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Abstract— Continuous advancements in robotics and AI are
driving the integration of robots from industry into everyday
environments. However, dynamic and unpredictable human
activities in daily lives would directly or indirectly conflict
with robot actions. Besides, due to the social attributes of
such human-induced conflicts, solutions are not always unique
and depend highly on the user’s personal preferences. To
address these challenges and facilitate the development of
household robots, we propose COMMET, a system for human-
induced COnflicts in Mobile Manipulation of Everyday Tasks.
COMMET employs a hybrid detection approach, which begins
with multi-modal retrieval and escalates to fine-tuned model
inference for low-confidence cases. Based on collected user pre-
ferred options and settings, GPT-4o will be used to summarize
user preferences from relevant cases. In preliminary studies, our
detection module shows better accuracy and latency compared
with GPT models. To facilitate future research, we also design a
user-friendly interface for user data collection and demonstrate
an effective workflow for real-world deployments.

I. INTRODUCTION

Intelligent household robots have been a long-standing
goal in robotics. In recent years, advancements in Large
Language Models (LLMs) [1], [2] and embodied intelli-
gence [3], [4] have greatly accelerated progress toward this
goal, endowing robots with powerful abilities in perception,
planning, navigation and manipulation [5], [6], [7], [8],
[9], [10], [11]. Besides, considering the social attribute of
household robots, various Human-Robot Interaction (HRI)
studies [12], [13], [14], [15], [16] aim to facilitate robots
better integrate into people’s daily lives. Meanwhile, works
about adaptive methods and failure detection [17], [18],
[19], [20] focus on enabling robots to handle real-world
disturbances. However, as opposed to more controllable
environments such as laboratories or simulations, dynamic
human activities in the real world will induce more un-
controllable factors, which could cause various conflicts
with the robot’s actions. Indirect conflicts like changes in
environmental states or object locations; Direct conflicts like
obstructing or interrupting the robot’s planning and execu-
tions. These conflicts will influence robots at both low levels
and high levels. Although some works have explored robots
in dynamic environments [17], [21], [22], the discussion of
the impact of human activities remains limited. Additionally,
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Fig. 1. An illustration for human-induced conflicts. The robot is ordered
to put the apple into the sink, but another person is washing hands now.

since multiple persons may simultaneously exist in a
household environment, the relationships between each
individual and the robot would be more complex. Humans
can either be the subjects who instruct and collaborate with
robots, or they can be the disturbances that are unrelated to
the robot’s tasks, but current HRI researches mainly focus
on the former cases and overlook interactions when humans
serve as disturbances.

Moreover, the solution to the human-induced conflict
is not unique and it largely depends on the user’s
preferences and the current task context. For a conflict
shown in Fig. 1, if the robot wants to finish user tasks,
feasible solutions would include stop and wait, go to another
sink, ask the user for help, or tell the person to leave, and the
optimal option depends on the user’s demand. If the user is
in a hurry, tell the person to leave would be the best choice.
Therefore, when robots are trying to solve such conflicts,
they should also take user’s preferences into account.

To address these challenges, we propose COMMET, a
system designed to detect and resolve various human-induced
conflicts. COMMET contains both offline and online stages.
In the offline stage, we first collect static scenario and dy-
namic trajectory data that capture normal cases and potential
conflict types in real life, then construct retrieval buffers and
model training sets. Next, users need to annotate selected
data by providing their preferred solution option and an
emergency level which reflects the user’s concern level of
the current conflict. In the online stage, COMMET starts with



Fig. 2. System Overview

the real-time conflict detection, which compares the current
robot states and sensor inputs with a speech retrieval buffer
and a multi-modal task attribute retrieval buffer. The retrieval
output involves the potential conflict type and a confidence
score. When the score falls below a pre-set threshold, a
fine-tuned LLM will be called for further inference. Once
a conflict is detected, COMMET will extract corresponding
user data based on the detected conflict type, then use GPT-
4o [1] to summarize the user’s preferences and provide
the final prediction. In preliminary studies, we analyze the
accuracy and latency of our detection module and compare it
against GPT [1] to show its efficiency and effectiveness. We
also design a user-friendly interface to collect user preference
data and investigate user ratings of preference prediction.
Finally, we discuss how to deploy COMMET in the real
world and show a potential running workflow.

In summary, our paper makes the following contributions:
• Multi-stage Conflict Detection: COMMET will first

conduct real-time speech retrieval and multi-modal task
attribute retrieval, and use a fine-tuned model if the
retrieval confidence falls below a threshold, the specific
conflict type will also be determined simultaneously.

• Fine-grained User Preference Prediction: Except so-
lution options, an emergency level is set to reflect the
user’s concern level. The input user cases will also vary
from the conflict type, then a LLM is asked to summa-
rize user’s preferences and provide final predictions.

