 177.67 175.20 91.96 47.67 37.03 30.28 25.19 22.54 14.74 10.46 9.28 6.31 5.91 5.46 4.23
dt_gbm 14.92 1.83 4.89 3.35 3.03 0.97 0.57 - - - - - - - -
dt_rf 15.41 2.22 3.88 4.82 3.81 3.54 1.66 0.25 - - - - - - -

senseit_sei lpm_gbm 160.59 57.00 23.42 10.47 6.70 4.49 4.49 4.12 4.55 4.14 4.40 4.91 3.83 3.97 4.29
lpm_rf 165.98 67.35 29.13 14.35 8.80 5.53 4.72 4.90 5.11 4.47 4.39 3.58 4.16 4.26 4.15
dt_gbm 2.42 0.75 3.26 1.23 0.39 0.42 0.27 0.27 - - - - - - -
dt_rf 2.54 1.28 3.23 2.26 1.18 1.49 1.91 - - - - - - - -

covtype lpm_gbm 36.69 46.55 14.35 6.51 4.64 6.49 6.73 7.72 8.42 8.39 11.47 8.39 4.73 9.37 6.17
lpm_rf 32.52 47.56 12.23 5.46 6.46 9.65 10.31 12.33 12.62 10.56 9.86 7.85 11.52 17.49 16.24
dt_gbm 146.22 107.32 43.31 15.53 4.30 5.64 3.83 3.22 3.15 0.93 2.68 1.56 0.63 0.34 0.00
dt_rf 152.12 102.28 53.72 7.86 9.41 4.97 4.67 4.42 1.68 2.86 1.08 0.00 0.85 0.90 2.79

connect-4 lpm_gbm 27.54 25.89 14.36 9.34 12.56 10.29 5.47 4.48 5.45 3.79 4.72 2.99 1.92 3.31 3.46
lpm_rf 59.19 14.24 17.20 9.00 9.22 6.98 7.87 7.65 5.58 5.32 2.40 3.04 4.94 1.94 3.23
dt_gbm 136.35 27.02 23.83 7.80 4.13 3.46 5.09 5.31 0.39 4.73 2.02 2.31 1.90 0.62 1.14
dt_rf 147.32 20.08 19.51 18.57 13.17 12.70 4.82 3.23 3.90 3.41 3.72 0.53 0.92 0.19 0.80

Statistical Significance: We perform the Wilcoxon signed-rank test (Wilcoxon, 1945) to measure the
statistical significance of the δF1 scores. These are shown in Figure 4. We use this test as it has been shown
to be useful in comparing classifiers (Demšar, 2006; Benavoli et al., 2016; Japkowicz & Shah, 2011). The
test setup is as follows:

1. We compare the classifiers learned by our technique with the baseline, for a given range of model
sizes. Separate tests are performed for different model size ranges since size strongly influences δF1.
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2. Normalized model sizes are used for ease of comparison with Figure 3. Binning of model sizes is
done using Sturges rule (Sturges, 1926).

3. The one-sided version of the paired test is performed for each bin, where pairs of scores F1baseline

and F1new for a dataset, for models with sizes assigned to the bin, are compared. In cases were
where multiple model sizes for a dataset fall within the same bin, F1baseline and F1new are first
averaged and then compared.

4. The following hypotheses are tested:

• H0, null hypothesis: accuracies of models trained using the oracle are not better.
• H1, alternate hypothesis: accuracies of models trained using the oracle are better.

p-values are shown for each bin. Small p-values favor H1, i.e., our algorithm.

5. Scores of δF1 = 0 are split equally between positive and negative ranks17.
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(d) model=DT, oracle=RF

Figure 4: These plots show the p-values for the Wilcoxon signed-rank test, with the null hypothesis H0:
using the oracle does not produce better F1 test scores. The bin boundaries are selected using the Sturges
rule (Sturges, 1926). Low p-values favor our algorithm.

We observe that the improvements from using an oracle are indeed significant for various model size and
model-oracle combinations, when measured across multiple datasets.

Before we conclude this section, we present an additional way to visualize improvements: create a correspon-
dence of model sizes, without and with our technique, for the same accuracy. See Figure 5 as an example.
The point (12, 2) for senseit_aco implies that the accuracy of a LPM with 2 non-zero terms produced
by our technique equals, or is greater than, the accuracy of a baseline LPM with 12 non-zero terms. The
model size on the y-axis is the median of five runs. We refer to such a plot as the compaction profile for a
model-oracle combination. See Section A.10 for more compaction profiles.

17The zplit option in https://numpy.org/doc/stable/reference/generated/numpy.histogram_bin_edges.html is used.
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Figure 5: The compaction profile of LPM models using GBM as an oracle. A point (x, y) denotes the
minimum size y of a model obtained using our technique that is at least as accurate as the baseline model
of size x.

4.1.7 Learned Distributions

It is also instructive to analyse the distributions we have learned: this includes both the parameter po and
the parameters for the IBMM Ψ = {α, a, b, a′, b′}.

Figure 6 shows how po varies with normalized model size when the interpretable model is DT and the
oracle is (a) GBM or (b) RF. This plot ignores the datasets where the largest tree depth explored was less
than depth(Topt) - so we can compare distributions in size regimes where our technique is effective against
when it is not (recall, at sizes close to depth(Topt) we expect δF1 ≈ 0). The datasets ignored are18: a1a,
ijcnn1, covtype, connect-4. Here, we clearly see po → 1 as model size increases, thus implying the
training algorithm tends to use more of the original distribution19. This observation is a key contribution
of this work, since it challenges the conventional wisdom that the training data must be drawn from the
same distribution as the test data, for effective learning. This reinforces a similar observation from Ghose &
Ravindran (2020).

Section A.7 in the Appendix presents visualizations and analysis of the learned IBMMs.

18These datasets are easy to identify in Table 2: the ones where the last column(s) is neither ≈ 0 nor “-”.
19In theory, the parameters Ψ could have been learned such that they mimic the original distribution, but we hypothesize

that it is easier for the optimizer to learn the appropriate value of one parameter po as opposed to equivalent values of the
multiple parameters Ψ. This is why we see the clear pattern in Figure 6.

23



Under review as submission to TMLR

0.2 0.4 0.6 0.8 1.0
normalized model size

0.0

0.2

0.4

0.6

0.8

1.0

p o
, p

ct
. f

ro
m

 o
rig

in
al

 d
ist

rib
ut

io
n

(a) DT with oracle=GBM

0.2 0.4 0.6 0.8 1.0
normalized model size

0.2

0.4

0.6

0.8

1.0

p o
, p

ct
. f

ro
m

 o
rig

in
al

 d
ist

rib
ut

io
n

(b) DT with oracle=RF

cod-rna higgs covtype.binary phishing pendigits letter Sensorless senseit_aco senseit_sei

Figure 6: These plot shows the effect of increasing model size on po, when the interpretable model is DT.
These plots strongly indicate that larger model sizes learn better with the original distribution. Some datasets
are ignored - see text for explanation.

4.1.8 Optimizer Performance

Here we use Minit as the baseline for computing δF1. As discussed in Section 4.1.1, δF1 ∈ (−∞,∞).

These improvements are shown in Table 3, where negative improvements are indicated in red. Also note
that some of the small positive δF1 scores from Table 2, e.g., dataset a1a for model size of one, now become
exactly 0. In general, scores in Table 3 are conservative compared to Table 2. We also note that there aren’t
many instances of negative scores.
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Table 3: This table shows the average improvements, δF 1, over five runs for different combinations of models and
oracles: {LP M, DT }×{GBM, RF }. The improvements are measured relative to the model at the first iteration.The
best improvement for a model size and oracle is indicated in bold. Here, δF 1 ∈ (−∞, ∞). Negative improvements
are shown in red.

dataset model_ora 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
cod-rna lpm_gbm 1.39 12.53 14.76 15.73 14.97 12.00 0.00 0.08 - - - - - - -

lpm_rf 2.66 13.91 14.69 15.34 16.06 12.49 8.30 0.00 - - - - - - -
dt_gbm 0.00 0.00 0.00 1.26 0.00 0.00 0.00 0.00 -0.28 0.08 - - - - -
dt_rf 0.00 0.00 1.78 2.28 0.39 -0.02 0.17 0.47 0.00 0.72 - - - - -

ijcnn1 lpm_gbm -0.16 3.36 3.93 0.00 5.19 4.18 3.85 3.79 3.69 2.99 2.97 3.21 3.11 3.26 3.02
lpm_rf 0.19 2.80 3.36 3.65 3.33 1.94 3.58 3.30 3.46 3.81 2.66 4.65 3.99 3.82 4.85
dt_gbm 1.96 12.00 10.15 11.37 10.63 7.18 3.63 4.52 2.91 1.78 1.93 2.29 1.47 2.26 0.00
dt_rf 4.06 12.10 8.95 10.75 10.13 8.25 5.38 2.46 2.63 1.25 1.46 1.37 1.91 0.00 1.38

higgs lpm_gbm 29.29 17.80 11.40 6.56 3.06 2.68 3.16 2.90 2.67 2.82 2.65 1.79 2.62 2.19 1.63
lpm_rf 26.71 17.29 15.06 10.60 5.35 4.04 2.35 2.03 1.66 1.89 2.91 2.94 3.31 2.58 2.22
dt_gbm 0.00 0.00 1.86 0.26 0.93 0.45 - - - - - - - - -
dt_rf 4.04 1.26 1.74 1.32 1.54 0.91 - - - - - - - - -

