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ABSTRACT

Post-training quantization (PTQ) is an effective technique for accelerating DNN
model inference, where activations typically follow a bell-shaped distribution.
Since commodity hardware employs a linear quantization grid and limited quan-
tization levels, prior PTQs optimize a clipping threshold to minimize overall
quantization error, which excludes outliers from the bell-shaped data. However,
outliers are non-trivial for low-bit and lightweight models. Thus OCS (Zhao et al.,
2019) proposed to save outliers by halving and duplicating. However, in activation
quantization, the original OCS sacrifices the precision of the regular inliers, leading
to severe accuracy degradation. To address this, we propose OCS+ to save outlier
activation without affecting the regular inliers. Consequently, OCS+ theoretically
achieves one-bit higher representation under the predefined bitwidth hardware.
OCS+ is based on offline mathematical transformation, thus it does not require
additional training or re-design works on hardware. Experiments over CNNs and
ViTs demonstrate OCS+ significantly outperforms OCS and help improve current
PTQ SOTAs, e.g., OCS+ improves the current SOTAs by 12.73% in Acc@1 for
W2A2 MobileNet-v2. The code will be released.

1 INTRODUCTION

Deep neural networks’(DNN) huge cost has hindered their deployment into real-world applications.
To solve this problem, various model compression techniques (Han et al., 2015; Hinton et al., 2015)
have been studied. Low-bit model quantization(quant) is one of the commonly used, which generally
consists of Quantization-Aware Training (QAT) and Post-Training Quantization (PTQ). PTQ only
needs a tiny amount of unlabeled data and does not demand the full training pipeline. Thus PTQ
is always the first choice for fast model quantization. Traditional PTQ (Krishnamoorthi, 2018)
iteratively searches quant parameters by minimizing the mean squared error(MSE) between FP32
and quantized values. When bitwidth goes lower like 4 bits or 2 bits, these methods suffer from
severe accuracy degradation. Recent study proposes to improve low-bit PTQ by quantized-feature
reconstruction with gradient descent. AdaRound (Nagel et al., 2020) proposed a layer-by-layer
reconstruction, and introduced an adaptive rounding parameters for weight into PTQ reconstruction.
BRECQ (Li et al., 2021b) and NWQ (Wang et al., 2022) proposed a block-wise and network-wise
reconstruction. QDROP (Wei et al., 2022) proposed to randomly quantize a part of a tensor.

As shown in Fig1, DNN activation usually follows a bell-shaped distribution after training. Due to
most commodity hardwares use a linear evenly-spaced quantization levels, we need to decide how to
linealy map FP32 values to the limited quantization levels. One naive method is to linearly map the
full FP32 range to the full range of quantization levels, which usually causes large quantization error
and severe accuracy degradation. One better approach is to make the quantization grids narrower
than the FP32 distribution with some criterion like minimizing their Mean Squared Error (MSE)–
this is known as clipping. However, clipping reduces overall quantization error at the sacrifices of
increasing the distortion on the outliers–it is a trade off that should be carefully optimized. As Tab.1
from SPEQ(Boo et al., 2021), for low-bit and light-weight models, the clipped outlier activations
are still helpful if we put them back to model forward inference: the accuracy of one optimized
FP32-weight/2bit-Activaion(WFA2) ResNet-20 on CIFAR100 improves as the activation precision
increases during inference. Increasing bitwidth during test equals to putting the trained-bitwidth
model’s outliers back. However, we can not increase bitwidth at will, since most commodity hardware
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Figure 1: Quantize bell-shaped channel activation into unsigned 3 bits (8 quantization levels). Naive
PTQ and OCS both express 8 quantization levels: naive PTQ clips outliers larger than Xclip; OCS
saves outliers in (Xclip, 2Xclip] but damages regular values in [0, Xclip]. Our OCS+ achieves
16-quantization- level representation, saving outliers in (Xclip, 2Xclip] and no damage in [0, Xclip].

only supports several predefined bitwidth like 2/4/8/16/32 bits. Therefore, if we can save outliers of
an optimized quant-model under predefined bitwidth, the PTQ accuracy can be further improved.

To save outliers, OCS(Zhao et al., 2019) proposed outlier channel splitting by a halving and duplicat-
ing operation. As shown in the middle row of Fig1, OCS saves outliers in range (Xclip, 2×Xclip],
where Xclip is the original optimized quant upper bound, 2×Xclip will be abbreviated as 2Xclip.
However, it sacrifices the precision of the regular inliers in range [0, Xclip]. As a matter of fact, OCS
equals to doubling the quant-step of the outlier channels, or making the quantization grid 2× loosely
mapped. OCS on activation requires a fixed outlier channel index, but outlier channels of different
activation will change as different input, thus OCS on activation will cause accuracy degradation.

