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Abstract
Although the differential privacy (DP) of decen-
tralized online learning has garnered consider-
able attention recently, existing algorithms are
unsatisfactory due to their inability to achieve
(ϵ, 0)-DP over all T rounds, recover the opti-
mal regret in the non-private case, and maintain
the lightweight computation under complex con-
straints. To address these issues, we first propose
a new decentralized online learning algorithm sat-
isfying (ϵ, 0)-DP over T rounds, and show that
it can achieve Õ(n(ρ−1/4 + ϵ−1ρ1/4)

√
T ) and

Õ(n(ρ−1/2+ ϵ−1)) regret bounds for convex and
strongly convex functions respectively, where n
is the number of local learners and ρ is the spec-
tral gap of the communication matrix. As long as
ϵ = Ω(

√
ρ), these bounds nearly match existing

lower bounds in the non-private case, which im-
plies that (ϵ, 0)-DP of decentralized online learn-
ing may be ensured nearly for free. Our key idea
is to design a block-decoupled accelerated gossip
strategy that can be incorporated with the classi-
cal tree-based private aggregation, and also enjoys
a faster average consensus among local learners.
Furthermore, we develop a projection-free variant
of our algorithm to keep the efficiency under com-
plex constraints. As a trade-off, the above regret
bounds degrade to Õ(n(T 3/4 + ϵ−1T 1/4)) and
Õ(n(T 2/3 + ϵ−1)) respectively, which however
are even better than the existing private central-
ized projection-free online algorithm.

1. Introduction
Decentralized online learning (Li et al., 2023) is a popu-
lar way to solve distributed applications with streaming
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data. To be precise, it is commonly characterized as a re-
peated game between an adversary and n local learners
connected by an undirected graph G = ([n], E), where
E ⊆ [n]× [n] denotes the edge set. At each round t, each
local learner i ∈ [n] first needs to select a local decision
xi(t) from a feasible set K ⊆ Rd, and then receives a
local loss function ft,i(·) : K 7→ R determined by the ad-
versary. The goal of each local learner i is to choose a
sequence of decisions to minimize the regret in terms of the
global function ft(x) =

∑n
j=1 ft,j(x) at each round t, i.e.,

RT,i =
∑T

t=1 ft(xi(t)) − minx∈K
∑T

t=1 ft(x), where T
is the number of total rounds.

To this end, each local learner i needs to estimate global
information by communicating with its neighbors. Note
that as a common protocol, the communications between
these learners occur via only a single gossip step (Xiao &
Boyd, 2004) based on a weight matrix P ∈ Rn×n at each
round. Moreover, to make this problem more tractable, it
is common to assume that the decision set K and all local
loss functions ft,i(·) are convex. This setting is known as
decentralized online convex optimization (D-OCO), and has
been extensively studied (Yan et al., 2013; Hosseini et al.,
2013; Zhang et al., 2017; Wan et al., 2020; 2022; 2024a;b),
yielding nearly optimal Õ(nρ−1/4

√
T ) and Õ(nρ−1/2) re-

gret for convex and strongly convex functions, respectively,
where ρ < 1 is the spectral gap of P .1

It is worth noting that one critical appeal of D-OCO is the
intrinsic privacy-preserving property, as it prevents each
local learner from sharing any sensitive data directly (Yan
et al., 2013). However, for traditional D-OCO algorithms,
the privacy-preserving ability is limited in the sense that
they are still vulnerable to adversarial attacks, such as mem-
bership inference attack (Shokri et al., 2017) and model
inversion attack (Fredrikson et al., 2015). For this reason,
there has been a growing research interest (Li et al., 2018;
Hou et al., 2019; Lü et al., 2023; Chen et al., 2023; Cheng
et al., 2023; Zhang et al., 2024b) in designing D-OCO algo-
rithms with differential privacy (DP), which prevents any
attacker from identifying whether a particular individual is
included in a dataset (Dwork et al., 2006).

1The Õ(·) notation hides constant factors as well as the poly-
logarithmic factors.
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However, these private D-OCO algorithms are unsatisfac-
tory for three issues. First, their main idea is to directly add
noise to original decisions of some traditional D-OCO algo-
rithms, which cannot trade off the regret and privacy well.
Specifically, to achieve the state-of-the-art regret bound of
O(n5/4ρ−1/2ϵ−1

√
T ) and Õ(n3/2(ρϵ)−1) for convex and

strongly convex functions (Li et al., 2018), where ϵ is a con-
stant regarding the privacy level, these algorithms can only
utilize time-decaying noise to obtain (ϵT, 0)-DP over all T
rounds in the worst case, which degrades linearly according
to the increase of T . Second, there exist large gaps in terms
of n and ρ between these state-of-the-art regret bounds and
nearly optimal regret bounds in the non-private case, which
are caused by the standard gossip step (Xiao & Boyd, 2004)
utilized in the communication. Third, a projection operation
is required by these algorithms to ensure the feasibility of
each local decision, which could be time-consuming when
facing complex decision sets (Hazan & Kale, 2012).

To address these issues, this paper first proposes a new D-
OCO algorithm, namely PD-FTGL, which not only satisfies
(ϵ, 0)-DP over all T rounds, but also can achieve improved
Õ(n(ρ−1/4+ ϵ−1ρ1/4)

√
T ) and Õ(n(ρ−1/2+ ϵ−1)) regret

bounds for convex and strongly convex functions, respec-
tively. For ϵ = Ω(

√
ρ), these regret bounds match the nearly

optimal regret bounds in the non-private case (Wan et al.,
2024a;b) up to polylogarithmic factors, which implies that
our PD-FTGL can ensure (ϵ, 0)-DP nearly for free over a
wide range of ϵ. Compared with existing private D-OCO
algorithms, the main novelty of our PD-FTGL is to utilize
the tree-based private aggregation (Dwork et al., 2010; Jain
et al., 2012) to achieve a better trade-off between the regret
and privacy, and exploit an accelerated gossip strategy (Liu
& Morse, 2011) to reduce the approximation error caused
by communication.

Note that although the tree-based technique has been uti-
lized to equip various non-private algorithms for centralized
online learning (i.e., n = 1) with the (ϵ, 0)-DP guarantee
(Smith & Thakurta, 2013; Agarwal & Singh, 2017; Ene
et al., 2021; Kairouz et al., 2021), it is non-trivial to apply
this technique in general D-OCO as explained below.

• This technique requires that any decision of the non-
private algorithm is determined by the partial sum of
some variables, e.g., historical gradients in the clas-
sical follow-the-regularized-leader (FTRL) algorithm
(Shalev-Shwartz & Singer, 2007; Hazan, 2016).