• System Performance and Feasibility Analysis: We
design a user-friendly interface to facilitate future user
studies. We also compare our system’s detection perfor-
mance with GPT-4o, and discuss the possibility and an
effective workflow for real-world deployment.

II. COMMET

A. Problem Statement

Our work first makes following assumptions: 1) all con-
flicts are raised by humans, rather than the robot’s planning
or execution abilities. 2) all available options are feasible to

solve the conflicts. Then the robot needs to detect indirect
and direct conflicts brought by humans during the task exe-
cution, determine the specific conflict category, and choose
a preferred solution based on stored user cases and settings.

B. System Overview
As is shown in Fig.2. The input of COMMET includes four

components: the real-time visual observation, the final user
task, the current step, and the transcribed background speech.
We first build two retrieval buffers based on collected user
requests, robot trajectories, and anomalous cases. Then we
conduct speech retrieval and task attribute retrieval respec-
tively. If the similarity falls below pre-set thresholds, a fine-
tuned multi-modal LLM will be used for further inference.
Both methods will return a specific conflict type or normal if
no conflict is detected. Then we’ll input corresponding user
options and emergency levels to GPT-4o, which is prompted
to summarize user preferences and select a preferred so-
lution. We’ll introduce conflict classification in Section II-
C, data collection in Section II-D, conflict detection in
Section II-E, user preference prediction in Section II-F.

C. Conflict Category
To conduct more fine-grained detection and facilitate the

collection of user preferences, we categorize the most com-
mon human-induced conflicts during daily task executions
into the following four types: 1) Goal Absence Conflict:
the robot is going to operate but the target is missing. 2)
Human Interaction Conflict: the robot is executing tasks
but another person attempts to command the robot or interact
with it. 3) Human Occupancy Conflict: Another person’s
activities occupy the specific space or object, thus hindering
the task execution. 4) Object State Conflict: current goal
states can’t satisfy the task needs, or the current step can’t
continue due to object state changes (e.g., the door is closed
or the container is full).

D. Data Collection
We first design static conflict scenarios in 7 different home

or indoor environments and include various attributes such



as pets, family members, kitchens, bathrooms, living-rooms
and so on. Given that real-world detection is a continuous
process, we also simulate a first-person perspective of the
robot to collect execution trajectories, which include both
normal and anomalous cases. All data will be annotated with
the observation, task, current step, speech, and conflict type.

To ensure our system can effectively handle potential
disturbances that the robot may encounter in the real world,
we process the collected data as follows: 1) The detection
occasion should be time-sensitive. As there is always a
delay between detecting and actually encountering a conflict,
it may disappear if the delay is too long. For instance, the
robot detects a distant person blocks its path, but the person
may move away before the robot actually arrives, thus no
actual conflict occurs. Therefore, we maintain a safety range
of approximately one meter, conflicts will only be detected
when a person or object enters this zone. 2) To resist the
interference of noise in the real world, we incorporate
daily human conversations that are unrelated to the robot
into the dataset. In such cases, the robot should ignore noise
and continue operating its original tasks. Finally, we collect
1759 data samples, consisting of 134 static scenarios and
1625 trajectory data captured from 21 distinct tasks.

E. Conflict Detection

Since real-time detection demands highly on latency, we
choose light-weighted embedding models to perform sim-
ilarity retrieval by default. Specifically, we use gte-large-
en-v1.5 (434M) [23] to calculate text embeddings and clip
(428M) [24] to calculate image embeddings. Moreover, we
found that retrieving speech and task attributes (consisting
of the user task and the current task step) separately per-
forms better than joint retrieval. Therefore, we design two
embedding buffers Bs and Bm based on the data collected
in Section II-D, and conduct two parallel retrieval processes.
Bs is a text-only speech buffer, while Bm is a multi-modal
embedding buffer that stores both image embeddings and
task attribute embeddings.

For speech retrieval, we first convert the detected back-
ground audio into text and calculate its embedding Es.
Then we calculate the cosine similarity between Es and
each embedding Ei in Bs. If the max score Ss surpasses a
threshold τs, we’ll determine that another person is attempt-
ing to interact with the robot and directly trigger a Human
Interaction Conflict. For task attribute retrieval, we calculate
both the prompt embedding Ep and image embedding Eobs

similarity with each Ei in Bm, and utilize a weight parameter
w to calculate the final score St. Then corresponding conflict
or normal information will be extracted.