To solve this problem, for a well optimized PTQ model, we propose OCS+ to translate, rather
than halve, the outliers down into the optimized clipping range and store them in some newly-built
channels through a mathematically equivalent transformation on weight as Fig3, so the precision of
inliers in range [0, Xclip] and outliers in range (Xclip, 2Xclip] can be both preserved. As the bottom
of Fig.1, OCS+ achieves 16-quantization-level representation under 3-bit unsigned quantization,
while OCS still owns 8 quantization levels as the naive PTQ. Or to say, OCS save outliers by 2×
loosely mapping the quantization grid, while our OCS+ saves outliers with quantization grid still
fined-grained mapped. OCS+’ saved outliers in range (Xclip, 2Xclip], or the additional 8 quantization
levels, should have been achieved by designing one more bit on hardware. Therefore, OCS+ equals
to earning one-more unavailable bit under a predefined-bitwidth hardware. Or to say, we turn the
bitwidth increasing re-design work on hardware into an easy (practical) network structure adjustment
with some newly-built channels, which only causes tiny inference cost. OCS+ can be applied on
common Conv/Linear-Act-Conv/Linear structures. Act can be ReLU, H-Swish, GeLU or other
nonlinear function. We call them as "OCS-structures". As Tab.8, the fair comparison with the same
FLOPs, between OCS+_quantized network and re-trained channels-increased quantized network,
demonstrates that OCS+ is not benefit from the new information of newly-added channels, but from
the saved outliers in the original channels. Therefore, OCS+ is worthy under a predefined bitwidth
hardware after all possible optimization. Our contributions are as follows:

• We propose OCS+, based on offline mathematical transformation, to solve OCS’s sacrificing the
precision of inliers when saving outliers. With the saved outliers and not-damaged regular inliers,
OCS+ makes b-bit activation in OCS-structures express (b+ 1)-bit representations.

• Experiments show OCS+ significantly improves OCS performance and can be easily inserted into
existing PTQ libraries to help further improve performance of other PTQ methods.
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2 RELATED WORK

2.1 QUANTIZATION-AWARE TRAINING

Quantization-Aware Training (QAT) requires the whole original training pipeline, including huge
amounts of training data, long waiting training hours and complicated quantization knowledge
requirements for users. Due to these high consumption, QAT usually performs better than PTQ. Jacob
et.al (Jacob et al., 2018) proposed to inject fake quantizers into the original network during the model
training, thus the quantization error can be simulated properly and optimized by gradient descent
with straight-through estimator (STE). PACT (Choi et al., 2018) proposed parameterized clipping
activation to learn the quantization range. One step further, LSQ (Esser et al., 2020) proposed to learn
the quantization step directly, which almost achieves fp32’s performance in 4 bits. To compensate
the gradient mismatch introduced by STE, EWGS (Lee et al., 2021) proposed quantization with
element-wise gradient scaling.

2.2 POST-TRAINING QUANTIZATION

PTQ takes in a well-trained 32 bit floating-point (FP32) model then covert it into a low-bit fixed-point
counterpart directly. For weight quantization, Adaround (Nagel et al., 2020) found that the commonly
used rounding-to-nearest operation will be sub-optimal. Thus it proposed an adaptive rounding for
weight. BRECQ (Li et al., 2021a) found out block-by-block reconstruction behaves better than the
former layer-by-layer ones. NWQ (Wang et al., 2022) further proposed a network-wise PTQ by
fully leveraging inter-layer dependency. QDROP (Wei et al., 2022) proposed to jointly optimize
quantization error of both weight and activation. Meanwhile, it proposed to randomly quantize only
a part of a tensor like dropout. MRECG (Ma et al., 2023) tried to Solve Oscillation problem in
PTQ through a theoretical perspective. PD-Quant (Liu et al., 2023) proposed to consider global
information based on prediction difference metric. Bit-Shrink (Lin et al., 2023) proposed to limit
instantaneous sharpness for improving PTQ. PTQ4ViT (Yuan et al., 2022) and APQ-ViT (Ding et al.,
2022) are proposed to solve the PTQ for Vision Transformer(ViT).

