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Abstract
Sign language recognition (SLR) refers to interpreting sign lan-
guage glosses from given videos automatically. This research area
presents a complex challenge in computer vision because of the
rapid and intricate movements inherent in sign languages, which en-
compass hand gestures, body postures, and even facial expressions.
Recently, skeleton-based action recognition has attracted increas-
ing attention due to its ability to handle variations in subjects and
backgrounds independently. However, current skeleton-based SLR
methods exhibit three limitations: 1) they often neglect the impor-
tance of realistic hand poses, where most studies train SLR models
on non-realistic skeletal representations; 2) they tend to assume
complete data availability in both training or inference phases, and
capture intricate relationships among different body parts collec-
tively; 3) these methods treat all sign glosses uniformly, failing
to account for differences in complexity levels regarding skeletal
representations. To enhance the realism of hand skeletal represen-
tations, we present a kinematic hand pose rectification method
for enforcing constraints. Mitigating the impact of missing data,
we propose a feature-isolated mechanism to focus on capturing
local spatial-temporal context. This method captures the context
concurrently and independently from individual features, thus en-
hancing the robustness of the SLR model. Additionally, to adapt
to varying complexity levels of sign glosses, we develop an input-
adaptive inference approach to optimise computational efficiency
and accuracy. Experimental results demonstrate the effectiveness
of our approach, as evidenced by achieving a new state-of-the-art
(SOTA) performance on WLASL100 and LSA64. For WLASL100, we
achieve a top-1 accuracy of 86.50%, marking a relative improvement
of 2.39% over the previous SOTA. For LSA64, we achieve a top-1
accuracy of 99.84%. The artefacts and code related to this study are
made publicly online. 1

CCS Concepts
• Computing methodologies→ Supervised learning by classi-
fication; Interest point and salient region detections; Feature

1https://github.com/mpuu00001/Siformer.git
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selection; Neural networks; • Human-centered computing→
Human computer interaction (HCI).
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1 Introduction
Sign languages (SL) [9] were invented to facilitate natural and
intuitive communication, aiming to assist people with hearing or
speech impairments for a better quality of life. Globally, there are
around 466 million people with these disabilities and more than
300 SLs [1]. Mastering SL proficiency remains a challenge for the
general public since it is deeply influenced by the corresponding
spoken language[18, 41, 48] and the associated culture [28]. In light
of significant advancements in machine learning, it is crucial to
delve into SLR to facilitate smooth communication for those with
hearing or speech impairments. In this work, we focus on isolated
SLR, a key task in visual SL research, which aims to recognise SL
at the word level and is a fine-grained classification problem.

Recently, skeleton-based methods have gained popularity in the
SLR task [2, 23, 40] due to their computational efficiency and porta-
bility. These methods analyse dynamic patterns from sequences
of body poses, represented by skeletal joints and facial landmarks
extracted from pose estimators, to effectively recognise sign glosses,
which are words associated with the signs. Pose estimation becomes
crucial in this context to measure the position and movement of
individual fingers, the hand, and other related features. However,
these methods still encounter three major limitations in the realm
of skeleton-based SLR:

Firstly, non-realistic skeletal representation is a key problem
that is often overlooked in SLR research. The more realistic the
features and patterns that the chosen pose estimator can extract,
the deeper the understanding can be gained in the context of SLR.
SOTA pose estimators suffer from dynamic circumstances or com-
plicated backgrounds, where issues such as occlusion, illumination
variations, and motion blur come into play from time to time [29],
leading to a further decrease in the overall anatomical correctness,
the precision and realism of the output skeletal representation.
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This problem serves as the root cause of the unstable performance
of skeleton-based SLR models, which are trained on misleading
information.

Secondly, missing data is another common problem in practice
that has not been well explored in SLR research. Typical machine
learning models assume complete data availability in both the train-
ing and inference phases. However, in reality, there is a high risk
that certain data may be absent at either phase due to malfunc-
tions during data collection, high data acquisition costs, human
errors in data preprocessing, etc [45]. For instance, the joints of
human hands are prone to occlusion or self-occlusion due to artic-
ulation or viewpoints. The hands, body parts, and faces may fail
to be detected under the influence of motion blur and illumination
variations [29]. As such, a mechanism that enhances SLR model
robustness to missing data is essential.

Thirdly, inefficient inference is a problem generally caused by
overthinking during the decision-making process. For many input
samples, the shallow representations at an earlier layer are sufficient
to make a correct classification, whereas the representations at the
final layer may become distracted by over-complicated or irrelevant
features that do not generalise well [53]. The complexity level of
the sign glosses varies in SL. Some sign glosses need a mix of
global body movements, delicate gestures performed by the highly
articulated hand, and (micro-)facial expressions. In contrast, some
sign glosses can be easily performed by a single hand. Existing
SLR models typically handle all sign glosses similarly, regardless
of their complexity level in terms of skeletal representations. This
inefficiency may limit the deployment of SLR models in contexts
where inference speed and computational costs are critical, as well
as making them vulnerable to adversarial attacks.