covtype.binary lpm_gbm 76.52 66.39 29.17 12.51 9.18 5.28 4.94 4.56 3.92 3.56 3.62 3.31 2.59 2.83 2.39
lpm_rf 96.77 63.38 14.36 9.61 6.79 3.94 2.93 2.81 2.96 2.84 2.31 2.26 2.00 2.43 2.22
dt_gbm 0.00 0.00 2.35 1.27 1.18 1.11 0.00 0.00 0.00 - - - - - -
dt_rf 0.00 0.00 2.10 2.33 2.44 2.39 1.84 2.19 1.65 0.70 - 0.89 - - -

phishing lpm_gbm 0.00 1.88 2.88 3.05 3.22 3.25 2.99 1.69 1.42 1.45 1.29 0.00 0.00 0.00 0.00
lpm_rf 0.00 2.14 3.29 3.22 3.59 3.79 3.29 2.05 1.42 1.44 1.24 1.23 1.16 1.26 1.02
dt_gbm 0.00 0.00 0.00 0.07 0.39 0.00 0.28 0.22 0.44 0.23 0.00 0.00 0.00 0.00 0.00
dt_rf 0.00 0.72 0.00 0.57 0.00 -0.17 0.13 0.48 0.13 0.05 0.03 -0.03 -0.28 0.00 -0.16

a1a lpm_gbm 0.00 2.55 7.58 8.98 8.40 8.03 8.90 8.23 8.17 7.90 5.96 7.10 6.97 6.18 5.73
lpm_rf 0.00 4.17 8.81 9.92 9.88 9.47 8.99 9.31 9.19 9.26 9.33 8.25 7.15 7.55 7.98
dt_gbm 0.00 5.54 2.39 3.84 3.55 2.55 1.51 2.25 4.87 - - - - - -
dt_rf 0.00 6.44 3.36 5.60 3.40 5.94 6.06 4.97 4.89 4.01 4.73 5.21 - - 4.53

pendigits lpm_gbm 51.39 23.44 16.18 8.95 8.84 6.63 4.86 1.83 2.27 2.16 2.44 2.16 3.33 2.97 2.73
lpm_rf 46.28 22.74 21.72 8.80 8.47 6.29 6.48 1.69 3.03 2.79 2.34 2.68 2.70 3.02 0.00
dt_gbm 14.02 6.72 5.11 13.14 6.42 4.20 2.46 1.09 0.98 0.16 -0.26 0.00 0.00 0.00 0.00
dt_rf 21.46 4.18 5.22 14.51 7.36 4.55 2.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

letter lpm_gbm 57.06 48.48 59.85 29.76 36.09 19.27 20.37 16.08 17.55 15.16 17.26 16.51 18.46 17.19 15.55
lpm_rf 61.06 65.34 64.26 23.69 35.20 26.15 22.10 20.74 20.91 20.31 19.28 21.40 20.77 19.39 18.18
dt_gbm 0.00 13.98 25.05 33.96 32.05 15.49 11.17 0.00 4.26 3.50 1.99 0.00 0.00 0.00 0.00
dt_rf 0.00 12.21 28.67 33.47 33.51 18.41 8.10 0.00 1.84 1.21 1.31 0.67 0.61 0.11 -0.08

Sensorless lpm_gbm 216.47 257.56 178.31 117.01 90.70 83.90 73.50 65.95 61.57 57.97 56.54 57.15 55.45 66.24 68.24
lpm_rf 224.18 210.28 134.44 115.00 85.85 74.96 66.77 61.10 66.88 64.65 69.00 70.09 72.91 80.14 82.15
dt_gbm -0.01 42.42 68.13 44.38 17.39 10.32 1.82 1.44 0.79 0.64 0.41 0.12 0.00 -0.02 0.34
dt_rf 0.00 52.54 57.10 44.61 16.63 6.19 2.19 0.96 0.51 0.00 0.48 0.33 0.00 0.00 0.10

senseit_aco lpm_gbm 173.71 170.68 63.95 44.20 33.49 22.99 19.14 13.50 10.29 7.59 6.26 5.92 5.30 4.89 4.32
lpm_rf 177.67 181.26 79.86 42.86 37.60 28.80 23.75 19.06 13.91 10.74 8.48 6.09 5.20 5.32 4.62
dt_gbm 14.89 0.00 3.71 2.32 4.85 0.81 0.00 - - - - - - - -
dt_rf 20.03 2.54 3.64 5.91 3.34 2.63 0.00 0.00 - - - - - - -

senseit_sei lpm_gbm 160.59 65.27 23.44 10.48 6.76 4.86 4.82 4.46 4.79 4.12 4.54 5.17 3.91 4.21 4.46
lpm_rf 165.98 63.72 31.58 14.94 9.07 5.79 4.95 5.07 5.24 4.70 4.60 3.74 4.30 4.35 4.35
dt_gbm 2.66 1.01 3.49 2.29 0.95 1.30 1.37 0.00 - - - - - - -
dt_rf 2.33 0.00 3.36 1.65 0.87 0.00 -1.23 - - - - - - - -

covtype lpm_gbm 36.87 49.24 12.78 11.21 7.84 7.15 7.15 8.07 7.70 8.25 10.94 8.35 4.37 8.77 5.84
lpm_rf 32.15 39.49 10.49 8.53 8.11 8.59 9.61 11.99 11.22 9.91 8.47 8.16 10.34 13.76 12.92
dt_gbm 342.27 92.85 43.23 20.04 8.14 8.05 5.67 3.26 4.92 3.52 2.72 0.00 0.00 0.00 1.74
dt_rf 354.45 98.94 50.87 14.10 9.46 7.38 4.76 4.20 0.94 1.81 2.30 0.71 -0.37 0.00 0.00

connect-4 lpm_gbm 37.62 11.66 12.01 6.84 5.68 6.82 4.58 2.10 3.82 3.21 3.02 3.64 2.32 2.97 3.40
lpm_rf 33.77 12.99 17.60 14.66 15.91 10.73 6.38 5.35 7.07 6.98 2.84 3.14 2.09 2.52 2.46
dt_gbm 89.33 29.23 20.20 12.10 9.73 9.88 7.82 7.43 0.57 4.61 1.08 3.35 2.23 1.15 1.55
dt_rf 113.71 21.91 20.52 11.23 16.86 10.96 10.64 9.11 6.51 5.88 6.76 2.16 2.97 0.61 0.00

Statistical Significance: We also perform a Wilcoxon signed-rank test to measure statistical significance
of the δF1 scores here. The setup is identical to that in Section 4.1.6 : one-sided test, paired over datasets,
performed separately for ranges of normalized bin sizes. Scores of δF1 = 0 are split equally between positive
and negative ranks.

The results are shown in Figure 7.

We note that p-values are small here as well. In comparison to Figure 4, the p-values are typically larger.
This is to be expected since we now have cases where δF1 < 0. Interestingly, for DTs, these plots show that
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(d) model=DT, oracle=RF

Figure 7: These plots show the p-values for the Wilcoxon signed-rank test, with the null hypothesis H0:
using the oracle does not produce better F1 test scores. The bin boundaries are selected using the Sturges
rule (Sturges, 1926). Low p-values favor our algorithm.

at larger sizes our technique becomes less useful: we had noted this in our main results in Table 2, but this
effect does not show up in Figure 4.

4.1.9 Effect of Model Capacity

If we closely look at the improvements in Table 2 or Figure 3, we would note that the improvements for DTs
diminish faster than LPMs, as model size increases. This naturally leads to the question: how does model
capacity influence improvements? This is difficult to answer in general since (a) there isn’t a standard way
to easily quantify capacity across model families, and (b) the notion of model size is subjective. And while
the LPM vs DT data indicates a trend, we want to isolate this effect in a manner that is not affected by
differences in the model families.

To that end, we adopt the following approach: we use two different instances of GBMs, where the notion
of model size is the number of DTs in a GBM (or equivalently, the number of boosting rounds), and their
model capacities are decided by the maximum depth of the constituent DTs; these are set to 2 and 5 for
these GBM instances. We refer to these as the GBM-2 and GBM-5 “pseudo model families” respectively,
where we understand GBM-5 to possess higher capacity than GBM-2. Since the training algorithms and
model representations are identical for GBM-2 and GBM-5, this setup allows us to sidestep challenges with
quantifying capacity for different model families.

The oracle used is another GBM, with no size/capacity restrictions, learned on the training dataset.
The model sizes explored are {1, 2, ..., 10}. Figure 8 shows how δF1 varies with model size (denoted as
“num_trees”) for the datasets senseit-aco, senseit-sei, cod-rna and higgs, for each of the models
GBM-2 and GBM-5.

As we might expect, we observe that improvements for GBM-5, the model with the higher capacity, diminish
faster with increasing size, compared to GBM-2.

26



Under review as submission to TMLR

1 2 3 4 5 6 7 8 9 10
num_trees

0

25

50

75

100

125

150

175

200

%
 im

pr
ov

em
en

t o
n 

te
st

(a) dataset: senseit_aco
model

GBM-2
GBM-5

1 2 3 4 5 6 7 8 9 10
num_trees

0

25

50

75

100

125

150

175

200

%
 im

pr
ov

em
en

t o
n 

te
st

(b) dataset: senseit_sei
model

GBM-2
GBM-5

1 2 3 4 5 6 7 8 9 10
num_trees

0

20

40

60

80

100

120

%
 im

pr
ov

em
en

t o
n 

te
st

(c) dataset: cod-rna
model

GBM-2
GBM-5

1 2 3 4 5 6 7 8 9 10
num_trees

0

10

20

30

40

50

60

70

%
 im

pr
ov

em
en

t o
n 

te
st

(d) dataset: higgs
model

GBM-2
GBM-5

Figure 8: The above plots show how the capacity of a model family influences improvements, for different
datasets. With a higher max_depth setting for GBMs, the improvements decline faster with an increase in
number of trees.

