
Base Models Know How to Reason,
Thinking Models Learn When

Constantin Venhoff†*⋆ Iván Arcuschin†*♢

Philip Torr ⋆ Arthur Conmy Neel Nanda∗

Abstract

Why do thinking language models like DeepSeek R1 outperform their base coun-
terparts? Despite consistent performance gains, it remains unclear to what extent
thinking models learn entirely new reasoning capabilities or repurpose pre-existing
base model ones. In this work, we propose a hybrid model where we activate
reasoning mechanisms in base models at the right time to elicit thinking-model-
level reasoning chains, implying that thinking models exploit already existing
capabilities. To ground our analysis, we introduce an unsupervised, bottom-up
approach for uncovering human-interpretable reasoning behaviors in thinking mod-
els. This approach provides an unbiased method to discover reasoning behaviors
without imposing manual or LLM-derived assumptions. Across three base and four
thinking models, using GSM8K and MATH500, our hybrid model recovers up to
91% of the performance gap to thinking models without any weight updates while
steering only 12% of tokens. Concretely, our empirical setup provides a simple,
causal way to test the effectiveness of existing reasoning mechanisms in base
models by invoking them directly and measuring the resulting task performance.
More broadly, these results reframe our understanding of how thinking models are
trained: pre-training is when models acquire most of their reasoning mechanisms,
and post-training teaches efficient deployment of these mechanisms at the right
time, enabling efficient use of their inference-time compute.

1 Introduction

Large Language Models (LLMs) have recently demonstrated remarkable capabilities in reasoning
tasks when given additional inference time to think through problems step-by-step. Thinking models,
also known as reasoning models, or models using inference-time compute, are a type of language
model designed to generate long chains of reasoning before arriving at a final answer. Examples of
models in this category include Anthropic’s Claude 3.7 Sonnet [1], OpenAI’s o3 [2], Gemini 2.5 Pro
[3], DeepSeek’s R1 [4], and Qwen’s QwQ-32B [5].

All these thinking models significantly outperform their base counterparts on challenging reasoning
benchmarks [6]. However, a fundamental question remains: What is the difference between base and
thinking models that allows the latter to achieve superior performance?

Prior work has suggested several hypotheses: (1) thinking models acquire entirely new reasoning
capabilities through specialized training [7]; (2) reinforcement learning (RL) teaches them to structure
their reasoning more effectively [8]; (3) RL teaches them to repurpose pre-existing base model

∗ Correspondence to: constantin@robots.ox.ac.uk and iarcuschin@dc.uba.ar
† Equal Contribution
♢ University of Buenos Aires, Argentina
⋆ University of Oxford, UK

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Melanie

How

<BOS><BOS> <User>

<Assistant>

is a door -to -door saleswoman . if Melanie has

5 vacuum cleaners left ,

[...]

manyproblem

xSo

vacuum cleaners did

5= .

Wait

Okay , so I thishave math : [...]

how many did she start with ?

Answer:

+backtracking steering vector

unsteered token

Input

Next token’s
category

should be:

Classifier

Base
model

How manyproblem

xSo

vacuum cleaners did

5= .

Okay , so I thishave math : [...]

Thinking
model

0% Problem Restatement

5% Arithmetic

85% Backtracking

0% Final Answer

10% Uncertainty Estimation

0% Listing Examples

C

A

B

Figure 1: Hybrid Models Unlock Reasoning Model-Level Behavior with Minimal Intervention.
Overview of our approach for steering base language models to reason like thinking models. (A)
We use the base model as the primary generator of tokens in the output sequence. (B) For each
token position, we evaluate the current rollout in a target thinking model and use a “thinking model
activation classifier” to detect the reasoning mechanism that should be applied next. (C) When the
classifier detects a reasoning step, we apply a corresponding steering vector to the base model’s
activations, triggering structured reasoning behavior. This approach shows that base models already
possess latent reasoning abilities, and that these can be reliably activated without any parameter
updates, bridging much of the gap to full reasoning models with minimal extra machinery.

representations for new mechanisms [9]; or (4) the additional inference time simply allows more
computation to be applied to difficult problems [10, 11]. In this paper, we present evidence for a
more nuanced explanation: not only do base models already possess the fundamental reasoning
capabilities, but thinking models learn when to deploy these capabilities in a structured sequence.

We make the following contributions:

1. To support our analysis, we develop an unsupervised clustering methodology to derive an
interpretable taxonomy of reasoning mechanisms that thinking models employ during their
chains of thought, forming the building blocks of complex problem-solving (Section 2).

2. We demonstrate that base models can perform each reasoning behavior when appro-
priate steering vectors are added to their activations (Section 3). By identifying and
applying the right vector at the right step, we can guide pretrained base models to reproduce
complete reasoning chains of thinking models.

The evaluation for our steered base model approach focuses on thinking models across diverse
architectures and parameter scales, including models trained with distillation (DeepSeek-R1-Distill
series) and models trained directly with RLVR (QwQ-32B). The results show that this approach
substantially lifts base model performance, recovering up to 91% of the performance gap between
base and thinking models on GSM8K and MATH500 benchmarks without any weight updates and
steering only 12% of tokens.

This finding provides strong evidence that reinforcement learning with verifiable rewards (RLVR
[12]) used to train thinking models primarily teaches when to activate pre-existing skills rather than
teaching how to execute those skills. This perspective has direct implications for more efficient
training of reasoning in future language models. To ease reproducibility and further research, we
publish our codebase and results in a public GitHub repository2.

2https://github.com/cvenhoff/thinking-llms-interp

2

2 Taxonomy of Reasoning Mechanisms

Recent work on thinking models has primarily relied on manual inspection of the model’s reasoning
traces to identify the underlying mechanisms it uses to perform reasoning (see Section 4). While
insightful, such approaches are inherently subjective and may overlook subtle or distributed reasoning
patterns. To support our main analysis, we develop an unsupervised, bottom-up methodology to
discover human-interpretable reasoning mechanisms in thinking models. Our goal is to construct a
taxonomy of reasoning mechanisms that is:

1. Interpretable: Each reasoning mechanism should be understandable by humans, with a
clear description of its cognitive function and role in the reasoning process.

2. Complete: The taxonomy should cover the full range of types of reasoning steps the model
can use, ensuring no significant patterns of reasoning are overlooked in our analysis.

3. Independent: The categories should correspond to distinct cognitive functions with minimal
overlap between different reasoning processes.

2.1 Unsupervised Clustering of Reasoning Mechanisms via High-Level Sparse Autoencoders

Unsupervised methods are essential for building a taxonomy of reasoning mechanisms. They allow
us to discover reasoning patterns without imposing pre-existing assumptions about how models
reason, which could bias our taxonomy. Clustering algorithms are particularly well-suited as they can
identify natural groupings in high-dimensional activation spaces that correspond to distinct reasoning
functions.

Sparse Autoencoders (SAEs) [13, 14] have gained widespread popularity in recent years due to their
ability to decompose Large Language Model (LLM) activations into interpretable features [15–17].
Top-K SAEs [18, 19] are a variant that enforces sparsity by keeping only the K largest magnitude
components of the latent representation, creating a more interpretable and computationally efficient
decomposition. In our approach, we use Top-K Sparse SAEs to cluster the sentence-level activations
of the model. More details on how Top-K SAEs operate are provided in Appendix A.

The configuration of our SAE directly matches our hypotheses about reasoning processes. Specifically,
the dimension size of the SAE dictionary represents the number of distinct reasoning mechanisms we
hypothesize exist in the model’s reasoning process, while the parameter k in top-k sparsity constrains
how many reasoning mechanisms can be simultaneously active in a single sentence. This reflects our
hypothesis that each reasoning step typically employs a small number of distinct cognitive operations
rather than engaging all possible reasoning mechanisms at once.

Using a restricted decoder space, we force the SAE to learn the subspace components that best
explain the variance of our sentence activations, essentially making this a clustering method. While
standard configurations in Mechanistic Interpretability typically use much larger latent dimensions
than input dimensions [17, 19], we deliberately restrict the latent dimension to be in the range [5, 50],
which is far smaller than the input dimension (e.g., 1,536 for Qwen2.5-1.5B). This design choice
forces the SAE to identify the most fundamental dimensions of reasoning variation rather than
incidental linguistic features. This constraint ensures discovered features correspond to core cognitive
operations, with empirical evidence showing that optimal dimensionality consistently falls between
15-25 categories across different model architectures.

We train our Top-K Sparse Autoencoders (SAEs) on sentence-level activations extracted from
reasoning traces generated on 12,102 prompts from MMLU-Pro [20], resulting in 430,122 sentences.
We focus on sentence-level analysis because sentences strike an intermediate abstraction depth that
is optimal for reasoning analysis, avoiding the excessive granularity of token-level analysis while
maintaining more precision than paragraph-level approaches [?]. Prior work has established that
different sentences within reasoning traces perform distinct functions [21?], providing computational
tractability for attribution and causal analysis across long traces [22]. We average activations over
sentences under the assumption that each sentence can be primarily classified by one or, at most,
three reasoning categories. More details on the training process of SAEs are provided in Appendix A.

3

4 8 12 16 20 24
Layer

50
45

40
35

30
25

20
15

10
5

Nu
m

be
r o

f C
lu

st
er

s

0.72

0.70
0.70

0.20

0.28

0.29

DEEPSEEK-R1-DISTILL-QWEN-1.5B

6 10 14 18 22 26
Layer

50
45

40
35

30
25

20
15

10
5

0.80

0.79
0.78

0.13 0.26 0.28

DEEPSEEK-R1-DISTILL-LLAMA-8B

8 14 20 26 32 38
Layer

50
45

40
35

30
25

20
15

10
5

0.77

0.76

0.75

0.19
0.280.33

DEEPSEEK-R1-DISTILL-QWEN-14B

9 18 27 36 45 54
Layer

50
45

40
35

30
25

20
15

10
5

0.71
0.70

0.69

0.07 0.15
0.17

DEEPSEEK-R1-DISTILL-QWEN-32B

9 18 27 36 45 54
Layer

50
45

40
35

30
25

20
15

10
5

0.74

0.74

0.73
0.13 0.220.41

QWQ-32B

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Fin

al
 S

co
re

Figure 2: Grid search results comparing the performance of Sparse Autoencoder taxonomies
across the five thinking models in our taxonomy evaluation. Each heatmap shows the combined
score (average of completeness, independence, and consistency) for different combinations of layer
locations (x-axis) and cluster sizes ranging from 5 to 50 with increments of 5 (y-axis). Values
highlighted in blue indicate particularly strong performing configurations, while red ones indicate
poor-performing configurations. Optimal configurations are typically found in the upper portions of
the grid (0.70-0.80). Despite the common pattern of high scores on large cluster sizes, we find “elbow”
scores at cluster sizes between 10 and 20, suggesting that reasoning mechanisms are reasonably
well represented using 10 to 20 categories.

2.2 Taxonomy Evaluation

Once we obtain SAE clusters for each model configuration, we need to systematically evaluate the
quality of the resulting taxonomy against our stated objectives of interpretability, completeness, and
independence. Given that we do not know a priori how many clusters are optimal for each model or
which layer would best capture the reasoning mechanisms, we need a robust methodology to evaluate
and compare different SAE configurations. We implement this evaluation as a scoring system that
allows us to identify the most effective taxonomy across different hyperparameter settings. For this
evaluation, we used the sentences we collected from the reasoning traces of each thinking model on
MMLU-Pro prompts. Each potential taxonomy in our work is evaluated through a scoring metric
defined as an average of three components: completeness, consistency, and independence.

