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Abstract
The fusion of language models (LMs) and001
knowledge graphs (KGs) is widely used in002
commonsense question answering, but gener-003
ating faithful explanations remains challeng-004
ing. Current methods often overlook path de-005
coding faithfulness, leading to divergence be-006
tween graph encoder outputs and model pre-007
dictions. We identify confounding effects and008
LM-KG misalignment as key factors causing009
spurious explanations. To address this, we in-010
troduce the LM-KG Fidelity metric to assess011
KG representation reliability and propose the012
LM-KG Distribution-aware Alignment (LKDA)013
algorithm to improve explanation faithfulness.014
Without ground truth, we evaluate KG expla-015
nations using the proposed Fidelity-Sparsity016
Trade-off Curve. Experiments on Common-017
senseQA and OpenBookQA show that LKDA018
significantly enhances explanation fidelity and019
model performance, highlighting the need to020
address distributional misalignment for reliable021
commonsense reasoning.022

1 Introduction023

In commonsense reasoning problems, many rely024

on both explicit textual information and structured025

domain knowledge (Hirschman and Gaizauskas,026

2001) to compensate for the limited factual mem-027

ory of LMs (Li et al., 2022) and provide insights028

into the inference processes (Danilevsky et al.,029

2020), however explanations can also be expressed030

by highlighting a subset of this knowledge. Making031

the model output the facts used to answer a particu-032

lar question can increase trustworthiness and help033

with debugging. Effective explanations should ac-034

curately reflect the reasoning process of a model035

(Herman, 2017). In knowledge-augmented com-036

monsense QA, attention weights from message-037

passing have been used to provide poc-hoc expla-038

nations (Lin et al., 2019; Yasunaga et al., 2021),039

as illustrated in Figure 1. However, the reliabil-040

ity of these explanations has been questioned (Jain041
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Figure 1: This figure depicts a class of models that inte-
grate KG and LM for question answering. The training
stage on the left side of the figure mainly includes LM,
KG, and their interaction through a knowledge exchange
fusion layer. The right side of the figure illustrates the
post-hoc explanation results. Explanations extracted
from the KG of models that produce the same correct
answers can be inconsistent and unfaithful.

and Wallace, 2019), and the criteria for evaluating 042

model explainability are often neglected, diminish- 043

ing their impact. 044

We argue that explanations from a broad class of 045

KG-enhanced LMs (LM-KG) are of limited faith- 046

fulness. The behaviour of graph encoder deviates 047

from the overall LM-KG model and it has lim- 048

ited influence on the prediction, so explanations 049

extracted from the graph encoder are unlikely to re- 050

flect the full set of facts. Besides, this process does 051

not guarantee that the extracted explanations will 052

be faithful to the reasoning of the model (Wiegreffe 053

and Pinter, 2019), leading to what we call spurious 054

explanations(Zhao et al., 2023). 055

Spurious explanations, which lie outside the gen- 056

uine rationale of the model’s prediction, can arise 057

due to various factors. The Graph Neural Network 058

(GNN) learned from the knowledge graph may pre- 059

serve the prediction but deviate from the original 060

model’s reasoning due to confounding effects. In 061

LM-KG models, the LM compensates for the rea- 062

soning of the weakly-trained GNN, making it more 063
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vulnerable to such issues. Consequently, the extrac-064