Ss = max
Ei∈Bs

(cos(Es, Ei)) (1)

St = max
Ei∈Bm

(
w · cos(Ep

i , Ep) + (1− w) · cos(Eobs
i , Eobs)

)
(2)

Although retrieval methods allow us to efficiently leverage
existing data with very low latency, manually collected data
is limited and often fail to cover all possible conflicts in the

TABLE I
AVAILABLE SOLUTIONS FOR EACH TYPE OF CONFLICT

Conflict Type Solution

Goal
Absence
Conflict

Ask people around for help

Find another similar spot or object

Re-calculate the path or make a new task plan

Inform the user and wait for instructions

Human
Occupancy

Conflict

Stop execution and wait for the person

Directly communicate with the person

Find another similar spot or object

Inform the user and wait for instructions

Object
State

Conflict

Ask people around for help

Find another similar spot or object

Re-calculate the path or make a new task plan

Inform the user and wait for instructions

Human
Interaction

Conflict

Ignore and keep original steps

Pause current actions and interact with person (chat)

Switch to new user or task

Inform the user and wait for instructions

real world. It also struggles to generalize to new environ-
ments and tasks. These issues are particularly prominent in
task attribute retrieval, as the user’s demands are various.
So we set another threshold τt for task attribute retrieval,
if St falls below τt, we assume the current situation may
not be represented in Bm, and we will leverage powerful
commonsense and reasoning capabilities of LLMs for further
detection. In this stage, we use previous data to finetune
Qwen 2.5VL-3B and 7B [25], which perform well on multi-
modal tasks while maintaining a relatively small parameter
size. The model input and output formats are consistent with
those in the retrieval stage. We will analyze system latency
and hyperparameters w, τs and τt in Section III.

F. User Preference Prediction

As is shown in Table I, we define several general solutions
based on the likelihood of real-world scenarios for each type
of conflict. Before the system is running, we’ll provide users
with 20 conflict scenarios (each type contains 5 cases), they
need to select one preferred solution and the emergency level
for each scenario. The emergency level has three layers and
it reflects the user’s concern level and the subjective impact
of the current situation: the higher level means the current
situation is more urgent to the user. In similar cases, the
system should prioritize quickly executing the user’s current
task. Likewise, a lower level indicates that users would agree
to make certain compromises in time or task performance to
resolve conflicts in a more harmonious or easier way. Once
a conflict is detected, the current scenario and user data with
the same conflict type will be sent together to GPT-4o. It
needs to analyze provided user data to generate a summary
of user’s preferences, then choose the option that best aligns
with the user’s preferences.



Fig. 3. User Interface. The left interface collects user preferences, and the right interface collects user final ratings.

Fig. 4. Real-world Pipeline Example. Suppose the task is to put the bowl into the sink. On the robot’s way to the sink, a human is blocking the way.
After identifying the conflict type, COMMET reasons based on the user preference data, successfully completing the task.

TABLE II
PERFORMANCE COMPARISON OF MODELS AND METHODS

Model Total Acc. Normal Acc. Anomaly Acc. Time (s)

GPT-4o 73.58 91.67 50.00 5.0058
Retrieval(unified) 65.57 75.83 52.17 0.0711
Retrieval(separate) 75.00 90.00 55.43 0.0586
Qwen2.5-VL-3B(ft) 83.96 98.33 65.22 1.5496
Qwen2.5-VL-7B(ft) 87.26 95.00 77.17 2.0107
COMMET(3B) 84.43 98.33 66.30 1.3440
COMMET(7B) 87.26 95.00 77.17 1.8117

III. PRELIMINARY STUDY

A. System Hyperparameter and Performance

For the data collected in Section II-D, 224 data samples
will be used to construct the test set, which includes the com-
plete trajectory data for two tasks and 32 static scenarios. The
remaining 1535 data samples will be used to construct the
embedding buffer for the retrieval module and the training
set for model fine-tuning.

Next, we determine the values of w, τs, and τt in sequence.
We begin with unified retrieval where the prompt directly
incorporates speech text. By varying w from 0 to 1 in
increments of 0.01 and observing the corresponding average
detection accuracy, we identify the optimal value of w is
0.87. After that, we conduct separate retrieval while w is
fixed. Through the same procedure, we obtain the optimal
τs of 0.88. Finally, we integrate all modules into COMMET,
keeping w and τs fixed. We find that the optimal τt is 0.94

when the system is with 3B model and 0.93 with 7B model.
Finally, we measured the average time per detection. Since

our data contains both normal and anomalous cases, we also
calculate the individual detection accuracy for each case in
addition to the total accuracy. Table II presents performance
comparisons across our system, different detection methods,
and various detection models.

B. User Preference Prediction

we select 10 samples for each conflict type from the static
scenario data. As is shown in Fig. 3, users need to provide
their preferred solutions and emergency levels for half of
these samples. Then each sample in the remaining half will
be sent to GPT-4o, along with five samples of the same
conflict type from the user data. GPT-4o will summarize the
user’s selection preferences for the current conflict type and
then predict the user’s preferred option. After all predictions
are completed, users can rate model predictions to provide
feedback for future studies.

C. Real-World Deployment

Since COMMET primarily focuses on detecting human-
induced conflicts and providing preference-aware solutions,
it can be combined with a predefined skill library or an
execution system to achieve real-world deployment. An ideal
workflow is shown in Fig 4.
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