Interpretable Categories. To derive human-understandable categories from our Sparse Autoen-
coder (SAE) representations, we employed an LLM-based interpretability approach. Our SAE-based
approach offers a key advantage over direct LLM annotation of reasoning patterns: it provides fully
unsupervised discovery of categories without imposing manual or LLM-derived assumptions about
what reasoning mechanisms should exist, making it more principled and unbiased. For each identified
cluster, we collected 100 top exemplar sentences that most strongly activated that particular feature,
and 100 random sentences from the same cluster. These representative examples were then analyzed
using an LLM to identify the precise cognitive function these sentences serve in the reasoning process.

This process generates our list of interpretable reasoning categories with their titles and descriptions,
which forms the foundation for our subsequent evaluation metrics. See Appendix B.1 for the complete
cluster generation prompt and more details.

4

Consistency. We measure the consistency of our categories by evaluating how well an LLM can
classify individual sentences from within and outside each category using the generated titles and
descriptions. For a given cluster, we take the average F1 score across all categories as our overall
consistency score.

Completeness. We measure the completeness of our categories by evaluating the confidence that
an LLM has in classifying individual sentences into their assigned categories.

Independence. We measure the independence of our categories by asking an LLM to evaluate how
semantically similar all pairs of categories are in a cluster. This information is then used to calculate
the fraction of pairs with similarity below a threshold (0.5), equivalently, those with orthogonality
above 0.5, which we consider functionally distinct.

For all these metrics, the higher the value, the better the taxonomy. More details on the prompts and
specific implementation are provided in Appendix B. Note that the consistency, completeness, and
independence scores are generated by prompting an LLM. Although LLM-as-a-judge is a common
practice in current literature, the alignment between our evaluation pipeline and true human judgment
remains to be validated.

As mentioned, the final score for a cluster is calculated as the average of the three evaluation metrics,
providing a systematic way to evaluate the quality of our taxonomy, and ensuring it effectively
captures the full spectrum of reasoning mechanisms while maintaining clear boundaries between
categories.

Additionally, this approach enables us to move beyond manual, top-down annotation and instead
discover reasoning categories that are both grounded in the model’s internal representations and
interpretable to humans. We note that other clustering approaches or manually designed sentence
taxonomies would likely work similarly for our purposes, as our main findings depend on the existence
of reasoning categories rather than their specific derivation method.

2.3 Taxonomy Results

To evaluate our approach to building interpretable taxonomies, we analyze five models: four
DeepSeek-R1 distilled variants: Llama-8B, Qwen-1.5B, Qwen-14B, Qwen-32B, and one model
trained with Reinforcement Learning from Verifier Rewards (RLVR), QwQ-32B.

The DeepSeek-R1 distilled models are a series of smaller dense models, which have been fine-tuned
to mimic the behavior of the full DeepSeek R1 model, a recent thinking model that has achieved a
similar performance to OpenAI’s o1-preview on the ARC-AGI-Pub dataset [6, 23]. These distilled
models have parameter counts ranging from 1.5B to 70B, implemented on both Qwen and Llama
architectures, and their performance matches or exceeds that of leading production models, including
GPT-4o [24] and Claude 3.5 Sonnet [25], across several math and coding benchmarks [4].

The DeepSeek-R1 model itself is trained using a multi-stage process that combines large-scale rein-
forcement learning (RL) with supervised fine-tuning (SFT). Similarly, QwQ-32B is a large language
model trained with RLVR, which optimizes the model with stepwise signals from automated verifiers
rather than outcome-only rewards, explicitly shaping intermediate reasoning. This model is not
distilled from DeepSeek-R1, providing a contrast between distillation-driven and verifier-driven
reasoning.

We performed an extensive grid search across these five models, using 6 distributed layers and
cluster sizes (ranging from 5 to 50 categories with increments of 5) to identify the optimal taxonomy
configuration. For comparison across configurations, we apply min-max normalization within
each model. The results are shown in Figure 2, and we provide the complete taxonomies for our
best-performing SAE configurations in Appendix E.

3 Steering Base Models to Reason

In this section, we explore the main question of our paper: do base models already possess the
reasoning mechanisms of thinking models, and if so, can we induce these behaviors through targeted
interventions? Our hypothesis, supported by preliminary evidence in prior work [9, 26, 27], is that

5

non-thinking models may already contain the latent capacity for sophisticated reasoning patterns,
such as uncertainty estimation and backtracking, but lack the ability to effectively determine when to
employ these mechanisms.

Following Marjanović et al. [8], we define a reasoning behavior (or reasoning mechanism) as an
individual cognitive-like step or operation that a model performs as part of its chain-of-thought when
working through a problem. Such steps, for example, verifying an intermediate result, backtracking
to revise an approach, or setting a subgoal, serve as interpretable, compositional building blocks of
the model’s reasoning process.

To investigate this hypothesis, we propose a hybrid approach that combines the strengths of base
models with the decision-making capabilities of thinking models. In other words, the hybrid model
is powered by the base model, but driven by the thinking model. We control the base model with
steering vectors: directions in activation space that, when added to intermediate activations, induce
target behaviors [28–31]. This leverages the linear representation hypothesis, which posits that certain
concepts and behaviors in neural networks are represented as directions in activation space. The
details of how we find and compute the steering vectors are provided in Appendix C.

Once we have extracted the causal vectors that induce the reasoning mechanisms in base models
using the approach in Section 2, we allow a thinking model to decide when to activate these steering
vectors by analyzing the base model’s generation and identifying appropriate moments to induce
specific reasoning mechanisms. This flow is depicted in Figure 1.

If this hybrid model performs comparably to dedicated thinking models, it would provide evidence
that the fundamental reasoning mechanisms already exist within base models, and that thinking
models primarily learn when to optimally deploy these mechanisms rather than developing entirely
new capabilities.

3.1 Finding Steering Vectors in Base Models

We leverage the reasoning taxonomies we built in Section 2 to identify steering vectors corresponding
to each reasoning mechanism. For a given reasoning category, the steering vector represents the
direction in activation space that induces the corresponding behavior in the base model. Since SAEs
identify variance-explaining rather than causally important directions, we use steering vector opti-
mization to search for the causal directions corresponding to SAE-discovered reasoning mechanisms
in base models.

To find steering vectors through optimization, we employ the method outlined by Dunefsky and
Cohan [32]. Specifically, we:

1. Choose an SAE from Section 2 to label each sentence in our dataset of reasoning traces
from MMLU-Pro tasks [20], with its corresponding reasoning category.

2. For each category, identify sentences with top activation scores for that category.
3. Extract examples where we have both the prefix leading up to the annotated sentence and

the annotated sentence itself as the target completion.
4. Optimize a steering vector in the base model that, when applied, maximizes the next token

prediction loss for the thinking model’s completion while minimizing the likelihood of the
base model’s completion.

Based on our grid search results shown in Figure 2, we select for each model a layer and cluster
size that lies at the performance elbow, providing a practical balance between completeness and
independence while avoiding the computational overhead of larger cluster sizes. We optimize steering
vectors at 37% of model depth, which has been shown to be most causal for some models in prior
work [21] (e.g., for Llama-3.1-8B distilled, layer 12). Notice that this depth is different than the layer
used for evaluating SAE layers in the taxonomy extraction. The complete procedure for example
selection and training is detailed in Appendix C.

In addition to category-specific steering vectors, we train a general bias vector using a randomly
sampled set of thinking rollouts as the target completion. This bias vector is supposed to capture
general similarities across complete rollouts, like using first person. We apply it during the generation
of the hybrid model, frozen, alongside category-specific vectors during training. During training, we
apply the steering vectors at all token positions. The complete training procedure, including opti-
mization hyperparameters, early stopping criteria, and prompt templates, is detailed in Appendix C.

6

Table 1: Hybrid model performance on GSM8K. Results show accuracy percentages for base
models, hybrid models (base + steering vectors), and thinking models. Performance improvements
over base model are shown in parentheses next to hybrid and thinking model results.

Base
Model

Thinking
Model Base Hybrid Thinking Gap

Recovery
Qwen2.5-
Math-1.5B

DeepSeek-R1-
Distill-Qwen-1.5B

83.8% 80.8% (−3.0%) 80.8% (−3.0%) 0.0%

Llama-3.1-8B DeepSeek-R1-
Distill-Llama-8B

37.8% 63.4% (+25.6%) 83.4% (+45.6%) 56.1%

Qwen2.5-14B DeepSeek-R1-
Distill-Qwen-14B

90.8% 93.0% (+2.2%) 94.2% (+3.4%) 64.7%

Qwen2.5-32B DeepSeek-R1-
Distill-Qwen-32B

92.6% 94.4% (+1.8%) 94.8% (+2.2%) 81.8%

Qwen2.5-32B QwQ-32B 92.6% 94.8% (+2.2%) 96.4% (+3.8%) 57.9%

The steering vectors converge successfully during training across different model architectures and
sizes, indicating that base models contain causal directions that can reliably steer them toward the
reasoning behaviors discovered by the SAE.

3.2 Hybrid Model Implementation

Our hybrid model combines the reasoning skills of the base model with the capacity to selectively
apply steering vectors at appropriate points in the generation process. During generation, the model
first computes SAE activations at each token position to identify the most active reasoning category.
It then applies the corresponding steering vector to the base model’s activations for the strongest
activating category. To adjust the steering strength during generation, we apply the steering vector
for a set of coefficients and steering windows (number of tokens before current token position to
apply the steering vectors to) and select the steered token with the lowest perplexity according to
the thinking model, ensuring that the thinking model is not thrown out of distribution. For both the
base-only and hybrid models, we use the same chain-of-thought prompting format (see Appendix C),
so improvements cannot be attributed to prompting differences.

This approach allows us to leverage the strengths of both models: the base model provides the
fundamental capabilities, while the steering vectors derived from the thinking model guide when
to deploy specific reasoning mechanisms. Importantly, this hybrid approach requires no parameter
updates to the base model, providing strong evidence that the reasoning capabilities already exist in
latent form within the base model. The effectiveness of our approach with only 15 distinct steering
vectors (corresponding to our cluster size) rules out the alternative explanation that steering simply
biases toward specific output tokens, as there is insufficient information to generate appropriate
outputs across hundreds of diverse problems through token-level manipulation alone. Instead, our
results suggest that steering activates latent reasoning modes or behaviors within the base model.

3.3 Hybrid Model Results

We evaluate our hybrid model approach across multiple base model architectures and reasoning
benchmarks to demonstrate the generalizability of our findings. The combinations of base and
thinking models we use for our experiments are listed in Tables 1 and 2. We evaluate performance
on two mathematical reasoning benchmarks of increasing difficulty: GSM8K [33] for grade-school
math problems and MATH500 [34] for competition-level mathematics.