To address the aforementioned limitation, this paper proposes
the following solutions:

(1) We present a kinematic hand pose rectification approach
that implemented constraints on the hand joints based on their
kinematic constraints, since hand gestures play a dominant role in
performing SL. These constraints derived from [11, 17, 31] define
the allowable range of motion for each finger’s flexion-extension
and abduction-adduction movements. This approach enhances the
realism of hand skeletal representations, resulting in more reason-
able and lifelike representations of SL glosses by skeletal data.

(2) We propose a feature-isolated mechanism to handle hand
gestures and body gestures separately, improving efficiency in at-
tention calculation and easing the impact of detection failures of
hands and other body parts. Based on our observations, detection
failures of hands and other body parts are independent. They are
usually estimated by different off-the-shelf estimators. The hand
occupies a relatively smaller area, making the detection failure rates
higher than other body parts. Commonly, Transformers rely heavily
on the attention mechanism [42] to capture internal temporal or
spatial relationships among features. Naturally, the movement of
hand joints has less of a relationship with other body parts. Per-
forming isolated encoding for hand gestures and body postures
can enhance the efficiency of attention calculation and enable the
capture of locally focused feature maps. This, in turn, reduces the
impact of missing data on separate body parts.

(3) We design input-adaptive inference to dynamically ad-
just computational paths based on the complexity level of sign

glosses. Drawing inspiration from [53], we implemented a patience-
based early existing mechanism. This mechanism collaborates with
inner classifiers for each layer and dynamically halts inference
when the intermediate predictions of the internal classifiers re-
main unchanged for a predetermined number of consecutive times.
This mechanism eases the impact of overthinking issues, thereby
enhancing robustness and accuracy. We believe that in resource-
limited scenarios (e.g., portable devices) or with larger datasets,
it enables Siformer to efficiently reduce computational costs and
achieve higher generalisation beyond the given datasets.

On the whole, a feature-isolated Transformer network, named
Siformer, is proposed (depicted in Figure 3), which contains three
main components: kinematic hand pose rectification (detailed in
Section 3.2), feature-isolated mechanism (detailed in Section 3.3),
and input-adaptive inference mechanism (detailed in Section 3.4).

2 Related work
2.1 Realistic skeletal representation
Previous research has partially explored the problem of pose real-
ism, focusing on achieving highly accurate estimation to minimise
position-based errors [38, 39, 49]. Despite low errors in benchmark
tests, these studies often overlook the broader issue by solely pri-
oritising estimator accuracy. In terms of error diagnosis in pose
estimation, Ronchi and Perona [32] introduced a method to analyse
errors in multi-instance pose estimation algorithms, along with a
principled benchmark for comparison. Qualitative examples from
their study reveal that a large portion of these errors tend to violate
kinematic constraints and affect anatomical correctness, sparking
increased research interest in the realism of poses. Issac et al. [17]
proposed a single-shot corrective convolutional neural network
to enforce kinematic constraint for depth-based hand pose estima-
tion tasks. Zecha et al. [50] introduced a rectification pipeline to
refine noisy joint coordinates estimated from swimmers via swap
correction, outlier correction, and data-dependent joint refinement.
However, their methods are designed for a specific modality or
tailor-made and not plug-and-play. To the best of our knowledge,
no existing work explores the impact of non-realistic skeletal rep-
resentation and the effectiveness of rectification in SLR research.

2.2 Sign language recognition
Skeletal data has been used for efficient action recognition in many
works [4, 7, 16, 24–26]. Architectures based on skeletal data have
gained popularity in SLR tasks, with a focus on capturing both
global body motion information and local arm, hand, or facial ex-
pressions simultaneously. Tunga et al. [40] proposed a skeleton-
based SLR method that utilised GCN [20] to model spatial depen-
dencies and BERT [6] for temporal dependencies among skeletal
data in SLR. The two representations were eventually combined to
determine the sign class. Boháček and Hrúz [2] presented SLR based
on a Transformer model utilising skeletal data, featuring novel data
augmentation methods and separate the space of hands and body
based on the corresponding boundary values. Most approaches
assume all necessary information for SL recognition can be ob-
tained from the pose of the signer’s pose, hands, and, optionally,
face. However, in reality, certain features may not be adequately
captured. Handling missing data is a common challenge, and many
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techniques exist for handling it. However, given the complexity of
human motion and the nuanced flexibility of hands, simple deletion
or imputation may be too casual. Consequently, to mitigate the
impact of this problem, we present a novel method.

