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ABSTRACT

Recent studies have demonstrated that modern facial recognition systems, which
are based on deep neural networks, are vulnerable to adversarial attacks, includ-
ing the use of accessories, makeup patterns, or precision lighting. However, de-
veloping attacks that are both robust (resilient to changes in viewing angles and
environmental conditions) and stealthy (do not attract suspicion by, for example,
incorporating obvious facial features) remains a significant challenge. In this con-
text, we introduce a novel diffusion-based method (DAFR) capable of generating
robust and stealthy face masks for dodging recognition systems (where the system
fails to identify the attacker). Specifically our approach is capable of producing
high-fidelity printable textures using the guidance of textual prompts to determine
the style. This method can also be adapted for impersonation purposes, where
the system misidentifies the attacker as a specific other individual. Finally, we
address a gap in the existing literature by presenting a comprehensive benchmark
(FAAB) for evaluating adversarial accessories in three dimensions, assessing their
robustness and stealthiness.

1 INTRODUCTION

Facial recognition systems have increasing prominence, with applications in a range of environ-
ments. Importantly, these systems aim to accurately classify an individual when presented with an
image of them, hence, adversarial attacks against such systems are important to identify and explore.
Deep learning facial recognition systems, the state of the art technique for biometric identification
(Vakhshiteh et al., 2021), have a history of said attacks, causing the systems to behave in an unin-
tended manner when presented with images that have been carefully modified by attacks.

Previous studies on the matter have used a plethora of both attack surfaces and techniques to mis-
direct these systems into misclassifying individuals. Some explore attacks by digitally perturbing
images of faces (Lin et al., 2023), whilst others use makeup (Yin et al., 2021; Sun et al., 2024) or
accessories (Sharif et al., 2019; Komkov & Petiushko, 2021; Zolfi et al., 2022; Gong et al., 2024;
Pautov et al., 2019; Xiao et al., 2021). Traditionally, gradient descent based approaches have been
employed to generate accessories, to much success (Zolfi et al., 2022); however, whilst these achieve
robustness to changes in viewing angles and environmental conditions, they lack in stealthiness –
the need for the attacks to be undetectable by human observers.

Many developments have been made to this regard in order to balance the adversarial strength of
an attack with the style and realism of the perturbations. Various loss functions have been explored
such as total variation loss (Mahendran & Vedaldi, 2015) which makes the perturbations smoother,
making an attack more stable, realistic and robust to interpolation techniques (Komkov & Petiushko,
2021; Zolfi et al., 2022). Other work has used style extractors, L1 losses with a reference style, to
make a style adapt to an attack in order to encourage the generation of a stealthy accessory that would
not raise suspicion in the real world (Gong et al., 2024). A common struggle with these approaches
is generating perturbations that look stealthy consistently, especially against larger facial recognition
models such as those based on ResNet (He et al., 2016). When attacks are not attempting to max-
imize stealthiness, the final perturbations often contain facial features and noise-like perturbations.
On the other hand, when attacks prioritize stealthiness, their efficacy is significantly reduced.

Recent literature for general adversarial attacks have propagated towards the use of generative mod-
els to support the generation of realistic adversarial examples and perturbations. These methods
use a pretrained model to produce or manipulate an adversarial sample towards a given style. Song
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et al. (2018) used generative adversarial networks (GANs) to generate significantly more realistic
examples than were possible with perturbation based methods. Alternatively, diffusion models have
too been shown to support generation of adversarial samples (Xue et al., 2023; Chen et al., 2023;
Dai et al., 2023) and have several desirable properties for this task, such as greater interpretability,
controllability and visual fidelity in the produced samples (Dai et al., 2023).

Figure 1: Adversarial DAFR masks against Mobile-
FaceNet for “David Beckham”, “George Clooney” “An-
gelina Jolie” from the PubFig dataset (Kumar et al.,
2009).

Diffusion models have been used to generate
adversarial makeup (Sun et al., 2024), but to the
best of our knowledge, there has been no work
on their use in the creation of adversarial ac-
cessories. Since the COVID-19 pandemic, the
use of face masks by the general public has in-
creased and makes them a prime adversarial ac-
cessory surface as they cover a substantial area
of the face (Zolfi et al., 2022; Gong et al., 2024).
By using adversarial guidance (Dai et al., 2023)
during the generative process, and text prompts
to control the style, adversarial optimization and style generation can happen simultaneously, allow-
ing the adversarial perturbations to become part of the style content and leading to truly stealthy and
robust adversarial face masks. To this end, we propose the resulting diffusion-based face mask at-
tack that we call Diffusion Attack against Facial Recognition (DAFR) that is able to achieve state of
the art stealthiness in a white-box threat model, where the attacker has access to the victim model’s
weights. In addition to a new novel attack, we propose a benchmark to tackle the current inconsis-
tent experimental frameworks and results within the field, largely caused by varying threat models
and attack objectives. This system, titled the Face Accessory Attack Benchmark (FAAB), has been
designed with flexibility at its core, allowing it to be adapted to a wide range of attack objectives,
so that more consistent evaluation and comparison of attack methods can be performed, focusing on
robustness to different conditions, stealthiness and adversarial strength.

In summary, our main contributions are:

• A novel diffusion-based stealthy adversarial face mask generation method, titled DAFR, which
uses adversarial guidance to produce adversarial textures that retain the content of the reference
images and that can be styled using text prompts. The resulting generated face masks are stealthy,
robust to environmental changes, and comparable to previous work.

• A robust benchmarking framework, called FAAB, that includes a set of standardized tests and
procedures to evaluate the performance of accessories. The framework supports frequently used
statistics like cosine distances, success rates, and a new metric that we discuss later that is based
on CMMD, in order to evaluate the stealthiness of generated textures quantitatively. In addition,
the modular design of the benchmark allows each component to be easily interchanged in order
to suit each attack’s objective.

2 DAFR: DIFFUSION ATTACK AGAINST FACIAL RECOGNITION

Facial Recognition: Modern facial recognition networks are often Siamese networks (Bromley
et al., 1993) that are designed to work with a large number of classes and with potentially unseen
identities during testing (Wen et al., 2016). These models can be split into two components: the
backbone and head. The backbone takes in an image and outputs the embedding of that image in
the learnt feature space, which can then be fed into a head for final classification. The embedding
spaces are trained to be discriminative and to be effective for multiple different heads for different
recognition problems. Recent adversarial work focuses on attacking the backbone directly rather
than the head (Vakhshiteh et al., 2021; Zolfi et al., 2022; Gong et al., 2024) and we follow suit. A
further discussion of facial recognition systems can be found in appendix B.

DAFR: The objective of DAFR is to produce textures for face masks that are not only adversarial,
but stealthy as well. To do this, the reverse diffusion process of a diffusion model can be manipulated
such that the final output, ma, looks like the output if the reverse process was not manipulated (i.e, is
stealthy) and is adversarial. For a texture to be adversarial, it must have a low cosine similarity with
the anchor embedding, ea, of the attacker and preferably be under a recognition threshold such that

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

the network would not recognize the masked image as the attacker, this is called dodging. If the
similarity is maximized with the anchor of a specific other identity, then it is called impersonation.
We focus on dodging, but our attack can be adapted for impersonation too.