As shown in Tables 1 and 2, our hybrid approach demonstrates substantial performance improvements
across different model architectures on GSM8K and MATH500. The best gap recovery ((Acchybrid −
Accbase)/(Accthinking −Accbase)) achieved by the hybrid model is 81.8% on GSM8K (Qwen2.5-32B
with DeepSeek-R1-Distill) and an impressive 91% on MATH500 (Qwen2.5-32B with QwQ-32B).
Importantly, these gains are achieved while steering only a small fraction of the tokens. As reported
in Table 3, across all base/thinking pairs we steer at most 21% of tokens per problem (often much

7

Table 2: Hybrid model performance on MATH500. Results show accuracy percentages for base
models, hybrid models (base + steering vectors), and thinking models. Performance improvements
over base model are shown in parentheses next to hybrid and thinking model results.

Base
Model

Thinking
Model Base Hybrid Thinking Gap

Recovery
Qwen2.5-
Math-1.5B

DeepSeek-R1-
Distill-Qwen-1.5B

66.2% 68.4% (+2.2%) 78.6% (+12.4%) 17.7%

Llama-3.1-8B DeepSeek-R1-
Distill-Llama-8B

27.8% 29.6% (+1.8%) 79.8% (+52.0%) 3.5%

Qwen2.5-14B DeepSeek-R1-
Distill-Qwen-14B

58.6% 75.4% (+16.8%) 86.4% (+27.8%) 60.4%

Qwen2.5-32B DeepSeek-R1-
Distill-Qwen-32B

59.4% 74.6% (+15.2%) 86.0% (+26.6%) 57.1%

Qwen2.5-32B QwQ-32B 63.4% 84.4% (+21.0%) 86.4% (+23.0%) 91%

Table 3: Average steered fraction of tokens per problem. Average fraction of tokens receiving
steering per problem on GSM8K and MATH500 for each base/thinking pair.

Base
Model

Thinking
Model GSM8K MATH500

Qwen2.5-Math-1.5B DeepSeek-R1-Distill-Qwen-1.5B 12.8% 10.7%

Llama-3.1-8B DeepSeek-R1-Distill-Llama-8B 21.5% 15.8%

Qwen2.5-14B DeepSeek-R1-Distill-Qwen-14B 6.5% 7.8%

Qwen2.5-32B DeepSeek-R1-Distill-Qwen-32B 11.2% 9.8%

Qwen2.5-32B QwQ-32B 12.7% 12.0%

less), indicating that targeted, sparse interventions suffice to activate latent reasoning behaviors. By
contrast, Table 2 shows that hybrid gains are lower for smaller models (e.g., Qwen2.5-Math-1.5B and
Llama-3.1-8B), which might indicate less clean steering directions and correspondingly marginal
improvements.

The results on bigger models though provide enough evidence that a significant portion of the thinking
model’s advantage comes from learning when to deploy existing reasoning mechanisms, rather than
learning entirely new capabilities. See Figure 3 in Appendix C for an illustrative example of the
hybrid model in action. An interactive demo of the hybrid model is available online 3. Detailed
statistics on steering vector usage patterns and the most frequently activated reasoning mechanisms
for each model configuration are provided in Appendix D.

3.4 Hybrid Model Ablation Studies

To assess the hybrid model’s components, we ablate three factors: the specificity of the learned
steering vectors, the timing of their application, and the contribution of the bias vector. We run these
ablations on Qwen2.5-32B as the base with QwQ-32B (RLVR) as the thinking model on MATH500,
the setting with the strongest hybrid performance (Table 2, 91% gap recovery):

• Only-bias: Uses only the general bias vector for steering, without any category-specific
steering vectors

• Random-firing: Randomly selects which reasoning category to activate at each token,
bypassing the SAE oracle (the bias vector is still used)

• Random-vectors: Uses random unit vectors instead of the trained steering vectors, main-
taining correct dimensionality (the bias vector is still used)

3https://thinking-llms-interp.com

8

https://thinking-llms-interp.com

As a reminder, the base model Qwen2.5-32B achieves 63.4% accuracy and the full hybrid model
achieves 84.4% accuracy on this benchmark. The ablation results show that Only-bias achieves
76.8%, indicating the bias helps but category-specific steering vectors are necessary; Random-firing
reaches 77.8%, showing that proper timing of activation is crucial; Random-vectors achieves 77.2%,
confirming that the learned directions are specific rather than generic. A further analysis of the
behavior induced by the bias vector shows that it captures higher-level stylistic and structural aspects
of thinking model outputs, such as providing more self-contained and pedagogical explanations (see
Appendix C.3). Together, these findings indicate that the effectiveness of thinking models can only
be partially explained by a more verbose answer style, and closing the gap requires specific learned
directions applied with correct, category-timed activation, consistent with our claim that thinking
models primarily learn when to deploy reasoning mechanisms.

4 Related Work

Some recent studies derive LLM reasoning taxonomies manually from cognitive strategies. Gandhi
et al. [7] identify four behaviors (verification, backtracking, subgoal setting, backward chaining)
shared by expert humans and strong LLMs, showing these behaviors improve RL-based self-
improvement and that priming with them boosts fine-tuning performance.

Other works derive taxonomies empirically. Marjanović et al. [8] introduce a “thoughtology” of
DeepSeek-R1, analyzing reasoning building blocks across chain length and cognitive style; they
find an optimal chain length and that excessive rumination on initial hypotheses hinders exploration.
Gema et al. [35] corroborates that longer traces exhibit inverse-scaling performance, with similar
test-time scaling observed across reasoning models [?]. Similarly, Sun et al. [36] document a “ladder”
of reasoning styles: moving from easy to medium tasks requires more structure, yet even extensive
fine-tuning yields diminishing returns on harder problems.

A complementary line asks whether base models contain latent reasoning. Zhao et al. [10] find
RL post-training primarily amplifies pretraining patterns rather than teaching new skills. Wang
et al. [11] show that one carefully chosen example can markedly improve reasoning, suggesting
minimal intervention can unlock latent reasoning “circuits”. ?] investigates how fine-tuning surfaces
pre-existing capabilities rather than constructing new mechanisms, identifying shared subspaces
between base and fine-tuned models that control context-sensitivity behavior. Venhoff et al. [21]
identify interpretable activation vectors corresponding to reasoning behaviors in thinking models,
which can increase or decrease these mechanisms without additional fine-tuning. Ward et al. [9]
discover directions in base models that steer reasoning behavior in thinking LLMs. Similarly, ?
] show that rank-1 LoRA adapters can recover 73–90% of reasoning performance with minimal
parameter changes, and find interpretable reasoning features in the adapter activations using sparse
autoencoders. To our knowledge, no prior work has systematically discovered steering vectors that
induce reasoning directly in the base model itself.

On distillation, Baek and Tegmark [37] identify feature directions in distilled models that steer
different thinking modes, and Galichin et al. [27] use Sparse Autoencoders to interpret reasoning
features and enhance capabilities. ?] analyze how internal features preceding “wait” tokens modulate
reasoning patterns in DeepSeek-R1-Distill using sparse crosscoders, finding that features both
promoting and suppressing wait tokens influence downstream reasoning behavior. Concurrently, ?]
support sentence-level decomposition of chain-of-thought, showing sentences serve distinct functions.
Bridging base and reasoning-specialized models, Jia et al. [38] integrates a learned latent action
space to guide RL fine-tuning, and Zhang et al. [39] surveys reasoning-centric LLMs, emphasizing
high-quality reasoning data and hybrid training.

Inference-time guidance methods aim to steer generation without fine-tuning. ?] propose Budget
Guidance, which softly modulates token probabilities using a predictor over the remaining thinking
length to meet a target budget of thinking tokens. Similarly, ?] propose Nudging, which frames
guided decoding as inference-time alignment by nudging next-token distributions toward a desired
guidance signal.

Our work contributes an unsupervised taxonomy of reasoning mechanisms in LLMs and shows how
base models can be steered along these dimensions. We unify taxonomy-driven understanding and
activation-level control, supporting the view that base models possess nascent reasoning behaviors
which can be selectively activated through targeted training or steering.

9

5 Conclusion

This work provides a novel perspective on the nature of reasoning in large language models. Through
unsupervised clustering, we derived a taxonomy of reasoning steps that decompose the complex
chain-of-thought processes in thinking LLMs. This interpretable taxonomy of distinct reasoning
behaviors offers a framework for understanding how these models approach problem-solving tasks.

Our most significant finding is that these reasoning behaviors are not unique to thinking models;
they also exist latently within base models. By identifying and applying the appropriate steering
vectors, we demonstrated that base models can execute the same reasoning patterns when properly
guided. The fact that our hybrid approach recovered up to 91% of the performance gap between
base and thinking models without any gradient updates while steering only 12% of tokens provides
compelling evidence for our hypothesis.

These results suggest that the reinforcement learning with verifiable rewards (RLVR) used to train
thinking models primarily teaches them when to activate pre-existing capabilities rather than de-
veloping fundamentally new reasoning skills. This points to a crucial decomposition of reasoning
into two components: the decision of which mechanisms to execute, and their actual execution.
Thinking models excel at the former, orchestrating cognitive mechanisms already present in their
base counterparts, using the additional inference-time compute to better navigate the problem space.

Our findings have important implications for future model development:

• They explain why knowledge distillation and RLVR are particularly effective for transferring
reasoning capabilities to smaller models: the distillation process may primarily be teaching
smaller models when to deploy various reasoning strategies.

• They suggest that efficient reasoning might be achievable through more targeted interventions
in activation space rather than comprehensive parameter updates.

• They provide a framework for understanding and potentially addressing specific reasoning
failures in LLMs by identifying and strengthening particular reasoning components.

In future work, we plan to conduct a comprehensive case study comparing the best taxonomies across
different models to identify universal versus model-specific reasoning mechanisms. We also aim to
develop qualitative examples and case studies demonstrating where steering significantly changes
base model behavior, as well as failure cases where the hybrid model approach breaks down. We will
also investigate whether this framework can be extended to induce novel reasoning capabilities in
models, better understand the limitations of our current steering approach, and explore how these
reasoning mechanisms develop during pre-training and fine-tuning. Ultimately, this research reframes
our understanding of what makes thinking models effective and offers a path toward more efficient
and targeted approaches for enhancing reasoning capabilities in language models.

Acknowledgements

We would like to thank the ML Alignment & Theory Scholars (MATS) program for supporting this
research, and in particular John Teichman and Cameron Holmes for being great research managers.
We would also like to thank Chris Wendler for very helpful discussions on an early version of the
work, Carolina Lucía Campi with her help on the design of the paper’s main figure, and reviewers
from the Mechanistic Interpretability Workshop at NeurIPS 2025 for extremely helpful feedback on
early drafts of this paper.

Author Contributions

CV did the conceptualization of the main research ideas, as well as engineering and research on
the first iterations of the SAE taxonomy and on the many iterations of the hybrid model. IA did
engineering and research on the evaluation metrics for the SAE taxonomy, the ablation studies for the
hybrid model and significant writing for the latest iterations of the paper. PT, AC and NN provided
project advice and feedback.