• Unfortunately, existing D-OCO algorithms, including
the decentralized variants of FTRL based on the accel-
erated gossip strategy (Wan et al., 2024a;b), do not sat-
isfy the above requirement, because their decisions rely
on coupled communication between adjacent rounds.

To tackle this challenge, our PD-FTGL follows a block-
ing update mechanism (Wan et al., 2024a;b) to exploit

the accelerated gossip strategy, but adopts block-decoupled
communication for incorporating the tree-based technique.
Furthermore, we notice that PD-FTGL still needs to per-
form projection operations per block, and thus may also
be time-consuming over complex decision sets. To im-
prove the efficiency, we develop a projection-free variant
by replacing its projection operations with only linear op-
timization steps. Our analysis reveals that this variant can
achieve Õ(n(T 3/4 + ϵ−1T 1/4)) and Õ(n(T 2/3 + ϵ−1)) re-
gret bounds for convex and strongly convex functions, re-
spectively. Although these regret bounds are worse than
those of PD-FTGL, such degeneration is a common price
for the projection-free property in both centralized and de-
centralized online learning (Hazan & Kale, 2012; Wan et al.,
2024b). Moreover, we want to emphasize that they are even
better than the Õ(ϵ−1T 3/4) regret bound achieved by the
existing centralized projection-free online algorithm with
(ϵ, 0)-DP (Ene et al., 2021).

2. Related Work
In this section, we first briefly review previous studies on
the differential privacy of the special D-OCO with n =
1, and then introduce existing algorithms for the general
D-OCO. Due to the limitation of space, here we mainly
discuss the results that are either directly comparable with
ours or provide some technical inspirations. Discussions on
additional related work can be found in Appendix A.

2.1. Differential Privacy of Special D-OCO with n = 1

In the special case with n = 1, D-OCO reduces to the classi-
cal online convex optimization (OCO) problem (Zinkevich,
2003). It is well-known that the optimal regret of OCO is
O(

√
T ) and O(log T ) for convex and strongly convex func-

tions, respectively (Abernethy et al., 2008). Moreover, these
optimal regret bounds can be achieved by many algorithms
such as online gradient descent (OGD) (Zinkevich, 2003),
FTRL (Shalev-Shwartz & Singer, 2007; Hazan, 2016), and
the follow-the-leader (FTL) algorithm for strongly convex
functions (Hazan et al., 2007).

The differential privacy (DP) of OCO is first studied by Jain
et al. (2012), who propose a general framework to convert
any given OCO algorithm into a privacy-preserving one.
However, their main idea is to simply add some Gaussian
noise to each original decision of the given OCO algorithm,
which cannot trade off the regret and privacy well. Let
ϵ and δ be constants for privacy level. Intuitively, it is
easy to ensure (ϵ, δ)-DP for the decision at each round by
using noise proportional to the sensitivity, which is gener-
ally time-decaying for OCO algorithms. But, according to
the classical T -fold composition theorem (Dwork & Roth,
2014), the noise should be further magnified by a factor of
O(T ) to ensure (ϵ, δ)-DP for all T rounds, which destroys
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the sublinearity of the original regret achieved by the given
OCO algorithm. To address this issue, Jain et al. (2012)
assume that the given OCO algorithm has linearly decaying
sensitivity, which only holds for strongly convex functions,
and exploit the interdependence between these decisions.
Nonetheless, even combining their framework with the op-
timal OCO algorithm for strongly convex functions, e.g.,
OGD, they can only achieve a much worse regret bound of
Õ(ϵ−1

√
T ) while ensuring (ϵ, δ)-DP for all T rounds. To

further improve the regret, Jain et al. (2012) also consider a
special case of OCO with quadratic functions, and propose
a private variant of FTL (Hazan et al., 2007) by combin-
ing it with the tree-based private aggregation (Dwork et al.,
2010). A critical precondition for this combination is that
in this case, the decision of FTL can be determined by the
partial sum of some variables related to the quadratic func-
tions. Since the tree-based technique provides a better way
to introduce noise, Jain et al. (2012) achieve (ϵ, δ)-DP and
O(ϵ−1(log3/2 T ) log(1/δ)) regret for the special case.

Later, Smith & Thakurta (2013) extend the private variant
of FTL (Jain et al., 2012) into OCO with strongly convex
functions by replacing FTL with an approximate variant
(Hazan et al., 2007) that originally updates as

x(t+ 1) = argmin
x∈K

t∑
τ=1

f̃τ (x) (1)

where f̃τ (x) = ⟨∇fτ (x(τ)),x⟩ + α
2 ∥x − x(τ)∥2 and α

is the modulus of the strong convexity. Additionally, they
propose to utilize Laplace noise, instead of Gaussian noise
used in Jain et al. (2012). Based on these changes, Smith
& Thakurta (2013) for the first time establish (ϵ, 0)-DP
and O(ϵ−1 log5/2 T ) regret for OCO with strongly con-
vex functions. Interestingly, they show that by combining
with a strongly convex approximation of general convex
functions, their algorithm can be utilized to achieve an
Õ(ϵ−1

√
T ) regret bound for the general OCO. Recently,

Kairouz et al. (2021) develop a specific algorithm with (ϵ, δ)-
DP for the general OCO, to achieve a better regret bound
of Õ(ϵ−1/2

√
T ). Compared with Smith & Thakurta (2013),

the critical changes include utilizing Gaussian noise and
replacing the approximate FTL in (1) with FTRL (Hazan,
2016) that originally updates as

x(t+ 1) = argmin
x∈K

t∑
τ=1

⟨∇fτ (x(τ)),x⟩+
1

η
∥x∥2 (2)

where η is a tunable parameter.

Moreover, Ene et al. (2021) consider the case with complex
decision sets, in which the above private algorithms may be
time-consuming due to the (implicit) projection operation.
To tackle the computational bottleneck, they develop the
first projection-free OCO algorithm that achieves (ϵ, 0)-DP

and an Õ(ϵ−1T 3/4) regret bound, or (ϵ, δ)-DP and a slightly
different regret bound. Besides the tree-based technique and
FTRL used before, this projection-free algorithm adopts a
blocking update mechanism, and performs each update via
multiple iterations of the conditional gradient (CG) method
(Frank & Wolfe, 1956; Jaggi, 2013), which only requires
more efficient linear optimization steps.