It is well documented that adversarial patches (and thus adversarial accessories too) must consider
different real world transformations during generation so that the resulting accessories would exhibit
robustness to these transformations when they do occur (Athalye et al., 2018). To achieve this, we
generate our face masks using a set of images of the attacker, H , and optimize over these. Moreover,
since face masks are 3D objects, to generate physically realizable 3D masks, the generated textures
must be rendered onto the face during generation so the generation conditions match the real world.

One way to control the generation of a diffusion model is classifier guidance where the scores (the
gradient of the log of a function) of a classifier are used during generation to perform conditional
generation (Dhariwal & Nichol, 2021). AdvDiff is a recent diffusion-based adversarial attack that
uses adversarial guidance (Dai et al., 2023), based on classifier guidance, to control the generation
of a class conditional latent diffusion model (LDM, Rombach et al. (2022)) to generate unrestricted
adversarial examples for ImageNet (Deng et al., 2009). We fuse together adversarial guidance and
3D rendering to allow for a more advanced procedure to generate samples that can act as textures
for stealthy adversarial masks, as demonstrated in algorithm 1. Since we use LDM’s, adversarial
guidance is applied to latents, not on the pixel level. f is defined in equation (1).

Algorithm 1: Diffusion Attack on Facial Recognition (DAFR)
Input: set of attacker pictures (H), text prompt (c), dodging sign (d), anchor embedding (ea),

adversarial limit (l), iterations of the adversarial loop (k), adversarial guidance weight
(s), facial recognition backbone (E), generation timesteps (T )

xT ∼ N (0, I)
for t from T to 1 do

Sample xt−1 using classifier free sampling, using xt and c
if t/T ≤ l then

for i from 1 to k do
hn = Next image in H

// d should be -1 if dodging and +1 if impersonating
xt−1 = xt−1 + ds · f(t/T ) · ∇xt−1

cos(E(R(xt−1, hn)), ea)

return x0

Figure 2: The left image is a generated texture, the mid-
dle is the UV mask and the right is a processed mask
texture. We refer to the leftmost image as the texture
image and a cropped version of the rightmost image
(figure 4) as the masked texture image.

One of the first challenges faced when design-
ing DAFR was adding the flexibility in style de-
sired for a stealthy mask. For this, we chose to
use text-to-image models, rather than class con-
ditional models, to condition the generation of
samples such that the style is dictated by a text
prompt. Classifier free sampling (Ho & Sali-
mans, 2022) is the dominant method for condi-
tioning generation and can be used in conjunc-
tion with the guidance, allowing for the gener-
ation to achieve both goals.

Additionally, we needed to have a 3D differentiable rendering pipeline so that the texture could not
only be rendered onto a 3D face mask, but also have gradients from the target network backpropagate
through it. Zolfi et al. (2022) developed such a pipeline as long as the texture could be fit into a 2D
UV mask, shown in figure 2, which we use in DAFR. We find that optimal performance occurs
when the texture is resized to fit most of the content within the UV mask, allowing the perturbation
to manifest across the majority of the area in the sample.

Generating images that follow text prompts that are also adversarial to facial recognition networks
is more abstract (and thus more challenging) than generating samples that use class conditionals of
the target network to make it look like another one of the classes – this is without considering the
challenges relating to the generated image being a texture applied to a variety of different images,
rather than being the final example itself with no concerns for any other image. By optimizing for
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multiple distinct images, the aim is so that when the texture is applied to a mask on an unknown
image, the mask will be robust to environmental conditions and remain adversarial.

This led to the introduction of multiple mechanisms to control the adversarial elements of genera-
tion which emphasize different aspects of texture generation. Firstly, we introduced an inner loop
which increased the number of steps of adversarial guidance done per time step (controlled by k
in algorithm 1). Having a sufficient number of adversarial steps is important due to the importance
of optimizing the texture to work in different conditions. Secondly, we manipulate how early in
the reverse process we begin adversarial guidance (controlled by l in algorithm 1) which allows for
more adversarial steps, thus better robustness and adversarial strength.

Thirdly, we use DDIM sampling (Song et al., 2021) which allows for a variable number of sampling
steps in the time schedule (controlled by T in algorithm 1). Finally, the step size of each adver-
sarial step (controlled by s in algorithm 1) can be changed to influence generation. We find that a
constant step size throughout the entire generation leads to adverse perturbations in the later steps
of generation, where the noise schedule varies significantly less. We introduce a scaling function in
equation (1) to slowly decrease the step size based on the proportion of the time schedule left.

f(y) = e3(y−0.6)−3min(0,y−0.5), y ∈ [0, 1] (1)

Several rounds of tinkering with this equation were required, as initially we used the variance of the
noise at each diffusion step, but found that using equation (1) was more effective, potentially due to
the later time steps not being scaled to be minuscule.

When DAFR is fully deployed, the final result is shown in figure 1. Compared to previous work
(Zolfi et al., 2022; Gong et al., 2024), our masks are significantly stealthier and present new capa-
bilities for these attacks, with respect to the style of generated accessories.

3 RESULTS

Baselines: To evaluate our accessories, we compare them to recent adversarial face mask attacks.
Adversarial Mask (Zolfi et al., 2022), shortened to AdvMask for brevity, generates face masks for
dodging by using a 3D differentiable pipeline and optimizing the mask to be adversarial while main-
taining a low TV loss. SASMask (Gong et al., 2024) generates face masks for impersonation so that
given content is included (e.g., flowers); however, uses a style transfer network to change the style
to be optimal (e.g., by changing the colour). AdvMask does not attempt to be faithful to a style so
we do not report our stealthiness measure for those masks, while SASMask does so we do for them.
We also test a white non-adversarial face mask to act as a non-adversarial baseline for comparison.

Datasets: We use two different datasets: PubFig (Kumar et al., 2009), which includes faces of
a variety of celebrities, and is where the identities for the dodging benchmark come from, and
VGGFACE2-HQ (Chen et al., 2024), which contains GAN upscaled images of the VGGFACE2
dataset (Cao et al., 2018). We randomly choose 100 identities from VGGFACE2-HQ to form part
of the finetuned classes and another 900 to be used as part of the threshold selection process.

Target Networks: Vakhshiteh et al. (2021) highlight the lack of diversity in the network types
studied; therefore, we test on four different network types using different threat models:

1. Pretrained Large Recognition Models (R100): Large pretrained recognition models are often
used in previous work (Zolfi et al., 2022) and are publicly available for anyone to use. We test on
the pretrained ArcFace ResNet-1001 directly, that is, before the finetuning in the FT100 setup.