The existing clipping operation in PTQ clips the outlier activation beyond the threshold. However,
these outliers turns out to be important for low-bit and lightweight models. For this problem,
OCS (Zhao et al., 2019) proposed a halving operation to split outlier channels and save outliers
without training. As Tab.5, OCS described that it performs well in weight quantization but performs
poorly in activation quantization. This is because weight quantization can be done offline, thus we
can modify every weight pixel value. so OCS does not cause precision loss for regular weight when
preserving outlier weight. However, activation quantization involves real-time computation, thus
we only can modify activation per-channel or per-layer, so preserving outlier activations with OCS
will damage the precision of regular values, as shown on Fig.1 and Fig.2. Another reason for OCS
reporting an 0.1% accuracy on activation quantization is that efficient feature reconstruction had not
been introduced. To make fair comparison and follow PTQ feature reconstruction technique with
gradient descent, we also re-implement OCS on NWQ as Sec.4.

Differently, we consider feature reconstruction, and propose OCS+ to preserve outlier activation
using translation than halving, thus no damage caused on the regular inliers. Such a modified network
achieves one-bit higher representation equally in theory on predefined-bitwidth hardware.

3 PROPOSED METHODS

Typical linear quantization on activation x is as follows, also known as fake quantization,

x̂ = clip(⌊ x
sx
⌉;xl, xu) · sx (1)

where sx is the quantization step, xl, xu are the lower and upper bound of quantization grid, ⌊⌉ is the
rounding operation and clip is to clip the quantized outliers beyond (xl, xu) to xl and xu.

For a predefined hardware, the quantization bitwidth can only be several fixed values, such as 2/4/8.
So that xl and xu also can only be several fixed values, such as (-2,1)/(-8,7)/(-128, 127). The goal of
PTQ is to optimize a suitable quant-step sx by minimizing the overall quantization error between
different de-quantized x̂ and FP32 x across the given calibration dataset.

3
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Figure 2: OCS+ V.s. OCS V.s. Clip on 2D outlier channel activation x2 with optimized quant-step
sx, upper quant-bound Xclip. ⌊⌉ denotes fakely quantizing the channel with sx as Formula 1. OCS
makes the quantization levels coarsely-covered on outlier channels, where the regular inlier values
are also affected to be coarsely-covered. OCS+’s quantization level is still fine-grained and equals to
"Naive 2×XClip", better than OCS.

As Tab 1 from SPEQ(Boo et al., 2021), for an optimized Fp32-weight-2bit-Activation (WFA2)
quantized ResNet-20 on CIFAR-100, if we increase the activation precision from 2 bits to 4 bits and
6 bits during inference test, the accuracy improves from 66.39% to 68.48% and 68.77%. Increasing
bitwidth during test will put the clipped outliers of the trained 2-bit model back to inference. It
demonstrates that the outlier activation of an optimized quantized model is helpful to improve
accuracy. However, we can not increase bitwidth at will for a given hardware. Therefore, if we can
save these outliers without increasing test bitwidth, we can obtain further accuracy improvement.

Table 1: WFA2 quantized ResNet-20 on CIFAR100 test accuracy (%)

Trained precision Test accuracy (%) / Inference precision
WFA2 66.93 / WFA2 68.48 / WFA4 68.77 / WFA8

OCS (Zhao et al., 2019) proposed to save outliers by splitting outlier channels with a halving operation.
We borrow OCS’ mathematical process on 2D channel activation xi as Fig.2. Combining Fig.1 and
Fig.2, we see OCS saves outliers at the sacrifice of lowering the precision for inliers. Thus OCS’
performance is poorer than naive 2×XClip. For example, given to quantize a outlier channel [0.0,
0.1, 0.2, 0.3, 0.4, 0.5] into unsigned-2 bits with an optimized quant-step 0.1. After quantization and
de-quantization, we get as follows: gray color denotes quantization error is caused.

• FP32: [0.0, 0.1, 0.2, 0.3, 0.4, 0.5];

• Naive Clipping: [0.0, 0.1, 0.2, 0.3, 0.3, 0.3];

• OCS: [0.0, 0.0, 0.2, 0.2, 0.4, 0.4];

• OCS+(ours): [0.0, 0.1, 0.2, 0.3, 0.4, 0.5].

The Rounding error makes OCS lose the regular inliers 0.1 and 0.3: 0.1→ 0.0 and 0.3→0.2. In
fact, for activation, OCS equals to make the regular channels remain 1x quant-step, and make the
outlier channels 2x quant-step. It achieves two different quant-tep for a per-layer quantized activation.
However, activation will change with different input, thus we can not identify the amount and
channel-index of the outliers channel in advance. That is why OCS performs poorly on activation.