2.2. Algorithms for General D-OCO with n ≥ 2

The pioneering work of Yan et al. (2013) proposes the first al-
gorithm for D-OCO, which a decentralized variant of OGD
(D-OGD). The main idea of D-OGD is to first apply the stan-
dard gossip step (Xiao & Boyd, 2004) over local decisions,
and then perform a local gradient descent. As proven by
Yan et al. (2013), D-OGD can achieve O(n5/4ρ−1/2

√
T )

and Õ(n3/2ρ−1) regret bounds for convex functions and
strongly convex functions, respectively.

After that, the standard gossip step has been widely utilized
to design algorithms for D-OCO. Specifically, Hosseini et al.
(2013) exploit it to develop a decentralized variant of FTRL
(D-FTRL), and achieve the same O(n5/4ρ−1/2

√
T ) regret

bound for convex functions. To efficiently handle complex
sets, Zhang et al. (2017) propose a projection-free variant of
D-FTRL, and establish an O(n5/4ρ−1/2T 3/4) regret bound
for convex functions. Later, Wan et al. (2020) introduce a
blocking update mechanism to reduce the communication
complexity of Zhang et al. (2017) from O(T ) to O(

√
T )

while keeping the same regret bound. The first projection-
free D-OCO algorithm for strongly convex functions is pro-
posed by Wan et al. (2021a), and can reduce the regret
bound and communication complexity to Õ(n3/2ρ−1T 2/3)

and Õ(T 1/3), respectively. Moreover, Wan et al. (2022)
unify these two algorithms (Wan et al., 2020; 2021a) into a
single one that inherits the theoretical guarantees.

However, Wan et al. (2024a;b) recently have pointed out
that even the above projection-based algorithms are subop-
timal by establishing Ω(nρ−1/4

√
T ) and Ω(nρ−1/2 log T )

lower bounds for D-OCO with convex and strongly con-
vex functions, respectively. To address this issue, Wan et al.
(2024a;b) develop a novel D-OCO algorithm, which reduces
regret bounds for convex and strongly convex functions to
Õ(nρ−1/4

√
T ) and Õ(nρ−1/2), respectively. Their main

idea is to combine the accelerated gossip strategy (Liu &
Morse, 2011) with both FTRL (Hazan, 2016) and the ap-
proximate variant of FTL (Hazan et al., 2007). Moreover,
Wan et al. (2024b) also develop an improved projection-free
D-OCO algorithm based on the accelerated gossip strategy.
Compared with the projection-free algorithm in Wan et al.
(2022), this improved one can reduce the regret bounds
for convex and strongly convex functions to O(nT 3/4) and
Õ(nT 2/3) by increasing the communication complexity to
Õ(ρ−1/2

√
T ) and Õ(ρ−1/2T 1/3), respectively.
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Table 1. Comparison of our results to previous studies. Abbreviations: convex → cvx, strongly convex → scvx.

Assumption Reference Regret Bound Privacy Decentralized? Projection-free?

ft,i(·): cvx

Li et al. (2018) O(n5/4ρ−1/2ϵ−1
√
T ) (ϵT, 0)-DP ✓ ×

Wan et al. (2024a;b) Õ(nρ−1/4
√
T ) − ✓ ×

Corollary 3.7 Õ(n(ρ−1/4 + ϵ−1ρ1/4)
√
T ) (ϵ, 0)-DP ✓ ×

Ene et al. (2021) Õ(ϵ−1T 3/4) (ϵ, 0)-DP × ✓

Wan et al. (2024b) O(nT 3/4) − ✓ ✓

Corollary 3.10 Õ(n(T 3/4 + ϵ−1T 1/4)) (ϵ, 0)-DP ✓ ✓

ft,i(·): scvx

Li et al. (2018) Õ(n3/2(ρϵ)−1) (ϵT, 0)-DP ✓ ×
Wan et al. (2024a;b) Õ(nρ−1/2) − ✓ ×

Corollary 3.8 Õ(n(ρ−1/2 + ϵ−1)) (ϵ, 0)-DP ✓ ×
Wan et al. (2024b) Õ(nT 2/3) − ✓ ✓

Corollary 3.11 Õ(n(T 2/3 + ϵ−1)) (ϵ, 0)-DP ✓ ✓

Besides the above progresses, the most relevant works to
this paper are about the D-OCO with DP guarantee. Specifi-
cally, Li et al. (2018) propose a private variant of D-OGD by
simply adding noise to each original decision. Note that this
idea is almost the same as the general framework proposed
by Jain et al. (2012). Therefore, Li et al. (2018) can only
ensure (ϵ, 0)-DP for each round, while achieving sublinear
O(n5/4ρ−1/2ϵ−1

√
T ) regret bounds and Õ(n3/2ρ−1ϵ−1)

for convex and strongly convex functions, respectively. Ac-
cording to the T -fold composition theorem (Dwork & Roth,
2014), such a privacy guarantee will degrade to (ϵT, 0)-
DP over all T rounds in the worst case. Although a series
of subsequent algorithms have been proposed (Hou et al.,
2019; Lü et al., 2023; Chen et al., 2023; Cheng et al., 2023;
Zhang et al., 2024b), both the privacy and regret are not
improved. Additionally, these private algorithms are all
projection-based. In contrast, this paper proposes a new
D-OCO algorithm with (ϵ, 0)-DP over all rounds and im-
proved regret bounds, and also develops a projection-free
variant to efficiently handle complex decision sets. A de-
tailed comparison between of previous and our results is
summarized in Table 1.

3. Main Results
In this section, we first introduce necessary assumptions and
definitions, and then introduce our proposed algorithms as
well as the theoretical guarantees. All proofs can be found
in the appendix.

3.1. Assumptions and Definitions

Let ∥x∥ denote the ℓ2-norm of any vector x. Following
previous studies (Yan et al., 2013; Wan et al., 2024a), we
first introduce common assumptions about D-OCO.

Assumption 3.1. The set K is convex and contains the
origin, i.e., 0 ∈ K. Moreover, there exists a constant R such
that ∥x∥ ≤ R for any x ∈ K.

Assumption 3.2. For any t ∈ [T ] and i ∈ [n], the loss func-
tion ft,i(x) is G-Lipschitz over K, i.e., |ft,i(x)−ft,i(y)| ≤
G∥x− y∥ for any x,y ∈ K.

Assumption 3.3. For any t ∈ [T ] and i ∈ [n], the loss
function ft,i(x) is α-strongly convex over K, i.e., ft,i(y) ≥
ft,i(x)+ ⟨∇ft,i(x),y−x⟩+ α

2 ∥x−y∥2 for any x,y ∈ K.