2. Finetuned Networks (FT100): There exists large pretrained backbones that are used for recog-
nition, however, without a head, these networks cannot be used for classification. If a small
business wanted to train a recognition network for their employees, then they could do further
training on the backbone as well as introducing and training a head. We take a pretrained back-
bone1 used in previous work (Zolfi et al., 2022), and perform further training on the 100 identities
from VGGFACE2-HQ. This included adding an ArcFace head (Deng et al., 2019a) and training

1MS1MV3 ResNet-100, available from https://github.com/deepinsight/insightface/
blob/master/recognition/arcface_torch/README.md
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using the Adam optimizer (Kingma & Ba, 2015) for 100 epochs, while ensuring to use occlusion
as an augmentation method during training to improve performance on masked individuals. The
final accuracy on 4,500 test images was 97.15%.

3. Facial Representation Encoder (FaRL): We test on the image encoder from FaRL (Zheng
et al., 2022), a vision transformer (Dosovitskiy et al., 2021) backbone for face analysis tasks,
including recognition. We specifically chose the epoch 16 pretrained backbone, as used by
Zheng et al. (2022).

4. Mobile devices (MFN): Mobile devices are common, however, running large networks on them
is impossible due to hardware constraints. MobileFaceNet (Chen et al., 2018) is an architecture
specifically designed for face recognition and verification on mobile and embedded devices; we
test a pretrained MobileFaceNet using weights provided by Sun et al. (2024).

Table 1: Cosine Similarity thresholds and TPRs of the different
networks when achieving a FAR of 0.01, the rate of inter-class
pairs which are misclassified as intra-pairs. TPR is the propor-
tion of intra-class pairs that are correctly classified as being the
same person.

Class
count

Masked Unmasked
Network Threshold TPR Threshold TPR

FT100 100 0.5300 0.7835 0.0817 0.9802
1000 0.8355 0.1799 0.8394 0.2248

R100 100 0.2687 0.8643 0.1788 0.9320
1000 0.2370 0.8736 0.1757 0.9317

FaRL 100 0.7684 0.2457 0.6670 0.4959
1000 0.7659 0.2202 0.6568 0.4711

MFN 100 0.6156 0.3376 0.2912 0.8114
1000 0.6622 0.2169 0.2845 0.8212

Threshold Selection: Previous
work has used a mixture of re-
porting cosine similarities and us-
ing success thresholds (Zolfi et al.,
2022; Gong et al., 2024; Komkov
& Petiushko, 2021). We de-
cide to report both and calcu-
late thresholds using unseen im-
ages (i.e., not used elsewhere in
the work) from the identities cho-
sen from VGGFACE2-HQ. Previ-
ous work (Zolfi et al., 2022; Yin
et al., 2021) chooses a threshold
that obtains a false acceptance rate
(FAR) of 0.01 on masked images
from 1000 identities. Similarly, we use the mean threshold that achieves a FAR of 0.01 over 10 fold
cross validation on masked images (with the mask being uniformly chosen between a white, black
or blue mask and placed on the face). We calculate separate thresholds for the 100 and 1000 classes
chosen from VGGFACE2-HQ. We use the masked thresholds in table 1 throughtout this work, how-
ever, for completeness we show the thresholds if unmasked images were used in table 1 as well.
Further discussion of the target network’s performance is given in appendix A.

Benchmark Setup: In the following tests we use our benchmark, FAAB (refer to section 4), to test
the dodging capabilities of the different mask generation methods on 30 randomly selected identities
from PubFig. Each mask is generated using 25 images of the identity and then tested on 10 other
images of that same person. The results are aggregated over all 300 tests and reported. The cosine
scores are given in the format: mean ± standard deviation. Success rate is given by a threshold
that is defined as the proportion of tested masked images of the attacker that the embedding of the
masked image had a cosine similarity less than the threshold. Each architecture has two thresholds,
“SR 100” and “SR 1000” for the 100 and 1000 class thresholds respectively from table 1.

Figure 3: Stealthy masks at-
tempt to be faithful to a refer-
ence image. The left image is
the reference for purple shapes
and the right for blue flowers.

CMMD is performed on the generated texture to measure the
stealthiness of an accessory quantitatively (see section 5), but be-
cause different attacks use this texture differently in their render-
ing, we also report CMMD on the final UV 2D mask. Note we
use the scaled version of CMMD, with the scale parameters the
same as those provided by the authors (Jayasumana et al., 2024).

It is important to note that to generate the recognition embedding
anchors, we use masked pictures of faces following the procedure
of Zolfi et al. (2022) which we now explain. For each identity, 10
unseen images were used for identities from PubFig and 45 im-
ages from VGGFACE2-HQ. The mask applied is uniformly cho-
sen from a random noise, white, or black mask. The final anchor embedding is the mean embedding
of all the masked images of that identity. Using masked images rather than unmasked images does
make the attacks harder, but also prevents the accessory itself from having a impact.
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To test the effect of different mask contents/styles, we focus on two different styles for SASMask
and DAFR which are advantageous for adversarial masks. An attacker could choose to use any
style they want in the real world, so these attacks should be tested as such. The chosen prompts
were purple shapes2 and blue flowers3. As SASMask uses images as a content reference, the image
produced by the diffusion model using the text prompt is used. Figure 3 shows the reference images.

Table 2: Names and hyperpa-
rameter values of different hy-
perparameter sets for each at-
tack, with DAFR using notation
from algorithm 1.

TV Weight
AdvMask-a 0.05
AdvMask-b 0.35

Adv. Weight
SASMask-a 25
SASMask-b 50
SASMask-c 600
SASMask-d 950
SASMask-e 2000

l s k
DAFR-a 0.8 7 5
DAFR-b 0.8 7 10
DAFR-c 0.8 10 12
DAFR-d 0.8 2 1

Implementation Details: MTCNN (Zhang et al., 2016) is
used for face alignment with R100, FT100, and FaRL, with
FFHQ (Karras et al., 2019) face alignment used for MFN. The
differentiable 3D mask rendering pipeline from (Zolfi et al.,
2022) is used for placing the masks on faces. The hyperparam-
eters of stealthy mask attacks vary the tradeoff between adver-
sarial strength and stealthiness, therefore we test several sets of
hyperparameters which balance this tradeoff. We note that for
each DAFR attack, we use 200 DDIM sampling steps. We use
Stable Diffusion’s v2-1 (Rombach et al., 2022) Text to Image
LDM4 as the diffusion model in DAFR.

To indicate the hyperparameters of an attack briefly, we define
several abbreviated versions which indicate hyperparameter val-
ues (shown in table 2). Different hyperparameters show off
not only different tradeoffs between stealthiness and adversarial
strength, but are necessary for effective attacks against different
networks. AdvMask only has one hyperparameter which is the
weight for the TV loss, for which we test two different values.
For SASMask, we keep the style hyperparameters consistent across all sets but change the adver-
sarial weight to be the respective number. The style weights then are λ1 = 1000, λc = 0.01, λtv =
100, λs = 10000 using the notation from the original work (Gong et al., 2024). Note that while
the original paper does not have an adversarial weight, the official implementation as of writing has
always had one.