10

Reproducibility Statement

To ensure full reproducibility of our results, we provide comprehensive implementation details
and resources. Our complete codebase is available at our GitHub repository4, including: (1) SAE
training and evaluation code with exact hyperparameters, layer specifications, and dictionary
sizes used for all experiments; (2) Steering vector optimization implementation with training
procedures, loss functions, and convergence criteria detailed in Appendix C; (3) Complete prompt
templates for category generation, consistency evaluation, completeness scoring, and independence
assessment used in our taxonomy evaluation pipeline; (4) Dataset processing scripts with exact
train/validation splits, random seeds, and preprocessing steps for MMLU-Pro reasoning traces;
(5) Hybrid model evaluation framework including the dynamic steering application logic and
perplexity-based selection mechanisms; (6) One-command reproduction scripts that reproduce all
key experimental results from SAE training through final performance evaluation. All experimental
configurations, model checkpoints, and evaluation datasets are documented with version control to
ensure exact reproducibility across different computational environments.

Statement on AI-Assisted Tool Usage

This work was enhanced through the use of AI-based tools, including ChatGPT (chatgpt.com), Claude
(claude.ai), and various models integrated within the Cursor IDE (cursor.com). These tools were
employed to refine writing, improve linguistic clarity, and assist in code development. Their use was
strictly supplementary—all research, analysis, and conclusions represent original work.

References
[1] Anthropic. Claude 3.7 Sonnet and Claude Code, February 2025. URL https://www.

anthropic.com/news/claude-3-7-sonnet.

[2] OpenAI. Introducing openai o3 and o4-mini, April 2025. URL https://openai.com/index/
introducing-o3-and-o4-mini/.

[3] Google. Gemini 2.5: Our newest gemini model with thinking, 3
2025. URL https://blog.google/technology/google-deepmind/
gemini-model-thinking-updates-march-2025/.

[4] DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
‘learning, 2025.

[5] Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown, 11 2024. URL https:
//qwenlm.github.io/blog/qwq-32b-preview/.

[6] François Chollet. OpenAI o3 Breakthrough High Score on ARC-AGI-Pub, December 2024.
URL https://arcprize.org/blog/oai-o3-pub-breakthrough.

[7] Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D. Goodman.
Cognitive behaviors that enable self-improving reasoners, or, four habits of highly effective
stars, 2025. URL https://arxiv.org/abs/2503.01307.

[8] Sara Vera Marjanović, Arkil Patel, Vaibhav Adlakha, Milad Aghajohari, Parishad
BehnamGhader, Mehar Bhatia, Aditi Khandelwal, Austin Kraft, Benno Krojer, Xing Han
Lù, Nicholas Meade, Dongchan Shin, Amirhossein Kazemnejad, Gaurav Kamath, Marius
Mosbach, Karolina Stańczak, and Siva Reddy. Deepseek-r1 thoughtology: Let’s think about
llm reasoning, 2025. URL https://arxiv.org/abs/2504.07128.

[9] Jake Ward, Chuqiao Lin, Constantin Venhoff, and Neel Nanda. Reasoning-finetuning repurposes
latent representations in base models, 2025. URL https://arxiv.org/abs/2507.12638.

[10] Rosie Zhao, Alexandru Meterez, Sham Kakade, Cengiz Pehlevan, Samy Jelassi, and Eran
Malach. Echo chamber: Rl post-training amplifies behaviors learned in pretraining, 2025. URL
https://arxiv.org/abs/2504.07912.

4https://github.com/cvenhoff/cot-interp

11

https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://arcprize.org/blog/oai-o3-pub-breakthrough
https://arxiv.org/abs/2503.01307
https://arxiv.org/abs/2504.07128
https://arxiv.org/abs/2507.12638
https://arxiv.org/abs/2504.07912

[11] Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Lucas Liu, Baolin Peng, Hao Cheng,
Xuehai He, Kuan Wang, Jianfeng Gao, Weizhu Chen, Shuohang Wang, Simon Shaolei Du, and
Yelong Shen. Reinforcement learning for reasoning in large language models with one training
example, 2025. URL https://arxiv.org/abs/2504.20571.

[12] Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao
Huang. Does reinforcement learning really incentivize reasoning capacity in llms beyond the
base model?, 2025. URL https://arxiv.org/abs/2504.13837.

[13] Bruno A. Olshausen and David J. Field. Sparse coding with an overcomplete basis set: A
strategy employed by v1? Vision Research, 37(23):3311–3325, 1997. ISSN 0042-6989. doi:
https://doi.org/10.1016/S0042-6989(97)00169-7. URL https://www.sciencedirect.com/
science/article/pii/S0042698997001697.

[14] Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Ng. Efficient sparse coding algorithms.
In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing
Systems, volume 19. MIT Press, 2006. URL https://proceedings.neurips.cc/paper_
files/paper/2006/file/2d71b2ae158c7c5912cc0bbde2bb9d95-Paper.pdf.

[15] Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse
autoencoders find highly interpretable features in language models, 2023. URL https://
arxiv.org/abs/2309.08600.

[16] Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-
erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex
Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter,
Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing language
models with dictionary learning. Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

[17] Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian
Chen, Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham,
Nicholas L Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R.
Sumers, Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom
Henighan. Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet.
Transformer Circuits Thread, 2024. URL https://transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

[18] Alireza Makhzani and Brendan Frey. k-sparse autoencoders. In International Conference on
Learning Representations, 2014.

[19] Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders, 2024. URL
https://arxiv.org/abs/2406.04093.

[20] Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo,
Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex
Zhuang, Rongqi Fan, Xiang Yue, and Wenhu Chen. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark, 2024. URL https://arxiv.org/abs/2406.
01574.

[21] Constantin Venhoff, Iván Arcuschin, Philip Torr, Arthur Conmy, and Neel Nanda. Understanding
reasoning in thinking language models via steering vectors. In Workshop on Reasoning and
Planning for Large Language Models, 2025. URL https://openreview.net/forum?id=
OwhVWNOBcz.

[22] Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton,
and Augustus Odena. Show your work: Scratchpads for intermediate computation with language
models, 2021.

12

https://arxiv.org/abs/2504.20571
https://arxiv.org/abs/2504.13837
https://www.sciencedirect.com/science/article/pii/S0042698997001697
https://www.sciencedirect.com/science/article/pii/S0042698997001697
https://proceedings.neurips.cc/paper_files/paper/2006/file/2d71b2ae158c7c5912cc0bbde2bb9d95-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2006/file/2d71b2ae158c7c5912cc0bbde2bb9d95-Paper.pdf
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2406.01574
https://arxiv.org/abs/2406.01574
https://openreview.net/forum?id=OwhVWNOBcz
https://openreview.net/forum?id=OwhVWNOBcz

[23] Mike Knoop. R1-Zero and R1 Results and Analysis, January 2025. URL https://arcprize.
org/blog/r1-zero-r1-results-analysis.

[24] OpenAI. Hello GPT-4o, May 2024. URL https://openai.com/index/hello-gpt-4o.

[25] Anthropic. Introducing Claude 3.5 Sonnet, June 2024. URL https://www.anthropic.com/
news/claude-3-5-sonnet.

[26] Yifan Hou, Jiaoda Li, Yu Fei, Alessandro Stolfo, Wangchunshu Zhou, Guangtao Zeng, Antoine
Bosselut, and Mrinmaya Sachan. Towards a mechanistic interpretation of multi-step reasoning
capabilities of language models, 2023. URL https://arxiv.org/abs/2310.14491.

[27] Andrey Galichin, Alexey Dontsov, Polina Druzhinina, Anton Razzhigaev, Oleg Y. Rogov, Elena
Tutubalina, and Ivan Oseledets. I have covered all the bases here: Interpreting reasoning features
in large language models via sparse autoencoders, 2025. URL https://arxiv.org/abs/
2503.18878.

[28] Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell, Juan J. Vazquez, Ulisse
Mini, and Monte MacDiarmid. Steering Language Models With Activation Engineering. arXiv,
August 2023. doi: 10.48550/arXiv.2308.10248.

[29] Andy Arditi, Oscar Obeso, Aaquib Syed, Daniel Paleka, Nina Panickssery, Wes Gurnee, and
Neel Nanda. Refusal in Language Models Is Mediated by a Single Direction. arXiv, June 2024.
doi: 10.48550/arXiv.2406.11717.

[30] Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander
Pan, Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, Shashwat Goel, Nathaniel Li,
Michael J. Byun, Zifan Wang, Alex Mallen, Steven Basart, Sanmi Koyejo, Dawn Song, Matt
Fredrikson, J. Zico Kolter, and Dan Hendrycks. Representation Engineering: A Top-Down
Approach to AI Transparency. arXiv, October 2023. doi: 10.48550/arXiv.2310.01405.

[31] Nina Panickssery, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt
Turner. Steering Llama 2 via Contrastive Activation Addition. arXiv, December 2023. doi:
10.48550/arXiv.2312.06681.

[32] Jacob Dunefsky and Arman Cohan. Investigating generalization of one-shot llm steering vectors,
2025. URL https://arxiv.org/abs/2502.18862.

[33] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. ArXiv, abs/2110.14168, 2021.

[34] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021.

[35] Aryo Pradipta Gema, Alexander Hägele, Runjin Chen, Andy Arditi, Jacob Goldman-Wetzler,
Kit Fraser-Taliente, Henry Sleight, Linda Petrini, Julian Michael, Beatrice Alex, Pasquale
Minervini, Yanda Chen, Joe Benton, and Ethan Perez. Inverse scaling in test-time compute,
2025. URL https://arxiv.org/abs/2507.14417.

[36] Yiyou Sun, Georgia Zhou, Hao Wang, Dacheng Li, Nouha Dziri, and Dawn Song. Climbing
the ladder of reasoning: What llms can-and still can’t-solve after sft?, 2025. URL https:
//arxiv.org/abs/2504.11741.

[37] David D. Baek and Max Tegmark. Towards understanding distilled reasoning models: A
representational approach, 2025. URL https://arxiv.org/abs/2503.03730.

[38] Chengxing Jia, Ziniu Li, Pengyuan Wang, Yi-Chen Li, Zhenyu Hou, Yuxiao Dong, and Yang
Yu. Controlling large language model with latent actions, 2025. URL https://arxiv.org/
abs/2503.21383.

13

https://arcprize.org/blog/r1-zero-r1-results-analysis
https://arcprize.org/blog/r1-zero-r1-results-analysis
https://openai.com/index/hello-gpt-4o
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://arxiv.org/abs/2310.14491
https://arxiv.org/abs/2503.18878
https://arxiv.org/abs/2503.18878
https://arxiv.org/abs/2502.18862
https://arxiv.org/abs/2507.14417
https://arxiv.org/abs/2504.11741
https://arxiv.org/abs/2504.11741
https://arxiv.org/abs/2503.03730
https://arxiv.org/abs/2503.21383
https://arxiv.org/abs/2503.21383

[39] Chong Zhang, Yue Deng, Xiang Lin, Bin Wang, Dianwen Ng, Hai Ye, Xingxuan Li, Yao
Xiao, Zhanfeng Mo, Qi Zhang, and Lidong Bing. 100 days after deepseek-r1: A survey on
replication studies and more directions for reasoning language models, 2025. URL https:
//arxiv.org/abs/2505.00551.

[40] Josh Engels. TinySAE, 2024. URL https://github.com/JoshEngels/TinySAE.