Assumption 3.4. The communication matrix P ∈ Rn×n

is supported on the graph G = ([n], E), symmetric, and
doubly stochastic, i.e.,

• Pij > 0 only if (i, j) ∈ E or i = j;
•
∑n

j=1 Pij = 1, ∀i ∈ [n] and
∑n

i=1 Pij = 1, ∀j ∈ [n].

Moreover, P is positive semidefinite, and its second largest
singular value denoted as σ2(P ) is strictly smaller than 1.

Remark. First, when α = 0, Assumption 3.3 reduces to the
case of general convex functions. Second, the spectral gap
of P now can be defined as ρ = 1− σ2(P ).

Then, we provide a formal definition for the differential
privacy (DP) of D-OCO (Li et al., 2018; Asi et al., 2023b).

Definition 3.5. Let F = (F(1), . . . ,F(T )) with F(t) =
(ft,1(·), . . . , ft,n(·)) be a sequence of loss functions, and
F ′ be a neighboring sequence generated by replacing one
ft,i(·) by f ′

t,i(·) for some t ∈ [T ] and i ∈ [n]. Let A denote
a randomized D-OCO algorithm that takes F selected by the
adversary Adv during the online process as the input, and
outputs a sequence of local decisions denoted as A◦Adv(F)
in the space Kn×T . Then, A is (ϵ, δ)-differentially private if
Pr[A ◦ Adv(F) ∈ S] ≤ eϵPr[A ◦ Adv(F ′) ∈ S] + δ holds
for any S ⊆ Kn×T .
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3.2. Our PD-FTGL

Inspired by previous studies on the DP of OCO (Jain et al.,
2012; Smith & Thakurta, 2013; Kairouz et al., 2021), a
natural idea to improve the privacy of D-OCO is to ex-
ploit the tree-based private aggregation (Dwork et al., 2010).
However, different from FTRL and the approximate FTL
in OCO, their decentralized variants (Hosseini et al., 2013;
Wan et al., 2024a;b) do not satisfy the precondition of using
the tree-based technique.

To be precise, their decentralized variants based on the stan-
dard gossip step can be unified to one algorithm called de-
centralized follow-the-generalized-leader (D-FTGL) (Wan
et al., 2024b), which performs the following update

xi(t+ 1) = argmin
x∈K

⟨zi(t+ 1),x⟩+ tα+ 2h

2
∥x∥2 (3)

for each local learner i, where h is a parameter and zi(t+1)
is maintained as

zi(t+ 1) =

n∑
j=1

Pijzj(t) + (∇ft,i(xi(t))− αxi(t)). (4)

Let d̄(t) = 1
n

∑n
i=1 di(t), where di(t) = ∇ft,i(xi(t)) −

αxi(t). We notice that the key role of zi(t+1) is to approx-
imate

∑t
τ=1 d̄(τ), and it thus can be viewed as an extension

of
∑t

τ=1 ∇fτ (x(τ)) in (1) and (2). Nonetheless, it cannot
be directly rewritten as a partial sum, because the communi-
cation in (4) is coupled between adjacent rounds. The same
issue also exists in their decentralized variants based on the
accelerated gossip strategy (Wan et al., 2024a;b).

To address the above issue, we first introduce a blocking
update mechanism (Wan et al., 2020), which divides the
total T rounds into L blocks, where L is a parameter and
T/L is assumed to be an integer without loss of generality.
Then, we only maintain a fixed decision xi(z) for each lo-
cal learner i at all rounds contained by each block z, i.e.,
Tz = {(z − 1)L+ 1, . . . , zL}. Let d̄(z) = 1

n

∑n
i=1 di(z),

where di(z) =
∑

t∈Tz
(∇ft,i(xi(z))− αxi(z)), denote a

block-level variant of the previously defined d̄(t). During
each block z, we now can utilize L communications to
maintain dL

i (z − 1) ≈ d̄(z − 1) for each local learner i. In-
tuitively, even using the standard gossip step (Xiao & Boyd,
2004), the partial sum

∑z−1
τ=1 d

L
i (τ), which is ready to be

combined with the tree-based technique, can play a similar
role as zi(t+1) in (4) for estimating the global information.
However, as previously discussed, this approach will result
in a suboptimal dependence of the regret on ρ and n.

Thus, inspired by Wan et al. (2024a;b), we adopt the ac-
celerated gossip strategy (Liu & Morse, 2011) to maintain
dL
i (z − 1). Specifically, we perform the following update

dk+1
i (z−1) = (1+θ)

n∑
j=1

Pijd
k
i (z−1)−θdk−1

i (z−1) (5)

Algorithm 1 PD-FTGL
1: Input: L, θ, h, D
2: Initialize xi(1) = ẑi(1) = 0,∀i ∈ [n]
3: Create a complete balanced binary tree Bi with

2⌈log2(T/L−1)⌉+1 − 1 nodes for any i ∈ [n]
4: for z = 1, 2, . . . , T/L do
5: for each local learner i ∈ [n] do
6: Set di(z) = 0
7: for k = 0, . . . , L− 1 do
8: Set t = (z − 1)L+ k + 1
9: Play xi(z) and query ∇ft,i(xi(z))

10: Set di(z) = di(z) +∇ft,i(xi(z))− αxi(z)
11: If z ≥ 2, update dk+1

i (z − 1) by (5)
12: end for
13: Set d0

i (z) = d−1
i (z) = di(z)

14: If z ≥ 2, set wi(z− 1) = dL
i (z− 1) and compute

(Bi, ẑi(z)) = PrivateSum(wi(z−1), Bi, z−1,D)
via Algorithm 2

15: Update xi(z + 1) as in (6)
16: end for
17: end for

for k = 0, . . . , L− 1, where θ is a mixing coefficient, and
d0
i (z − 1) = d−1

i (z − 1) = di(z − 1). Then, we can apply
the tree-based technique to output a private approximation of∑z−1

τ=1 d
L
i (τ), denoted as ẑi(z), for each block z. Inspired

by (3), we utilize ẑi(z) to update the decision as

xi(z + 1) = argmin
x∈K

⟨ẑi(z),x⟩+
α(z − 1)L+ 2h

2
∥x∥2.

(6)
Combining with the initialization of xi(1) = ẑi(1) = 0, the
detailed procedures of our proposed algorithm are summa-
rized in Algorithm 1, which is named as private decentral-
ized follow-the-generalized-leader (PD-FTGL).