4.2 Comparisons

In this section, we present a comparative evaluation of our technique. We compare against the following
techniques:

1. Supervised uncertainty sampling: the interpretable model, of a given size, is iteratively trained on a
growing subset of training data; this subset starts with the b most uncertain points in the training
data, with b-sized batches of the most uncertain points from the remaining training data being
progressively added to it. At every iteration, the model is evaluated on a validation set, and the
one with the highest F1-macro score is picked for comparison. We compare against this technique
because:

(a) This explores an obvious possibility: can a heuristic-driven, simple algorithm outperform our
algorithm?

(b) Although we borrow this technique from Active Learning (Lewis & Gale, 1994), this version
is significantly more powerful, primarily because of the oracle’s supervision: we have reliable
uncertainty scores from a powerful model. Because of this, we are able to avoid sampling bias
arising due to a partial view of the uncertainty distribution (detailed in Section A.3).

(c) Even within the Active Learning community, uncertainty sampling is a strong baseline for
Logistic Regression (Yang & Loog, 2018), and by extension, we expect it to be a strong baseline
for learning LPMs.

We use a batch size of b = 10. The algorithm is described in detail in Section A.2.
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2. Density Trees: We also compare against our previous work on density trees since it uses a similar
philosophy of determining an optimal distribution to build accurate small models. We use the
parameter search space described in Ghose & Ravindran (2020).

4.2.1 Setup

The experimental setup is identical to the one used for the validation experiments in terms of the datasets
(see Section 4.1.2), models (Section 4.1.3), oracles (Section 4.1.4) and optimization search space (Section
4.1.5). The metrics differ, and these are described next.

4.2.2 Metrics

To compare techniques, we wish to measure the following outcomes over multiple trials:

1. The extent to which a technique is better.

2. The proportion of times a technique is better.

The following properties are desirable for a metric that measures the first kind of outcomes:

1. It should be bounded, so that scores across different data, model sizes, etc., are on the same scale.

2. It should be easy to infer which approach is better.

We introduce a score called the Scaled Difference in Improvement (SDI), that possesses these properties.
The SDI is defined in terms of the improvement produced by our method, δF1ora, and the alternative
method, δF1alt:

SDI =
{

δF 1ora

H − δF 1alt

H , if H > 0
0, if H = 0

(13)

where H = max {δF1alt, δF1ora}

The central idea here is that the improvements possible across the competing techniques are in [0, H], and
the SDI score measures the difference between the fractions of this range realized by either technique. Note
that H ≥ 0 since δF1ora ≥ 0 and δF1alt ≥ 0. This score has the following intuitive properties:

1. SDI ∈ [−1, 1]

2. SDI > 0 when δF1ora > δF1alt

3. SDI = 0 when δF1ora = δF1alt

4. SDI < 0 when δF1ora < δF1alt

The SDI score may be seen as the Mean Signed Deviation20 (MSD): δF1ora − δF1alt, normalized with the
maximum possible improvement H. We don’t directly use MSD as δF1 ∈ [0,∞) makes it unbounded.

For ease of interpretation, we average the SDI scores at the level of a dataset, across model sizes, for a given
model and oracle. This averaged score is denoted by SDI.

To measure the second kind of outcomes, we report the percentage of times δF1ora > δF1alt across these
model sizes. This is denoted as pct_better.

We consider the oracle-based approach to be a meaningful contribution if SDI > 0 and pct_better > 50%
compared to alternatives.

20https://en.wikipedia.org/wiki/Mean_signed_deviation
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Table 4: LPM, DT compared to Supervised Uncertainty Sampling

LPM DT

dataset GBM RF ANY GBM RF ANY
cod-rna 0.60, 100.00% 0.25, 87.50% 0.61, 100.00% 0.29, 60.00% 0.39, 60.00% 0.69, 80.00%
ijcnn1 0.28, 66.67% 0.17, 66.67% 0.37, 73.33% -0.42, 26.67% 0.32, 80.00% 0.32, 80.00%
higgs 0.88, 100.00% 0.23, 60.00% 0.91, 100.00% 0.75, 83.33% 0.28, 66.67% 0.83, 100.00%
covtype.binary 0.49, 93.33% 0.33, 93.33% 0.59, 100.00% 0.06, 44.44% 0.18, 45.45% 0.32, 54.55%
phishing 0.62, 93.33% 0.44, 93.33% 0.65, 93.33% 0.25, 40.00% -0.27, 13.33% 0.25, 40.00%
a1a 0.23, 93.33% 0.32, 93.33% 0.35, 100.00% -0.13, 44.44% 0.49, 91.67% 0.58, 100.00%

pendigits 0.73, 100.00% 0.81, 100.00% 0.83, 100.00% 0.22, 60.00% 0.13, 40.00% 0.32, 60.00%
letter 0.92, 100.00% 0.95, 100.00% 0.97, 100.00% 0.46, 73.33% 0.04, 46.67% 0.55, 73.33%
Sensorless 0.63, 100.00% 0.72, 100.00% 0.73, 100.00% 0.63, 73.33% 0.41, 60.00% 0.65, 73.33%
senseit_aco 0.15, 53.33% 0.30, 86.67% 0.31, 86.67% 0.39, 71.43% 0.44, 87.50% 0.60, 87.50%
senseit_sei 0.07, 53.33% 0.27, 60.00% 0.28, 60.00% -0.18, 37.50% 0.13, 57.14% 0.20, 50.00%
covtype 0.83, 100.00% 0.65, 93.33% 0.85, 100.00% 0.60, 73.33% 0.64, 73.33% 0.82, 86.67%
connect-4 0.13, 60.00% 0.43, 86.67% 0.50, 100.00% 0.11, 60.00% 0.13, 73.33% 0.53, 86.67%
OVERALL 0.50, 85.11% 0.46, 86.17% 0.61, 93.09% 0.23, 57.14% 0.25, 59.75% 0.50, 73.75%

4.2.3 Observations

Table 4 and Table 5 compare our approach to Supervised Uncertainty Sampling and the Density Tree based
approach, respectively. All δF1ora and δF1alt scores used are the average over five runs. This is the
presentation format followed:

1. For each dataset, model and oracle combination we present two scores: (1) SDI and (2) pct_better.

2. Favorable outcome values - SDI > 0 or pct_better > 50 - are colored green, unfavorable outcomes
are colored red, and tied values are unformatted.

3. In the case of Supervised Uncertainty Sampling, Table 4, scores are compared across the same
oracles, i.e., a score using oracle GBM in our method, is compared to a score from Supervised
Uncertainty Sampling using a GBM .

4. Unlike supervised uncertainty sampling, there is no notion of an oracle in the Density Tree based
approach. In Table 5, for a combination of dataset, model and model size, improved scores from
using either the GBM or RF as the oracle are compared to the same reference score from the density
tree based approach.

5. We also introduce two special groupings:

• ANY: For each model size, the SDI score considered is the higher of the ones obtained from
using the GBM or RF as oracles. The SDI and pct_better scores are computed based on these
scores. This grouping represents the ideal way to use our technique in practice: try multiple
oracles and pick the best.

• OVERALL: This averages results across datasets, to provide an aggregate view of the com-
parison.

The entries identified by OVERALL and ANY provide comparison numbers aggregated over
datasets, model sizes and oracles.

The predominant amount of values colored green, indicate that our technique performs better in most
settings. In both cases, the OVERALL +ANY entries indicate that our technique works better on average.
The pct_better scores in these entries also indicate that we seem to do better much more frequently in the
case of LPMs than DTs.

We note here that the space of sampling distributions modeled by our technique subsume the ones modeled
by either competing technique:
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Table 5: LPM, DT compared to the Density Tree approach.

LPM DT

dataset GBM RF ANY GBM RF ANY
cod-rna -0.38, 0.00% -0.45, 0.00% -0.33, 0.00% 0.51, 60.00% 0.50, 70.00% 0.65, 80.00%
ijcnn1 0.06, 66.67% 0.11, 80.00% 0.20, 93.33% 0.23, 53.33% 0.68, 100.00% 0.68, 100.00%
higgs -0.07, 40.00% -0.07, 40.00% 0.04, 46.67% 0.23, 50.00% 0.61, 83.33% 0.61, 83.33%
covtype.binary -0.16, 40.00% -0.33, 13.33% -0.15, 40.00% 0.23, 66.67% 0.26, 72.73% 0.38, 81.82%
phishing 0.30, 80.00% 0.37, 86.67% 0.38, 86.67% 0.11, 26.67% -0.00, 26.67% 0.23, 46.67%
a1a -0.03, 60.00% 0.13, 66.67% 0.13, 66.67% -0.06, 44.44% 0.43, 75.00% 0.52, 83.33%

pendigits 0.59, 100.00% 0.59, 93.33% 0.62, 100.00% 0.23, 60.00% 0.16, 46.67% 0.25, 60.00%
letter 0.79, 100.00% 0.81, 100.00% 0.81, 100.00% 0.02, 33.33% -0.34, 13.33% 0.06, 40.00%
Sensorless 0.64, 100.00% 0.65, 100.00% 0.66, 100.00% -0.23, 20.00% -0.39, 20.00% -0.23, 20.00%
senseit_aco 0.55, 100.00% 0.63, 100.00% 0.63, 100.00% 0.50, 85.71% 0.37, 75.00% 0.39, 75.00%
senseit_sei 0.61, 100.00% 0.66, 100.00% 0.67, 100.00% -0.25, 42.86% 0.51, 100.00% 0.51, 100.00%
covtype 0.20, 80.00% 0.39, 93.33% 0.43, 100.00% 0.26, 66.67% 0.16, 66.67% 0.40, 80.00%
connect-4 0.23, 73.33% 0.24, 66.67% 0.38, 86.67% -0.23, 33.33% -0.13, 53.33% 0.08, 66.67%
OVERALL 0.28, 75.00% 0.32, 75.00% 0.37, 81.38% 0.10, 47.06% 0.16, 57.23% 0.31, 67.30%

1. Supervised Uncertainty Sampling assumes high uncertainty points are favorable; this may be mod-
eled with an IBMM with appropriate parameters.