2.3 Efficient inference
Research aimed at enhancing the efficiency of deep neural networks
can be broadly classified into two categories: 1) Static approaches
[10, 27, 36, 37, 43, 47] involve designing either compact models or
the compression of heavy models. These models maintain a fixed
structure for all instances during inference, implying that the input
consistently traverses the same layers. 2) Dynamic approaches [14,
19, 33, 44, 46, 53] permit the model to select varying computational
paths based on each instance during inference. This flexibility in
computational paths allows for adaptability and customisation. In
alignment with the inspiration drawn from these existing works,
Siformer is strategically designed using a dynamic approach for
inference. The dynamic nature of our model allows it to adjust its
computational paths based on the characteristics of individual sign
glosses during the inference process.

3 Methodology
3.1 Preprocessing
To mitigate potential issues arising from class distribution imbal-
ance, one of the simplest strategies for achieving balance is to
randomly remove majority class samples from the training set
or replicate minority class samples [8]. However, considering the
scarcity of data in the domain of SLR, the straightforward removal of
samples is not suitable for our case. We opt to employ the synthetic
minority over-sampling technique (SMOTE) to generate synthetic
data samples, thereby achieving a balanced training set. SMOTE
stands out as the most well-known oversampling method [8]. It
uses the K-nearest neighbours algorithm to identify neighbouring
minority class samples and generate new samples by incorporating
these identified neighbours.

SMOTE. Before employing SMOTE, we standardise the frame
numbers for each sample. This standardisation involves aligning
the frame numbers based on the maximum number of frames by
padding additional zeros at the end of the corresponding skeletal
data. The padded zeros have minimal to no impact on computa-
tional efficiency, because of the nature of the attention mechanism
(detailed in Section 3.3) we adopted. Subsequently, we identify the
class with the maximum number of samples in the training set,
denoting this maximum number as 𝑁 . The process of SMOTE can
be expressed as follows:

𝑥 ′𝑖 = 𝑥𝑖 +𝑤 (𝑥𝑘 − 𝑥𝑖 ) (1)
For each class, 𝑥𝑖 denotes a randomly selected minority sample,

and the K-nearest neighbours of 𝑥𝑖 are identified among the minor-
ity samples. From these neighbours, 𝑥𝑘 is randomly selected. Then,
𝑥𝑘 and 𝑥𝑖 are utilised in conjunction to conduct linear interpolation,
yielding the new synthetic sample 𝑥 ′

𝑖
. Here,𝑤 represents a uniform

random variable within the range of [0, 1]. This process iterates
until each class contains 𝑁 samples.

Figure 1: The structure of the hand skeleton alongwith the re-
spective joint names, including distal interphalangeal (DIP),
proximal interphalangeal (PIP), metacarpophalangeal (MCP),
carpometacarpal (CMC), interphalangeal (IP) joints, based
on [11, 17, 31].

3.2 Kinematic hand pose rectification
The realism of skeletal presentations is often overlooked in SLR
research. Existing SLR models are usually trained on non-realistic
skeletal data, which could mislead the recognition and yield low
accuracy. To address this challenge, we develop a rectification pro-
cedure in Siformer aimed at adjusting the individual joint angles
of hand poses. The abduction, adduction, extension, and flexion of
the fingers, as illustrated in Figure 2, are well-explored in anatomy;
they represent crucial kinematic information that differentiate sign
Table 1: Kinematic constraints for the allowable range of
motion for each finger’s joint derived from [11, 17, 31].

Motion Joint Min (◦) Max (◦)
Abduction
and
Adduction

Thumb CMC 0 45
Thumb MCP -7 12
Other Finger MCP -15 15

Extension
and
Flexion

Thumb CMC -20 45
Thumb MCP 0 80
Thumb IP -30 90
Other Finger MCP -40 90
Other Finger PIP 0 130
Other Finger DIP -30 90

Figure 2: Examples of adduction, abduction, flexion, and ex-
tension of hands are referenced in [3, 11, 31].
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glosses. The active ranges of motion for each finger’s joint are sum-
marised in Table 1, and the hand structure alongwith corresponding
joint names is illustrated in Figure 1. By reducing both lateral and
angular deviations in movement based on kinematic information
derived from empirical data [11, 17, 31], our rectification process
yields refined skeletal data that more accurately reflect intended
gestures and movements, distinguish similar gestures by provid-
ing detailed data on the dynamics of movement, and ultimately
bolstering the performance in recognising SL gestures.