14

https://arxiv.org/abs/2505.00551
https://arxiv.org/abs/2505.00551
https://github.com/JoshEngels/TinySAE

Table of Contents For The Main Paper & Appendix

1 Introduction 1

2 Taxonomy of Reasoning Mechanisms 3

2.1 Unsupervised Clustering of Reasoning Mechanisms via High-Level Sparse Autoen-
coders . 3

2.2 Taxonomy Evaluation . 4

2.3 Taxonomy Results . 5

3 Steering Base Models to Reason 5

3.1 Finding Steering Vectors in Base Models . 6

3.2 Hybrid Model Implementation . 7

3.3 Hybrid Model Results . 7

3.4 Hybrid Model Ablation Studies . 8

4 Related Work 9

5 Conclusion 10

A SAE Training Details 16

B Details of Taxonomy Evaluation 16

B.1 Cluster Title & Description Generation . 16

B.2 Consistency (F1 Score) . 17

B.3 Completeness (Confidence Score) . 18

B.4 Independence (Semantic Orthogonality) . 18

B.5 Decoder Weight Vector Orthogonality . 19

B.6 Choice of LLM Models for Taxonomy Evaluation 19

B.7 Scoring Normalization . 20

C Details of Hybrid Model Evaluation 20

C.1 Example Selection and Training Procedure . 20

C.2 Prompt Template . 20

C.3 Interpreting the Bias Vector . 21

C.4 Results on Smaller Models Without Sweep . 22

D Steering Vector Usage Statistics 22

D.1 Llama-3.1-8B with DeepSeek-R1-Distill on GSM8K 22

D.2 Llama-3.1-8B with DeepSeek-R1-Distill on MATH500 23

D.3 Qwen2.5-14B with DeepSeek-R1-Distill on GSM8K 23

D.4 Qwen2.5-14B with DeepSeek-R1-Distill on MATH500 23

15

D.5 Qwen2.5-32B with DeepSeek-R1-Distill on GSM8K 23

D.6 Qwen2.5-32B with DeepSeek-R1-Distill on MATH500 23

D.7 Qwen2.5-32B with QwQ-32B on GSM8K . 24

D.8 Qwen2.5-32B with QwQ-32B on MATH500 . 24

D.9 Qwen2.5-Math-1.5B with DeepSeek-R1-Distill on GSM8K 24

D.10 Qwen2.5-Math-1.5B with DeepSeek-R1-Distill on MATH500 24

E Sparse Autoencoder Features 24

E.1 DeepSeek-R1-Distill-Llama-8B (Layer 6, Dict Size 15) 24

E.2 DeepSeek-R1-Distill-Qwen-1.5B (Layer 4, Dict Size 25) 25

E.3 DeepSeek-R1-Distill-Qwen-14B (Layer 38, Dict Size 5) 27

E.4 QwQ-32B (Layer 27, Dict Size 10) . 27

E.5 DeepSeek-R1-Distill-Qwen-32B (Layer 27, Dict Size 15) 28

A SAE Training Details

Given an input vector x ∈ Rd from the residual stream and n latent dimensions, a Top-K SAE learns
two mappings, an encoder fenc and a decoder fdec, such that:

z = TopK(Wenc(x− benc)) (1)
x̂ = Wdecz + bdec (2)

where Wenc ∈ Rn×d, benc ∈ Rn, Wdec ∈ Rd×n, and bdec ∈ Rd. The training loss is then defined by
the reconstruction error:

L = ∥x− x̂∥22 (3)

We train our Top-K SAEs using a configuration with top-k activation sparsity where k = 3, meaning
only the top 3 features are allowed to activate for each input. We auto-select the learning rate
using the 1/

√
d scaling law from TinySAE [40]: lr = 2× 10−4/

√
n/214 where n is the dictionary

size (number of clusters), with Adam as the optimizer. Training is conducted with a batch size of
512 for a maximum of 300 epochs, implementing early stopping with a patience of 10 epochs to
prevent overfitting. We apply decoder normalization after each training step, following the TinySAE
implementation [40].

The SAEs are trained on sentence-level activations extracted from reasoning traces. We determine
sentence boundaries using punctuation-based heuristics (periods, question marks, exclamation marks)
and average token-level activations within each identified sentence to obtain sentence-level represen-
tations. The training data consists of 12,102 prompts from MMLU-Pro [20], which translates into
430,122 sentences of reasoning traces from the target thinking models, where we extract activations
at specific layers (6 evenly distributed layers across the model depth) and use these averaged sentence
activations as inputs to the SAE training process.

The specific layers used for each model are:

• DeepSeek-R1-Distill-Llama-8B (32 total layers): 6, 10, 14, 18, 22, 26
• DeepSeek-R1-Distill-Qwen-1.5B (28 total layers): 4, 8, 12, 16, 20, 24
• DeepSeek-R1-Distill-Qwen-14B (48 total layers): 8, 14, 20, 26, 32, 38
• DeepSeek-R1-Distill-Qwen-32B (64 total layers): 9, 18, 27, 36, 45, 54
• QwQ-32B (64 total layers): 9, 18, 27, 36, 45, 54

B Details of Taxonomy Evaluation

B.1 Cluster Title & Description Generation

We use OpenAI’s o4-mini model to generate the cluster title and description.

16

Concretely, we prompt this model to carefully look at the examples and identify the shared reasoning
strategy or cognitive mechanism, common linguistic patterns or structures, specific phrases or words
common to the category, and the functional role within the overall reasoning process. The model
then produces a concise title naming the specific reasoning function and a detailed description that
explains what the function does, what is included, and what is excluded from this category. This
prompt is shown below:

1 Analyze the following [N] sentences from an LLM reasoning trace. These sentences are grouped into a
cluster based on their similar role or function in the reasoning process.

2
3 Your task is to identify the precise cognitive function these sentences serve in the reasoning process.

Consider the reasoning strategy or cognitive operation being performed.
4
5 Sentences:
6 '''
7 [LIST OF EXAMPLE SENTENCES]
8 '''
9

10 Look for:
11 - Shared reasoning strategies or cognitive mechanisms
12 - Common linguistic patterns or structures
13 - Functional role within the overall reasoning process
14
15 [OPTIONAL: CATEGORY EXAMPLES SECTION WITH 5 EXAMPLE CATEGORIES]
16
17 Your response should be in this exact format:
18 Title: [crisp, single-concept title without slashes, parentheses, or compound phrases]
19 Description: [3-4 sentences explaining (1) the specific reasoning process this cluster represents, (2)

what is INCLUDED in this category, (3) what is NOT INCLUDED in this category]
20
21 Guidelines for titles:
22 - Use simple, clear nouns or verb phrases
23 - Avoid slashes (/) and parentheses ()
24 - Capture one core reasoning concept
25
26 Guidelines for descriptions:
27 - Focus on the specific cognitive or reasoning function
28 - Avoid abstracting too much from the specific examples
29 - Mention specific phrases or words that are common in the examples
30 - Be precise enough that someone could reliably identify new examples of this reasoning function.
31
32 In summary, the description should be as sharp and specific as possible, and the title should be as

simple and abstract as possible.

Prompt 1: Prompt used for generating cluster descriptions and titles

B.2 Consistency (F1 Score)

To evaluate how well our categories can reliably classify individual sentences, we implement a
binary classification task. For each category, we sample example sentences from within the category
(positive examples) and from outside the category (negative examples). An LLM-based autograder
(OpenAI’s GPT-4.1-mini) receives the category title and description along with these examples and
must classify each as either belonging to the category or not. We calculate precision, recall, and F1
scores for each category, then take the average F1 score across all categories as our overall consistency
score. The complete prompt is shown below:

1 # Task: Binary Classification of Reasoning Sentences by Function
2
3 You are an expert at analyzing the *function* of sentences within a longer chain of reasoning. Your

task is to determine if each sentence below performs the specific cognitive or procedural role
described.

4
5 **Core Principle:** Do not focus on the surface-level topic of the sentence. Instead, abstract away

from the specific content and ask: "What *job* is this sentence doing in the reasoning trace?"
6
7 ## Category Description:
8 Title: [TITLE]
9 Description: [DESCRIPTION]

10
11 ## Sentences to Classify:
12 [FORMATTED SENTENCES]
13
14 ## Instructions:
15 1. For each sentence, identify its functional role in a potential reasoning process.
16 2. Compare this role to the category description provided.

17

17 3. If the sentence's function matches the description, assign "Yes". Importantly, a sentence might not
match a description word-for-word, but it might serve the same underlying purpose.

18 4. If the sentence's function does not align with the category, assign it "No".
19 5. Respond with "Yes" or "No" for each sentence.
20
21 ## Response Format:
22 Your response must follow this exact JSON format:
23 ```json
24 {
25 "classifications": [
26 {
27 "sentence_id": <sentence idx>,
28 "belongs_to_category": "Yes" or "No",
29 "explanation": "Brief explanation of your reasoning"
30 }
31]
32 }
33 ```
34
35 Only include the JSON object in your response, with no additional text before or after.

Prompt 2: Prompt used for the F1 score (accuracy) autograder

B.3 Completeness (Confidence Score)

We evaluate how well individual sentences fit their assigned categories by having an LLM (GPT-4.1-
mini) rate the quality of each assignment on a scale from 0-10. This measures the confidence in our
category assignments and serves as our completeness metric. The scores are afterwards normalized
to a 0-1 scale for compatibility with the final score calculation. See Appendix B.3 for the complete
prompt.

1 You are an expert at analyzing how well individual sentences match their assigned reasoning function
categories. Your task is to evaluate how well a given sentence exemplifies the specific cognitive
or procedural role described in its assigned category.

2
3 # Sentence to Evaluate:
4 [SENTENCE]
5
6 # Assigned Category:
7 Title: [TITLE]
8 Description: [DESCRIPTION]
9

10 # Instructions:
11 1. Carefully analyze the sentence's content and the functional role it might display in a reasoning

process.
12 2. Compare this content and role to the category description provided.
13 3. Consider how well the sentence matches the category description.
14 4. Provide a brief explanation of your reasoning.
15 5. Rate the fit on a scale from 0-10, where:
16 - 0 = Very poor fit, sentence does not match the category at all
17 - 10 = Perfect fit, sentence matches exactly the category description
18
19 # Response Format:
20 Your response must follow this exact JSON format. The explanation must be a single-line string with no

newlines:
21 ```json
22 {
23 "explanation": "Brief explanation of how well the sentence matches the category and your reasoning

for the score",
24 "completeness_score": <integer from 0-10>
25 }
26 ```
27
28 Only include the JSON object in your response, with no additional text before or after.

Prompt 3: Prompt used for the completeness autograder

B.4 Independence (Semantic Orthogonality)

To ensure that our taxonomy categories represent functionally distinct reasoning mechanisms, we
evaluate the semantic similarity between all pairs of categories using an LLM-based approach. For
each pair of categories in a cluster, an LLM (GPT-4.1-mini) evaluates how similar they are in terms
of their underlying cognitive or functional purpose on a scale from 0-10, where 0 means completely
different reasoning functions and 10 means essentially the same function. We then calculate the

18

semantic orthogonality score as the fraction of category pairs that have an orthogonality score above a
threshold (0.5), where orthogonality is defined as 1− similarity, indicating functional independence
between categories. The complete prompt is shown below:

1 # Task: Semantic Similarity Evaluation
2
3 You are an expert at analyzing the semantic similarity between different reasoning functions. Your

task is to evaluate how similar two categories of reasoning sentences are in terms of their
underlying cognitive or functional purpose.