2. Density Trees learn distributions that are based on the proximity of instances to class boundaries;
since uncertainty values also correlate with distance from class boundaries - a high uncertainty value
for an instance indicates it’s near a class boundary and vice versa - this too is well within the scope
of what an IBMM may represent.

Our hypothesis as to when the competing techniques outperform our technique is that the optimal sam-
pling distribution is easier to discover given their distributional assumptions. For example, if the optimal
distribution indeed turns out to be one where instances with high uncertainty are preferred, the Supervised
Uncertainty Sampling technique would quickly discover this, while our technique would need to navigate a
larger search space to converge to this solution. Our technique would likely do better on such problems with
a larger iteration budget or an appropriately defined prior; we leave this analysis for future work.

Both Supervised Uncertainty Sampling and our technique use distributions over uncertainty values. This
makes it interesting to contrast them, and is reviewed in Section A.4.

4.3 Additional Applications

Viewing our technique purely as a tool to find the optimal distribution for effective learning, we explore
some additional interesting applications in this section.

4.3.1 Different Feature Spaces

In our previous experiments, the feature vector representation was identical for the oracle and the inter-
pretable model. This is also what Algorithm 3 implicitly assumes. Here, we consider the possibility of going
a step further and using different feature vectors. If fO and fI are the feature vector creation functions for
the oracle and the interpretable model respectively, and xi is a “raw data” instance, then:

1. The oracle is trained on instances fO(xi), and provides uncertainties uO(fO(xi)).

2. The interpretable model is provided with data fI(xi), but the uncertainty scores available to it are
uO(fO(xi)).
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The motivation for using different feature spaces is that the combination (O, fO) may be known to work
well together and/or a pre-trained oracle might be available only for this combination.

We illustrate this application with the example of predicting nationalities from surnames of individuals. Our
dataset (Rao & McMahan, 2019) contains examples from 18 nationalities: Arabic, Chinese, Czech, Dutch,
English, French, German, Greek, Irish, Italian, Japanese, Korean, Polish, Portuguese, Russian, Scottish,
Spanish, Vietnamese. The representations and models are as follows:

1. The oracle model is a Gated Recurrent Unit (GRU) (Cho et al., 2014), that is learned on the sequence
of characters in a surname. The GRU is calibrated with temperature scaling (Guo et al., 2017).

2. The interpretable model is a DT, where the features are character n-grams, n ∈ 1, 2, 3. The entire
training set is initially scanned to construct an n-gram vocabulary, which is then used to create
a sparse binary vector per surname - 1s and 0s indicating the presence and absence of an n-gram
respectively.

Figure 9 shows a schematic of the setup.

Figure 9: The feature representations for the oracle and the interpretable model may be different. Consider
the name “Amy”: the GRU is provided its letters, one at a time, in sequence, while the DT is given an
n-gram representation of the name.

The n-gram representation leads to a vocabulary of ∼ 5000 terms, that is reduced to 600 terms based on a
χ2-test in the interest of lower running time (see Section A.13 for details). DTs of different depth ≤ 15 were
trained. A budget of T = 3000 iterations was used (the search space for Φ is the same as in Section 4.1.5),
and the relative improvement in the F1 macro score (as in Equation 7) is reported, averaged over three runs.
Figure 10 shows the results.

We see large improvements at small depths, that peak with δF1 = 83.04% at depth = 3, and then again at
slightly larger depths, which peak at depth = 9 with δF1 = 12.34%.

To obtain a qualitative idea of the changes in the DT using a oracle produces, we look at the prediction
rules for Polish surnames, when DT depth = 3. For each rule, we also present examples of true and false
positives.

Baseline rules - precision = 2.99%, recall = 85.71%, F1 = 5.77%:

Rule 1. k ∧ ski ∧ ¬v

• True Positives: jaskolski, rudawski
• False Positives: skipper (English), babutski (Russian)
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Figure 10: Improvements δF1 are shown for different depths of the DT.

Rule 2. k ∧ ¬ski ∧ ¬v

• True Positives: wawrzaszek, koziol
• False Positives: konda (Japanese), jagujinsky (Russian)

Oracle-based DT rules - precision = 25.00%, recall = 21.43%, F1 = 23.08%:

Rule 1. ski ∧ ¬(b ∨ kin)

• True Positives: jaskolski, rudawski
• False Positives: skipper (English), aivazovski (Russian)

We note that the baseline rules are in conflict w.r.t. the literal “ski”, and taken together, they simplify to
k∧¬v. This makes them extremely permissive, especially Rule 2, which requires the literal “k” while needing
“ski” and “v” to be absent. Not surprisingly, these rules have high recall (= 85.71%) but poor precision
(= 2.99%), leading to F1 = 5.77%.

In the case of the oracle-based DT, now we have only one rule, that requires the atypical trigram “ski”. This
improves precision (= 25%), trading off recall (= 21.43%), for a significantly improved F1 = 23.08%.

The difference in rules may also be visualized by comparing the distribution of nationalities represented in
their false positives, as in Figure 11. We see that the baseline DT rules, especially Rule 2, predict many
nationalities, but in the case of the DT learned using the oracle, the model confusion is concentrated around
Russian names, which is reasonable given the shared Slavic origin of many Polish and Russian names.

We believe this is a particularly powerful and exciting application of our technique, and opens up a wide
range of possibilities for translating information between models of varied capabilities.

4.3.2 Size-Constrained Training Sample

Recall from Section 3.4, we make use of a parameter Ns, denoting sample size, that we had constrained to
∈ [400, 10000] (Section 4.1.5) in our experiments. But it is possible to set this to much smaller values to
study the sampling distribution for patterns, significance of regions in the input space, etc. Figure 12 shows
an example of this: we set Ns ∈ [50, 50] (so it can take exactly one value, 50), and for the dataset shown in
Figure 12(a), we visualize the sampling distribution when the model is a DT of depth = 2 in Figure 12(b)
vs when depth = 4 in Figure 12(c). The dataset is balanced, and the oracle used is a GBM.

We see the following interesting patterns: (a) at depth = 2, the DT picks points from both regions where
label = 1, but the larger region shows higher density. This is possibly because owing to its limited capacity,
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Figure 11: The distribution of nationalities in false positive predictions for the baseline and oracle based
models, shown for predicting Polish names. Only nationalities with non-zero counts are shown.

(a)

(b) (c)

Figure 12: Our technique might be used to identify the optimal sample of a given size. (a) shows the original
dataset. (b) and (c) visualize the learned distribution of points, using a KDE, for DTs with depth = 2
and depth = 4 respectively, for a sample size of 50. NOTE: the connection shown in (c), between the two
originally disjoint regions with label = 1, is an artifact of the KDE.
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the model is able to effectively parameterize only one region, and therefore it prioritizes correct classification
of points around the larger region, (b) at depth = 4, we see increased sampling density in the smaller region
with label = 1 as well.

4.3.3 Vector Model Size

Although we have been using a scalar notion of model size - depth for DT, number of terms for LPM,
number of trees for a GBM - Algorithm 3 doesn’t restrict us from using a vector-valued model size η. For
example, in the case of GBMs, we may consider the notion of model size η = [max_depth, num_trees], where
the quantities respectively denote the maximum depth allowed for each constituent DT in a GBM, and the
number of DTs in the GBM. In Figure 13 we show how improvements for GBMs vary when 1 ≤ max_depth ≤
5 (x-axis) and 1 ≤ num_trees ≤ 5 (y-axis); the oracle used is a GBM as well (unconstrained in size), and
results for these datasets are shown: (a) higgs (b) cod-rna (c) senseit-sei and (d) senseit-aco. The
improvements are averaged over three runs. We observe the familiar pattern that as model sizes increase, in
terms of both max_depth and num_trees, improvements decrease.
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(c) dataset: senseit_sei
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(d) dataset: senseit_aco
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Figure 13: Improvements in test F1-macro for multiple datasets for different sizes of GBM models are
shown. Here, model size is the combination of max_depth and number of trees in the GBM model. Greater
improvements are seen at lower sizes.

4.4 Summary

We summarize our observations from our experiments here:

1. For all combinations of interpretable and oracle models - {LPM, DT}× {GBM, RF} - we see good
improvements, δF1, especially at small sizes (Section 4.1.6). Sometimes these may be > 100%. For
model sizes beyond a point, we observe δF1 ≈ 0.

2. The results in Section 4.2 strongly indicate that the precise relationship of the sampling distribution
and the uncertainty needs to be learned, and a heuristic strategy of exclusively sampling high
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uncertainty points is not optimal. We believe this is an important result, especially given that this
is true for the supervised version of uncertainty sampling, which is significantly more powerful than
standard uncertainty sampling.

3. Our approach produces better accuracy, in general, compared to both supervised uncertainty sam-
pling and the density tree based approach.
The results in Table 4 and Table 5 from Section 4.2.3 are summarized in Table 6. Recall that the
combination OVERALL + ANY averages over datasets and oracles; Table 6 shows these summary
statistics.

Table 6: Summary comparison results, OVERALL + ANY

compared to model SDI pct_better

supervised uncertainty sampling LPM 0.61 93.09%
DT 0.50 73.75%

density trees LPM 0.37 81.38%
DT 0.31 67.30%

We observe that density trees are more competitive to our technique than supervised uncertainty
sampling: smaller SDI and pct_better scores. This is to be expected since the density tree based
approach is capable of learning flexible distributions over the input space.