Remark. First, we want to clarify that the for loop among
these n local learners, i.e., line 5 in Algorithm 1, is mainly
used to facilitate presentation, and we actually implement
lines 6 to 15 in Algorithm 1 in parallel for these local learn-
ers. More specifically, they will synchronously perform the
the accelerated gossip strategy via communication to com-
pute dk+1

i (z − 1) in line 11 of Algorithm 1. Second, the
implementation of tree-based private aggregation follows
Smith & Thakurta (2013). For the sake of completeness,
the detailed procedures are outlined in Algorithm 2, where
the noise distribution D will be specified later. As shown
in line 14 of Algorithm 1, at the end of each block z ≥ 2,
it is invoked to update the binary tree Bi maintained by
each local learner i and compute the private partial sum
ẑi(z). Finally, it is worth noting that although Wan et al.
(2024a;b) have utilized the blocking update mechanism
and the accelerated gossip strategy in D-OCO, they pro-
pose to maintain zLi (z) to approximate

∑z−1
τ=1 d̄(τ) directly,

5
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Algorithm 2 PrivateSum (Smith & Thakurta, 2013)
1: Input: vector wt, binary tree B, counter t, noise distri-

bution D
2: Assign wt to the t-th leaf node from left to right
3: Let L = {wt → · · · → root} be the path from wt to

root node
4: Let Λ denote the first left child of B in L
5: for ŝ = wt → · · · → Λ do
6: ŝ = ŝ+wt + bs, where bs ∼ D
7: end for
8: for s = the next node of Λ in L → · · · → root do
9: s = s+wt

10: end for
11: Let S denote the set contains all top noised nodes, i.e.,

their parent nodes are not added noise
12: v̂t =

∑
ŝ∈S ŝ

13: Output: updated binary tree B, private partial sum v̂t

which needs to set z0i (z) = zLi (z − 1) + di(z − 1) and
z−1
i (z) = zL−1

i (z − 1) + di(z − 1). Therefore, their com-
munication is block-coupled, and zLi (z) cannot be rewritten
as a partial sum. In contrast, the communication of our al-
gorithm is block-decoupled, which is critical for exploiting
the tree-based technique.

Now, we present the theoretical guarantees of Algorithm 1.

Theorem 3.6. Under Assumptions 3.1, 3.2, 3.3, and 3.4, for
any i ∈ [n], by setting

θ =

(
1 +

√
1− σ2

2(P )

)−1

, L =
⌈
4 ln(nT

√
14n)/

√
ρ
⌉

(7)
and D = Lapd(0, 6

√
dϵ−1(G + αR)(2 + log2 T )), Algo-

rithm 1 ensures (ϵ, 0)-DP and the following regret bound

E[RT,i] ≤ nhR2 + nL

T/L∑
z=1

12GL(G+ 2αR)

αzL+ 2h

+ nL

T/L∑
z=2

(
27Gd (G+ αR) (2 + log2 T )

2

ϵ (α(z − 2)L+ 2h)

)

+ nL

T/L∑
z=2

(
6G(G+ αR)

n (α(z − 2)L+ 2h)

)
.

(8)

Remark. From Theorem 3.6, our PD-FTGL can appro-
priately utilize the Laplace noise at each coordinate, i.e.,
Lapd(·, ·), to achieve (ϵ, 0)-DP for D-OCO with both con-
vex and strongly convex functions. Compared with existing
algorithms with only (ϵT, 0)-DP (Li et al., 2018), our algo-
rithm significantly improves the ability of privacy protection.
Moreover, combining Theorem 3.6 with the value of α and
a suitable h, we can establish specific regret bounds for
convex and strongly convex functions, respectively.

Corollary 3.7. Under Assumptions 3.1, 3.2, 3.3 with α = 0,
and 3.4, for any i ∈ [n], by using parameters in Theorem
3.6 and setting h = G

√
14LT (2 + log2 T )/R, Algorithm

1 ensures

E[RT,i] ≤7nGR
√
LT (2 + log2 T )

+ 4ϵ−1ndGR(2 + log2 T )
3/2
√

T/L.

Corollary 3.8. Under Assumptions 3.1, 3.2, 3.3 with α > 0,
and 3.4, for any i ∈ [n], by using parameters in Theorem
3.6 and setting h = αL, Algorithm 1 ensures

E[RT,i] ≤ 24α−1nGL(G+ 2αR) (1 + ln(T/L))

+ 27(αϵ)−1nd(G+ 2αR) (2 + log2 T )
3
+ nαLR2.

Remark. By recalling the value of L in (7), Corollaries
3.7 and 3.8 show that our PD-FTGL enjoys a regret bound
of Õ(n(ρ−1/4 + ϵ−1ρ1/4)

√
T ) for convex functions and

an improved one of Õ(n(ρ−1/2 + ϵ−1)) for strongly con-
vex functions. These two bounds are respectively tighter
than the Õ(n5/4ρ−1/2ϵ−1

√
T ) and Õ(n3/2ρ−1ϵ−1) regret

bounds of existing private D-OCO algorithms (Li et al.,
2018). Moreover, we want to emphasize that our advan-
tages include two aspects. First, our regret bounds have a
better dependence on both n and ρ, which owes to the ex-
ploitation of the accelerated gossip strategy (Liu & Morse,
2011). Second, our regret bounds decouple the negative
effects of the decentralized setting and the demand for pri-
vacy, i.e., ϵ−1 is not multiplicative to ρ−1/4 and ρ−1/2.
As a result, we can nearly match the Ω(nρ−1/4

√
T ) and

Ω(nρ−1/2 log T ) lower bounds for D-OCO in the non-
private case, for ϵ = Ω(

√
ρ), instead of only ϵ = Ω(1). It

is also worth noting this improvement requires a non-trivial
analysis that shows the sensitivity of the blocked update
mechanism is independent of the block size, instead of sim-
ply combining the previous analysis of the tree-based tech-
nique (Jain et al., 2012; Smith & Thakurta, 2013; Kairouz
et al., 2021; Ene et al., 2021).

3.3. Our Projection-free Algorithm

We proceed to consider the case with complex decision
sets, in which the implicit projection operation in (6) could
become a computational bottleneck of our PD-FTGL. To
address this limitation, we propose a projection-free algo-
rithm by combining PD-FTGL with the classical conditional
gradient (CG) method (Frank & Wolfe, 1956; Jaggi, 2013).
The detailed procedures of this algorithm are summarized in
Algorithm 3, and it is named as private decentralized online
conditional gradient (PD-OCG).