tion of explanations becomes unreliable.065

To address these challenges, we make the fol-066

lowing contributions:067

1. We measure model faithfulness by deeply de-068

taching the LM’s ability to influence the fi-069

nal prediction, providing a design method for070

faithful models that can generalise to similar071

architectures.072

2. We analyse the underlying mechanism of spu-073

rious explanations and discuss why graph074

motifs (structure) can enhance model perfor-075

mance but fail to produce faithful explana-076

tions.077

3. We propose the LM-KG Fidelity and078

LM-KG Consistency metrics, which di-079

rectly inspire the development of the LM-080

KG Distribution-aware Alignment (LKDA)081

training architecture.082

4. We introduce a joint Fedility-Sparsity mea-083

surement method to help analyse whether the084

attention weights of the GNN contain explana-085

tory paths.086

Our analysis, conducted on the CommonsenseQA087

and OpenBookQA datasets, demonstrates that088

LKDA enhances KG fidelity across various LM-KG089

models, representing a significant contribution to090

graph explainability and setting a new benchmark091

for future research. Furthermore, LKDA consis-092

tently improves the overall performance accuracy093

of models. On the OpenBookQA dataset, some094

models exhibit an accuracy increase of approxi-095

mately 10% while maintaining the same model ar-096

chitecture and parameter count. These suggest that097

our proposed method can assist models in better098

utilising the structured knowledge contained within099

the Knowledge Graph.100

2 Related Work101

2.1 Knowledge Graphs in NLP102

Research has explored enhancing NLP with addi-103

tional knowledge. Studies have shown pre-trained104

language models can serve as implicit knowledge105

bases (Pan et al., 2019; Petroni et al., 2019). Oth-106

ers have integrated structured knowledge graphs107

into language models for better knowledge repre-108

sentation, focusing on processing the knowledge109

graph (KG) and the language model (LM) sepa- 110

rately before combining them for question answer- 111

ing (QA) tasks (Mihaylov and Frank, 2018; Wang 112

et al., 2019; Zhang et al., 2022; Lin et al., 2019; 113

Yasunaga et al., 2021). 114

2.2 Multi-relational Graph Encoder 115

Graph Neural Networks (GNNs) are significant 116

in handling diverse graph structures (Kipf and 117

Welling, 2017; Veličković et al., 2018). For 118

multi-relational graphs like KGs, which have com- 119

plex relational data, R-GCNs and GAT have been 120

developed to handle these relations effectively 121

(Schlichtkrull et al., 2018; Veličković et al., 2018). 122

2.3 KGs for Post-hoc Explanations in LMs 123

LMs struggle with interpretability (Danilevsky 124

et al., 2020). Grounding LM outputs in KGs has 125

been a method to provide explanations, but these 126

are often not fully representative due to the reliance 127

on text and graph embeddings (Feng et al., 2020; 128

Sun et al., 2022; Wiegreffe and Pinter, 2019; Zhang 129

et al., 2022; Yasunaga et al., 2021). Recent ap- 130

proaches like GraphMask attempt to improve faith- 131

fulness in explanations, but challenges persist in 132

quantifying the fidelity of graph encoder explana- 133

tions in LM-KG models (Schlichtkrull et al., 2021; 134

Aglionby and Teufel, 2022). 135

3 Model Architecture 136

3.1 Knowledge Graph Enhanced 137

Commonsense Reasoning 138

In this study, we focus on a category of models that 139

synergise a text encoder (LM) and a knowledge 140

graph encoder for the purpose of commonsense 141

question answering. These models effectively com- 142

bine linguistic and structured world knowledge to 143

enhance reasoning and understanding. In a multi- 144

choice commonsense question answering setting, 145

the model processes a question q and a set of an- 146

swer choices C. For each answer choice a ∈ C, a 147

concatenated input statement S = [q;a] is formed, 148

where q and a denote the vector representations 149

of question and option. The external Knowledge 150

Graph is then utilized to extract a relevant subgraph 151

G, guided by the input statement S. This contex- 152

tualized subgraph is formally defined as a multi- 153

relational graph G = (V, I, ϕ), where V represents 154

the set of vertices (or nodes), I the set of edges, 155

and ϕ the relational types in the graph. The lan- 156

guage model, denoted as LM, computes the context 157
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embedding z = LM(S). This involves encoding158

the concatenated question and answer choice into159

a high-dimensional vector space, capturing the lin-160

guistic nuances and semantic relationships.161

Simultaneously, a graph encoder fG is employed162

to encode the KG subgraph G. The encoding163

g = fG(G) captures the structured relational infor-164

mation and knowledge present in the graph. Finally,165

a fusion module F integrates the outputs of both the166

LM and fG encoders to generate a joint represen-167

tation F (z, g). This module can range from sim-168

ple feature concatenation to more complex archi-169

tectures, such as a transformer-based fusion layer,170

which effectively merges the linguistic context with171

the structured knowledge graph information. The172

output of this fusion model is then utilized to pre-173

dict the plausible answer Y from the set of choices.174

The joint representation F (z, g)) is then passed175

through a Multilayer Perceptron (MLP) to gener-176

ate the final prediction from the set of choices C.177

Formally, the training and prediction ρ(q,a) can178

be represented as:179

Y = ρ(q,a) = argmaxa∈C MLP(F (z, g)))

s.t. L = Eq,â,C

[
− log

exp(ρ(q, â))∑
a∈C exp(ρ(q,a))