Results: The results in table 3 show that DAFR is consistently outperforming previous work in
stealthiness, reflected by having a lower M-CMMD than previous stealthy mask attacks, which can
be visually confirmed in figure 4. In the majority of cases, especially for FT100 in table 3 and
MobileFaceNet in table 3, DAFR has managed to accomplish the dual goal of creating adversarial
masks that are effective and stealthy. This is due to the adversarial generation process being able to
find adversarial textures that do not deviate substantially from the original generation. We believe
this is significant progress as no other work to date has managed to preserve the style and content of
a given reference image for adversarial accessories as effectively as ours. This can be seen further
in the appendices D and E where the style generation capabilities are tested further.

When attacks do not consider stealthiness (such as AdvMask in table 3), then the adversarial strength
of the masks is strong, but still not 100% against some of the networks like FT100 and R100. This
demonstrates the challenging threat model of adversarial accessories, where critical facial features
for recognition can not be manipulated, therefore on unseen images it is difficult to cover every
possible transformation. Figure 4 presents some of the masks generated by AdvMask which do not
achieve a perfect success rate despite focusing on such.

FT100 was able to achieve the highest TPR on the 100 class problem while achieiving a FAR of 0.01
on unmasked images (table 1). Despite this, FT100 (table 3) is vulnerable to DAFR’s capability to
produce very stealthy masks while not sacrificing much adversarial strength, compared to AdvMask.
This should inform real world decisions to avoid reckless use of such technology as it can appear on
the surface to be outstanding while being incredibly vulnerable to adversaries.

Recent work has focused on the architecture of R100 or similar (Zolfi et al., 2022; Gong et al.,
2024; Pautov et al., 2019; Komkov & Petiushko, 2021), yet when the same architecture is used but

2Prompt: “abstract light purple and pink computer pattern with colorful circles, rectangles, triangles and
semi circles like it was made in the 1990s”

3Prompt: “blue flower pattern”
4Weights for the LDM can be found here.
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with different weights (such as FT100), the perturbations produced can be drastically different. This
is seen in all three attacks tested, suggesting it is not unique to one attack. The masks generated
against FaRL also vary dramatically following this trend (see figure 4). One reason this may happen
is due to the shape of the gradient output looking like faces, leading to faces being formed in the
adversarial generation process with the different attacks handling these faces differently. FT100
has been trained for a specific 100 class recognition problem rather than the thousands of identities
trained for in MS1MV3 (Deng et al., 2019b) leading to a weaker separable embedding space which
is not discriminative.

A
dv

M
as

k

FT100 AdvMask-b MFN AdvMask-b R100 AdvMask-a R100 AdvMask-b FaRL AdvMask-a FaRL AdvMask-b

M
FN

SASMask-a SASMask-b DAFR-d SASMask-a SASMask-b DAFR-d

FT
10

0

SASMask-d DAFR-a DAFR-c SASMask-d DAFR-a DAFR-c

R
10

0

SASMask-d DAFR-a DAFR-c SASMask-d DAFR-a DAFR-c

Fa
R

L

SASMask-d DAFR-a DAFR-c SASMask-d DAFR-a DAFR-c

Figure 4: Some of the face mask textures generated as part of the benchmarks within this section for dodging
“Beyonce Knowles” in PubFig (Kumar et al., 2009). Underneath each mask is a description of what network
it was generated for and the attack used. The top row are all masks generated using the AdvMask attack. For
the other rows, the left hand side are generated using the purple shapes style, while the right-hand side are
generated using the blue flower style.

4 FAAB: FACE ACCESSORY ATTACK BENCHMARK

For an adversarial accessory to be considered robust, it is necessary that it is effective in various
environmental conditions including lighting, backgrounds and angles. This is not just an important
factor during generation, but also when evaluating an accessory’s performance. As the results in sec-
tion 3 demonstrate, the balance between adversarial strength and stealth has a significant impact on
the attack success and so it is crucial to evaluate these factors in order to fairly compare approaches.

To date, there is no standardized framework for testing adversarial face accessories (Vakhshiteh
et al., 2021), in part due to the varying threat models and attack objectives for work in the field.
Whilst benchmarking frameworks exist for neighboring fields, such as GREAT score (Li et al.,
2023) for evaluating general adversarial perturbations using generative models, within the realm
of adversarial accessories there are inconsistent experimental frameworks that create hard to com-
pare results. Therefore, we propose a highly adaptable benchmarking framework, titled the Face
Accessory Attack Benchmark (FAAB), that is capable of consistent and systematic comparison of
different attack methods.

To achieve this feat, FAAB uses a systematic procedure for evaluating accessories, with interchange-
able components, detailed below:

7
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• Firstly, an accessory must be generated by the attack being tested for a given individual. It is
important at this stage that images used to generate the accessory are not those that will be later
used to evaluate, as a strong adversarial accessory should be effective in unseen conditions.

• Once the accessory has been generated, the testing phase begins. This consists of loading in
dataset images, placing the accessory on the images using the augmentation method specified by
the attack and computing the output of the recognition system.

• Next, we calculate statistics based on adversarial strength and the accessory itself. The statistics
calculated are interchangeable and new statistics can be added. By default, we compute the
embedding of the backbone network as well as recording the angle of the face within each
picture – figure 5 demonstrates the variety of poses tested. Alongside computing statistics based
on the attack, we compute statistics on the accessory.

• In order to get a holistic view of the performance of an attack method as a whole, we repeat the
above steps over multiple individuals. To further expand analysis, FAAB supports benchmark
variations which can modify how images are augmented. For example, we can ensure that the
accessory brightness matches that of the image to test different lighting conditions.

• Once all the accessories have been tested, the final stage of the benchmark is to group statis-
tics together based on the properties recorded throughout. This allows us to view the statistics
recorded, for example, for each individual, or for images where the individual is looking straight
on. How statistics are grouped is entirely customizable and can help discover links between
various properties that have been accumulated in the benchmark.

As alluded to above, it is necessary to quantize how stealthy an accessory is as it is infeasible to
construct a manner of evaluating stealthiness through the means of a user survey in such a way as
to not introduce bias to one attack and to be fair, especially when the definition of stealthiness itself
is often subjective. In section 5 we outline why we believe that CMMD is an effective measure of
stealthiness and the resulting values are discussed in section 3. Further principles to evaluating style
that could be applied to other work are provided in appendix C.

Figure 5: Masked face images of “Charilize Theron” and “Jennifier Aniston” using DAFR-3a in
the benchmark in table 3 on FT100. The variety of poses and backgrounds ensures that during
generation and evaluation, masks must be robust to real world transforms.

5 RELATED WORKS

Here we discuss the closest previous works; we comparatively review further literature across several
areas in appendix B.