Specifically, compared with PD-FTGL, there exist two crit-
ical differences in our PD-OCG. First, as shown in lines
2 and 16 of Algorithm 3, we further set xi(2) = 0 and
compute xi(z + 1) for z ≥ 2 by applying L iterations of

6
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Algorithm 3 PD-OCG
1: Input: L, L′, h, θ, D
2: Initialize xi(1) = xi(2) = ẑi(1) = 0,∀i ∈ [n]
3: Create a complete balanced binary tree Bi with

2⌈log2(T/L−1)⌉+1 − 1 nodes for any i ∈ [n]
4: for z = 1, 2, . . . , T/L do
5: for each local learner i ∈ [n] do
6: If z ≥ 2, define Fz,i(x) by (9)
7: Set di(z) = 0
8: for k = 0, . . . , L− 1 do
9: Set t = (z − 1)L+ k + 1

10: Play xi(z) and query ∇ft,i(xi(z))
11: di(z) = di(z) + (∇ft,i(xi(z))− αxi(z))
12: If z ≥ 2 and k < L′, update dk+1

i (z−1) by (5)
13: end for
14: Set d0

i (z) = d−1
i (z) = di(z)

15: If z ≥ 2, set wi(z−1) = dL′

i (z−1) and compute
(Bi, ẑi(z)) = PrivateSum(wi(z−1), Bi, z−1,D)
via Algorithm 2

16: If z ≥ 2, invoke Algorithm 4 to update the decision
as xi(z + 1) = CG(K, L, Fz,i(x),xi(z))

17: end for
18: end for

Algorithm 4 CG (Frank & Wolfe, 1956; Jaggi, 2013)
1: Input: K, L, F (x), x(0)
2: for t = 0, . . . , L− 1 do
3: v(t) ∈ argminx∈K⟨∇F (x(t)),x⟩
4: σ(t) = argminσ∈[0,1] F (x(t) + σ(v(t)− x(t)))
5: x(t+ 1) = x(t) + σ(t)(v(t)− x(t))
6: end for
7: Output: x(L)

CG to approximate the z-th decision of local learner i in
PD-FTGL, i.e.,

xi(z + 1) = CG(K, L, Fz,i(x),xi(z))

where the detailed procedures of CG are outlined in Al-
gorithm 4 for the sake of completeness, and the function
Fz,i(x) is defined as

Fz,i(x) = ⟨ẑi(z − 1),x⟩+ α(z − 2)L+ 2h

2
∥x∥2. (9)

In this way, these L iterations can be implemented in parallel
to the for loop from lines 8 to 13 in Algorithm 3, which is a
standard trick to avoid unbalanced computational costs at
the end of each block (Wan et al., 2022; 2024b). Moreover,
let L′ denote the value of L defined in (7). We notice that
to control the approximation error of CG, the block size L
needs to be sublinear to T , which is much larger than L′.
However, from the convergence property of the accelerated
gossip strategy (Liu & Morse, 2011), L′ is sufficient for

maintaining a good dL′

i (z). Therefore, as in line 12 of
Algorithm 3, the second difference is to limit the number of
accelerated gossip steps in each block by L′, instead of the
block size L.

Combining our analysis of PD-FTGL with the convergence
property of CG, we establish the following guarantees on
the privacy and regret of the projection-free algorithm.

Theorem 3.9. Under Assumptions 3.1, 3.2, 3.3, and 3.4, for
any i ∈ [n], by setting

θ =

(
1 +

√
1− σ2

2(P )

)−1

, L′ =
⌈
4 ln(nT

√
14n)/

√
ρ
⌉

(10)
and D = Lapd(0, 6

√
dϵ−1(G + αR)(2 + log2 T )), Algo-

rithm 3 ensures (ϵ, 0)-DP and the following regret bound

E[RT,i] ≤ nhR2 + nL

T/L∑
z=1

24GL(G+ 2αR)

αzL+ 2h

+ nL

T/L∑
z=3

(
27dG (G+ αR) (2 + log2 T )

2

ϵ (α(z − 3)L+ 2h)

)

+ nL

T/L∑
z=3

(
12GR√

L
+

6G(G+ αR)

n (α(z − 3)L+ 2h)

)
.

(11)

Remark. From Theorem 3.9, our projection-free algorithm
can ensure the same (ϵ, 0)-DP as PD-FTGL, which is be-
cause the exploitation of CG does not affect the privacy.
Then, combining Theorem 3.9 with the value of α and suit-
able h and L, we can establish specific regret bounds for
convex and strongly convex functions, respectively.

Corollary 3.10. Under Assumptions 3.1, 3.2, 3.3 with α =
0, and 3.4, for any i ∈ [n], by using parameters in Theorem
3.9 and setting h =

√
15LTG/R,L =

√
T , Algorithm 3

ensures

E[RT,i] ≤ 21nGRT 3/4 + 4ϵ−1ndGRT 1/4 (2 + log2 T )
2
.

Corollary 3.11. Under Assumptions 3.1, 3.2, 3.3 with
α > 0, and 3.4, for any i ∈ [n], by using parameters in The-
orem 3.9 and setting h = αL,L = T 2/3 ln−2/3 T,CT =
ln−2/3 T + ln1/3 T , Algorithm 3 ensures

E[RT,i] ≤ 36α−1nGT 2/3CT (G+ 2αR)

+ nαR2T 2/3 ln−2/3 T + 12nGRT 2/3 ln1/3 T

+ 27(αϵ)−1ndG(G+ αR) (2 + log2 T )
3
.

Remark. First, we note that Corollaries 3.10 and 3.11 im-
plicitly assume that L′ in (10) is smaller than L =

√
T

and L = T 2/3 ln−2/3 T , respectively. This assumption is
reasonable because T in D-OCO is commonly much larger
than other problem constants. Then, from these corollar-
ies, our PD-OCG can achieve Õ(n(T 3/4 + ϵ−1T 1/4)) and

7
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Õ(n(T 2/3 + ϵ−1)) regret bounds for convex and strongly
convex functions, respectively. Interestingly, if n = 1 and
α = 0, our PD-OCG can reduce to the existing projection-
free algorithm of Ene et al. (2021) with (ϵ, 0)-DP for OCO.
However, they only establish an O(ϵ−1T 3/4 log2 T ) regret
bound for convex functions, which is much worse than our
bound in the case of n = 1, i.e., Õ(T 3/4 + ϵ−1T 1/4). This
gap is because they simply bound the sensitivity of the block-
ing update mechanism with the block size, and then need
to add a corresponding scale of noise to ensure the privacy.
In contrast, as discussed before, our novel analysis on the
sensitivity implies that the scale of noise does not need to be
proportional to the block size. Moreover, we want to empha-
size that such an analysis brings more significant benefits
to the projection-free algorithm. Specifically, the two regret
bounds of our PD-OCG can nearly match the O(nT 3/4) and
Õ(nT 2/3) regret bounds of the best projection-free D-OCO
algorithm in the non-private case (Wan et al., 2024b) for
ϵ = Ω(T−1/2) and ϵ = Ω(T−2/3), respectively. Finally,
similar to Wan et al. (2024b), the communication complex-
ity of our projection-free algorithm is O(TL′/L), which
becomes Õ(ρ−1/2

√
T ) and Õ(ρ−1/2T 1/3) according to the

parameters in Corollaries 3.10 and 3.11, respectively.