4. A remarkable fact of practical value is that we don’t tune the parameters Φ for a specific problem.
The value ranges for these are fixed across tasks, with only the iteration budget T being changed
- as described in Section 4.1.5. This highlights another strength of the technique: Φ need not be
tuned for obtaining meaningful improvements, as long as it admits a broad enough set of uncertainty
distributions.

5. Section 4.3 showcases the generality of the proposed technique: we successfully used it with differing
feature spaces across the oracle and the interpretable model, to identify the optimal training sample
for a given size, and with vector valued model sizes. These applications considerably broaden the
impact of our work.

Importantly, the various positive results from this section should be seen as representative of the proposed
framework, and not just our implementation. In other words, these results establish a lower bound for
the outcomes, because they may be potentially improved by using different components within the larger
framework, e.g., by using a different optimizer from among the ones discussed in Feurer & Hutter (2019) or
Turner et al. (2021). We show examples in Section A.8.

5 Discussion

Having looked at both the theory and empirical outcomes, we revisit a few points of interest in this section.

1. Effect of flattening: We first consider the question: does flattening (Section 3.6) help? Table
7 contrasts improved F1 scores obtained without (rows denoted as “original”) and with (denoted
“flattened”) flattening the uncertainty distribution. This is shown for the datasets Sensorless and
covtype.binary, for model size ∈ {1, 2, 3}, with model = LPM and oracle = GBM . Two different
parameter settings are used: (a) Setting 1 is what we have used in the experiments in Section 4:
maximum allowed Beta components are 500 and scale = 10000 (b) Setting 2 looks at much lower
values of these parameters where maximum allowed components is 50 and scale = 10. The scores
presented are the average over three trials.
We observe that while flattening influences results, other parameters determine the magnitude of its
effect. At Setting 1, Sensorless is affected at size = 1 (flattening is better), but at higher sizes the
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Table 7: Improved scores averaged over three trials, shown for different parameter settings, with and
without flattening. Here, Setting 1 is {max_components = 500, scale = 10000} and Setting 2 is
{max_components = 50, scale = 10}. “curr.” signifies this is the current setting for our experiments
in Section 4, while “low” signifies lower values of parameters. Highlighted cells indicate positve effect of
flattening.

Setting 1 (curr.) Setting 2 (low)

dataset dist. 1 2 3 1 2 3
Sensorless original 0.39 0.54 0.57 0.38 0.42 0.41

flattened 0.44 0.53 0.55 0.43 0.54 0.59
covtype.binary original 0.66 0.69 0.71 0.64 0.66 0.71

flattened 0.68 0.73 0.73 0.65 0.71 0.71

differences seem to be from random variations across trials. At Setting 2 however, the differences
are seen for size ∈ {1, 2, 3} (flattening is better). For covtype.binary only size = 2 seems to be
affected in either setting.
Recall we had noted in Figure 2 that the datasets Sensorless and covtype.binary have non-
smooth and smooth uncertainty distributions respectively. The observations in Table 7 align well
with the expectation that Sensorless is positively affected by the transformation, while results for
covtype.binary remain mostly unchanged.
Based on these tests, we hypothesize that for non-smooth uncertainty distributions, flattening makes
our technique robust across parameter settings. It does not affect smooth distributions in a significant
way. Of course, rigorous and extensive tests are required to conclusively establish this effect.

2. Measuring compaction: We mentioned in the Introduction, Section 1, that a possible area of
application of this work might be model compression. We would like to point out that the compaction
profile (Figure 5, Figure 24) plots emphasize this use-case: they’re a visual tool to determine the
minimal model size achievable using our technique, given a baseline model size.
To formalize this connection, we introduce the score Compaction Index (CI) that denotes the extent
of model size decrease possible, up to a size where δF1 ≈ 0. Figure 14 shows a sample compaction
profile. The CI score, where CI ∈ [0, 1], is the ratio of the area in red to the area in green.

Figure 14: Compaction Index

The more reduction in model size our technique can obtain, the closer the red curve is to the green
boundary, and CI ≈ 1. If no reduction is possible at any model size, the red line coincides with the
diagonal and CI = 0. Clearly, this score is specific to a model family F , a training algorithm f and
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a specific notion of model size. And ideally, this should be averaged over all possible datasets and
oracles.
Here are the CI scores for our experiments :

• LPM : CI = 0.57
• DT : CI = 0.17

These scores indicate that LPMs may be compacted better than DTs, for the respective notions
of size we use here - this may also be seen from the plots in Figure 3, where the improvements for
DTs decrease faster, with growing model size, than those for LPMs.

3. Upper bound of improvements: In Equation 1, and then in Equations 2 and 3, the improved
accuracy of the interpretable model is shown bounded by the oracle accuracy. For example, see the
rightmost term in Equation 1, reproduced below:

accuracy(trainI,g(p, η), p) ⪅ accuracy(trainI,g(q, η), p) ⪅ accuracy(trainO,h(p, ∗), p) (14)

We empirically show this to be true now. In Figure 15, we show the distribution of relative difference
between the improved accuracy of a LPM model and the accuracy of a GBM oracle.
Using the notation in the equation above, we calculate the relative difference ∆F1 as:

∆F1 = accuracy(trainI,g(q, η), p)− accuracy(trainO,h(p, ∗), p)
accuracy(trainO,h(p, ∗), p) (15)

Here, of course, we measure accuracy using the F1 macro score.

Figure 15: Distribution of %age accuracy difference from the oracle accuracy.

There is one distribution plotted per dataset, where the distribution uses information from multiple
runs, for multiple model sizes. It may be seen in Figure 15 that all relative differences are at most
0 (there is some spillover to the right of 0 owing to the use of KDEs for visualization).
For precise numbers, we look at Table 8, which lists the %age of cases where the interpretable
model’s accuracy exceeded that of the oracle, and the average value of the relative difference for
the cases where it is positive. We also consider the statistical significance of these values: using a
one-sided Wilcoxon signed-rank test, we determine the p-value for the null hypothesis that accuracy
scores produced our technique exceed those of the oracle. This is a paired test where oracle and
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model scores for a dataset are paired, for a given combination of an interpretable model and an
oracle. Only the largest model built for the dataset is used.
For instance, for dataset a1a, we note from Table 2 that using the GBM oracle, LPMs of sizes 1 . . . 15
are constructed; however, this test uses only the LPM of size 15. We don’t use all sizes since that
biases results in our favor, as smaller models are not expected to match the oracle’s accuracy.
See Figure 26 in Section A.12 for plots for other model-oracle combinations.

Table 8: The percentage of cases where we see positive relative difference w.r.t. oracle, and the mean of
these positive difference are shown. The p-value for the hypothesis that model improvements exceed oracle
are also provided.

model oracle %age +ve cases mean +ve value p-value (largest models)
LPM GBM 1.60% 0.81 0.000737
LPM RF 4.47% 1.36 0.001183
DT GBM 3.51% 1.84 0.001488
DT RF 2.85% 0.65 0.000936

6 Future Work

The results from our experiments suggest multiple promising avenues for future research. We list some of
them here:

1. We might think of our technique as learning a sampling distribution p′(xi) indirectly on the in-
put space: via p(uMO

(xi)), the distribution over uncertainty values produced by the oracle. An
alternative view might be to directly learn instance weights wi instead, where wi = p′(xi). This
approach clearly suffers from challenges in scaling - there are as many weights as training instances.
From this perspective, the combination of the oracle and mixture model may be seen as providing
a computationally cheap means to indirectly learn such weights.
However, recent work suggests that for differentiable model losses, this problem might be efficiently
solved by formulating it as a bi-level optimization problem (Pedregosa, 2016; Lorraine et al., 2020);
which makes this a feasible direction to explore. The expected benefit is this might be faster21, at
least for moderately sized datasets.
This approach brings its own challenges that future work would need to consider: (a) since gradient
information is required, the loss function must be known; therefore this approach is not model-
agnostic (b) even if an automatic differentiation framework is used, such as JAX (Bradbury et al.,
2018), to generalize to unseen loss functions, model families like DTs remain out of scope since their
loss isn’t differentiable.
NOTE that this aspect distinguishes our method from KD: beyond the uncertainty scores from the
oracle, we do not require any additional information, e.g., “dark knowledge” (Hinton et al., 2015b;
Korattikara et al., 2015).

2. On the lines of learning a training distribution, alternative representations like the Pitman-Yor
process (Pitman & Yor, 1997) or Determinantal Point Processes (Kulesza & Taskar, 2012) may be
explored.

3. Algorithm 3 uses multiple trials at various steps for statistical robustness: for fitting Mt and for
computing st. This obviously impacts the running time of Algorithm 3, and leads to an obvious

21Pedregosa (2016) compares this approach against BO for the task of hyperparameter tuning; these numbers do not directly
translate here since the BO algorithm used is not TPE.
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question: are these necessary? An interesting path for exploration here is to eliminate them and
instead shift the burden to the BO, in the form of accounting for noise. This may be done at the level
of the surrogate model, e.g., Gaussian Processes may be parameterized to handle noise (Rasmussen &
Williams, 2005) or at the level of the acquisition function, e.g., Noisy Expected Improvement (NEI)
(Frazier, 2018; Letham et al., 2019). If such a strategy doesn’t end up compromising accuracies
much, it would make the execution nine times faster (3 trials for st × 3 validation trials for Mt

per iteration).

4. The standard way to evaluate active learning algorithms is to evaluate model accuracy against the
number of labeled training data instances. It is interesting to consider an alternative approach: for
a given budget of labeled instances, measure the divergence between the sampling distribution our
method learns (as in Section 4.3.2) and the one that an active learner proposes for labeling. Such
an analysis is insightful since it can indicate precisely which points an active learner is supposed to
label.