Rectification. The rectification procedure (depicted as (1) in
Figure 3) leverages kinematic constraints to adjust the hand to the
nearest possible pose if the constraints are violated. The following
are the equations utilised for the implementation:

𝜃𝑖 = cos−1 ( 𝑃𝑖 (𝑡) · 𝑃𝑟 (𝑡)
| |𝑃𝑖 (𝑡) | |2 | |𝑃𝑟 (𝑡) | |2

) (2)

𝜀𝜃𝑖 = 𝑓 (𝜃𝑖 ) =


𝜃𝑖 − 𝜃𝑚𝑎𝑥 if 𝜃𝑖 > 𝜃𝑚𝑎𝑥
𝜃𝑚𝑖𝑛 − 𝜃𝑖 if 𝜃𝑖 < 𝜃𝑚𝑖𝑛
0 otherwise

(3)

𝑃𝑖 (𝑡)′ = 𝑅(𝛼𝜀𝜃𝑖 ) · 𝑃𝑖 (𝑡), if 𝜀
𝜃
𝑖 > 0 (4)

In the procedure, we first compute the joint angle 𝜃𝑖 using Equation
2, where the temporal location of predicted joint 𝑃𝑖 (𝑡) describes
the position of joint 𝑖 at time 𝑡 , and 𝑃𝑟 (𝑡) represents the reference
joint of the corresponding joint 𝑖 . The joint angle 𝜃𝑖 is then subject
to correction as follows: if 𝜃𝑖 is larger than the defined maximum
angle 𝜃max, the error value 𝜀𝜃𝑖 is calculated using Equation 3 by 𝜃𝑖
minus 𝜃max. If 𝜃𝑖 is smaller than the defined minimum angle 𝜃min,
𝜀𝜃
𝑖
is calculated using Equation 3 by 𝜃min minus 𝜃𝑖 . If 𝜀𝜃𝑖 = 0, no

rectification is applied; otherwise, 𝑃𝑖 (𝑡) will be rotated based on 𝜀𝜃
𝑖

using Equation 4 with the rotation matrix 𝑅. The actual rotation
direction, whether clockwise or counterclockwise, is determined by
the direction of 𝑃𝑟 (𝑡) towards 𝑃𝑖 (𝑡). Since the procedure rectifies
hand poses based on the kinematic constraints, it is inevitable that
the hand pose drifts from its initial position. This drift has the dual
potential to either unveil pivotal revelations that lead to precise
classification or to introduce trivial details that manifest as noise or
disturbation within the classification process. Therefore, the alpha
value 𝛼 is designed to control the rectification. When 𝛼 = 0.2, the
angle is 20% rectified based on the hand’s kinematic constraints.
When 𝛼 = 1, the angle undergoes complete rectification, adhering
to the hand’s kinematic constraints by 100%.

3.3 Feature-isolated Transformer
In contrast to existing methods that aim to capture intricate re-
lationships among different body parts collectively, we introduce
a novel architecture (depicted in Figure 3) for Siformer. This ar-
chitecture allows us to focus on capturing local temporal-spatial
context concurrently and independently from individual features
during the encoding phase. We can then tailor settings for different
body parts. Following this, we concatenate the feature maps for
decoding. This approach effectively decouples the strong interde-
pendence between features and eases the impact of missing data on
individual body parts during the recognition process. Additionally,
we design learnable frame-wise positional encoding for Siformer to
incorporate positional information into the sequence and leverage

the ProbSapre self-attention mechanism to streamline space and
time computation efficiently.

Feature-isolated mechanism. Given the dominant role of the
hands in SL, we decoupled the hand gestures and body gestures
during the encoding process to capture locally focused feature maps
from individual features (depicted as (2) in Figure 3). These feature
maps are then concatenated as:

𝐹𝑚𝑎𝑝 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝐹𝑙 , 𝐹𝑟 , 𝐹𝑏 ) ∈ R(𝐿𝑙+𝐿𝑟+𝐿𝑢 )×𝑑 (5)
where the feature maps obtained from the left hand gestures 𝐹𝑙 ,
right hand gestures 𝐹𝑟 , and upper body posture 𝐹𝑏 are concatenated
as 𝐹𝑚𝑎𝑝 to be fed into the decoder. We employ the class query-based
decoder [2], where only one class query is needed to represent the
targeted sign gloss. The concatenated feature map 𝐹𝑚𝑎𝑝 and the
projected class query are processed by the multi-head attention
projection module, followed by a linear layer with a number of
neurons equal to the number of classes, and the softmax activation
is used to predict the confidences of each class.

Learnable frame-wised positional encoding. The self-attention
operation in Transformers is permutation-invariant, meaning it dis-
regards the order of tokens in an input sequence. To reintroduce
the importance of order, positional encoding becomes crucial.

In this work, we design learnable frame-wise positional encoding.
The initial encoding can be represented as follows:

𝑋 ′ = 𝑋 + 𝑃 (6)
where 𝑃𝑖,𝑖 = 𝑃𝑖, 𝑗 , 𝑃𝑖,𝑖 ≠ 𝑃 𝑗,𝑖 and 𝑖 ≠ 𝑗 . This means that each skeletal
data within a frame shares an identical positional value, while skele-
tal data corresponding to the same keypoint across different frames
are assigned different positional values. This approach ensures that
positional values vary across frames but remain consistent within a
frame. The input 𝑋 and the learnable positional embedding matrix
𝑃 share the same dimension. 𝑃 initially contains random values,
and it is jointly updated as one of the network parameters during
the training process.