]
(1)180

where argmax selects the answer choice a that181

maximises the output of the MLP applied to the182

joint representation. During training, we maximise183

the plausibility score of the correct answer â by184

minimising the cross-entropy loss. We give detail185

of KG encoding (fG(G)) in Appendix B186

3.2 Post-hoc LM-KG Explanation Framework187

Perturbation-based methods are often used to pro-188

vide instance-level explanations. In this context,189

perturbations are derived by sequentially masking190

out the most weighted groups of connected edges191

in the knowledge graph, focusing specifically on192

the most weighted path connecting context nodes193

and the predicted answer node.194

Given a graph G = (V, I, ϕ), where nodes are195

represented by an attribute matrix T ∈ Rn×d and196

edges by an adjacency matrix A ∈ Rn×n. The goal197

of post-hoc explanation is to identify a subgraph198

G′ with binary importance masks MA ∈ [0, 1]n×n199

on the adjacency matrix and MT ∈ [0, 1]n×d on200

the node attributes, respectively. Formally, the sub-201

graph is defined as G′ = {A ⊙ MA;T ⊙ MT },202

where ⊙ denotes elementwise multiplication.203

S

G C

Structural
Factor

Figure 2: Behavior of GNN model from the causality
perspective in the form of Structural Equation Model.
There are two possible causal paths can be found.

Following the Feature Removal Principle 204

(Covert et al., 2020), when ground-truth explana- 205

tions are not available, we assess the explanation’s 206

effectiveness by measuring the model’s sensitivity 207

to explanations G′. This could be done by sequen- 208

tially masking out the most critical sets of nodes in- 209

dicated by MA that follows edge attention weights 210

α and observing the drop in performance (Yuan 211

et al., 2022). This approach ensures that the most 212

important nodes are recognised by the rate at which 213

the model’s accuracy deteriorates when these nodes 214

are not functioning. 215

Mathematically, the degradation is defined as: 216

∆Acc(T̂n) = fG(G)− fG(G′)
s.t. G′ ∼ B(G, α,A, n, T )

(2) 217

where T̂n denotes the set of n most influential 218

nodes. B represents the perturbations applied to 219

the original node attribute matrix T . ∆Acc quanti- 220

fies the rate at which the accuracy decreases when 221

pruning is applied. 222

4 Spurious GNN Causality 223

Inspired by Zhao et al. (2023), spurious explana- 224

tions refer to those that do not align with the true 225

reasoning behind the predictions on G, rendering 226

the extraction of G′ for explanations anecdotal. To 227

illustrate this, we can model the GNN using a Struc- 228

tural Equation Model (SEM) as depicted in Fig- 229

ure 2. Here, variable C represents discriminative 230

causal factors, while variable S denotes confound- 231

ing environmental factors. The GNN learned from 232

fG might maintain prediction distribution Y due 233

to the confounding effects of distribution shifts 234

or differing causal variables from the original G. 235

This issue is exacerbated in weakly-trained unsta- 236
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ble GNNs in LM-KG models, making GNNs pre-237

dictions unreliable. The model’s inference process238

can be broken down into two paths:239

1. G → C → Y : The causal path lies behind240

the inference process, with the representa-241

tion encoding the critical variables C. This242

path utilises information from the entire input243

graph G.244

2. G ← S → Y : The confounding effect of the245

spurious factor S can influence the inference246

process by leading the model to neglect the247

semantics of node embeddings. Especially248

when an input graph G′ is out-of-distribution249

(OOD), the supportive GNN may fail to re-250

flect its discriminative features. During infer-251

ence, the encoded representation of G is dis-252

tant from those seen in the training set, making253

the generalise unreliably. This effect will be254

transferred through fusion layers to the LM,255

leading to better accuracy but unreliable ex-256

planations.257

To gain a deeper understanding of the reasons258

behind this problem, we can examine the behavior259

of a state-of-the-art LM-KG model from a causality260

perspective. The GSC (Wang et al., 2021) model261

provides a clear illustration of this issue. They262

use Sparse-VD (Molchanov et al., 2017) to analyse263

GNN components in many LM-KG commonsense264

QA systems and find that the counting of edges in265

the knowledge graph plays a crucial role in the rea-266

soning process for LM-KG models. Even a simple267

hard counting algorithm that counts the occurrence268

of each possible edge triplet can achieve QA per-269

formance comparable to complex GNN methods,270

but the attention mechanism and node embedding271

features in GNNs are not predominant. In such272

cases, especially when there is support of reason-273

ing from the LM and the training data is relatively274

scarce, the message-passing process might fail to275

capture effective causal factors other than graph276

motifs, leading to the loss of significant symbolic277

nodes’ ability, which are essential in the knowledge278

graph, thus ignoring essential causal relationships.279

Addressing this issue requires careful consid-280

eration of the model’s learning objective and the281

development of methods that can faithfully capture282

the causal factors contributing to the predictions.283

LM
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Attentive
Pooling

Graph Embedding Fusion
Layer

 Nodes Embeddings
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MLP
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Message
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( )
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Context Embedding

Figure 3: This figure depicts the comprehensive struc-
ture of the fusion layer, through which the LM is deeply
integrated with the KG. The components highlighted in
pink signify the modules that exhibit a strong correla-
tion with the LM. The purple dashed line denotes the
specific segments that require LM detachment before
the final prediction to keep GNN faithfulness.