5. We noted that improvements from our technique diminish as model size grows (Section 4.1.6).
For larger model sizes, a possible direction to explore might be to “chain” together multiple small
models. This is similar to gradient boosting, and it would be especially informative to compare the
two approaches.

6. An obvious question to ask is if our observations around the impact of training distribution on
accuracy may be theoretically explained. There is some recent work in the area of KD that might
serve as fruitful starting points: (a) Dao et al. (2021) provide theoretical tools to analyze distillation
by treating it as a semi-parameteric inference problem (b) Menon et al. (2021) propose a connection
between the effectiveness of a teacher and its ability to approximate Bayes class-probabilities. (c)
study of sample re-weighting on the effectiveness of distillation (Zhang et al., 2021; Lu et al., 2021).

7. It would also be interesting to explore the connection between the sample of a given size our method
finds (Section 4.3.2) and the data Shapley value (Ghorbani & Zou, 2019): a per-instance value
quantifying the contribution of an instance to predictor accuracy. Some questions of interest are:
(a) does an instance that has a high sampling probability across a range of sample sizes, per our
method, also receive a high data Shapley value? (b) if there is indeed a correspondence between the
two techniques, what algorithmic ideas may be borrowed from one technique to another?

7 Conclusion

In this paper we introduced a novel technique to learn an interpretable model, that reduces the trade-off
between model size and accuracy. The practical implication of this work is that instead of picking an
interpretable model family based on accuracy, one may use our method to construct accurate models for
their preferred model family.

Producing an accurate model is formulated as an optimization problem of identifying training data that
maximizes learning. This process is aided by an oracle model. Our technique is shown to possess multiple
favorable properties: (a) the optimization uses a fixed set of seven variables, irrespective of the dimensionality
of the data (b) a reasonable choice of the search space produces good results across datasets (c) the technique
is model-agnostic wrt both the interpretable and oracle models (d) it may be used even when the feature
spaces of the interpretable model and oracle are different (e) its a framework, which leaves open the possibility
of improving upon it. We have also shown some additional interesting applications for our technique.

We have provided extensive empirical validation to establish the utility of the technique.

This work also presents some intriguing deeper findings : (a) train and test distributions need not be identical
for optimal learning (b) our observations point to a “small model effect”: this difference in distributions exists
for small model sizes, and it is in this model size regime that we observe most improvements.

We believe that the general theme of the proposed technique, that of shaping data density to influence
accuracy, as well as the deeper results, offer promising directions for future research.
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Appendices
A Appendix A

A.1 Related Work

This is an extended version in the discussion presented in Section 2.4. We compare and contrast with various
techniques that have some similarity with ours:

1. Density Tree based sampling: Ghose & Ravindran (2020) addresses a similar problem of en-
hancing the accuracy of a size-constrained model. The approach taken was to develop a specific form
of decision tree, known as a density tree, to capture neighborhood information, and sample from its
various nodes to obtain an optimal training distribution. Our current method may be considered a
significant evolution of the approach, as it adds the following flexibilities:

(a) Their choice of the oracle was restricted to a forest of density trees22. Here, we might use an
oracle from an arbitrary model family - which makes it possible to have an oracle that is more
accurate than density trees.
This also has the practical benefit that the oracle need not be learned from scratch: if there is
already a pre-trained probabilistic model like a deep neural network available for a dataset, it
may be conveniently plugged into our algorithm as-is, to improve the accuracy of an interpretable
model.

(b) The density trees and the interpretable model had to be constructed on the same (or very
similar) feature space. Here, this is not required, and the oracle might be a sequence model
that classifies text, while the interpretable model may be a classifier that uses character n-grams.
This considerably broadens the scope of our technique. We look at an example in Section 4.3.1.

2. Knowledge Distillation (KD): KD looks at using powerful “teacher” models (similar to our
oracle) to learn a smaller “student” model (Gou et al., 2021). The key differences with KD are:

(a) Unlike KD our goal is not to approximate the oracle’s performance. In fact, we ignore the
oracle’s label assignments entirely. This is in contrast to KD methods that may use teacher-
assigned labels (Bucilă et al., 2006) or distribution of label confidences (Hinton et al., 2015a)23,
or in general, focus on extracting “dark knowledge” from the oracle in some form. Instead, our
goal is to evolve the smaller model towards a more accurate version.

(b) A lot of KD techniques are specialized for use with Neural Networks, e.g., FitNets (Romero
et al., 2015), DistilBERT (Sanh et al., 2019). In contrast, our technique is model-agnostic.

(c) Methodological differences aside, our observations suggest that the oracle might only be required
to make our algorithm computationally efficient (discussed in Section 6, “Future Work”).

3. Explainable AI (XAI): Although we use an oracle model, the goal is not to explain its predictions.
Consequently, we place much weaker demands of the information shared by the oracle than in XAI
algorithms such as LIME (Ribeiro et al., 2016), SHAP (Lundberg & Lee, 2017), TREPAN (Craven
& Shavlik, 1995) or GlocalX (Setzu et al., 2021):

(a) A fundamental difference is we don’t request for the predicted labels of the oracle.
(b) As an extension of the previous point, we ignore fidelity to the oracle’s predictions, which is

explicitly enforced and measured in XAI techniques. This precludes any deliberate alignment
between the logical process the oracle follows to classify an instance vs that followed by the
interpretable model.

22Ghose & Ravindran (2020) doesn’t refer to density trees as oracles, but they play a role similar to the oracle here.
23While we use the uncertainty in the oracle’s prediction, note that we don’t know which labels is the oracle more or less

uncertain about, i.e., we ignore label identity.
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(c) The information from the oracle is a one-time input to the algorithm, and is restricted to
the training instances available to the interpretable model24. This is different from queries
on synthetic instances performed by various XAI techniques to determine the neighborhood of
a data instance, e.g., perturbed instances in case of GLocalX25, LIME, SHAP, or generated
random instances within constrained regions of the input space in TREPAN.

In short, we do not infer explanations, local or global, from the oracle. It is used to provide a one-
dimensional view of the training data, as a one-time input to our algorithm; this is not equivalent to
explaining the oracle. As mentioned earlier, this work suggests that the oracle might be only needed
to provide reasonable computational complexity (see Section 6, “Future Work”).

4. Active Learning: In the case of active learning too, a predictive model maybe learned on a
distribution q(X, Y ) that is different from the test distribution p(X, Y ). However, some significant
differences are:

(a) Active learning works in the setting where only some or none of the labels of the training
data are initially known, and there is an explicit label acquisition cost. We work within the
traditional supervised setting where labels of all training instances are known.

(b) The goal of an active learner is to minimize the total label acquisition cost, while being as
accurate as a supervised learner that has access to complete label information. This is very
different from our goal of performing better than a supervised learner, especially when the
model size is small, assuming complete label information.

It must be noted that the term “oracle” in the active learning literature might refer to either a model
or a human labeler; in our work, it exclusively refers to a model.

5. Transfer Learning: Transfer learning studies informing the training process of a “target” learner,
given a “source” learner (Torrey & Shavlik, 2009; Pan & Yang, 2010; Weiss et al., 2016). Our
technique is ostensibly similar as we have an oracle (our source learner) informing the interpretable
model (our target learner). However, here are some key differences:

(a) The typical application of transfer learning is in settings where the source learner has access to
more data than the model it must transfer knowledge to; here transfer learning is seen as a way
to overcome the data shortage by directly having the source learner convey knowledge, in some
form, to the target model. This is different from our setting where the same data is available
to both the oracle and the interpretable model.

(b) Transfer learning techniques usually make some assumptions about the model family. Some
examples are Boolean concepts (Thrun & Mitchell, 1994), Markov Logic Networks (Mihalkova
& Mooney, 2006) or task-specific neural networks like BERT (Devlin et al., 2019) or ULMFiT
(Howard & Ruder, 2018) for Natural Language Processing, and VGG networks (Simonyan &
Zisserman, 2015) for image recognition. In comparison, our technique is model agnostic, both
w.r.t. the oracle and the interpretable model.

(c) Although instance re-weighting techniques have been investigated as a means of transfer learn-
ing26, their objective is to perform effective learning in situations where the data distribution
available in the source task/domain is different from that in the target task/domain (Liao et al.,
2005; Dai et al., 2007; Kamishima et al., 2009). In our case, these two distributions, as pro-
vided, are identical; we choose to use a different training distribution in the interest of improving
accuracy.

In short, the limited use of the oracle sets us apart from KD and XAI, and the identical supervised setting
available to both the oracle and the interpretable models differentiates us from Active and Transfer learning.
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Algorithm 4: Supervised Uncertainty Sampling
Data: Dataset D, model size η, trainO,h(), trainI,g(), batch size b
Result: Test set accuracy stest, and interpretable model M∗

1 Create stratified splits Dtrain, Dval, Dtest from D
2 MO ← trainO,h(Dtrain, ∗)
3 Iremaining ← {1, 2, ..., |Dtrain|} be an index set of Dtrain

4 Icurrent ← {}
5 for t← 1 to ⌈|Dtrain|/b⌉ do
6 IU ← set of top b entries from Iremaining, based on uMO (xi), i ∈ Iremaining

7 Iremaining ← Iremaining − IU

8 Icurrent ← Icurrent ∪ IU

9 Dt ← {Dtrain,i|i ∈ Icurrent}
10 Mt ← trainI,g(Dt, η)
11 st ← accuracy(Mt, Dval)
12 end
13 t∗ ← arg maxt {s1, s2, ..., sT −1, sT }
14 M∗ ←Mt∗

15 stest ← accuracy(M∗, Dtest)
16 return stest, M∗

A.2 Supervised Uncertainty Sampling

In Algorithm 4:

1. The loop in lines 5-11 runs ⌈|Dtrain|/b⌉ times, where every iteration adds the b most uncertain points
to the current training dataset Dt. If b doesn’t evenly divide |Dtrain|, the last iteration picks all
remaining points.