ProbSpare self-attention mechanism. Originally, the Vanilla
self-attention mechanism [42] takes each tuple input from the
packed matrices 𝑄 ∈ R𝐿𝑄×𝑑 , 𝐾 ∈ R𝐿𝐾 ×𝑑 and 𝑉 ∈ R𝐿𝑉 ×𝑑 for
queries, keys and values respectively, to perform scaled dot-product,
which can be expressed as:

𝐴(𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇

√
𝑑

)𝑉 (7)

This approach of performing scaled dot-product requires quadratic
time computation and 𝑂 (𝐿2) space computation, posing a major
drawback when enhancing prediction capacity. Previous attempts
have shown that the distribution of Vanilla self-attention proba-
bilities exhibits potential sparsity. Researchers have proposed "se-
lective" counting strategies to ease the impact of this drawback
on time or space efficiency without significantly compromising
performance.

Based on this insight, we analysed the distribution of Vanilla
self-attention scores in the context of skeleton-based SLR. Upon re-
viewing the heat maps of attention scores, we noticed a trend where
certain dot-product pairs made major contributions to the primary
attention, while others yielded negligible attention. To enhance
attention efficiency, we adopted the ProbSpare self-attention mech-
anism [52]. This method improves feature retrieval by focusing
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Learnable frame-wised positional encoding

          Concatenation

Cls1
Cnt1

3

0
Cls2
Cnt2

3

1

Figure 3: The core components of our proposed method Siformer: (1) Kinematic rectification is applied to correct poses of
sign glosses, aiming to provide realistic representations. (2) We propose a feature-isolated mechanism that captures local
spatial-temporal context concurrently and independently from individual features during the encoding phase. This is followed
by combinatorial-dependent decoding. (3) We integrate an internal classifier at each layer to achieve input-adaptive inference.
The provided example illustrates a case when the patience value is set to 1.

on the most relevant feature pairs. It identifies important features
more effectively than Vanilla self-attention by allowing each key to
selectively attend to the top 𝑢 dominant queries. This approach fo-
cuses attention on the most relevant information, thereby reducing
unnecessary computational overhead. The ProbSpare self-attention
mechanism is expressed using the following equation:

𝐴(𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇

√
𝑑

)𝑉 (8)

where 𝑄 is a sparse matrix of the same size as 𝑄 , containing only
the top-𝑢 queries under the sparsity measurement:

𝑀 (𝑞𝑖 , 𝐾) = max
𝑗

{
𝑞𝑖𝑘

𝑇
𝑗√
𝑑

} − 1
𝐿𝑘

𝐿𝑘∑︁
𝑗=1

𝑞𝑖𝑘
𝑇
𝑗√
𝑑

(9)

As highlighted in [52], the calculation of 𝑀 (𝑞𝑖 , 𝐾) requires only
𝐿𝐾 ln𝐿𝑄 random samples to form dot-product pairs. The remaining
pairs are strategically filled with zeros to enhance efficiency and
numerical stability. The top-𝑢 queries are then selected, to form
𝑄 . In practical scenarios, the input lengths of queries and keys
typically align in self-attention computation, denoted as 𝐿𝑄 = 𝐿𝐾 .
Consequently, the total time complexity and space complexity of
ProbSparse self-attention amount to 𝑂 (𝐿 ln𝐿), which is more effi-
cient than the Vanilla full self-attention mechanism, especially for
long SL sequences. We experimented with a pyramid-structured
encoder to distil self-attention feature maps. However, instead of

improving the performance of Siformer, the distillation process
resulted in the model becoming heavier and less efficient.

3.4 Input-adaptive inference
For the sake of efficient inference and automatic adjustment, we
integrate an internal classifier 𝐶𝑙𝑠 for each layer in our proposed
Siformer, drawing inspiration from [53]. The mechanism of input-
adaptive inference is visually represented as (3) in Figure 3. The
patience counter 𝑐𝑛𝑡 is introduced to track the number of consecu-
tive occurrences where predictions remain "unchanged", and the
counter is defined as:

𝑐𝑛𝑡𝑖 =

{
𝑐𝑛𝑡𝑖−1 + 1 if 𝑦𝑖 = 𝑦𝑖−1
0 if 𝑦𝑖 ≠ 𝑦𝑖−1 ∨ 𝑖 = 1

(10)