Patch-based Adversarial Attacks On Facial Recognition: Adversarial accessories are small
wearables that contain patterns that when placed within an image cause malicious behavior. Pre-
vious adversarial accessories have varied significantly in the generation process and in the type of
accessory, including glasses (Sharif et al., 2019), hats (Komkov & Petiushko, 2021), face patches
(Pautov et al., 2019), eye patches (Xiao et al., 2021) and face masks (Zolfi et al., 2022; Gong et al.,
2024). As mentioned in section 1, face masks have seen an increase in usage within the general
public and are a prime adversarial accessory as they cover a substantial area of the face (Zolfi et al.,
2022; Gong et al., 2024), hence they are our chosen accessory type.

8
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Most adversarial accessory attacks primarily focus on the accessory being adversarial (Sharif et al.,
2019; Pautov et al., 2019; Komkov & Petiushko, 2021) or focus on emphasizing additional proper-
ties such as transferability (Xiao et al., 2021; Gong et al., 2024; Zolfi et al., 2022). However, the
generated accessories from these works do not look like “normal” attire and would arouse suspicion
if worn in the real world – we would consider these to not be stealthy. Gong et al. (2024) attempts
to explicitly generate stealthy face masks using adaptive styles and style losses, but these cause the
texture to depart from a reference image significantly. We focus primarily on stealthiness and argue
that for a mask to be stealthy, it must look similar to a reference image. To the best of our knowledge,
we are the first work to utilize diffusion models to generate adversarial accessories.

Quantitative Measures Of Style: Within adversarial attacks on facial recognition, some style
measures that have been used before in makeup attacks (Sun et al., 2024) include SSIM (Wang et al.,
2004), PSNR and FID (Heusel et al., 2017). Gong et al. (2024) used SSIM in a setup specific to
their face mask which is hard to transfer to other attacks. Creating metrics to evaluate the quality of
generated images is a problem faced by generative models and stealthy adversarial accessories that
generate textures can be seen as generators that have a baseline style (a “real” set) which can generate
multiple adversarial textures (a “generated” set). CLIP Maximum Mean Discrepancy (CMMD)
(Jayasumana et al., 2024) is a recent metric proposed to measure the quality of generated images
by finding the maximum mean discrepancy (MMD) (Gretton et al., 2006; 2012) between CLIP
(Radford et al., 2021) embeddings of a real and generated set of images. An unbiased estimator of
MMD on two sets of CLIP embeddings, X = {x1, x2, ..., xm} and Y = {y1, y2, ..., yn}, and kernel
k (for which we use a RBF kernel) can be given by the equation below. For the results in this paper,
we scaled the output of CMMD for display purposes, using the same values as in the original paper
(Jayasumana et al., 2024).

dist2MMD(X,Y ) =
1

m(m− 1)

m∑
i=1

m∑
j ̸=i

k(xi, xj) +
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

k(yi, yj)−
2

mn

m∑
i=1

n∑
j=1

k(xi, yj)

By using CLIP embeddings, CMMD is able to provide a more holistic evaluation of style and has
been found to outperform FID and other common metrics when compared to human raters (Jaya-
sumana et al., 2024) which resonates back to the user surveys in previous accessory work (Sharif
et al., 2019). We believe future work should also use CMMD as a metric to evaluate the quality
(thus stealthiness) of their generated textures and so having an evaluation that is similar to how
image generators are evaluated. More details about how we use CMMD are found in section 4.

6 CONCLUSION

We propose a novel diffusion-based attack, DAFR, for adversarial mask generation that generates
masks that are both adversarial and stealthy. We demonstrate the effectiveness of the attack on a
range of architectures and threat models, and highlight the challenges in attacking these models.
Moreover, we propose a robust standardized benchmarking framework, FAAB, for evaluating the
strength and stealthiness of these attacks such that comparisons between future work can be quicker,
robust, and fair. This further invites future work to use this framework to create strong and stealthy
adversarial accessories.

Limitations: We have tested different attacks on a variety of networks and have found that the be-
havior of the attacks can vary significantly between networks. This unfortunately means that DAFR
can struggle to produce stealthy adversarial masks on the strongest networks. Additionally, DAFR
uses adversarial guidance (Dai et al., 2023) and is sensitive to the hyperparameters highlighted in
table 2. Small changes can lead to significant variation in the output and their values must be ad-
justed for different target networks. This requires manual testing to balance the stealthiness of the
generated mask and its stealthiness.

Future Work: Generating stealthy masks on stronger networks is difficult and future work could
expand the number of networks these masks are stealthy for. Finally, all adversarial face mask
attacks are inherently vulnerable to removal by generative based defenses. Given the weights of a
face mask removal network, future work could generate masks that are adversarial to the recognition
network and the removal network to mitigate this weakness.
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Attack Style Cosine Sim. (↓) SR 100 (↑) SR 1000 (↑) T-CMMD (↓) M-CMMD (↓)
Non Adv. White 0.6701 ± 0.2280 0.2767 0.7083 / /

AdvMask-a Random 0.0363 ± 0.2490 0.9467 0.9833 / /
AdvMask-b −0.011 ± 0.1856 0.9983 0.9983 / /
SASMask-d

Purple
Shapes

0.3893 ± 0.3341 0.6227 0.8933 3.1881 1.7600
SASMask-e 0.4568 ± 0.3278 0.5133 0.8550 3.1208 2.0857

DAFR-a 0.2288 ± 0.2451 0.8553 0.9733 1.3295 0.8471
DAFR-b 0 .2166 ± 0 .2411 0.8867 0.9683 1.6960 1.1771
DAFR-c 0.1858 ± 0.2232 0.9133 0.9767 2.3490 1.5018

SASMask-d

Blue
Flowers

0.4167 ± 0.3699 0.5733 0.8383 3.8306 3.5290
SASMask-e 0.3728 ± 0.3384 0.6500 0.9000 4.0924 2.9544

DAFR-a 0.2455 ± 0.2384 0.8633 0.9717 2.4527 1.0090
DAFR-b 0 .2253 ± 0 .2316 0.8850 0.9783 2.8263 1.1199
DAFR-c 0.1752 ± 0.2213 0.9167 0.9750 3.6985 1.6210

M
FN

,M
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ile
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et

Attack Style Cosine Sim. (↓) SR 100 (↑) SR 1000 (↑) T-CMMD (↓) M-CMMD (↓)
Non Adv. White 0.7006 ± 0.0477 0.0500 0.1500 / /

AdvMask-a Random 0.3051 ± 0.0861 1.0000 1.0000 / /
AdvMask-b 0.3502 ± 0.0922 1.0000 1.0000 / /
SASMask-a Purple

Shapes

0.3932 ± 0.1740 0.9233 0.8783 2.3938 1.8368
SASMask-b 0.1272 ± 0.1155 1.0000 1.0000 3.2128 2.2126

DAFR-d 0 .2952 ± 0 .1312 1.0000 1.0000 1.2792 0.8416
SASMask-a Blue

Flowers

0 .2701 ± 0 .0921 1.0000 1.0000 3.9781 3.0724
SASMask-b 0.1661 ± 0.0996 1.0000 1.0000 4.1066 2.9479