5 LM-KG Explanation Evaluation 284

Metrics 285

Here we evalute GNN explanability in a fusion 286

model in two folds, namely, faithfulness and spar- 287

sity. With “faithful graph encoders”, we refer to 288

GNN representations being able to reflect the gen- 289

uine rationale of the prediction. While sparsity 290

means rationales should capture the most important 291

input features and ignore the irrelevant ones. We 292

argue that LM-KG fusion models are intrinsically 293

unable to provide graph-structured explanations 294

that are highly faithful to the full model. 295

5.1 LM-KG Fidelity 296

Intuitively, If trustworthy explanations are to be 297

extracted from the GNN, the GNN itself must 298

demonstrate predominant reasoning ability within 299

the overall model. Only then will the explanations 300

extracted from the GNN be faithful and truly repre- 301

sentative of the reasoning process. Hence, LM-KG 302

Fidelity here is defined as the intersection of pre- 303

diction between the original and the GNN with 304

fundamental changes. Concretely, we define LM- 305

KG Fidelity (FKG) as the prediction agreement be- 306

tween the original model and the language model 307

factors detached model output. 308

5.1.1 Proxy for Faithfulness 309

To maintain isolation and integrity of the GNN 310

model, we steadily prune text encoder from the 311

fusion layer without further training, as shown in 312
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Figure 3. Inspired by (Schlichtkrull et al., 2021;313

Aglionby and Teufel, 2022), FKG is conducted us-314

ing a controlled variable method with complemen-315

tary masking, all factors are kept constant except316

that the text encoder reasoning components are to-317

tally detached from the interaction between modali-318

ties in the fusion layer. Keeping nodes features and319

the model architecture as is allows us to establish a320

causal relationship between the text encoder vari-321

able and the observed outcomes, especially in such322

a model class with multiple deep fusions. Pruning323

here can be equivalently thought of as adding a324

certain type of noise when prediction, it contains325

at best minimal useful information for answering326

the question correctly. It can be categorised as be-327

longing to the class of perturbation-based methods328

(Guan et al., 2019; Schlichtkrull et al., 2021).329

Specifically, follow Wang et al. (2022) FKG is330

defined as:331

FKG =
dH(ĈM, ĈM\z )

N

=

∑N
i=1 I

(
Ĉ

(i)
M, Ĉ

(i)
M\z

)
N

s.t. ĈM = argmax
c∈C

P (c | G,M) ,

ĈM\z = argmax
c∈C

P (c | G,M\z)

(3)332

The FKG score is defined as the normalised Ham-333

ming Distance dH which represents the proportion334

of instances where the predictions of the two mod-335

els agree Where C is the set of choices, Ĉ(i)
M and336

ĈM(i)
\z

are the predictions for the i-th instance made337

by the original model and the complementary mask338

applied model M\z respectively. P (c | M) de-339

notes the probability distribution of the output Y340

given the modelM. I(x, y) is the indicator func-341

tion, which is 1 if x = y and 0 otherwise. N is the342

total number of instances in the dataset considered.343

Accuracy performance and comparison between344

the complete model’s output and the LM-detached345

model’s prediction are provided in the Figure 5 and346

6. Measurement of FKG is reported in Table 3.347

5.1.2 Fidelity of Consistency348

Note that the FKG metric studies the change of pre-349

diction accuracy. In order to quantitatively assess350

the divergence between the output density of our351

original modelM and its pruned variantM\z , we352

first devise the LM-KG Consistency (CLK) metric353

to measure the alignment between the probability354

distributions of their outputs. Our chosen metric355

is inspired by the Jensen–Shannon divergence J 356

(Lin, 1991), a symmetrised and smoothed version 357

of the Kullback-Leibler divergence (Kullback and 358

Leibler, 1951), which offers a bounded measure 359

of similarity between probability distribution pairs. 360

The CLK metric is computed as follows: 361

CLK : J
(
M,M\z

)
= λDKL (P (Y | M) ∥A)