4
5 ## Category 1:
6 Title: [TITLE1]
7 Description: [DESCRIPTION1]
8
9 ## Category 2:

10 Title: [TITLE2]
11 Description: [DESCRIPTION2]
12
13 ## Instructions:
14 Rate the semantic similarity between these two categories on a scale from 0 to 10, where:
15 - 0 = Completely different reasoning functions
16 - 5 = Somewhat related but distinct functions
17 - 10 = Essentially the same reasoning function, just described differently
18
19 Consider:
20 1. The underlying cognitive process or reasoning operation
21 2. The functional role within a reasoning trace
22 3. Whether sentences from one category could reasonably belong to the other
23
24 Focus on functional similarity rather than surface-level word overlap.
25
26 ## Response Format:
27 Your response must follow this exact JSON format:
28 ```json
29 {
30 "explanation": "Brief explanation of your reasoning for this score",
31 "similarity_score": <integer from 0-10>
32 }
33 ```
34
35 Only include the JSON object in your response, with no additional text before or after.

Prompt 4: Prompt used for the semantic orthogonality evaluation

B.5 Decoder Weight Vector Orthogonality

The independence of our taxonomy can also be measured by the orthogonality between the de-
coder latents (centroids) in our Sparse Autoencoder (SAE). For a set of decoder weight vectors
{w1, w2, ..., wn} where n is the number of categories, we calculate:

Orthogonalityi,j =
wi · wj

||wi|| · ||wj ||
(4)

This produces a cosine similarity matrix where values close to 0 indicate nearly orthogonal (indepen-
dent) features. We then compute:

• The average absolute cosine similarity between all pairs of latents
• The maximum absolute cosine similarity between any pair of latents

Lower values for both metrics indicate better independence between our taxonomy categories. This
orthogonality analysis ensures that our categories represent distinct reasoning mechanisms rather
than variations of the same underlying process.

However, in practice, we found that these cosine similarity values were consistently very high (near
1.0) across different SAE configurations, providing limited discriminative power for comparing
different taxonomies. This led us to adopt the semantic orthogonality metric instead, which better
captures functional distinctness between reasoning categories.

B.6 Choice of LLM Models for Taxonomy Evaluation

We employ different LLM models for different evaluation tasks based on their computational re-
quirements and criticality to downstream performance. Category title and description generation

19

uses OpenAI’s o4-mini, a more sophisticated reasoning model, because these titles fundamentally
determine the semantic boundaries of each category and directly impact all subsequent evaluation
metrics. In contrast, consistency, completeness, and independence evaluations use GPT-4.1-mini, a
capable but more cost-effective model, as these tasks involve more straightforward classification and
rating given well-defined categories. This design choice is further motivated by our evaluation scale:
we generate 5 repetitions of category titles for each configuration across our extensive grid search,
making the computational cost of using premium models for all evaluation steps prohibitive while
maintaining evaluation quality where it matters most.

B.7 Scoring Normalization

For our grid search visualization and comparison across different configurations, we normalize
each metric to a 0-1 scale using min-max normalization within each model. This normalization
is performed across all layer and cluster size combinations for a given model, ensuring that the
final normalized score reflects relative performance within each model’s configuration space. The
normalization formula is:

Normalized Score =
Raw Score − Min Score
Max Score − Min Score

(5)

where Min Score and Max Score are computed across all layer/cluster combinations for a single
model.

C Details of Hybrid Model Evaluation

C.1 Example Selection and Training Procedure

A steering vector v ∈ Rd can be identified by comparing the activations of a model in two different
states, for example, when the model is generating factual versus misleading information. The
difference between these activation states forms a vector that can then be used to steer the model’s
behavior in the desired direction:

v = E[h(xtarget)− h(xbase)] (6)

where h(x) represents the hidden activations at a particular layer when processing input x.

For each reasoning category, we select the 8192 sentences with the highest SAE activation and
compute the base model’s perplexity on those sentences, given the previous rollout. Then we select
the top 2048 highest-perplexity sentences as training examples. This balances selecting examples that
strongly represent the category while encouraging examples that the base model would find highly
improbable, which are exactly the examples that are most useful for steering vector optimization.

We train the steering vectors for up to 50 iterations with a learning rate of 1e−2 (with cosine
scheduler) and minibatch size of 6, using activation perplexity selection to choose optimal examples
during training. To prevent overfitting, we implement early stopping with a minimum delta of
0.01 and patience of 5 steps. The optimization objective uses standard next token prediction loss
(cross-entropy) computed only on the target completion tokens, excluding the prompt tokens from
the loss calculation.

C.2 Prompt Template

All training examples for steering vector optimization share a common prefix structure to induce
step-by-step reasoning behavior in the base model, which has not been fine-tuned for instruction
following:

Task: Answer the question below. Explain your reasoning step by step.

Question: [original question]

Step by step answer: [thinking process]

20

Figure 3: Hybrid model in action. Example of a hybrid model (Qwen2.5-32B as the base model
with steering vectors trained on QwQ-32B thinking model) solving a MATH500 problem, showing
how steering vectors are dynamically applied based on SAE activations to guide the base model’s
reasoning process. The model successfully identifies and applies appropriate reasoning mechanisms
at each step, demonstrating the effectiveness of our approach in practice.

We also use this exact chain-of-thought prompt at evaluation time for both the base-only and the
hybrid models during the hybrid model evaluation, ensuring that any performance differences are not
due to prompting.

C.3 Interpreting the Bias Vector

To understand what behaviors the general bias vector captures, we conducted an interpretability
experiment comparing outputs from the base model (Qwen2.5-32B) with outputs from a hybrid
model using only the bias vector (no category-specific steering). We analyzed 500 paired responses
on the MATH500 benchmark, where each pair consists of the base model’s response and the bias-only
hybrid model’s response to the same question.

For each batch of 50 question-response pairs, we prompted an LLM evaluator (OpenAI’s o4-mini) to
identify qualitative differences in writing style, reasoning approach, and structural patterns between
the two model variants, explicitly avoiding judgments about numerical accuracy or correctness. The
evaluator focused on consistent behavioral differences across batches rather than problem-specific
variations. After collecting these batch-level summaries, we synthesized them into a consolidated
description of the bias vector’s effect.

21

Table 4: Performance on GSM8K without full hyperparameter sweep. Results show accuracy
percentages for base models, hybrid models (base + steering vectors), and thinking models. Perfor-
mance improvements over base are shown in parentheses next to hybrid and thinking results.

Base
Model

Thinking
Model Base Hybrid Thinking Gap

Recovery
Qwen2.5-
Math-1.5B

DeepSeek-R1-
Distill-Qwen-1.5B

83.8% 75.4% (−8.4%) 80.8% (−3.0%) 0.0%

Llama-3.1-8B DeepSeek-R1-
Distill-Llama-8B

37.8% 54.6% (+16.8%) 83.4% (+45.6%) 36.8%

Qwen2.5-14B DeepSeek-R1-
Distill-Qwen-14B

90.8% 89.6% (−1.2%) 94.2% (+3.4%) 0.0%

The analysis revealed that the bias vector induces a systematic shift in how the base model presents its
reasoning. Specifically, across all batches, the base model adopts a sparse, mechanical outline (usually
a numbered list of procedural steps with minimal narrative or justification), often jumping straight
to formulas or computations and sometimes truncating context or checks. The bias-only hybrid
model, in contrast, weaves its solutions into more discursive, conversational expositions: restating
the problem, providing high-level overviews, explaining rationale, recalling relevant theorems, and
verifying intermediate results. Structurally, the base model favors uniform “Step 1, Step 2. . . ” bullet
points, whereas the bias-only hybrid mixes prose with headings or subheadings to produce a more
cohesive tutorial-style write-up. Qualitatively, the base model feels brisk and utilitarian, while the
bias-only hybrid reads as a self-contained guided walkthrough with fuller explanations.

These findings suggest that the bias vector captures higher-level stylistic and structural aspects of
thinking model outputs (such as using a more verbose narrative, providing contextual framing, and
adopting a more pedagogical tone) rather than specific reasoning mechanisms. This is consistent
with the bias vector’s intended role as a general scaffold that encourages the base model to produce
more elaborate, explanatory reasoning traces that resemble the format of thinking model outputs. The
complete experimental procedure and results are available in the supplementary code repository.

C.4 Results on Smaller Models Without Sweep

This subsection reports the steering results for smaller base models (Qwen2.5-Math-1.5B,
Llama-3.1-8B, and Qwen2.5-14B) using a narrower default steering settings. In the main text
(GSM8K: Table 1; MATH500: Table 2), the entries for these smaller models are computed
with a larger sweep: coefficients {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and token windows
{0,−1,−15,−50,−100} (with 0 meaning all tokens). For the results of Qwen2.5-32B in the main
text, we use a narrower default (coefficients {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}; all tokens) due to cost; its
results would likely improve under the full sweep. In line with Section 3, smaller models appear to
have less clean steering directions, so gains are often marginal without extensive tuning. The Tables 4
and 5 summarize accuracies and gap recovery for GSM8K and MATH500 under the narrower default
setting.

D Steering Vector Usage Statistics

This section provides detailed statistics on the application of steering vectors across different model
configurations and reasoning benchmarks. These statistics reveal which reasoning mechanisms are
most frequently deployed and their contribution to overall performance improvements.

D.1 Llama-3.1-8B with DeepSeek-R1-Distill on GSM8K

For the Llama-3.1-8B model with DeepSeek-R1-Distill steering on GSM8K, steering vectors were
applied to an average of 73.58 tokens per problem out of 523.59 total tokens, representing 14.1%
of the generation process (or 21.5% per-problem average). The most frequently activated reasoning
mechanism was “Planning Next Steps” (17.8% of steered tokens), followed by “Numeric Calculation
Steps” (17.0%) and “Task Formulation” (12.4%). The majority of steering applications used a

22

Table 5: Performance on MATH500 without full hyperparameter sweep. Results show accuracy
percentages for base models, hybrid models (base + steering vectors), and thinking models. Perfor-
mance improvements over base are shown in parentheses next to hybrid and thinking results.

Base
Model

Thinking
Model Base Hybrid Thinking Gap

Recovery
Qwen2.5-
Math-1.5B

DeepSeek-R1-
Distill-Qwen-1.5B

66.2% 64.8% (−1.4%) 78.6% (+12.4%) 0.0%

Llama-3.1-8B DeepSeek-R1-
Distill-Llama-8B

27.8% 22.4% (−5.4%) 79.8% (+52.0%) 0.0%

Qwen2.5-14B DeepSeek-R1-
Distill-Qwen-14B

58.6% 69.4% (+10.8%) 86.4% (+27.8%) 38.8%

coefficient of 0.1 (67.9%), indicating that relatively gentle nudges were most effective for this
configuration.