4. Experiments
In this section, we conduct simulation experiments with con-
vex functions to verify the performance of our algorithms.

4.1. Experimental Setup

Following previous studies (Zhang et al., 2017; Wan et al.,
2020), the problem of decentralized online multiclass clas-
sification is considered. Specifically, let p and q denote the
number of features and classes, respectively. The decision
set of is defined as K = {X ∈ Rq×p | ∥X∥∗ ≤ τ}, where
∥X∥∗ denotes the trace norm of X and τ = 10. At each
round t ∈ [T ], the loss function of each local learner i is
defined as

ft,i(X) = log

1 +
∑

ℓ̸=yi(t)

e(x
⊤
ℓ ei(t)−x⊤

yi(t)
ei(t))


where ei(t) ∈ Rp and yi(t) ∈ [q] denote the feature vector
and class label of the single example at round t, x⊤

i is
the i-th row of the matrix X for any i ∈ [q], and ℓ =
argmaxℓ∈[q] x

⊤
ℓ ei(t) is the predicted class label based on

the matrix X . Then, let Xi(t) ∈ K denote the decision of
each local learner i at each round t. Its average loss at this
round equals to AL(t, i) = 1

tn

∑t
τ=1

∑n
j=1 fτ,j(Xi(τ)).

Moreover, we use two publicly available datasets—letter
and poker from the LIBSVM repository (Chang & Lin,
2011), and their details are summarized in Table 2. For
letter, we construct a larger one including 10n copies of

Table 2. Summary of Datasets.

Dataset # Features # Classes # Examples

letter 16 26 15000

poker 10 10 1000000

the original data, and evenly distribute them among the n
local learners, which implies that T = 150000. For poker,
we construct a larger one including n copies of the original
data, and distribute them in the same way, which implies
that T = 1000000. By default, we set n = 9 and use the
complete graph, i.e., all nodes are connected to others.

The baseline in our experiments is the existing private vari-
ant of D-OGD (PD-OGD) from Li et al. (2018). Note that
the original PD-OGD can only achieve (ϵ, 0)-DP for each
round, instead of all T rounds. To make a fair compari-
son, we increase the scale of noises added into PD-OGD to
achieve (ϵ, 0)-DP over all T rounds. Moreover, following
previous studies on DP (Abadi et al., 2016; Kairouz et al.,
2021), we substitute the original gradient ∇ft,i(Xi(t)) by
a clipping gradient defined as

gclip(t, i) = ∇ft,i(Xi(t))/max

(
1,

∥∇ft,i(Xi(t))∥F
C

)
where the constant C is tuned from the set {0.01, 0.1, 1, 10}
to obtain the best performance, and ∥ ·∥F denotes the Frobe-
nius norm. In this way, the Frobenius norm of the clipping
gradient is bounded by C, which simplifies the setting of
noise scale when using the tree-based private aggregation.
Additionally, for the parameter h of our algorithms, we
multiply the theoretical value by a constant tuned from the
set {0.0001, 0.0005, 0.001, 0.005, . . . , 10, 50} for the best
performance. Other parameters of all algorithms are set as
what their corresponding theories suggest.

4.2. Experimental Results

Figures 1 and 2 show the comparisons of average loss and
runtime of all algorithms with ϵ = 10 on letter and poker, re-
spectively. First, in terms of average loss, our PD-FTGL and
PD-OCG are much better than PD-OGD. This is because
the noise scale required by PD-OGD to achieve the same
privacy level is much larger than our algorithms. Second,
the average loss of our PD-OCG is worse than that of our
PD-FTGL on both datasets, which can be viewed as the
price of the projection-free property and is consistent with
our theoretical results. Moreover, from the comparison of
runtime, PD-OGD is much worse than our PD-FTGL. It
is worth noting that this is because PD-OGD performs the
projection operation once per round, whereas our PD-FTGL
only needs one projection per block. Additionally, we also
notice that our PD-OCG can be implemented faster than our

8



Revisiting Differentially Private Algorithms for Decentralized Online Learning

� ����� ������ ������
� ������������������

����

����

����

����

����

����

	!
��
��
��
��

��

������
����

�����

(a) Average Loss

� ����� ������ ������
��������������������

�

��

���

���

���

���

��
��
��
��
��
�

�	�
��
�	����
�	���	

(b) Runtime

Figure 1. Comparison of all algorithms with ϵ = 10 on the letter dataset, where we use the complete graph with n = 9 nodes.
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Figure 2. Comparison of all algorithms with ϵ = 10 on the poker dataset, where we use the complete graph with n = 9 nodes.

PD-FTGL on both datasets, which verifies the benefit of the
projection-free property. Besides these experimental results,
we have also evaluate the performance of our algorithms
under different privacy levels, network sizes, and topologies,
which can be found in Appendix B.

5. Conclusion and Future Work
In this paper, we propose the first algorithm to achieve (ϵ, 0)-
DP over all T rounds for D-OCO, namely PD-FTGL, and
demonstrate that it enjoys Õ(n(ρ−1/4 + ϵ−1ρ1/4)

√
T ) and

Õ(n(ρ−1/2 + ϵ−1)) regret bounds for convex and strongly
convex functions, respectively. These regret bounds are
tighter than those achieved by existing D-OCO algorithms
with only (ϵT, 0)-DP over all T rounds, and nearly match
the lower bounds for D-OCO in the non-private case for
ϵ = Ω(

√
ρ). Furthermore, to efficiently deal with com-

plex decision sets, we propose a projection-free variant
of PD-FTGL, and establish Õ(n(T 3/4 + ϵ−1T 1/4)) and
Õ(n(T 2/3 + ϵ−1)) regret bounds for convex and strongly
convex functions, respectively. These results can nearly
match the regret bounds of the best existing projection-free
D-OCO algorithm in the non-private case for ϵ = Ω(T−1/2)
and ϵ = Ω(T−2/3), respectively. However, there still exist
some open problems. First, it is appealing to investigate
whether our PD-FTGL is nearly optimal for any privacy
level ϵ or not. To this end, we need to establish general
lower bounds for D-OCO with the DP guarantee, which
seems highly non-trivial since there still lack such results
even in the special case with n = 1. Second, as later dis-
cussed in Appendix A, it is possible to improve the regret
of OCO with the DP guarantee via a lazy OCO technique if
the adversary is oblivious. Thus, it is also natural to extend
this improvement into the D-OCO setting.