To solve this problem, we propose OCS+, as process on the bottom of Fig.2, to save outlier activation
and preserve the precision of regular inliers, obtaining equal performance as the naive 2×XClip.
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Cascades of [Conv + Act+ Conv] is the most common structure in CNNs, as shown in Fig.3(a),
which can be denoted as (2, 3). The intermediate output xl+1 is quantized into x̂l+1 as (4). Here Act
can be any activation function like ReLU, GeLU or H-Swish. We take ReLU as example.

Convl: yl = W lxl + bl, Act Func:xl+1 = f(yl), (2)

Convl+1: yl+1 = W l+1xl+1 + bl+1 (3)

x̂l+1=clip(⌊f(y
l)

sx
⌉;xl,xu) ·sx→clip(⌊y

l

sx
⌉;0,xu)·sx (4)

Owing to the clipping operation, the outlier features, greater than xclip = sx ·xu, in xl+1, are clipped
to xclip, which will cause these outlier part of features unable to be reconstructed or adjusted during
PTQ process. Consequently, the final quantized model suffers huge performance drop.

The FP32 upper bound xclip of quantized results:

xclip = sx · xu = sx · (2b − 1) (5)
is determined by quant-step sx and predefined bitwidth b. If we want to enlarge xclip and cover more
outliers, one way is to enlarge quant-step. However, a larger, or coarser-grained, quant-step will lead
to larger discretization error for a converged quantized model. The other way is to enlarge bitwidth,
which is impossible for a predefined-bitwidth accelerator. Is there a solution covering more outliers,
while requiring the same bit?

Based on the commonly used structure as (a) of Fig.( 3), called as OCS-structures, if we can
afford a little more calculation, the FP32 upper bound xclip can be enlarged safely, meanwhile, the
quantization bit can be kept as the same. Given that we want to enlarge the FP32 upper bound from
xclip to βxclip, β ≥ 1, Formula (4) is correspondingly transformed to:

x̂l+1
[0,βxclip]

=clip(⌊y
l

sx
⌉; 0, xu) · sx + ... (6)

+ clip(⌊y
l − (β − 1) · xclip

sx
⌉; 0, xu) · sx

From the formula above, we can see the outlier activation is translated back to range [0, Xclip], which
can be achieved through some number (related to β) of channels added and some simple modification
on weight. To simplify denotation, here we set β = 2. Thus equation 6 can be:

x̂l+1
[0,2xclip]

=clip(⌊y
l

sx
⌉; 0, xu) · sx+ (7)

clip(⌊y
l − xclip

sx
⌉; 0, xu) · sx

To achieve equation 7, we first need to duplicate activation yl, translate the copied one down by xclip

and concatenate them together as follows:

yl′
j =

{
yl
j if 0 ≤ j < cout

yl
j−cout

− xclip if cout ≤ j < 2cout
(8)

where cout is the original number of output channels for activation yl. To achieve this operation, we
need to transform the original weight W l and bias bl to W l′ and bl′ :

W l′
i,j =

{
W l

i,j if 0 ≤ j < cout
W l

i,j−cout
if cout ≤ j < 2cout

, (9)

bl′j =

{
blj if 0 ≤ j < cout
blj−cout

− xclip if cout ≤ j < 2cout

With the modified weight W l′ and bias b′, we can get the results of the Formula equation 8 by
yl′ = W l′xl + bl′. To ensure the final output is intact as original except for more outliers saved,
W l+1 needs to be transformed as W l+1′:

W l+1′
i,j =

{
W l+1

i,j if 0 ≤ i < cout
W l+1

i−cout,j
if cout ≤ i < 2cout

(10)
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Figure 3: (a) is a typical [Conv+ReLU+Conv] structure used in MobileNet-v2. q(·) denotes quantiza-
tion. Intermediate features of (a) are shown in subgraphs 1⃝ 2⃝ 3⃝, whose distributions are shown in
the middle. With OCS+ equipped, structure (a) can be transformed to (b), whose intermediate feature
distributions are drawn in 4⃝ 5⃝ 6⃝. The orange channels are copied from the blue ones. When the
input of Conv7 in a and b is subgraph 7⃝ and 6⃝ separately, the outputs of Conv7 in a and b are equal.
Thus N-bit activation in OCS-structures can be expanded to (N+1)-bit equally.

Such modifications on weights make an functionally identical network except that outlier activation
in range (Xclip, 2Xclip] is preserved. Therefore, our OCS+ enlarges the quantization level and keep
the same fine-grained quant-step under the same bitwidth. The OCS process is shown in Algorithm 1.