+(1− λ)DKL(P (Y | M\z)∥A)
(4) 362

Where DKL represents the Kullback-Leibler di- 363

vergence. The key to the computation of J is the 364

average of the two distributions. A serves as the 365

mid-point reference distribution against which the 366

divergence of each of the two distributions is mea- 367

sured. By employing CLK as our metric, we aim 368

to capture the nuanced differences between the out- 369

put probability distributions of M and M\z. A 370

smaller CLK indicates a high degree of similarity 371

or consistency between the two models, while a 372

larger value signifies a greater divergence in their 373

outputs, and even when the LM output is detached, 374

the graph encoder can still assign probabilities to 375

choices that closely align with the original model’s 376

decisions, making it potentially more representa- 377

tive of the original model’s thought process. Note 378

that CLK is more sensitive than FKG. 379

5.2 LM-KG Explanation Sparsity 380

Good explanations should be sparse, which means 381

they should capture the most important input fea- 382

tures and ignore the irrelevant ones. The metric 383

Sparsity measures such a property. Specifically, it 384

measures the fraction of features in the final GNN 385

layer selected as important by explanation meth- 386

ods. Formally, we define it as the percent of impor- 387

tant node embeddings masked in T . Note that we 388

need to compare model explanation performance 389

by combining sparsity with other criteria. Note that 390

we must evaluate model explanation performance 391

by jointly considering sparsity and other criteria. 392

For models undergoing the same change in spar- 393

sity, those exhibiting greater performance variation 394

indicate that the factors driving this change possess 395

stronger explanatory power for the model. 396

6 Methodology 397

To achieve a more faithful LM-KG interpretation, 398

it’s imperative to ensure that the introduced modifi- 399

cations of models do not substantially deviate from 400

the LM’s behaviour, implying that after introduc- 401

ing modifications, the GNN encoder should predict 402
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Figure 4: Illustration of our proposed new objective

a target distribution that mirrors the one emitted403

by the unaltered model to retain its subtle reason-404

ing ability. While traditional methods have relied405

heavily on cross-entropy as the primary objective,406

the unfaithful GNN encoder of existing LM-KG407

models demands a more nuanced regularisation of408

training procedure. We next introduce LM-KG409

Distribution-aware Alignment (LKDA) to bridge410

this gap.411

6.1 Knowledge Graph Anchored Alignment412

through Divergence413

LKDA enhances the cross-entropy LCE by intro-414

ducing a consistency regularisation LCTG
. This415

factor is an alignment loss used as an auxiliary416

task incorporated into that ensures the graph en-417

coder’s target prediction align closely with the orig-418

inal model’s predictions. LKDA is given by:419

Lalign(ĈM, ĈM\z ) = ∇θtLCE + λ · ∇θtLCTG (5)420

421

In this equation, θt are the model parameters at422

time step t, λ controls the balance between pre-423

diction preservation and alignmen, LCE represents424

the cross-entropy loss, which was traditionally em-425

ployed. LCTG
is the consistency term that mea-426

sures the divergence between the probability dis-427

tributions of the original and LM-detached mod-428

els. The equation shows the parameter update rule,429

where the gradients of the two losses are subtracted430

from the current parameters θt to obtain the up-431

dated parameters θt+1. The algorithm details of432

this strategy can be found in Appendix A.433

6.2 Theoretical Analysis434

From our previous discussions, it is evident that435

G′ obtained via Equation 1 cannot be reliably used436

as explanations. One critical issue with existing437

GNN explanation methods lies in the inductive438

bias: achieving the same outcomes does not guar-439

antee the same underlying causes, leaving these ap-440

Method IH-dev (%) IH-test (%)

QA-GNN 76.1 73.3
+LKDA 76.3↑0.2 73.4↑0.1

GreaseLM 77.4 74.2
+LKDA 77.8↑0.4 74.2↑0.0

MHGRN 74.4 71.1
+LKDA 76.9↑2.5 71.2↑0.1

Table 1: Accuracy comparison of three different LM-
KG models in their original version and trained with
the LKDA scheme (grey background) on the Common-
senseQA dataset.