DAFR-d 0.4805 ± 0.0899 0.9417 0.9850 0.9009 0.1040

R
10
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pr

et
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ed

ba
ck

bo
ne

Attack Style Cosine Sim. (↓) SR 100 (↑) SR 1000 (↑) T-CMMD (↓) M-CMMD (↓)
Non Adv. White 0.6141 ± 0.1981 0.0783 0.0783 / /

AdvMask-a Random 0.031 ± 0.1313 0.9467 0.9183 / /
AdvMask-b 0.0341 ± 0.1291 0.9567 0.9216 / /
SASMask-c

Purple
Shapes

0.1096 ± 0.1280 0.8900 0.8233 3.0740 2.5177
SASMask-d 0 .1118 ± 0 .1392 0.8883 0.8200 3.3451 2.5361
SASMask-e 0.1164 ± 0.1584 0.8600 0.8050 3.4989 2.9703

DAFR-a 0.2523 ± 0.1513 0.5750 0.4733 1.5728 1.2138
DAFR-b 0.1988 ± 0.1579 0.6867 0.6316 2.2289 1.7903
DAFR-c 0.1963 ± 0.1633 0.7183 0.6350 3.0438 2.4713

SASMask-c

Blue
Flowers

0.1066 ± 0.1325 0.8800 0.8266 4.1449 4.5054
SASMask-d 0 .0921 ± 0 .1371 0.9200 0.8700 4.4332 4.7600
SASMask-e 0.0854 ± 0.1285 0.9250 0.8667 4.5162 3.4040

DAFR-a 0.2670 ± 0.1471 0.2432 0.4367 2.9012 1.2724
DAFR-b 0.2052 ± 0.1501 0.7033 0.6317 3.9275 1.7545
DAFR-c 0.1924 ± 0.1604 0.7100 0.6383 4.9682 2.4842

Fa
R

L
,p

re
tr

ai
ne

d
V

iT

Attack Style Cosine Sim. (↓) SR 100 (↑) SR 1000 (↑) T-CMMD (↓) M-CMMD (↓)
Non Adv. White 0.8053 ± 0.0553 0.1917 0.2017 / /

AdvMask-a Random 0.3848 ± 0.1017 1.0000 1.0000 / /
AdvMask-b 0.4037 ± 0.1069 1.0000 1.0000 / /
SASMask-d

Purple
Shapes

0.4364 ± 0.0988 1.0000 1.0000 2.7931 2.6759
SASMask-e 0 .4450 ± 0 .1223 1.0000 1.0000 2.7984 2.5965

DAFR-a 0.7471 ± 0.0524 0.6100 0.6283 1.5283 0.8031
DAFR-b 0.7327 ± 0.0530 0.7200 0.7350 1.2023 0.9583
DAFR-c 0.7159 ± 0.0546 0.8367 0.8533 1.4417 0.8877

SASMask-d

Blue
Flowers

0.4006 ± 0.0957 1.0000 1.0000 4.9293 3.4139
SASMask-e 0 .4047 ± 0 .0981 0.9983 0.9983 4.9995 4.8929

DAFR-a 0.7663 ± 0.0495 0.4367 0.4700 1.7892 0.5895
DAFR-b 0.7576 ± 0.0501 0.5100 0.5400 2.4341 1.0099
DAFR-c 0.7254 ± 0.0541 0.7933 0.8117 3.0446 1.1998

Table 3: Results of the four dodging benchmarks of the different networks tested, as outlined in section 3.
The first set of columns indicate the attack and its style, the second set of columns indicate the attack statistics
aggregated over the 300 test images in each benchmark when the targeted attacker wears the mask, and the final
set of columns are accessory statistics aggregated over the 30 generated textures.
Arrows next to each column indicate the desired direction of each metric, for example ↓ would indicate lower
values are desirable. Cosine similarity is in the format of Mean ± Std-Deviation over the test images. SR
100 and SR 1000 are the success rate of the dodging masks over the test set using the thresholds in table 1.
T-CMMD and M-CMMD are defined as the CMMD (refer to section 5) over the texture images and mask
texture images (see figure 2 for the difference). Different attacks convert their texture onto the mask differently
therefore M-CMMD is a fairer evaluation. For each column within attacks using the same style, a marker has
been used to indicate rank: 1st, 2nd and 3rd.
DAFR outperforms SASMask for every network in terms of stealth (shown in the CMMD columns), while
either outperforming SASMask adversarially or by sacrificing minimal adversarial strength.
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7 ETHICS STATEMENT

Deep learning based facial recognition and verification systems are becoming more prominent
around the world. On one hand, DAFR highlights new security risks to existing face recognition
and verification systems by creating masks that are indistinguishable from more colorful masks peo-
ple wear; which could undermine their efficacy and the trust put in them. However, by demonstrating
these capabilities, future defenses and adversarial training schemes will have to consider these types
of accessories thus allowing future work to defend against DAFR or a more advanced version of
it. On the other hand, these powerful systems can be misused by different institutions and the exis-
tence of these accessories demonstrate that these systems are not flawless and can be manipulated in
certain circumstances.

8 REPRODUCIBILITY STATEMENT

All the work for this project was performed on a single NVIDIA A5000 GPU. Depending on the
attack type and hyperparameters, each benchmark could take between 40 minutes to 7 hours to
generate all 30 different adversarial textures used for results in section 3. To evaluate the different
metrics evaluated within these benchmarks on the GPU would require around 30 minutes. The
main body contains 50 benchmarks which would take roughly 286 hours on a single GPU, with the
appendix benchmarks taking a further 100 hours. The supplementary material contains all the code
to run the work, including Python code for all the attacks, benchmark and other utilities (such as
threshold selection etc.). Instructions have been provided to help run the code.
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Säckinger, and Roopak Shah. Signature Verification Using A “Siamese” Time Delay Neural
Network. Int. J. Pattern Recognit. Artif. Intell., 7(4):669–688, 1993. 2, 17
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A FURTHER DETAILS ON RESULT SETUP

Table 1 demonstrates the performance of the different target networks. Pretrained backbones have
been trained to have a highly discriminative embedding space across a wide range of datasets, rather
than a separable one across one dataset. This leads them to perform incredibly well on unseen
faces and to have the highest TPR in table 1. FT100 was trained for the 100 class scenario and
therefore performs well, but then struggles on 1000 classes. This threat model has not been explicitly
explored before (with previous work performing further training on their models (Gong et al., 2024))
and highlights vulnerabilities to these models if deployed recklessly. FaRL is a general purpose
face encoding and so has not been explicitly trained for recognition, explaining the lower TPR. On
the other hand, MFN has been trained for recognition but we expect its smaller size may limit its
performance. Despite this, MFN performs the best out of all the networks tested at not being fooled
by the non-adversarial mask when using the 100 class threshold and second best when using the
1000 class threshold, demonstrating that it is still an effective network, shown in table 3.