Besides, not all channels present the same importance. If we can apply our OCS+ merely to the
channels whose outliers are the most sensitive to final task loss, a more balanced FLOPs V.s. accuracy
trade off can be obtained. Here we assume the proportion of selected channels in each layer as
k ∈ [0, 1]. With a given channel sensitivity criterion, all channels can be sorted and the top k
percentage of sensitive channels are selected to apply our OCS+. We adopt the sum of the activation
in range [Xclip, 2Xclip] as each channel’s sensitivity criterion.

Algorithm 1: OCS+
Input: An optimized b-bit Quant-Model{W l}Nl=1 with quant-params sw, sx, activation xl

# Save outliers on M OCS-structures
for i = 1 to M OCS-structures do

Xclip = six ∗ xu = six ∗ (2b − 1)
#Modify weight by OCS+ with Formula equation 9
W i ← concat(W i,W i); bi ← concat(bi, bi −Xclip)
# Modify next layer W i+1 as Formula equation 10
W i+1 ← concat(W i+1,W i+1);

Output: OCS+ Improved Quantized model

6
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4 EXPERIMENT

We evaluate OCS+ on ImageNet (Deng et al., 2009) classification and MS COCO (Lin et al., 2014)
object detection over various nets and bitwidths using PyTorch (Paszke et al., 2019). The calibration
set consists of 1024 (256) unlabeled images randomly selected from the training set. We adopt Adam
optimizer, the same learning rate and 20k iterations for network-wise PTQ reconstruction as (Wang
et al., 2022). By convention, the first and last layer are quantized into 8 bits.

Experiment on ImageNet(Deng et al., 2009) for CNNs(He et al., 2016) , with average results over
5 runs, are summarized in Tab.2. The proportion of selected important channels in OCS+ is set
as k = 0.5. Here OCS+ is based on NWQ, denoted as OCS+0.5(ours)_NWQ. In W3A3, our method
improve Mobile-v2(Sandler et al., 2018) by 2.89%, Reg-600(Radosavovic et al., 2020) by 1.42% and
Mnas2.0(Tan et al., 2019) by 2.87%. In W2A2, BRECQ shows nearly 0% on Mobile-v2 and Mnas2.0,
but our OCS+ still far outperforms current PTQs, e.g., 12% better than NWQ on Mobile-v2.

Table 2: Acc@1 on ImageNet among current PTQ methods.

Methods W/A MobileNet-v2 ResNet-18 RegNet-600 MnasNet2.0
Full Prec. 32/32 72.49 71.08 73.71 76.68

BRECQ(Li et al., 2021b) 4/4 66.57 69.60 68.33 73.56
QDROP(Wei et al., 2022) 4/4 68.84 69.62 71.18 73.71

PD-Quant (Liu et al., 2023) 4/4 68.33 69.30 71.04 73.30
MRECG (Ma et al., 2023) 4/4 68.84 69.46 71.22 -
NWQ (Wang et al., 2022) 4/4 69.14 69.85 71.92 74.60

OCS+0.5_NWQ(ours) 4/4 70.19±0.14 70.10±0.05 72.34±0.12 75.14±0.24

BRECQ(Li et al., 2021b) 3/3 23.41 65.87 55.16 49.78
QDROP(Wei et al., 2022) 3/3 57.98 66.75 65.54 66.81

PD-Quant (Liu et al., 2023) 3/3 57.64 66.12 65.09 64.88
MRECG (Ma et al., 2023) 3/3 58.40 66.30 66.08 -
NWQ (Wang et al., 2022) 3/3 61.24 67.58 67.38 68.85

OCS+0.5_NWQ(ours) 3/3 64.13±0.16 68.20±0.06 68.80±0.11 71.72±0.22

BRECQ(Li et al., 2021b) 2/2 0.24 42.54 3.58 0.61
QDROP(Wei et al., 2022) 2/2 13.05 54.72 41.47 28.77

PD-Quant (Liu et al., 2023) 2/2 13.67 53.14 40.92 28.03
MRECG (Ma et al., 2023) 2/2 14.44 54.46 43.67 -
NWQ (Wang et al., 2022) 2/2 26.42 59.14 48.49 41.17

OCS+0.5_NWQ(ours) 2/2 39.15±1.68 61.46±0.23 54.73±0.27 50.83±1.25

ViT (Dosovitskiy et al., 2021) and DeiT (Touvron et al., 2021) experiments is as Tab.3. Here OCS+ is
based on OAS, denoted as OCS+0.5(ours)_OAS Note that OCS+ support ViT and DeiT’s GeLU activation
function. OCS+ further improves OAS(Ma et al., 2024)’s performance by 2.03% on ViT-S, 1.86% on
ViT-B, 1.21% on DeiT-S and 1.01% on DeiT-B.