𝑦𝑖 = 𝑎𝑟𝑔 𝑚𝑎𝑥 (𝐶𝑙𝑠𝑖 (ℎ𝑖 )) (11)
where 𝑦𝑖 is a layer prediction outputted by the 𝑖-th internal

classifier 𝐶𝑙𝑠𝑖 on the hidden state ℎ𝑖 at 𝑖-th layer, The 𝑎𝑟𝑔 𝑚𝑎𝑥
function returns the index of the maximum probability from the
input probability vector. In contrast to [53], these internal classifiers
are excluded during the training process. We experimented with
both trained internal classifiers and "brand-new" internal classifiers.
We found that the two methods produced similar results, with
"brand-new" internal classifiers offering an improvement of 1.03%
over the trained classifiers.
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4 Experiments
4.1 Implementation details
Datasets.We conduct experiments for our proposed Siformer on
two benchmark datasets: the WLASL100 [23], which is a word-
level subset of American SL, and the LSA64 dataset [30], which
holds Argentinian sign language. The two datasets were chosen for
their more complete annotations and variation in terms of demo-
graphic diversity, making them more suitable for our experiment.
The WLASL100 dataset consists of 2,038 videos featuring 100 dis-
tinct sign glosses performed by native American SL interpreters or
signers. This dataset was collected from various public resources
primarily designed for SL learning. Each sign gloss was performed
by a diverse group of people of different races, and each gloss
class comprises a varying number of samples. The LSA64 dataset
contains 3200 videos featuring 64 distinct sign glosses from Ar-
gentinian SL. These glosses were carefully selected from the most
frequently used terms in the LSA lexicon, covering both verbs and
nouns. The videos were performed by 10 non-expert participants,
each repeating each sign gloss 5 times. The skeletal representations
of both datasets are estimated by Boh’aček and Hr’uz [2]. Among
the 64 gloss classes in the LSA64 dataset, only 7 classes contain
fewer samples than the maximum. The number of samples in the
LSA64 dataset is relatively balanced across classes. Therefore, we
only oversampled data from the WLASL100 dataset and left the
number of samples in the LSA64 dataset unchanged. The LSA64
dataset is used with a random split of 80% for the training set and
the remaining 20 % for the testing set. Before oversampling data in
the WLASL100 dataset, we randomly sampled 8 samples from each
of the 100 classes for the testing set. The oversampling process,
as described in section 3.1, only took place on the remaining 2400
samples. Consequently, we have 3200 samples for the WLASL100
training set and 800 samples for the WLASL100 testing set.

Training details. We conduct training on both datasets over
100 epochs using an AdamW optimiser with 𝛽1 = 0.9 and 𝛽2 =

0.999, coupled with a weight decay rate of 1× 10−8. A MultiStepLR
scheduler is applied with a decay factor of 𝛾 = 0.1. Initially, the
learning rate is set to 1 × 10−4, subsequently decaying at the 60th
and 80th epochs. For the loss function, we utilised the standard
cross-entropy loss, and the weights are randomly initialised.

4.2 Rectification analysis
The alpha 𝛼 value in Equation 4 of Section 3.2 governs the extent
to which the hand undergoes rectification based on kinematic con-
straints. We investigate different 𝛼 values, including 0, 0.2, 0.4, 0.6,
0.8, and 1, where 𝛼 = 0 indicates no rectification applied. We find
that rectification remains effective regardless of the specific 𝛼 value
utilised. Comparison of the radar areas for abduction-adduction
(AA) rectification and flexion-extension (FE) rectification, as de-
picted in Figure 4, reveals a consistent trend: the effectiveness of
both AA rectification and FE rectification exhibit a decrease from
𝛼 = 0.2 to 𝛼 = 0.4, followed by a moderate increase from 𝛼 = 0.4 to
𝛼 = 0.6, and then a continuous decline until 𝛼 = 1. The distances
between the data points along each axis signify the disparity. In
contrast to the trends observed in the effectiveness of individual
rectification (AA and FE), optimal performance of combinational
rectification is achieved when 𝛼 = 0.4, which reflects the largest

disparity between the effectiveness of individual rectification and
the combinational rectification. This suggests that the two types of
kinematic rectification do not have a cumulative effect on character-
ising the skeletal representations of different sign glosses. Instead,
when striving for skeletal representations closer to reality, cap-
turing trivial details becomes imperative for achieving high SLR
accuracy. Our analysis shows that an 𝛼 value of 0.4 provided the
best trade-off between noise reduction and keypoints integrity,
enhancing SLR performance without over-smoothing keypoints.

Figure 4: Rectification analysis based on the variations of
alpha 𝛼 values on the WLASL100 datatset

4.3 Effectiveness of input-adaptive inference
Before experimenting with our input-adaptive inference mecha-
nism, we explored the effects of different numbers of encoder and
decoder layers independently, while keeping other configurations
consistent. As listed in Table 2, we can observe changes in accuracy
corresponding to the variations in the number of layers. The high-
est accuracy is attained with 3 encoder layers and 2 decoder layers
(85.38%), followed by the second-best performance with 3 encoder
layers and 5 decoder layers (84.13%). Unless otherwise specified,
we proceed to investigate the impact of the patience value using
Table 2: Performance analysis without input-adaptive infer-
ence on the WLASL100 datatset