B EXTENDED RELATED WORKS

Facial Recognition: Facial recognition systems have evolved significantly over the last couple of
decades, with the state of the art approaches using deep learning models that are able to achieve
high accuracy in both large and small class sizes. Traditionally, for a small number of classes in a
closed-set environment (that is the test set consists only of identities from within the training set),
softmax-based approaches that are used in general object recognition can be effective. However,
softmax losses encourage the learned features to be separable, but not necessarily discriminative
(Wen et al., 2016), leading to worse performance when there are lots of classes of data or in an
open-set environment, where the test set includes identities not in the training set (Liu et al., 2017).

Focus has moved to using Siamese networks (Bromley et al., 1993) where the backbone learns a
discriminative, rather than separable, embedding space through different losses such as center loss
(Wen et al., 2016) or triplet loss (Schroff et al., 2015). More recent work has focused on maximizing
the angular margins of learnt class centers in a learnt embedding space, such that embeddings from
a given class’ center point are in a similar direction and that embeddings not from that center’s class,
point in a different direction (Liu et al., 2017). Several works have aimed for intra-class compactness
and inter-class discrepancy with the aim of learning a discriminative embedding space (Liu et al.,
2017; Wang et al., 2018; Deng et al., 2019a).

Adversarial Examples Using Generative Models: Traditionally, adversarial examples were gen-
erated using gradient based methods such that the perturbation has a small matrix norm; one example
is using projected gradient descent (PGD) (Madry et al., 2018). However, Song et al. (2018) used
generative models (specifically generative adversarial networks) to construct unrestricted adversarial
examples that exhibit greater realism. This has progressed so that recently there have been several
works proposing diffusion model based adversarial attacks using different techniques (Xue et al.,
2023; Chen et al., 2023; Dai et al., 2023). Using diffusion models for this task has several benefits,
most notably, greater controllability and visual fidelity of generated samples (Dai et al., 2023), areas
in which previous adversarial accessories struggled. Our attack, therefore, leverages these properties
through the use of a textually controlled diffusion model.

Patch-based Adversarial Attacks And Defenses: Adversarial patches (Brown et al., 2017) are
small patterns that when placed within an input image, cause unintentional behavior in a network.
To improve the robustness of these patches to real world conditions, past work has shown that it
is necessary to incorporate real world transformations into the generation process (Athalye et al.,
2018). In the context of adversarial accessories, this translates to generating on different images of
a person, for example at different poses, such that different transformations are considered during
accessory generation.

From the perspective of defending adversarial attacks, recent defenses have utilized diffusion models
(Nie et al., 2022) for purification of adversarial examples, removing the perturbation while maintain-
ing the original content. For adversarial patches, these techniques have been found to be inadequate,
therefore, specific adversarial patch defenses have been developed (Kang et al., 2023). These de-
fenses use diffusion models to locate the patch and then replace it using inpainting, which could be
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used to replace a face mask with an estimated face. Another defense would be to remove face masks
from images using generative models trained to do so (Kumar et al., 2023). All current adversarial
face masks are vulnerable to these last two defenses and so creating robustness to these defenses is
not within the scope of our work and could be the goal of future work.

Other Attacks On Facial Recognition: There have also been other attacks on these systems such
as adversarial makeup (Yin et al., 2021) which has been used so that the attack can access a wider
area of the face rather than just a local patch. Recent work has used diffusion models to enhance
this approach further (Sun et al., 2024) creating highly realistic makeup to fool these models. These
attacks have a significantly larger area of the face to attack and may be difficult to physically realize
compared to face masks.

Another channel of attack is using visible light (Shen et al., 2019; Nguyen et al., 2020; Li et al.,
2020) where perturbations are projected onto the face. These attacks offer a different representation
to their perturbations which presents unique challenges which could also be explored with diffusion
models in a similar fashion to our work.

Backdoor attacks on face recognition have also been developed, where the system behaves as ex-
pected on clean input but then has been modified to behave erroneously on malicious input. These
attacks can be split into three components: the attack channel (the attacker’s knowledge and access
to the victim model), the injection method (how the manipulation can occur) and the trigger method
(what triggers the corruption) (Roux et al., 2024). One such example work has directly manipu-
lated weights such that only certain identities are misclassified, but the rest are unaffected (Zehavi
& Shamir, 2023).

Another type of attack are those that poison the training set of a victim model such that when the
attacker wears a physical accessory, the model erroneously classifies them (Chen et al., 2017).

These methods have a different threat model to our work, but are a different avenue of work that
could be expanded using diffusion models.

C EVALUATING STYLES

Previous Style Metrics: As previously discussed, most adversarial accessory work has not fo-
cused on stealth and so there is a limited range of quantitative measures for stealthiness. Previous
work has used TV loss to ensure accessories are color smooth, making them easier to physically
realize and less noise like, but often stealthiness is not explicitly measured after generation (Zolfi
et al., 2022; Komkov & Petiushko, 2021; Pautov et al., 2019).

Stealthiness is a subjective measure so an ideal method would be to collect user surveys, as has been
done before (Sharif et al., 2019) where participants were asked to identity whether given images
of glasses were “real” or generated. While this does gather valuable user opinion, these surveys
are time consuming to run, potentially hard to reproduce when ran on a small scale and may not
accurately measure stealthiness (as the concept is abstract to the general public). Some measures
that have been used before in makeup attacks (Sun et al., 2024) are SSIM (Wang et al., 2004), PSNR
and FID (Heusel et al., 2017). In recent stealthy mask work, Gong et al. (2024) measure the SSIM
of masked faces with the mask texture being the original pattern in the style of their adversarial
pattern and then comparing these images to masked faces with the adversarial pattern. Whilst these
measures are able to yield valuable statistics about a generated accessory, we believe these do not
capture the true essence of stealthiness – a better metric would be one which determines the quality
of generated images. This can be achieved by treating the adversarial attack as an image generator
and using similar metrics to measure its performance such as CMMD.

Proper Use Of CMMD: When choosing images for CMMD evaluation for general accessory
evaluation in future work, we recommend trying to evaluate on as close of a representation as the
texture in the final accessory while avoiding any faces being in the images (such as the images in
figure 4). Furthermore, the reference set for the style should be one image representing the style
the textures in the generated set are attempting to create. The generated set should contain multiple
textures from different attacks (i.e different attackers/targets) of the same style.
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D TESTING DIFFERENT STYLES

Section 3 focused on two styles that were chosen due to being effective for the adversarial mask
generation. However, to demonstrate the effectiveness of the stealth based approaches on a wide
range of styles we test both DAFR and SASMask on 20 randomly chosen text prompts from a
filtered set of DrawBench prompts (Saharia et al., 2022). Stealthy approaches may try to “hide” their
perturbations in the content making more abstract content better as the content can vary significantly
while still being faithful. Prompts from DrawBench are more concrete and contain a wide range of
content, and test whether these attacks can still be stealthy even when not given an advantageous
style. The same dodging benchmark was used as has been used in section 3, but 5 identities were
chosen out of the previous 30 with the same number of images used for generation and testing as
used previously.