Method Dev (%) Test (%)

QA-GNN 72.4 70.4
+LKDA 79.0↑6.6 80.0↑9.6

GreaseLM 73.4 71.6
+LKDA 80.6↑7.2 82.4↑10.8

MHGRN 69.4 67.4
+LKDA 71.2↑1.8 66.6↓0.8

Table 2: Accuracy comparison of three different LM-
KG models in their original version and trained with the
LKDA scheme (grey background) on the OpenBookQA
dataset.

proaches vulnerable to spurious explanations. This 441

is illustrated in Figure 4. The objective proposed 442

in Equation 1 optimizes the mutual information be- 443

tween the model prediction Y and the ground truth 444

T , which corresponds to maximizing the overlap 445

S0∪S1 between I(T ;Y ) in Figure 4(a) and Figure 446

4(b). 447

However, this learning target cannot prevent the 448

generation of spurious explanations. Provided KG 449

explanation may fall into region S1 ∪ S3, which 450

does not faithfully represent model reasoning. In- 451

stead, a more sensible objective should be maxi- 452

mizing region S0 ∪ S2 in Figure 4(b). The intu- 453

ition behind this is that in the search input space 454

that causes the same outcome, no matter correct 455

or wrong, the identified G′ should account for both 456

the representative and discriminative parts of the 457

original LM-KG model, to prevent both unfaith- 458

ful KG and spurious explanations that produce the 459

same outcomes due to different causes. Ensuring 460

the alignment ofM andM\z while increasing the 461

area of S0 will inevitably reduce the area of S3∪S4. 462

Therefore, our method can reduce the occurrence 463

of incorrect or shortcut spurious explanations. 464
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Figure 5: The bar charts compare the accuracy of the
model on CommonsenseQA before and after LKDA
training when the LM is detached. The models trained
with LKDA are shown with a gray background.

7 Experiment Settings465

7.1 Datasets & KG466

We assess our methods using two multiple-choice467

question answering datasets: CommonsenseQA468

in-house (IH) data split (Talmor et al., 2019; Lin469

et al., 2019) and OpenBookQA (Mihaylov et al.,470

2018), serving as benchmarks for commonsense471

reasoning. We also use ConceptNet (Speer et al.,472

2017), a broad commonsense KG, for our tasks.473

Details can be found in Appendix C.474

7.2 LM-KG Faithfulness Baseline Models475

To assess our LKDA training and LM-KG Fidelity476

metric, we compare it with three LM-KG mod-477

els: QA-GNN (Yasunaga et al., 2021), GreaseLM478

(Zhang et al., 2022), and MHGRN (Feng et al.,479

2020). Each uniquely integrates language models480

with knowledge graphs: QA-GNN uses a context481

node, GreaseLM enhances interaction through a fu-482

sion mechanism, and MHGRN offers a multi-hop483

relational reasoning architecture.484

For fair comparison, we use RoBERTa-Large485

(Liu et al., 2019b) model and its generated concepts486

embedding for our experiments.487

We also include the TrainTE (Aglionby and488

Teufel, 2022) (−TE) ablation for faithfulness com-489

parison, freezing text encoder weights to enhance490

the GNN’s reasoning contribution. Unlike the491

−Embed (Aglionby and Teufel, 2022) ablation,492

which detaches the text encoder only from the fi-493

nal MLP, −TE better aligns with our goal. Im-494

plementation and hyper-parameters are detailed in495

Appendix D.496

Model CommonsenseQA OpenBookQA
IH-dev IH-test dev test

-T
E QA-GNNTE 33.5 30.5 45.6 45.5

MHGRNTE 29.7 24.5 44.8 41.0

M
\
z QA-GNN 43.5 39.8 39.3 45.5

GreaseLM 41.2 40.7 60.3 62.7
MHGRN 52.3 51.0 75.4 73.0

L
K

D
A QA-GNN 98.5 98.7↑58.9 97.6 98.0

GreaseLM 98.9↑57.7 98.0 99.6↑39.6 99.6↑36.9
MHGRN 95.5 95.0 96.2 97.4

Table 3: LM-KG Fidelity measurement of three LM-KG
models variations on two datasets.