2. In our implementation, uMO (xi) in line 6 is precomputed and stored as a lookup table to reduce
execution time.

3. In our experiments, we use a batch size b = 10. Note that this gives us optimal models as per
Algorithm 4, for all batch sizes of the form 10k, where k ∈ {1, 2, ..., ⌊|Dtrain|/10⌋}

The modified algorithm is a significantly more powerful version compared to the ones typically used in
Active Learning setups, due to the following reasons:

1. We do not assume a cost for procuring or applying the oracle, which contrasts with the typical active
learning setup. Thus, our oracle utilizes complete label information and our model has access to
reliable uncertainty scores; this avoids the sample bias discussed in Section A.3 (visualized in Figure
16).

2. Since we have complete label information, we have a validation set Dval available to us. In active
learning, a validation set would be created from within the current labelled subset of data, which
often makes it statistically insignificant or non-representative of the true distribution, especially at
early iterations.

3. We do not have to estimate how many times the loop in lines 5-11 must run - this is executed till
all data from Dtrain has been used up to train the model. Estimating the number of iterations is
required when performing active learning since every iteration incurs a cost - that of calling the

24The oracle only sees the training data available to the interpretable model, and is required to provide uncertainty values
for these instances.

25GlocalX indirectly does this via the local learner it uses, LORE (Guidotti et al., 2019).
26We specifically mention this since instance re-weighting maybe seen as a form of sampling.
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oracle to compute IU . Consequently, here, we have the liberty of being able to pick the best model
based on a validation set Dval.

A.3 Simple Uncertainty Sampling in Active Learning

In active learning, the goal is to learn a model when we are given none or few of the labels of our training
data, but we are allowed to query for labels for a cost (Settles, 2009). This is helpful in scenarios where
acquiring labels is expensive, and instead of asking for labels for a random 1000 points to train on, we could
ask for the labels of a specific 200 points, chosen in some manner, that leads to comparable model accuracy.
Uncertainty Sampling was introduced in Lewis & Gale (1994) to solve this problem. We begin by requesting
the labels of small batch of randomly sampled points - this is the labelled subset of the data. The following
steps are then repeated:

1. Construct a classifier on the current labelled subset.

2. Use it to provide uncertainty scores for unlabelled points in the data, and then request labels for
the top b (the precise value of b may be task specific) uncertain points. These now become part of
the labelled subset.

Although intuitive, this approach was shown to suffer from sample bias (Dasgupta & Hsu, 2008; Dasgupta,
2011). We illustrate this in Figure 16.

Figure 16: Uncertainty estimates from classifier after first iteration. Smaller boundaries are missed since the
sample predominantly comes from P and Q.

We consider the simple case where our data is located on a line, has two labels (denoted by red and green
in the figure) and most of the data is located at the extremes of the line segment, as shown by blocks P and
Q, each of which represent 45% of the overall data. Here, learning a classifier is equivalent to identifying a
single point on the line, and the classification rule is we assign labels green and red, to left and right of this
point, respectively. B and C show two possible classifiers.

In the active learning setup, we observe only the points but not their labels. To use uncertainty sampling, we
pick our first small batch of points randomly and query their labels. Because of the distribution of the data,
its highly likely that we would only see points from P and Q. The best classifier on this sample is C, which is
midway between P and Q. Plot A shows what the uncertainty across the input space looks like according to
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C. In the next iteration, we will sample close to C, since that’s where the highest uncertainties are, and the
new classifier constructed would again be at location C. Subsequent iterations would further reinforce the
belief that C is the only class boundary. Here, the classification error of C is 5%, but the optimal classifier
is B, with an error of 2.5%, which uncertainty sampling fails to discover. The key problem here is we may
never see some boundaries, like those defined by R, because of the combination of initial sample bias and
subsequent aggressive sampling.

This problem does not affect us since the oracle has access to the complete training data. Plot D shows
the uncertainty distribution as per the oracle. However, as our results show, even with its complete view of
uncertainty landscape, simple uncertainty sampling is not optimal.

A.4 Comparison of Uncertainty Distributions

It is instructive to look at some specific adjusted IBMMs in the context of the relative performance of
techniques. Figure 17 shows the plots from Figure 21 annotated with SDI scores. These are for LPMs
using GBM as the oracle.

(a) a1a, size=2, SDI=1.0 (b) letter, size=2, SDI=1.0 (c) letter, size=3, SDI=0.93

(d) Sensorless, size=1, SDI=0 (f) connect-4, size=2, SDI=-0.62(e) senseit_sei, size=3, SDI=-0.3
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Figure 17: Examples of adjusted distributions are shown, and the SDI scores, measured against supervised
uncertainty sampling, are mentioned. The plots in the top row are the same as in Figure 21. The top row
- (a), (b), (c) - shows instances where our technique performed relatively better, and the bottom row shows
cases where uncertainty sampling was competitive - (d) - or better - (e), (f).

The top row - (a), (b), (c) in Figure 17 - shows instances where our technique did much better (SDI >
0); it would seem that these are cases where sampling exclusively at high uncertainties is not an optimal
distribution. Figure 17(d) shows a case where the optimal distribution is composed exclusively of high
uncertainty points - so its not surprising that uncertainty sampling is at par with our technique (SDI = 0).
(e) and (f) show similar trends.
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While these plots are helpful in developing intuition for the underlying process, we would like to add the
caveat that they are not conclusive in isolation. An example of this is (c) - it is not clear why uncertainty
sampling does so poorly here. Possibly, instances with low uncertainties need to be sampled in a very specific
manner that cannot be approximated by selecting the top n uncertain points, for any n.

A.5 Uncertainty Metrics

Some other popular uncertainty metrics are:

1. Least confident: we calculate the extent of uncertainty w.r.t. the class we are most confident
about:

uM (x) = 1− max
yi∈{1,2,...,C}

M(yi|x) (16)

Here, we have C classes, and M(yi|x) is the probability score produced by the model27.

2. Entropy: this is the standard Shannon entropy measure calculated over class prediction confidences:

uM (x) =
∑

yi∈{1,2,...,C}

−M(yi|x) log M(yi|x) (17)

We do not use the least confident metric since it completely ignores confidence distribution across labels.
While entropy is quite popular, and does take into account the confidence distribution, we do not use it since
it reaches its maximum for only points for which the classifier must be equally ambiguous about all labels;
for datasets with many labels (one of our experiments uses a dataset with 26 labels - see Table 1) we may
never reach this maximum.

Fig 18 visually shows what uncertainty values look like for the different metrics. Panel (a) displays a dataset
with 4 labels. A probabilistic linear Support Vector Machine (SVM) is learned on this, and uncertainty scores
corresponding to the metrics “margin”, “least confident” and “entropy” are visualized in panels (b), (c) and
(d) respectively. Darker shades of gray correspond to high uncertainty. Observe that only the “margin”
metric in panel (b) achieves scores close to 1 at the two-label boundaries.

There is no best uncertainty metric in general, and the choice is usually application specific (Settles, 2009).

27The possibly confusing name “least confident” for this idea originated within the context of uncertainty sampling, where
we are interested in sampling the most uncertain point, x∗ = arg minx[maxyi∈{1,2,...,C} M(yi|x)], which may be considered to
be the instance with the “least most confident label”.
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(a) (b)

(c) (d)

Figure 18: Visualizations of different uncertainty metrics. (a) shows a 4-label dataset on which linear SVM
is learned. (b), (c), (d) visualize uncertainty scores based on different metrics, as per the linear SVM, where
darker shades imply higher scores.

A.6 Flattening of the Uncertainty Distribution

Algorithm 5 details the flattening process mentioned in Section 3.6.

Algorithm 5: Flatten distribution of uncertainty scores {u(x1), u(x2), ..., u(xN )}
Data: {u(x1), u(x2), ..., u(xN )}, number of bins B
Result: {u′(x1), u′(x2), ..., u′(xN )}

1 bin_size← ⌈N/B⌉, bin_range← 1/B
2 bin_min← [ ], bin_max← [ ]
3 Let sortedIndex(i) ∈ {1, 2, ..., N} be the index of u(xi) in the sequence of scores ordered by

non-decreasing values.
4 for j ← 1 to B do
5 bin_min[j]← min{u(xi)|i ∈ {1, 2, ..., N} ∧ sortedIndex(i) = j}
6 bin_max[j]← max{u(xi)|i ∈ {1, 2, ..., N} ∧ sortedIndex(i) = j}
7 end
8 for i← 1 to N do
9 j ← sortedIndex(i)

10 bin_num← ⌈j/bin_size⌉
11 boundary_low ← (bin_num− 1)× bin_range + δ
12 boundary_high← bin_num× bin_range− δ

13 u′(xi)← low + u(xi)−bin_min[j]
bin_max[j]−bin_min[j] × (boundary_high− boundary_low)

14 end
15 return {u′(x1), u′(x2), ..., u′(xN )}

In lines 11 and 12 of Algorithm 5, we offset bin boundary limits by a small positive value δ to avoid assignment
conflicts across adjacent bins at their boundaries.

This algorithm produces a transformation that looks like the uniform distribution. We prefer the likeness to
the uniform distribution since it makes all regions within the interval [0, 1] equally easy to discover.
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A.7 Learned Distributions

This section is an extension of Section 4.1.7.