Table 3: Acc@1 on ImageNet for ViTs and DeiTs.

Methods W/A ViT-S ViT-B DeiT-S DeiT-B
FP32 32/32 81.39 84.54 79.80 81.80

PTQ4ViT (Yuan et al., 2022) 4/4 42.57 30.69 34.08 64.39
APQ-ViT (Ding et al., 2022) 4/4 47.95 41.41 43.55 67.48

NWQ (Wang et al., 2022) 4/4 57.79 56.87 65.76 76.06
RepQ-ViT (Li et al., 2023) 4/4 65.05 68.48 69.03 75.61
ERQ (Zhong et al., 2024) 4/4 68.91 76.63 72.56 78.23

OAS (Ma et al., 2024) 4/4 72.88 76.59 76.00 78.83
OCS+0.5_OAS(ours) 4/4 74.91 78.45 77.21 79.84
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Object detection results are as Tab.4. Here OCS+ is based on NWQ, denoted as OCS+0.5(ours)_NWQ.
As (Wei et al., 2022; Li et al., 2021b), we quantize the input and output layers to 8 bits, do not
quantize detection head, and quantize neck (FPN). In W3A3 setting, OCS+ improves Res-50-based
Faster RCNN by 1.23% and Mobile-v2-based RetinaNet by 1.30%. In harder W2A2 setting, OCS+
improves more than 3% mAP over the current best method across all four networks.

Table 4: mAP on MS COCO for object detection.

Methods W/A Faster RCNN(Ren et al., 2015) RetinaNet(Lin et al., 2017)
ResNet-50 ResNet-18 ResNet-50 MobileNet-v2

FP32 32/32 40.26 34.91 37.39 33.31

QDROP (Wei et al., 2022) 4/4 38.53 33.57 35.81 31.47
NWQ (Wang et al., 2022) 4/4 38.54 33.63 35.98 31.81

OCS+0.5_NWQ(ours) 4/4 38.94 34.08 36.10 32.16
QDROP (Wei et al., 2022) 3/3 33.49 31.21 32.13 27.55
NWQ (Wang et al., 2022) 3/3 35.25 31.88 32.45 28.43

OCS+0.5_NWQ(ours) 3/3 36.48 32.56 33.24 29.73
QDROP (Wei et al., 2022) 2/2 21.05 21.95 20.27 12.01
NWQ (Wang et al., 2022) 2/2 25.01 23.92 22.95 16.21

OCS+0.5_NWQ(ours) 2/2 29.82 27.30 26.20 20.25

5 ABLATION STUDY

5.1 OCS+ V.S. OCS:

As OCS(Zhao et al., 2019) described, it did a good job in weight quantization but failed to quantize
activation into low bits, denoted as OCSori_0.05 as Tab 5, where 0.05 denotes selected outlier channels
ratio k = 0.05. To make fair comparison and follow current efficient PTQ reconstruction, we re-
implement OCS on activation with NWQ in ResNet-50, denoted as OCSnew and compare with our
OCS+ as Tab 5. We can see NWQ significantly improves OCS performance on W8A4 from 0.1% to
75.26% when selected outlier channel ratio k = 0.05. On W4A4, k = 0.05, OCS+ is 0.16% better
than OCSnew. When bitwidth goes lower, the OCS+’s benefit than OCS is obvious. As Tab 6, on
W2A2, in ResNet-50, MobileNet-V2 and MnasNet-2.0, a) k = 0.1, OCS+ is better than OCSnew
by 1.4%, 1.6%,2.5%. b) k = 0.5, OCS+ is better than OCSnew by 8.0%, 13.4%,13.0%. We can
see OCSnew is worse than the baseline NWQ and OCS’s performance decreases as the selected
outlier channel ratio increase. The reason is that, for a per-layer quantized activation (one single
quant-step), OCS achieves 1x quant-step for regular channels and 2x quant-step for outlier channels,
thus if we carefully choose the outlier channels whose quant-error is lower in 2x quant-step than in
1x quant-step, we will get better performance. However, if we choose more outlier channels over
a threshold, the optimization objective will be shifted away from optimal point and cause worse
performance than baseline. Differently, our OCS+ will not collapse the quantization performance.