8 Results Analysis & Discussion 497

Table 3 presents the LM-KG Fidelity results on 498

CommonsenseQA and OpenBookQA for LKDA- 499

trained models and three LM fully detached mod- 500

els. LKDA notably enhances faithfulness across 501

all scenarios, with GreaseLMLKDA on the Com- 502

monsenseQA IH-dev split achieving a 57.7% and 503

QAGNNLKDA on the IH-test split achieving a 504

58.9% accuracy increase. This highlights LKDA’s 505

effectiveness in addressing model unfaithfulness 506

and bolstering graph encoder predictions, thus lay- 507

ing a foundation for reliable graph interpretation. 508

Additionally, Tables 1 and 2 report accuracy under 509

original models and LKDA settings. It is notewor- 510

thy that these tables show consistent improvements, 511

including an over 11% improvement for GreaseLM 512

on the OpenBookQA test dataset. 513

8.1 LM-detached Models 514

Figures 5 and 6 show that removing the text en- 515

coder significantly drops performance in all mod- 516

els. For instance, in CommonsenseQA IH-dev, 517

GreaseLM’s accuracy drops by 39.7%. This high- 518

lights the text encoder’s crucial role. However, 519

LKDA models without the LM embedding show 520

only minor drops or slight improvements in accu- 521

racy. This suggests the graph encoder now has the 522

most influence, ideal for reliable explanations. 523

LKDA-trained models consistently outperform 524

those without fidelity regularization. On the Open- 525

BookQA test set, QA-GNNLKDA achieves 80.0% 526

accuracy, a 9.6% increase over the vanilla QA- 527

GNN. GreaseLMLKDA achieves 82.4%, surpass- 528

ing the original by 10.8%, and matches the fine- 529

tuned T5 model. This indicates that LKDA im- 530

proves reasoning in the graph encoder, making it a 531

reliable proxy for the model’s reasoning process. 532

8.2 LM-KG Fidelity 533

Table 3 shows that FKG scores significantly in- 534

creased after LKDA training. In CommonsenseQA 535

7



(a) (b)

(c) (d)

Figure 6: The bar charts compare the accuracy of the
model on OpenBookQA before and after LKDA training
when the LM is detached. The models trained with
LKDA are shown with a gray background.

IH-test, QA-GNN’s fidelity rose from 75.7% to536

98.7%, GreaseLM from 40.7% to 98.0%, and537

MHGRN from 51.0% to 95.0%. All models538

showed over 95% FKG, indicating high faithfulness539

of graph encoders to the original model outputs.540

GreaseLM’s fidelity improved notably, achieving541

99.6% on OpenBookQA dev and test sets, demon-542

strating LKDA’s effectiveness.543

8.3 Explanation Fidelity544

Evaluating the explainability of the obtained GNNs545

is challenging due to the lack of commonsense KG546

explanation ground-truth. We specifically study547

this by observing prediction changes when sequen-548

tially removing important nodes from the final549

GNN layer. We define importance as the atten-550

tion weights (α in Figure 3) between the head node551

and tail nodes learned by the model to test its ex-552

planation performance. Generally, the removal of553

truly important edges would significantly degrade554

the classification performance. Thus, a faster per-555

formance drop represents stronger fidelity.556

Figures 7 show the results of comparing the ex-557

planability of original models and LKDA archi-558

tectures of QAGNN and GreaseLM on Common-559

senseQA. We analyse the effect on model target560

predictions by incrementally removing node fea-561

tures, thereby increasing sparsity, and jointly eval-562

uating both sparsity and fidelity. The experiments563

are divided into three variants:564

• Feature reduction on the original model565

(ORIGINAL)566

• Random removal of node features on the567
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Figure 7: The line graphs depict Fidelity-Sparsity re-
sults of three variants of QAGNN and GreaseLM on
CommonsenseQA. Faster accuracy drops with increas-
ing sparsity indicate stronger fidelity and more effective
explanations.

LKDA-aligned model (RANDOM) 568

• Masking nodes according to the magnitude of 569

edge attention values (TOP) 570

As shown in Figure 7, as GNN sparsity increases, 571

both random and top methods exhibit a much more 572

rapid accuracy drop compared to the original ver- 573

sions. For example, after sparsity increases to 0.1, 574

the accuracy of the original QA-GNN remains rel- 575

atively steady on both dev and test sets, while for 576

LKDA, the accuracy drops by around 10%, indicat- 577

ing that the explanations from LKDA better capture 578

the critical edges. The more rapid degradation for 579

LKDA as important edges are removed demon- 580

strates that its explanations can better reflect the 581

true reasoning process. Moreover, in all the figures, 582

it is evident that at the same sparsity level, the ac- 583

curacy drop of the top method is consistently faster 584

than that of the random method. This observation 585

further validates the effectiveness of the attention 586

mechanism in identifying the most critical edges 587

for the model’s prediction. This analysis provides 588

quantitative evidence that the knowledge graph ex- 589

planations extracted from the LKDA model are 590

more faithful and plausible. 591

9 Limitations 592

While LKDA enhances explanation faithfulness in 593

LM-KG models, some limitations exist. Evalu- 594

8



ation relies on perturbation methods due to lack595

of ground-truth explanations, which may not fully596

capture explanation. LKDA introduces computa-597

tional overhead, potentially restricting applicability598

to larger models and datasets. LKDA assumes a spe-599

cific LM-KG architecture, and adapting it to other600

architectures may require further modifications.601

Quantitative metrics should be complemented with602

human evaluations to assess plausibility and under-603

standability. Future research should incorporate604

user studies.605
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A LKDA Algorithm796