D.2 Llama-3.1-8B with DeepSeek-R1-Distill on MATH500

On the more challenging MATH500 benchmark, the same model configuration showed different
steering patterns. Steering was applied to 91.96 tokens per problem on average out of 1036.17 total
tokens (8.9% steered fraction, or 15.8% per-problem average). “Planning Next Steps” remained
the most used mechanism (21.2%), and “Mathematical Computation Steps” was equally prominent
(20.5%), reflecting the increased mathematical complexity. The steering coefficient distribution
shifted toward 0.1 (69.7%), with additional usage of higher coefficients (0.2: 3.9%, 0.3: 3.8%, 0.5:
3.6%).

D.3 Qwen2.5-14B with DeepSeek-R1-Distill on GSM8K

The Qwen2.5-14B configuration showed a markedly different pattern, with steering applied to
82.30 tokens per problem out of 1637.47 total tokens (5.0% steered fraction, or 6.5% per-problem
average). The steering was dominated by “Problem Restatement” (50.3%) and “Metacognitive
Markers” (47.1%), with minimal use of computational reasoning mechanisms (2.4% for “Numeric
Computation”). The steering coefficient distribution was split between 0.1 (48.5%) and higher
coefficients (0.8: 6.4%, 0.7: 6.2%, 0.9: 6.1%).

D.4 Qwen2.5-14B with DeepSeek-R1-Distill on MATH500

On MATH500, the same model maintained a similar pattern with 85.33 steered tokens per problem
out of 1445.58 total tokens (5.9% steered fraction, or 7.8% per-problem average). “Problem Restate-
ment” remained dominant (60.7%), followed by “Metacognitive Markers” (35.5%) and “Numeric
Computation” (3.8%). The steering coefficient distribution favored 0.1 (39.5%) and 0.5 (22.1%),
with significant usage of higher coefficients (0.9: 5.8%, 0.8: 5.7%, 0.7: 5.2%, 1.0: 5.1%).

D.5 Qwen2.5-32B with DeepSeek-R1-Distill on GSM8K

The largest model configuration with DeepSeek-R1-Distill showed relatively low steering intensity,
applying vectors to 31.92 tokens per problem out of 603.52 total tokens (5.3% steered fraction, or
11.2% per-problem average). The most frequent mechanism was “Evaluating Expressions” (30.8%),
followed by “Drawing Conclusions” (23.5%) and “Stating Given Problem Data” (11.7%). The
coefficient distribution heavily favored 0.5 (68.4%), with additional usage of higher coefficients (0.7:
7.0%, 0.6: 6.6%, 0.8: 6.4%).

D.6 Qwen2.5-32B with DeepSeek-R1-Distill on MATH500

On MATH500, this configuration steered 54.23 tokens per problem out of 783.54 total tokens
(6.9% steered fraction, or 9.8% per-problem average). “Evaluating Expressions” became even
more dominant (43.0%), with “Computational step initiation” (17.5%) and “Drawing Conclusions”

23

(16.6%) also playing significant roles. The steering coefficient remained primarily at 0.5 (74.4%),
with additional usage of higher coefficients (0.7: 5.7%, 0.6: 5.3%, 0.8: 5.1%, 0.9: 5.0%).

D.7 Qwen2.5-32B with QwQ-32B on GSM8K

The QwQ-32B thinking model produced a different steering pattern, with 30.85 steered tokens
per problem out of 300.37 total tokens (10.3% steered fraction, or 12.7% per-problem average).
“Numeric computations” was the most frequent mechanism (28.8%), followed by “Stating Known
Equations” (28.2%) and “Presenting Conclusions” (17.9%). The coefficient distribution was heavily
concentrated at 0.5 (88.2%), with minimal usage of higher coefficients (1.0: 2.8%, 0.6: 2.4%).

D.8 Qwen2.5-32B with QwQ-32B on MATH500

On the challenging MATH500 benchmark, this configuration showed higher steering intensity with
98.08 steered tokens per problem out of 920.49 total tokens (10.7% steered fraction, or 12.0%
per-problem average). The mechanism distribution was balanced, with “Stating Known Equations”
(24.3%), “Presenting Conclusions” (21.3%), “Numeric computations” (20.7%), and “Planning Next
Steps” (20.5%) all playing substantial roles. The steering coefficient remained primarily at 0.5
(69.7%), with increased use of higher coefficients (0.9: 8.4%, 0.8: 6.8%, 1.0: 6.7%).

D.9 Qwen2.5-Math-1.5B with DeepSeek-R1-Distill on GSM8K

For the specialized Qwen2.5-Math-1.5B model with DeepSeek-R1-Distill steering on GSM8K,
steering vectors were applied to an average of 42.83 tokens per problem out of 464.49 total tokens,
representing 9.2% of the generation process (or 12.8% per-problem average). The most frequently
activated reasoning mechanism was “Planning Next Step” (20.4% of steered tokens), followed by
“Announcing Intermediate Conclusions” (16.4%) and “Intermediate Numeric Calculations” (15.8%).
The majority of steering applications used a coefficient of 0.1 (51.9%), with fairly distributed usage
across other coefficients (0.3: 6.0%, 0.5: 6.0%, 0.2: 5.9%).

D.10 Qwen2.5-Math-1.5B with DeepSeek-R1-Distill on MATH500

On MATH500, the specialized model showed increased steering with 64.16 tokens per problem
out of 757.04 total tokens (8.5% steered fraction, or 10.7% per-problem average). “Planning Next
Step” remained the most frequent mechanism (25.3%), followed by “Task Formulation” (23.1%)
and “Announcing Intermediate Conclusions” (13.4%). The steering coefficient distribution remained
primarily at 0.1 (53.2%), with distributed usage across other coefficients (0.2: 6.0%, 0.4: 6.0%, 0.5:
5.8%).

These statistics reveal that steering vector usage patterns are dependent on both base model capabilities
and task complexity. Smaller models require more frequent and diverse steering interventions, while
larger models benefit from targeted steering of specific reasoning mechanisms. The coefficient
distributions suggest that optimal steering strength varies by model size and difficulty, with gentle
interventions often being most effective.

E Sparse Autoencoder Features

In this section, we provide detailed tables showing the complete reasoning taxonomies for our best-
performing SAE configurations. For transparency and to demonstrate the full scope of our approach,
we present all discovered categories rather than a curated subset. For each model, we list all category
titles and representative examples for the sparse autoencoder features identified during our analysis.

E.1 DeepSeek-R1-Distill-Llama-8B (Layer 6, Dict Size 15)

24

Table 6: Categories and representative examples for DeepSeek-R1-Distill-Llama-
8B (Layer 6, Dict Size 15)

Category Representative Example

Recalling Mathematical Formulas “The formula for heat transfer through conduction in a cylindrical or
spherical object is given by Q = (k * A * ∆T * t) / d, where Q is the heat
transferred, k is the thermal conductivity, A is the surface area, ∆T is the
temperature difference, t is time, and d is the thickness.”

Retrieving Factual Knowledge “I think C3 refers to a type of photosynthesis where carbon fixation
happens in the stroma of the chloroplast, and C4 is another type where it
happens in a specialized cell structure called the bundle sheath.”

Listing considerations “I also think about the concept of market saturation.”

Conditional Outcome Projection “So, the son’s argument would be that the covenant is enforceable against
him because it’s a real covenant that runs with the land, and the neighbor
can enforce it. The son didn’t have a valid defense because he didn’t
record and didn’t know, but knowledge isn’t necessary for real covenants.”

Conditional Causal Reasoning “I think the key point is that when both aggregate supply and aggregate
demand increase, the price level might decrease because the demand is
pulling it down, but the supply is also increasing, which might make
the price level not decrease as much as it would if only demand was
increasing.”

Drawing Conclusions “So, putting it all together, I think Aristotle’s philosophy is the most
consistent with the idea of three major life tasks because his teachings
on virtue and the structure of a good life include these areas as important
components.”

Restating Given Data “A 0.1 m diameter, 0.1 m high solid copper cylinder is initially at 180°C.
It is then placed in a room and is allowed to cool to a final temperature of
30°C. Assuming copper to have a density of 8954 kJ/kg·°K, calculate the
heat transfer and the irreversibility of the process if the temperature of
the surroundings (T_0) is 25°C.”

Verifying Intermediate Steps “Wait, but hold on, is that correct?”

Confirming Reasoning Steps “So that seems correct.”

Mathematical Computation Steps “u’(t) = (1/6) e^{}(t/6) (C1 cos(β t) + C2 sin(β t)) + e^{}(t/6) [-C1 β
sin(β t) + C2 β cos(β t)].”

Numeric Calculation Steps “First, 4 * 1.60218 = 6.40872, and 0.4781 * 1.60218 ≈ 0.4781 * 1.6 ≈
0.76336, so total ≈ 6.40872 + 0.76336 ≈ 7.17208 x 10^{}-16 kJ.”

Task Formulation “Okay, so I’m trying to figure out what the Supreme Court ruled regarding
older workers and job discrimination suits.”

Proposing Possibilities “Realists might have been more pragmatic, advising governments on how
to navigate a dangerous world through strength and alliances, while peace
researchers might have pushed for more proactive measures to address
the root causes of conflict, like economic policies or social justice issues
that could lead to tensions.”

Planning Next Steps “Let me write down the equations step by step.”

Expressing Uncertainty “But I’m not sure about the specifics, so I’ll have to stick to general
principles.”

E.2 DeepSeek-R1-Distill-Qwen-1.5B (Layer 4, Dict Size 25)

25

Table 7: Categories and representative examples for DeepSeek-R1-Distill-Qwen-
1.5B (Layer 4, Dict Size 25)

Category Representative Example

Recalling Constants and Parame-
ters

“The gas is N2O, so I need to find the moles of N2O produced and then
convert that to volume at 1092°C.
Wait, but the temperature is given as 1092°C. I remember that gas volumes
are usually calculated at standard temperature and pressure (STP), which
is 0°C (273 K) and 1 atm.”

Listing Problem Facts “Ash wants to set up a savings account for her daughter’s education, and
she needs to figure out how much she has to deposit annually for 17 years
at a 5% interest rate to reach a total of $20,000.”

Stating Conclusions “So, the ratio is zero.”

Drawing Conclusions “So, if the teres minor is the most common, then the answer is that the
teres minor is the most likely, but the question is phrased as "which of
the following tendons," so maybe the answer is that the teres minor is the
most likely, but the question is testing whether the person knows that the
teres minor is the most common, so the answer is the teres minor, but the
question is phrased as "which of the following tendons," so perhaps the
answer is that the teres minor is the most likely, but the question is a bit
confusing.”

Intermediate Arithmetic Calcula-
tions

“233.40 * 0.0086 = 233.40 * 0.008 + 233.40 * 0.0006 = 1.8672 + 0.14004
= 1.8672 + 0.14004 = 1.8672 + 0.14004 = 2.00724.”

Recalling Domain Knowledge “So, for an isothermal process, the work done on the gas is equal to the
heat exchanged, but since it’s an ideal gas, the internal energy depends
only on temperature, which is constant, so the work done on the gas is
equal to the change in internal energy, which is zero.”

Hypothetical Elaboration “He might have argued that restricting the use of certain languages could
limit students’ ability to participate in the broader social and cultural life,
which is important for their personal and societal development.”

Self-correction cues “Wait, but wait a second.”

Speculating Alternatives “Maybe I need to assume that the heater is at a certain temperature, or
perhaps it’s a blackbody?”