Encoder layer Decoder layer Top-1 Accuracy (%)
Variations in the number of encoder layers
2 2 84.38
3 2 85.38 (C1)
4 2 83.63
5 2 80.50
6 2 76.88

Variations in the number of decoder layers
3 2 85.38
3 3 84.00
3 4 84.10
3 5 84.13 (C2)
3 6 83.88
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Table 3: Performance analysis with input-adaptive inference on the WLASL100 datatset

Patience value Top-1 Accuracy (%) Avg. Inference time (seconds) Avg. FLOPs (G) Params (M)
C1 with input-adaptive inference based on the encoders

1 86.50 0.0324 0.46 2.55
2 85.73 0.0332 0.62 2.55

C2 with input-adaptive inference based on the decoder
1 85.75 0.0363 0.60 4.18
2 86.00 0.0345 0.61 4.18
3 86.00 0.0347 0.62 4.18
4 86.00 0.0345 0.64 4.18

Table 4: Quantifying the effectiveness of input-adaptive in-
ference with a patience value of 1 and C1 configuration on
the WLASL100.

Total samples count Early exit cases count
800 41
2400 131
4000 195

the two best-performing layer configurations, which are bolded
in Table 2. This analysis aims to leverage the optimal encoder and
decoder layer configurations to determine the optimal patience
value for our input-adaptive inference mechanism. Unlike training,
inference operates on a per-instance basis, which ensures adap-
tive inference for processing individual data. This practice is also
commonly employed in latency-sensitive production scenarios [33].

As illustrated in Table 3, different patience values can lead to
differences in both speed and performance. For configurations with
3 encoder layers and 2 decoder layers (C1), where the internal
classifiers are linked with the encoders, the best balance between
accuracy and speed is observed with a patience value of 1. This
implies that our input-adaptive mechanism allows Siformer to ter-
minate at a very early stage of inference. Earlier layers of the model
adeptly capture visual features for classifying many skeletal repre-
sentations of SL glosses, while deeper layers risk over-complicating
the process with irrelevant or overly complex features, thus reduc-
ing generalisability. We qualified the number of early exit cases
with a patience value of 1 and C1 configuration in Table 4 (we
provide a detailed analysis in the Appendix). The bolded values
indicate the number of samples from testing sets. By comparing
Table 3 and Table 4, we observed that 5% of early exit testing cases
result in an approximately 26% reduction in computational com-
plexity, decreasing from 620 million to 460 million floating-point
operations (FLOPs). As patience values increase, accuracy tends
to decrease. Notably, a significant increase in FLOPs is observed
when the patience value for C1 rises from 1 to 2, representing the
largest increase across all settings. Conversely, performance sees
slight enhancements with higher patience values in configurations
with 3 encoder layers and 5 decoder layers (C2), where the inter-
nal classifiers are linked with the decoder. Similarly to C1, longer
patience for C2 also results in a corresponding increase in FLOPs.
Interestingly, there is minimal impact on inference time across all
patience settings, and parameters remain constant regardless of
patience due to the exclusion of internal classifiers from training.
Based on our analysis, we believe that in practical applications

where data volume and variability are higher, the percentage of
successful early exit cases would also increase.

4.4 Cope with missing data
The architecture of Siformer is designed to capture the unique
characteristics of hand and body gestures independently and con-
currently during the encoding phase and subsequently integrate
these captured characteristics cohesively during the decoding phase.
By isolating features in this manner, our approach ensures the thor-
ough capture of individual features and easing the potential influ-
ence of missing data from other features. To evaluate our model’s
robustness against missing data, we conducted intensive experi-
ments on testing sets featuring varying degrees of occlusion by
removing data from different body parts. This process is motivated
by the emulation of real-world scenarios encountered in capturing
SL, where occlusion may occur in certain frames, resulting in the
loss of some joints or keypoint data. The hand’s skeletal representa-
tion comprises 21 keypoints (refer to Figure 1), and the upper body
consists of 12 keypoints, including the nose, neck, two ears, eyes,
shoulders, elbows, and wrists. Therefore, we prepared 3 testing
sets to evaluate the robustness of Siformer against varying levels of
occlusion on the left hand, right hand, and upper body, respectively.