Algorithm 1 LKDA Training and Explanation Pro-
cess
Require: Text s = [q; a], background subgraph G,

modelM
Ensure: Faithful explanations from graph encoder

EKG

1: Input: Question q, Answer a ∈ C, Subgraph
G

2: Initialize: Language model encoder LM,
Graph encoder EKG

3: Step 1: Text and Graph Encoding
4: Use language model encoder to generate text

representations ZLM ← LM(s)
5: Use graph attention encoder to generate graph

embeddings EKG ← fG(G)
6: Step 2: Fusion and Masking
7: Combine ZLM and EKG in fusion module F to

generate joint representation
8: Mask text representation to createM\z
9: Calculate target prediction distribution

P (Y |M\z)
10: Step 3: Alignment and Optimization
11: Minimize Jensen-Shannon divergence J be-

tween P (Y |M) and P (Y |M\z)
12: Use joint objective L that includes both J-

based and cross-entropy terms
13: Update model parameters θt ← θt −∇θtL
14: Step 4: Post-hoc Explanations
15: Derive explanations from trained graph en-

coder EKG

16: Analyze attention weights αh,M
ij to identify key

semantic relationships in G
17: Align post-hoc explanations with graph en-

coder’s training
18: Output: Faithful explanations indicating rea-

soning process of modelM

B Graph Neural Network Modeled797

Knowledge Graph Encoding798

The graph encoder fG processes the subgraph G799

by assigning initial embeddings {v(0)1 , . . . , v
(0)
J }800

to the graph’s nodes using pre-trained embed-801

dings. In each GNN layer, these embeddings802

{v(ℓ−1)
0 , v

(ℓ−1)
1 , . . . , v

(ℓ−1)
J } are updated through803

information exchange among nodes, leading to up-804

dated node embeddings for each entity. Here, v0805

typically represents the context node: 806

{v′(ℓ)0 , . . . , v
′(ℓ)
J } = fG({v(ℓ−1)

0 , . . . , v
(ℓ−1)
J })

for ℓ = 1, . . . ,M
(6) 807

This process uses a modified graph attention net- 808

work (GAT), similar to Yasunaga et al. (2021). The 809

GNN calculates node representations v′(ℓ)j for each 810

node vj through message passing: 811

v
′(ℓ)
j = fn

 ∑
vs∈Nvj∪{vj}

αsjmsj

+ v
(ℓ−1)
j (7) 812

Here, Nvj is the neighborhood of node vj , msj 813

is the message from neighbor vs to vj and fn is 814

a two-layer Multilayer Perceptron (MLP). Here, 815

αsj represents the attention weight between source 816

node s and target node j. 817

C Datasets & KG 818

We assess our methods by using two multiple- 819

choice question answering datasets: Common- 820

senseQA (Talmor et al., 2019) and OpenBookQA 821

(Mihaylov et al., 2018), serving as benchmarks for 822

commonsense reasoning. 823

CommonsenseQA. A dataset of 12,102 ques- 824

tions in a 5-way multiple-choice format which re- 825

quires commonsense knowledge beyond mere lan- 826

guage understanding. For our experiments, we 827

adopted the in-house (IH) data split by Lin et al. 828

(2019) to facilitate comparison with established 829

baseline methods. 830

OpenBookQA. A dataset with its 4-way 831

multiple-choice structure, assesses elementary 832

scientific knowledge through its collection of 833

5,957 questions, accompanied by a compilation 834

of scientific facts. For this dataset, we relied on 835

the official data splits provided by Mihaylov et al. 836

(2018). 837

ConceptNet (Speer et al., 2017), a broad knowl- 838

edge graph, for our tasks. A subgraph G for each 839

QA context is extracted using the method by Feng 840

et al. (2020) with hop size k=2. 841

D Implementation & Training Details 842

Our model, following Feng et al. (2020); Yasunaga 843

et al. (2021), includes a 4-head, 5-layer graph en- 844

coder (dimension D = 200) with a 0.2 dropout 845

rate (Srivastava et al., 2014). Using RAdam (Liu 846

11



et al., 2019a) with batch size 128, we refine param-847

eters. Input node features from concatenated [q;a]848

pass through RoBERTa-Large, yielding 1024d to-849

ken embeddings. Gradient clipping at 1.0 (Pascanu850

et al., 2013) and learning rates of 1e−5 (LM) and851

1e−3 (GNN) are set. Training takes about 2 hours852

for 30 epochs (10 random seeds) on a 40G A100853

GPU, with hyperparameters tuned on the develop-854

ment set.855
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