Stating Given Information “- **F2 (F1 × F1)**: Mean = 30 mm, Variance = 5.10 mm2, Environment
= Strain A”

Elementary Deduction “So, the area where x < y is the area above the line y=x from (0,0) to (2,2),
and then from (2,2) to (3,2), it’s a rectangle where y can be anything from
2 down to 0, but since y is already 2, x can be from 0 to 3, but wait, no,
because y is fixed at 2, so x can be from 0 to 3, but in this region, y is
fixed at 2, so x < y would mean x < 2.”

Metacognitive Prompts “Let me think.”

Expressing mathematical relation-
ships

“Q = (2 * π * L) * (T(r1) - T(r2)) / (k_avg * ln(r2 / r1))”

Planning calculation steps “I need to solve this system of equations to find the values of a, b, and c.
Once I have those, I can plug in t = -1 into the polynomial to find f(-1).”

Hypothesis Generation “Myo-invasive heart disease is a type of heart disease where the heart
muscle is damaged and can’t function properly, leading to symptoms like
ptosis, weakness, and difficulty rising from a chair.”

Rule Application “Wait, but the statute of limitations was set so that the claim against
Carla expired the day before Ann’s lawsuit. So, if Bea’s agreement was
unenforceable, then she can’t sue Carla for the debt, but she can still sue
Ann for the clubs.”

Background Knowledge Retrieval “I remember that in electrical circuits, there’s something called the force-
voltage analogy, which is used to model mechanical systems using elec-
trical components.”

26

Table 7: Categories and representative examples for DeepSeek-R1-Distill-Qwen-
1.5B (Layer 4, Dict Size 25)

Category Representative Example

Question Focus Clarification “But the question is asking for the most reasonable conclusion, not
necessarily about the student’s performance.”

Planning Next Steps “First, let’s understand the current situation.”

Stepwise Decomposition “Hmm, let me try to break this down step by step.”

Problem Restatement and Next-
Step Planning

“Okay, so I’m trying to understand this statement: "______ is an em-
ployee’s preferred ratio between work-related and non-work-related ac-
tivities which, due to intensification of work and technological shifts, has
become a hotly contested issue in recent years.”

Acknowledging Uncertainty “But I’m not entirely sure about this.”

Considering Additional Factors “I should also think about the possible causes again.”

Validating Intermediate Conclu-
sions

“That seems correct.”

Causal Conditionals “Total revenue is price times quantity, so if the price of the product is
fixed, then total revenue would be P*Q. But if the price is fixed, then
increasing the wage rate would increase the cost, but the revenue might
not change because the price is fixed.”

E.3 DeepSeek-R1-Distill-Qwen-14B (Layer 38, Dict Size 5)

Table 8: Categories and representative examples for DeepSeek-R1-Distill-Qwen-
14B (Layer 38, Dict Size 5)

Category Representative Example

Numeric Computation “51 * 4 = 204, 51 * 0.184 = approximately 9.4, so total is 204 + 9.4 =
213.4 kJ/K. Then, 213.4 * 2.5 = 533.5 kJ.”

Conditional Reasoning “The Due Process and Equal Protection arguments are weaker because
the emergency nature of the bill might justify some procedural issues, and
there’s no clear indication of unequal treatment unless the tax is applied
differently to in-state and out-of-state entities, which isn’t explicitly
stated.”

Problem Restatement “Okay, so I have this problem where I need to determine the absolute
zero temperature in degrees Celsius using the densities of air at three
different temperatures: -85°C, 0°C, and 100°C. The densities given are
1.877 g/dm3, 1.294 g/dm3, and 0.946 g/dm3 respectively.”

Metacognitive Markers “Hmm, I’m a bit rusty on this, but let me try to think it through.”

Recall of Domain Knowledge “From what I remember, constructivism is a learning theory that suggests
people construct their own understanding and knowledge through their
experiences and by reflecting on those experiences.”

E.4 QwQ-32B (Layer 27, Dict Size 10)

Table 9: Categories and representative examples for QwQ-32B (Layer 27, Dict
Size 10)

Category Representative Example

Adjusting problem framing “Alternatively, maybe the question is structured so that the options include
both, but since the user hasn’t given options, I have to go with the standard
answer.”

27

Table 9: Categories and representative examples for QwQ-32B (Layer 27, Dict
Size 10)

Category Representative Example

Brainstorming Additional As-
pects

“Also, maybe mention psychological theories explicitly, like Skinner’s op-
erant conditioning, Pavlov’s classical conditioning, and maybe Maslow’s
hierarchy where esteem and social belonging are needs that verbal stimuli
can address.”

Numeric computations “Let me do 60 * 0.03 = 1.8, and 60 * 0.0006 = 0.036, so total is 1.8 +
0.036 = 1.836 cal/°C. Then multiply by 307°C. Hmm, 1.836 * 300 =
550.8, and 1.836 *7 = 12.852, so total is 550.8 +12.852 = 563.652 cal.”

Proposing Causal Hypotheses “Also, maybe the government wants to ensure that the market remains
dynamic and innovative, which collusion might hinder because if com-
panies aren’t competing, they might not feel the need to improve their
products or services.”

Recalling Domain Knowledge “Since they are parallel, maybe I can use some proportionality theorem,
like Thales’ theorem or the basic proportionality theorem (Thales’ theo-
rem), which states that if a line is drawn parallel to one side of a triangle
intersecting the other two sides, then it divides them proportionally.”

Drawing Deductive Inferences “Also, the confrontation clause: since the victim is deceased, the defen-
dant can’t cross-examine them, but the dying declaration exception is
an established exception to the confrontation clause as well, based on
precedent like Tennessee v. Street.
So, if the court determines that the victim’s statement was made in
reasonable belief of impending death, then it’s admissible as a dying
declaration.”

Stating Known Equations “So, the Clausius-Clapeyron equation in the form ln(P) = -∆H_vap/(R) *
(1/T) + C. The slope is -∆H_vap/R, so if I can find the slope, I can solve
for ∆H_vap.”

Articulating the Next Subgoal “Okay, so I need to figure out which of the given options definitely
increases the equilibrium price of corn in a competitive market.”

Planning Next Steps “Let me think again.”

Presenting Conclusions “Therefore, both methods give the same answer, so I think that’s correct.”

E.5 DeepSeek-R1-Distill-Qwen-32B (Layer 27, Dict Size 15)

Table 10: Categories and representative examples for DeepSeek-R1-Distill-Qwen-
32B (Layer 27, Dict Size 15)

Category Representative Example

Proposing Explanations “In summary, Sandel’s case against moral engineering likely revolves
around several key points: undermining personal autonomy and respon-
sibility, leading to inauthentic actions, being paternalistic, causing unin-
tended consequences, ignoring the social and cultural context, potentially
failing to achieve lasting moral change, raising ethical concerns about
technology use, risking overreach, and being less effective than other
methods that respect individual agency.”

Enumerating additional factors “I should also think about the biological perspective.”

Problem Framing “Okay, so I need to figure out which statement correctly expresses the
relationship between aging and sexual functioning.”

Inferring Causal Effects “This would cause the supply curve to shift to the left because they need
a higher price to cover their increased costs, or they might reduce the
quantity supplied at each price level.”

Computational step initiation “Let me plug in the numbers step by step.”

28

Table 10: Categories and representative examples for DeepSeek-R1-Distill-Qwen-
32B (Layer 27, Dict Size 15)

Category Representative Example

Memory Retrieval “HDL stands for High-Density Lipoprotein, and I think its main apopro-
tein is apoA-I. HDL is often called the "good" cholesterol because it
helps remove cholesterol from the arteries and transport it back to the
liver for excretion.”

Verifying Intermediate Results “Yeah, that seems correct.”

Drawing Conclusions “So, putting it all together, positive reinforcement is the strategy that will
most effectively increase Mary’s likelihood of completing her seat work
in the long term.”

Stating Given Problem Data “The reactor has a maximum power rating of 150 W per meter of pipe,
and it operates at 350 K. The flow rate is 5 kg/hr, and the water enters at
290 K. The pipe has an internal diameter of 0.005 m. I need to find the
length of the pipe required for the heat transfer and the maximum exit
temperature of the water.”

Evaluating Expressions “- The entry in the second row, first column (2,1) is 2 + 1 = 3.”

Intermediate Numerical Compu-
tations

“Calculating that, \{}(\{}pi \{}) is approximately 3.1416, so 3.1416 *
0.000225 is about 0.000706858 square meters.”

Recalling Scientific Laws and For-
mulas

“The Nusselt number (Nu) is a dimensionless number that relates the
convective heat transfer coefficient to the thermal properties of the fluid
and the geometry of the system.”

Recalling Formulas “λ = h / (m * v_n) = h / (m * sqrt(3*k_B*T / m))”

Expressing Uncertainty “I think I need to confirm this, but since I can’t look it up right now, I’ll
go with "moral particularism" as the answer, but I’m not 100% sure.”

Stating Legal Rules “In this case, the shopper is suing under strict liability, so the key elements
she needs to prove are: (1) the product was defective, (2) the defect
caused her injury, and (3) she was using the product in a way that was
foreseeable.”

29

	Introduction
	Taxonomy of Reasoning Mechanisms
	Unsupervised Clustering of Reasoning Mechanisms via High-Level Sparse Autoencoders
	Taxonomy Evaluation
	Taxonomy Results

	Steering Base Models to Reason
	Finding Steering Vectors in Base Models
	Hybrid Model Implementation
	Hybrid Model Results
	Hybrid Model Ablation Studies

	Related Work
	Conclusion
	SAE Training Details
	Details of Taxonomy Evaluation
	Cluster Title & Description Generation
	Consistency (F1 Score)
	Completeness (Confidence Score)
	Independence (Semantic Orthogonality)
	Decoder Weight Vector Orthogonality
	Choice of LLM Models for Taxonomy Evaluation
	Scoring Normalization

	Details of Hybrid Model Evaluation
	Example Selection and Training Procedure
	Prompt Template
	Interpreting the Bias Vector
	Results on Smaller Models Without Sweep

	Steering Vector Usage Statistics
	Llama-3.1-8B with DeepSeek-R1-Distill on GSM8K
	Llama-3.1-8B with DeepSeek-R1-Distill on MATH500
	Qwen2.5-14B with DeepSeek-R1-Distill on GSM8K
	Qwen2.5-14B with DeepSeek-R1-Distill on MATH500
	Qwen2.5-32B with DeepSeek-R1-Distill on GSM8K
	Qwen2.5-32B with DeepSeek-R1-Distill on MATH500
	Qwen2.5-32B with QwQ-32B on GSM8K
	Qwen2.5-32B with QwQ-32B on MATH500
	Qwen2.5-Math-1.5B with DeepSeek-R1-Distill on GSM8K
	Qwen2.5-Math-1.5B with DeepSeek-R1-Distill on MATH500

	Sparse Autoencoder Features
	DeepSeek-R1-Distill-Llama-8B (Layer 6, Dict Size 15)
	DeepSeek-R1-Distill-Qwen-1.5B (Layer 4, Dict Size 25)
	DeepSeek-R1-Distill-Qwen-14B (Layer 38, Dict Size 5)
	QwQ-32B (Layer 27, Dict Size 10)
	DeepSeek-R1-Distill-Qwen-32B (Layer 27, Dict Size 15)