As illustrated in Figure 5, the performance exhibits acceptable
fluctuations, hovering between approximately 79.10% and 77.80%
across all testing sets, subsequent to a decline from 86.50%. The
peak accuracy of 86.50% was achieved under the configuration of

Figure 5: Robustness testing against missing data on the
WLASL100 datatset
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3 encoders, 2 decoders, and a patience value set to 1, with no re-
moval of keypoint coordinates from either of the testing sets. The
removal of a single keypoint coordinate from either testing set
leads to a decrease in performance. Particularly, the removal of a
keypoint from the upper body incurs a slightly greater degradation
(by 7.48%) compared to other sets. This is followed by a decrease of
6.98% when one keypoint is removed from the right hand, and a
decrease of 6.48% when one keypoint is removed from the left hand.
It is worth noting that the performance degradation of our model
is not continuous to the point of reaching its lowest, but rather it
decreases and then improves after dropping. For example, removing
five keypoints from either of the sets leads to a resurgence in the
model’s performance; in such a case, the accuracy scores obtained
even exceed or remain the same as that of removing one keypoint
from either of the sets separately. Overall, the largest fluctuation
amplitude of the model’s performance takes place between the
number of removed keypoints of 1 to 12. The amplitude decreases
after the number of removed keypoints reaches 12, and then in-
creases after the number of removed keypoints reaches 16. We can
now claim that our model is robust towards missing data because
even when one of the body parts is entirely missing, the model’s
accuracy can still reach over 78.00%. This is observed when the
number of removed keypoints equals 12 or 21.

4.5 Contribution of the core components
The results from our ablation study investigating the effects of each
component in the proposed method are presented in Table 5. To
evaluate the importance of each component in contributing to the
overall performance of Siformer, we first trained Siformer using
the optimal configuration. This optimal configuration includes 3
encoders and 2 decoders, with a patience value set to 1 for inference
and an alpha value of 0.4 for both rectification methods. Addition-
ally, there are 3 attention heads employed by both the left-hand
and right-hand encoders, 2 attention heads designated for the body
encoder, and 6 attention heads utilised in the decoder. As shown
in Table 5, removing kinematic hand pose rectification results in a
drop in top-1 accuracy by 2.45% from 86.50% to 84.05%; replacing
our feature-isolated Transformer by Vanilla Transformer leads to
a further decrease in accuracy by 6.98 % from 84.05% to 77.07%;
omitting input-adaptive inference further decreases accuracy by
1.13% from 77.07% to 76.75%.
Table 5: Ablation study on WLASL100 dataset for Siformer

Variations Top-1 Accuracy (%)
Siformer 86.50
(-) Kinematic hand pose rectification 84.05
(-) Feature-isolated Transformer 77.07
(-) Input-adaptive inference 75.94

5 Comparison with SOTA methods
In our comparison with previous SOTA methods on the two bench-
mark datasets, we organise methods based on their input modalities,
specifically RGB-based methods and skeleton-based methods. As
presented in Table 6, the SOTA methods generally achieve high
performance on LSA64, and we boost the performance slightly.
When comparing our method on WLASL100, which contains fewer
samples compared to LSA64, it is notable that Siformer, utilising

Table 6: Performance comparison on the WLASL100 and
LSA64 datasets. Scores in parentheses are reported by the
original authors, while the scores before the parentheses are
from our reproduction using their GitHub source code.

Dataset Method Top-1 Accuracy (%)

WLASL100

RGB-based
I3D [15] 65.89
TCK [5] 77.52
SignBERT+ [13] 84.11
Fusion-3 [12] 75.67
Skeleton-based
Pose-TGCN [15] 55.43
ST-GCN [35] 50.78
SignBERT+ [13] 79.84
SPOTER [2] 58.52 (63.18)
Siformer (Ours) 86.50
RGB-based

LSA64 LSTM + LDS [22] 98.09
DeepSign CNN [34] 96.00
MEMP [51] 99.06
I3D [15] 98.91
Skeleton-based
SPOTER [2] 99.52 (100.00)
LSTM + DSC [21] 92.15
Siformer (Ours) 99.84

only skeletal features as the input modality, even surpasses the per-
formance of the most challenging RGB-based method [13] by 2.39%.
This demonstrates the effectiveness of our proposed Siformer in
leveraging skeletal features for SLR, showing its advantages even
in datasets with limited sample sizes.

6 Conclusion
We introduce a novel feature-isolated Transformer, named Siformer,
that achieves new SOTA performance across all two benchmark
datasets. Unlike previous methods that neglect realistic hand poses,
overlook the independence of body parts, and treat sign glosses
uniformly regardless of complexity, we proposed novel solutions to
overcome these limitations. Firstly, we enhance hand gesture real-
ism through kinematic pose rectification. Secondly, we introduced
a feature-isolated mechanism to capture local spatial-temporal con-
text independently and concurrently, mitigating the impact of miss-
ing data and enhancing the robustness of the models. Thirdly, we
presented an input-adaptive inference approach to adapt varying
complexity levels of sign glosses, optimising both computational
efficiency and accuracy. Experimental results validate the effective-
ness of each novel component on overall performance. Limitation:
Subtle changes in facial expressions are crucial for distinguishing
confused sign glosses; we hope to explore their incorporation in
future work. Broader impact: The lightweight nature of Siformer
facilitates practical implementation on portable devices, benefiting
online SL learning, daily communication, and SL typing methods.
We hope our research contributes to practical application in the
field of SLR and opens avenues for future exploration in enhancing
the accessibility and efficiency of SLR.
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