Table 5: Original/New OCS V.s. OCS+

Methods W/A Acc@1
OCSori_0.05(Zhao et al., 2019) 4/8 69.3
OCSori_0.05(Zhao et al., 2019) 8/4 0.1

OCSnew_0.05 8/4 75.26
OCSnew_0.05 4/4 75.22

OCS+0.05(ours) 4/4 75.38

Table 6: New OCS V.s. OCS+ on W2A2 Nets

Methods Res-50 Mobile-V2 Mnas2.0
NWQ 57.18 26.42 41.17

OCSnew_0.1 56.31 26.11 41.12
OCS+0.1(ours) 57.76 27.74 43.65
OCSnew_0.5 52.82 25.74 37.87

OCS+0.5(ours) 60.83 39.15 50.83

Their practical extra-introduced cost is the same. Tab.7 shows the fair inference comparison with
expanding ratio 0.2. Compared to baseline NWQ, OCS+ improve 1.0% accuracy with only additional
0.01 ms. Compared to NWQ-applied-OCS, OCS+ improves 2.2% accuracy with the same 0.17 ms.
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Table 7: MobileNet-V2 W4A4 Inference Cost

Method Acc@1 Infer-Time / Per sample Params FLOPs*Bit
Baseline - NWQ 69.14 0.16 ms 3.51 M 6.36 G
OCS0.2 - NWQ 68.90 0.17 ms 3.75 M 6.95 G

OCS+0.2(ours) - NWQ 70.10 0.17 ms 3.75 M 6.95 G

5.2 WHETHER OCS+ GAINS FROM EXTRA-CHANNELS OR FROM SAVED-OUTLIERS?

For OCS+0.5, it brings extra 50% channels on OCS-structures. Thus we add the same number of
channels on the same structures in FP32 networks to test whether accuracy gain comes from extra
channels. We train these new FP32 networks from scratch with timm (Wightman, 2019) training
pipeline. As the second row of Tab.8, extra channels bring extra Acc@1 gain for FP32 networks.
Then we quantize the finetuned new FP32 Nets and the original FP32 Nets with NWQ, but the latter
is additionally modified by OCS+. As Tab.8, OCS+0.5 achieves better performance across networks
and bitwidths, especially for Mobile-v2, about 5.5% better in W4A2 and 7.1% better in W2A2. So,
the gain, from obtaining better FP32 accuracy by training a new more-channel-added FP32
network, will get lost after using current PTQ methods. Therefore, our OCS+ does not gain from
extra channels, but from extra saved outliers.

Table 8: Acc@1 of Channel-plus-retrained Net and OCS+ saved-outliers Net on ImageNet

Methods W/A MobileNet-v2 ResNet-18 RegNet-600 MnasNet-2.0
Ori-Net 32/32 72.49 71.08 73.71 76.68

Channels-Increase-Net 32/32 74.85 71.80 75.37 78.57

OCS+0.5_Ori-Net 4/2 48.78 63.72 62.86 58.56
NWQ_Channels-Increase-Net 4/2 43.24 62.09 60.20 53.23

OCS+0.5_Ori-Net 2/2 39.15 61.46 54.73 50.80
NWQ_Channels-Increase-Net 2/2 32.02 60.64 52.73 47.24

5.3 EXPLORE DIFFERENT PROPORTION k IN OCS+

W2A2 experiments on different networks as Tab.9 with expanding ratio k in [0,0.3,0.5,0.7,1.0] shows
accuracy improves with OCS+ applied, and accuracy gain improves as k increases.

Table 9: Acc@1 among different k of OCS+

Methods W/A MobileNet-v2 ResNet-18 RegNet-600 MnasNet2.0
OCS+0.0(ours) 2/2 26.42 59.14 48.49 41.17
OCS+0.3(ours) 2/2 35.79 61.23 53.17 48.20
OCS+0.5(ours) 2/2 39.15 61.46 54.73 50.83
OCS+0.7(ours) 2/2 39.77 61.88 55.86 53.32
OCS+1.0(ours) 2/2 41.49 62.20 57.31 54.38

6 CONCLUSION

Considering the failure of OCS on activation quantization and the development of PTQ feature
reconstruction, in this paper, we propose OCS+, through translation instead of halving, to preserve
outlier activation without affecting regular inlier one. Thus b-bit activation in OCS-structures can
be theoretically expanded to (b + 1) bits. With the same additional computation as OCS, OCS+
significantly outperforms OCS, especially on 2/3bit and light-weight models. OCS+ can be easily
inserted into existing PTQ libraries to help further improve performance on activation quantization.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Yoonho Boo, Sungho Shin, Jungwook Choi, and Wonyong Sung. Stochastic precision ensemble:
Self-knowledge distillation for quantized deep neural networks, 2021.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi Srinivasan,
and Kailash Gopalakrishnan. Pact: Parameterized clipping activation for quantized neural networks.
CoRR, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, pp. 248–255. Ieee, 2009.