Attack Style SR 100 (↑) SR 1000 (↑) Mask CMMD (↓)
SASMask-b Blue Dog 1.0 1.0 3.7062

DAFR-d 1.0 1.0 2.5122
SASMask-b Panda Emoji 1.0 1.0 2.2752

DAFR-d 1.0 1.0 0.5084
SASMask-b Black Sandwich 1.0 1.0 5.9267

DAFR-d 0.99 0.99 1.3971
SASMask-b Owl 1.0 1.0 3.9005

DAFR-d 1.0 1.0 0.7783
SASMask-b Giraffe 1.0 1.0 0.6479

DAFR-d 1.0 1.0 0.6479
SASMask-b Bricks 1.0 1.0 4.2328

DAFR-d 1.0 1.0 1.3618
SASMask-b Overall 1.0 1.0 3.7150

DAFR-d 0.9925 0.998 1.4791

Table 4: Some of the results from the style attack test on MobileFaceNet, for 6 out of the 20 styles
chosen from filtered DrawBench. These tests use the same metrics as table 3, so a smaller success
rate (SR 100 and SR 1000) is desirable.

Table 4 shows the results of our test on MobileFaceNet. Both attacks are successfully able to fool
the network consistently, however DAFR generates stealthier masks as demonstrated by CMMD and
by the visual results shown in figure 6. DAFR can achieve adversarial strength by manipulating the
content of the textures in a manner faithful to the style, such as changing the hat, eyes and mouth of
the panda in figure 6. We expand this study to FT100 and R100 in appendix E.

Figure 6: Textures from masks trying to dodge from the “Kiera Knightley” identity from the style
test. The top row is reference images, the next row is generated by SASMask-b and the final row is
generated by DAFR-d.
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E EXPANDING THE STYLE TEST

We conduct the same study as performed in appendix D, but using FT100 and R100. The attacks
were less successful against these networks (refer to table 3) so these tests demonstrate the attacks
ability to remain stealthy in a more difficult scenario.

Attack Arch. Style Cosine (↓) M-CMMD (↓)

SASMask-d
R100

Blue
Dog

0.1434 5.4164

DAFR-b 0.1920 2.6407

SASMask-d
R100

Panda
Emoji

0.1167 4.9877

DAFR-b 0.2322 3.7407

SASMask-d
R100

Black
Sandwich

0.0802 4.8970

DAFR-b 0.1998 2.6640

SASMask-d
R100 Owl

0.1318 7.1038

DAFR-b 0.1946 5.2481

SASMask-d
R100 Giraffe

0.1057 3.5506

DAFR-b 0.2267 1.514

SASMask-d
R100 Bricks

0.1068 4.5495

DAFR-b 0.1895 2.6462

SASMask-d
R100 Overall

0.1366 4.9009

DAFR-b 0.1962 2.8633

SASMask-d
FT100

Blue
Dog

0.2172 6.1107

DAFR-b 0.1711 3.3500

SASMask-d
FT100

Panda
Emoji

0.1558 5.3880

DAFR-b 0.2505 4.4208

SASMask-d
FT100

Black
Sandwich

0.5254 5.1856

DAFR-b 0.2041 2.4467

SASMask-d
FT100 Owl

0.3621 6.0591

DAFR-b 0.3057 3.4554

SASMask-d
FT100 Giraffe

0.3684 4.3279

DAFR-b 0.2837 1.9312

SASMask-d
FT100 Bricks

0.2904 3.9697

DAFR-b 0.2188 2.8751

SASMask-d
FT100 Overall

0.3610 4.8306

DAFR-b 0.1989 2.6857

Table 5: A table showing some of the results
from the style attack test using 6 out of the 20
styles chosen from filtered DrawBench. Co-
sine is the mean cosine, while M-CMMD is
the masked texture CMMD from table 3.

Figure 7: Grid of textures from masks trying
to dodge from the “Kiera Knightley” iden-
tity from the style test. The sections from top
to bottom are reference images, SASMask-
d R100, SASMask-d FT100, DAFR-b R100,
DAFR-b FT100

Table 5 and figure 7 display selected results and textures from the style test on FT100 and R100.
Firstly, DAFR outperformed SASMask on these obscure styles both stylewise and adversarially on
FT100, while performing slightly worse adversarially on R100. Both attacks have significantly
higher mask CMMD values compared to the tests with an advantageous style in previous sections.
While an attacker can always choose to use an advantageous style, future work should focus on
making an attack that can work on a wider range of styles.

F ANGLE STATISTICS

An advantage of using FAAB is that a deeper understanding of the different properties of an ac-
cessory is evaluated such as its robustness to different face poses, with figure 5 demonstrating the
variety of poses. We now analyze the effectiveness of the different face mask attacks when they are
used at different angles. To measure the pose of each face, the yaw, pitch and roll are calculated,
allowing the images to be classified into two categories: straight on and angled. Straight on im-
ages represented around 67% of the images while angled represented 31% of the images with the
remaining 2% representing images with an extreme yaw and patch.

1. Straight on images have the magnitudes of yaw and pitch less than 15 degrees.
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2. Angled images have either their yaw or pitch with a magnitude greater than 15 degrees while
still both having a magnitude less than 45 degrees.

Straight On Angled
Architecture Attack SR 100 (↑) SR 1000 (↑) SR 100 (↑) SR 1000 (↑)

FT100

Non Adv 0.2450 0.6900 0.2978 0.7660
AdvMask-b 0.9975 0.9975 0.9894 1.0000
SASMask-d 0.5850 0.8300 0.5426 0.8457

DAFR-b 0.9125 0.9825 0.8404 0.9680

R100

Non Adv 0.0525 0.0525 0.0744 0.0744
AdvMask-b 0.9725 0.9400 0.9202 0.8776
SASMask-d 0.9450 0.8950 0.8617 0.8085

DAFR-b 0.7225 0.6500 0.6436 0.5691

FaRL

Non Adv 0.16 0.1725 0.1649 0.1809
AdvMask-b 1.0000 1.0000 1.0000 1.0000
SASMask-d 1.0000 1.0000 1.0000 1.0000

DAFR-b 0.4775 0.5075 0.4775 0.5075

MFN

Non Adv 0.0570 0.1373 0.1520 0.3039
AdvMask-b 1.0000 1.0000 1.0000 1.0000
SASMask-b 1.0000 1.0000 1.0000 1.0000

DAFR-d 0.9197 0.9819 0.9804 0.9901

Table 6: A table containing the results of the attacks at different angles. When the attack has a style,
we show the blue flower pattern style. These results come from benchmarks from the earlier sections
or identical reran benchmarks.

Table 6 shows the efficacy of the different masks when tested on different angles. It is important to
notice that all the non adversarial masks become more effective when the attacker is not straight on.
However, when it comes to adversarial face masks, the performance tends to decrease (such as on
FT100, R100), which may occur due to the mask being an effective attack in most cases and when
the mask is not in the image, the benefit of being angled is less than the benefit of the adversarial
texture itself. Despite this, on FaRL the angled version has a negligible impact on performance and
improved DAFR’s performance on MFN showing that this phenomena is not universal.
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