We consider the IBMM distributions over the uncertainty values. These are difficult to concisely visualize
since one IBMM is learned for each model size. Hence, we propose the following plot that aggregates
distributions across model sizes for a dataset:

1. We set a value for N ; the number of points to sample.

2. For a model size ηi, we sample ni points from its corresponding IBMM, where ni ∝ δF1i, the
improvement seen at this size. For example, let’s say we have explored two model sizes η1, η2, and
these have led to improvements of δF11 = 10% and δF12 = 20%, respectively. Then, n1 = 0.33N
and n2 = 0.67N .

3. The various samples of sizes ni are pooled together and a Kernel Density Estimator (KDE) fit on
this data is visualized.

The KDE thus obtained is predominantly shaped by the distributions that resulted in high δF1. For the
case of the LPM these are visualized in Figure 19 for both oracles.

(a) (b)

Figure 19: The aggregated IBMMs are visualized for LPMs, when the oracle is a (a) GBM or (b) RF. The
corresponding plots for DTs are presented in Section A.9.

It is interesting to see that the optimal strategy, in general, turns out to be to sample from both regions of
low and high uncertainties.

Going a step further we might wonder what the aggregated distribution would look like if adjusted for the
number of instances with a given uncertainty value. For example, we might see a peak on the extreme right
for a dataset in Figure 19 simply because most points receive a high uncertainty score.

We use the following technique to visualize such an adjusted aggregate distribution:

1. We again pick N , the number of points to sample. Exactly like in the previous case: we pool together
samples from IBMMs for different model sizes, where the relative sample sizes are decided by the
respective δF1 scores. We fit a KDE to this data, which we refer to as A.

2. We fit another KDE to the uncertainty values produced by the oracle for the training data. Let’s
call this B.

3. For K uniformly spaced values of uncertainty uk ∈ [0, 1], 1 ≤ k ≤ K, we calculate the ratio
pA(uk)/pB(uk), and plot a scaled version of it c · pA(uk)/pB(uk). The scaling factor c is picked
to transform the ratios into probability masses, i.e.,

∑K
k=1 c · pA(uk)/pB(uk) = 1.
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Essentially, we normalize the sampling probability pA(uk) at uk, with pB(uk), a quantity representing
the number of instances with uncertainty uk.

These plots are shown in Figure 20. The corresponding plots for the DT are shown in Figure 23, Section
A.9.

(a) (b)

Figure 20: Aggregated IBMMs, adjusted for the uncertainty distribution. These plots are for the LPM,
using a (a) GBM or (b) RF as an oracle. The corresponding plots for DTs may be found in Section A.9.

While the plots in Figure 19 are indicative of the individual distributions they aggregate (most of the
individual distributions have similar shapes; see Figure 25 in Section A.11), this is not true for the adjusted
plots in Figure 20 - there are diverse variations that are averaged out. We show some of them in Figure 21,
for different datasets and model sizes, for model = LPM, oracle = GBM . The size of the dots on the curve
represent pB(uk) at the corresponding value of uk on the x-axis. These are intended to signify robustness of
the adjustment, since they occur in the denominator of the scaled ratios.

(a) a1a, size=2 (b) letter, size=2 (c) letter, size=3
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Figure 21: Adjusted IBMMs for some model sizes and datasets, for model = LPM, oracle = GBM . We
observe that fairly different distributions may be learned across our experiments.

It is probably important to point out here that typical discussions of uncertainty sampling, such as the classic
version (Lewis & Gale, 1994), imply the non-adjusted distributions shown in Figure 19.

A.8 Running Times

We present the running times (in hour) of our experiments in Table 9. These times should be seen as
indicative only for the following reasons:
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1. We used shared Virtual Machines28 for our experiments, where we have seen highly variable execution
times for our workload. To illustrate this variability both the mean and standard deviation of running
times, computed across five runs, are provided.

2. As mentioned earlier, our technique maybe seen as a framework that can work with different opti-
mizers (Section 3.5). Changing the optimizer can greatly influence running times. We show some
examples later in this section.

3. Finally, we perform various repeated trials in our experiments, e.g., for computing st and fitting Mt

in Algorithm 3, which impact running times. However, we haven’t explored if they are required (see
relevant discussion in Section 6), since our focus in this paper was accurate results and not small
running times.

28Sometimes with differing hardware: 16 GB RAM/6 cores or 32 GB RAM/8 cores, with processor capability equivalent to
the Intel Xeon E5 family. All processes were single threaded.
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We now illustrate the effect of using different optimizers. We use the LIPO (Malherbe & Vayatis, 2017) and
pySOT (Eriksson et al., 2019) optimizers, in addition to TPE (in the hyperopt library) that is used in the
main paper. The pySOT library supports multiple search strategies; we show results for Stochastic Radial
Basis Function (denoted as “pysot(srbf)”) (Regis & Shoemaker, 2007; 2009) and Dynamic Coordinate Search
(denoted as “pysot(dycors)”) (Regis & Shoemaker, 2013).

In Figure 22, we show runtimes for the two datasets covtype (row A) and letter (row B), where the model is
LPM (size 2 and 3 respectively) and the oracle is GBM. This setup uses ten trials, each with an optimizer
budget of 1000 iterations. The datasets contain 2000 instances, and the splits are the same as in our other
experiments, i.e., Dtrain : Dval : Dtest :: 60 : 20 : 20. The F1 macro score on Dtrain is shown since the
optimizer’s objective function is defined on this split, making it a good choice for tracking progress. Scores
are shown against both number of iterations and wallclock time.

Consider row A in Figure 22. Although hyperopt eventually obtains the highest accuracy, it is clear from (b)
that if our budget were less than ∼ 250 sec, pysort(srbf) would be a better choice since it reaches higher scores
faster. In the case of row B, the difference in performance is starker: pysot(dycors) is not only eventually
more accurate on average, but its performance is either at par with hyperopt or better, throughout the course
of the experiment.
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A. dataset=covtype, LPM (size=2) with oracle=GBM

B. dataset=letter, LPM (size=3) with oracle=GBM

Figure 22: Impact of optimizers on running times is illustrated both in terms of number of iterations and
wallclock time. Data is visualized for the LPM (model) and GBM (oracle) combination. Row A corresponds
to an LPM of size = 2 for the covtype dataset, while Row B shows plots for an LPM of size = 3 for the
letter dataset. The curves show average values, while the shaded region represents one standard deviation.

A.9 Uncertainty Distribution for DT

The uncertainty distributions learned when using a DT with different oracles are shown in Figure 23. The
first row shows visualizes the aggregation of the IBMMs that were learned, while the second row shows them
adjusted with the uncertainty distribution from the oracle. These are analogues of the LPM plots in Figure
19 and Figure 20.
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Figure 23: The aggregated IBMMs visualized when using a DT as our interpretable model. The top row
shows the aggregated IBMMs for different oracles: GBM (left) and RF (right). The bottom row visualizes
the IBMMs adjusted for the uncertainty distribution.

The patterns we observe here are similar to what we saw for LPMs:

1. Top-row: the IBMMs seem to prefer both low and high uncertainty regions.

2. Bottom-row: when adjusted with the oracle’s uncertainty distribution, there is sampling across the
entire range of uncertainty values, with slight/occasional preference for higher uncertainties.

A.10 Compaction Profiles

Figure 24 shows the compaction profiles for all model-oracle combinations. These are discussed in Section
4.1.6, in reference to Figure 5.

A.11 IBMMs for Different Model Sizes

Figure 25 shows the IBMMs learned over uncertainties for individual model sizes of the LPM , with GBM
as the oracle,. These are not adjusted with the density of the uncertainty distribution. The plot shows
them for the datasets (a) covtype.binary and Sensorless. We observe that the unified IBMM weighted
by improvements, shown in Figure 19, are indicative of the individual distributions in this Figure 25.
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(a) (b)

(c) (d)

Figure 24: For different combinations of models and oracles: {LPM, DT} × {GBM, RF}, these plots show
the size of an improved model (y-axis), that may replace a traditionally trained model of a given size (x-axis).
A model is considered as a replacement for another if its accuracy is at least as high as the latter.

Figure 25: IBMM distributions for model sizes {1, 2, ..., 15}, for the datasets (a) covtype.binary and (b)
Sensorless. These are for the combination of using LPM as the model with GBM as an oracle. Darker
curves indicate higher model sizes.
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A.12 Improvements Relative to Oracle

Figure 26: These plots show the distribution of the percentage relative difference of a model’s improved
score w.r.t. to the accuracy of the oracle it is trained with. We note that this quantity is almost always
non-positive as claimed in Equations 1, 2 and 3.

Some of the positive values we see in Figure 26 may be attributed to spillovers due to the kde fit. Their
magnitudes and occurrences are typically small: these are detailed in Table 8.

A.13 Feature Selection for n-gram DT

For the experiments in Section 4.3.1, we perform feature selection to reduce their running time. After the
n-gram (n ∈ {1, 2, 3}) vocabulary is created from the training data, we perform a χ2-test to select the k−best
features. The original number of features is 5308. To pick the smallest useful set of features, we test different
values of k ≤ 1000. A test constitutes of:

1. Construct a DT, for a given max_depth, on the original set of features. Obtain its test accuracy,
F1all.

2. Construct a DT, with the same max_depth, using only the k best features as per the χ2-test, and
obtain its test accuracy F1k.

3. Report:
δF1 = 100× F1k − F1all

F1all

We use the “macro” averaging for the F1 score to be consistent with other experiments in the paper. All
reported δF1 are averaged over ten runs.
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Figure 27 shows how δF1 varies with k.

Figure 27: The relationship between δF1 and k ≤ 1000. Each data point is an average over ten runs.

We observe that at around 600 features, δF1 ≈ 0%. The only exception is the case for max_depth = 3, but
that is admissible since δF1 > 0, i.e., we seem to be improving the accuracy.
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