Yifu Ding, Haotong Qin, Qinghua Yan, Zhenhua Chai, Junjie Liu, Xiaolin Wei, and Xianglong Liu.
Towards accurate post-training quantization for vision transformer. In ACM-MM, pp. 5380–5388.
ACM, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
ICLR, 2021.

Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dhar-
mendra S. Modha. Learned step size quantization. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, pp. 770–778, 2016.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2(7), 2015.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient
integer-arithmetic-only inference. In CVPR, 2018.

Raghuraman Krishnamoorthi. Raghuraman krishnamoorthi. quantizing deep convolutional networks
for efficient inference: A whitepaper. arXiv preprint arXiv:1806.08342, 2018.

Junghyup Lee, Dohyung Kim, and Bumsub Ham. Network quantization with element-wise gradient
scaling. In CVPR, pp. 6448–6457. Computer Vision Foundation / IEEE, 2021.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi
Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. ICLR, 2021a.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi
Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. arXiv preprint
arXiv:2102.05426, 2021b.

Zhikai Li, Junrui Xiao, Lianwei Yang, and Qingyi Gu. Repq-vit: Scale reparameterization for
post-training quantization of vision transformers. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 17227–17236, 2023.

Chen Lin, Bo Peng, Zheyang Li, Wenming Tan, Ye Ren, Jun Xiao, and Shiliang Pu. Bit-shrinking:
Limiting instantaneous sharpness for improving post-training quantization. In CVPR, pp. 16196–
16205, June 2023.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV. Springer,
2014.

Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In ICCV, pp. 2999–3007, 2017.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Jiawei Liu, Lin Niu, Zhihang Yuan, Dawei Yang, Xinggang Wang, and Wenyu Liu. Pd-quant:
Post-training quantization based on prediction difference metric. In CVPR, pp. 24427–24437, June
2023.

Yuexiao Ma, Huixia Li, Xiawu Zheng, Xuefeng Xiao, Rui Wang, Shilei Wen, Xin Pan, Fei Chao,
and Rongrong Ji. Solving oscillation problem in post-training quantization through a theoretical
perspective. In CVPR, pp. 7950–7959, June 2023.

Yuexiao Ma, Huixia Li, Xiawu Zheng, Feng Ling, Xuefeng Xiao, Rui Wang, Shilei Wen, Fei Chao,
and Rongrong Ji. Outlier-aware slicing for post-training quantization in vision transformer. In
Proceedings of the 41st International Conference on Machine Learning, volume 235 of Proceedings
of Machine Learning Research, pp. 33811–33825. PMLR, 21–27 Jul 2024.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In ICML, pp. 7197–7206, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In NeurIPS, 2019.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
network design spaces. In CVPR, pp. 10428–10436, 2020.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. NeurIPS, 28, 2015.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In CVPR, pp. 4510–4520, 2018.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In CVPR, pp.
2820–2828, 2019.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Herve
Jegou. Training data-efficient image transformers amp; distillation through attention. In ICML,
2021.

Changbao Wang, Dandan Zheng, Yuanliu Liu, and Liang Li. Leveraging inter-layer dependency for
post -training quantization. In NeurIPS, 2022.

Xiuying Wei, Ruihao Gong, Yuhang Li, Xianglong Liu, and Fengwei Yu. Qdrop: Randomly dropping
quantization for extremely low-bit post-training quantization. In ICLR, 2022.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Zhihang Yuan, Chenhao Xue, Yiqi Chen, Qiang Wu, and Guangyu Sun. Ptq4vit: Post-training
quantization for vision transformers with twin uniform quantization. In ECCV, volume 13672, pp.
191–207. Springer, 2022.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, and Zhiru Zhang. Improving neural
network quantization without retraining using outlier channel splitting. In ICML, 2019.

Yunshan Zhong, Jiawei Hu, You Huang, Yuxin Zhang, and Rongrong Ji. ERQ: Error reduction
for post-training quantization of vision transformers. In Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp.
61664–61680. PMLR, 21–27 Jul 2024.

11

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

	Introduction
	Related Work
	Quantization-Aware Training
	Post-Training Quantization

	Proposed Methods
	Experiment
	Ablation Study
	OCS+ V.s. OCS:
	Whether OCS+ Gains from Extra-Channels or from Saved-Outliers?
	Explore Different Proportion k in OCS+

	Conclusion