9
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A. Additional Related Work
Here, we first introduce some recent efforts for improving the regret of private OCO algorithms under additional assumptions
on functions, decision sets, or the adversary. Then, we briefly review the progress of projection-free OCO algorithms.

A.1. Improved Private Algorithms for OCO

Similar to previous tree-based private algorithms, Agarwal & Singh (2017) propose an (ϵ, 0)-DP algorithm for online
linear optimization to achieve an improved regret bound of Õ(

√
T + ϵ−1). Very recently, several DP algorithms have been

proposed to achieve more desirable regret bounds for OCO with an oblivious adversary. Specifically, Asi et al. (2023a)
consider a oblivious and realizable setting where a zero-loss solution exists, and demonstrate that the regret of the algorithm
in Kairouz et al. (2021) can be significantly improved for convex (and smooth) functions. By exploiting recent advances on
a lazy OCO setting where the decision can only be switched under a limited budget, Asi et al. (2023b) develop an (ϵ, δ)-DP
algorithm to achieve an Õ(

√
T + ϵ−1T 1/3) regret bound for convex functions. Following the lazy OCO technique, Agarwal

et al. (2023) propose an improved (ϵ, δ)-DP algorithm that can reduce the dependence of the regret bound of Asi et al.
(2023b) on the dimensionality. Note that the original algorithm of Agarwal et al. (2023) requires the smoothness of functions,
which is removed by Agarwal et al. (2024) with careful modifications. Furthermore, Asi et al. (2024) consider the high
privacy regime with ϵ ≪ 1, and achieve the (ϵ, δ)-DP and Õ(

√
T + ϵ−2/3T 1/3) regret bound via the lazy OCO technique.

A.2. Projection-free Algorithms for OCO

The first projection-free OCO algorithm is proposed by Hazan & Kale (2012), which is called online conditional gradient
(OCG) and can achieve an O(T 3/4) regret bound. Following this work, there is a growing research interest in improving the
regret of projection-free OCO for special types of functions and decision sets (Garber & Hazan, 2016; Kretzu & Garber,
2021; Wan & Zhang, 2021; Levy & Krause, 2019; Hazan & Minasyan, 2020; Garber & Kretzu, 2022; 2023; Mhammedi,
2022). Among these works, the closest one to this paper is Wan & Zhang (2021), which develops a variant of OCG to
achieve an O(T 2/3) regret bound for strongly convex functions. Moreover, several projection-free algorithms have been
extended into the bandit setting (Chen et al., 2019; Garber & Kretzu, 2020; Kretzu & Garber, 2021; Zhang et al., 2024a),
where only the loss value is revealed to the learner, instead of the full-information of functions. Recently, there has also been
a surge of research interest in developing projection-free OCO algorithms for non-stationary environments (Kalhan et al.,
2021; Wan et al., 2021b; 2023; Zhou et al., 2023; Wang et al., 2024), in which the regret is replaced with two more suitable
metrics called adaptive regret and dynamic regret.

B. Additional Experimental Results
Note that these additional experiments are all conducted on the letter dataset. Moreover, we set ϵ = 10, n = 9, and use the
complete graph by default. As shown in Figure 3, we first compare the average loss of our PD-FTGL and PD-OCG with
different privacy levels, i.e., ϵ ∈ {2.5, 5, 10}. We find that our two algorithms perform better as the value of ϵ increases.
Moreover, compared with PD-FTGL, the average loss of PD-OCG varies less among different ϵ, which implies that the
privacy level has a weaker impact on PD-OCG. This is consistent with our theoretical results for convex functions, since the
privacy-dependent term in the regret bound of PD-FTGL is Õ(nϵ−1ρ1/4

√
T ) and that of PD-OCG is Õ(nϵ−1T 1/4). Then,

as shown in Figure 4, we compare the average loss of our algorithms with different network sizes, i.e., n ∈ {9, 16, 25}. As
the network size increases, the average losses of our two algorithms become slightly worse, which is consistent with the
dependence of our regret bounds on n.

Finally, we conduct experiments to verify the effect of different network topologies on our algorithms, including the complete
graph, cycle graph and Watts-Strogatz (abbr. ws) graph (Watts & Strogatz, 1998). Among these graphs, the complete graph
has the largest spectral gap ρ. In contrast, the cycle graph, where each local learner is connected to only two neighbors, has
the smallest ρ. The ws graph is generated by a random technique with tunable parameters including the average degree and
rewiring probability. We set the average degree of the graph to be 6 and the rewiring probability to be 0.5. As shown in
Figures 5(a) and 5(b), for the graph with larger ρ, the average loss of PD-FTGL becomes worse when ϵ = 10, but becomes
better when ϵ = 1000. These opposite effects are due to the fact that the Õ(n(ρ−1/4 + ϵ−1ρ1/4)

√
T ) regret of PD-FTGL is

dominant by Õ(nϵ−1ρ1/4
√
T ) and Õ(nρ−1/4

√
T ) for ϵ = 10 and ϵ = 1000, respectively. From Figures 5(c) and 5(d), the

average loss of PD-OCG is almost unaffected by the topology of graph for both values of ϵ, which is reasonable because the
regret bound of PD-OCG does not depend on ρ.
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Figure 3. Comparison of the average loss of our algorithms with different ϵ, where we use the complete graph with n = 9 nodes.
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Figure 4. Comparison of the average loss of our algorithms with ϵ = 10 and different n, where we use the complete graph.

C. Proof of Privacy Guarantee in Theorem 3.6
We define X = (X(1), . . . , X(T/L)), where X(z) = (x1(z), . . . ,xn(z)) for z ∈ [T/L]. For any variable x which is
generated under loss function sequence F , we use x′ to denote the same variable that is generated under F ′.

It is not hard to verify that

max
S⊂Kn×T/L

Pr [X ∈ S]
Pr [X ′ ∈ S]

= max
ξ∈Kn×T/L

Pr [X = ξ]

Pr [X ′ = ξ]

where ξ = (ξ(1), . . . , ξ(T/L)) with ξ(z) denoting any possible value of X(z).

Thus, to prove the (ϵ, 0)-DP guarantee of Algorithm 1, we only need to prove that

Pr [X = ξ]

Pr [X ′ = ξ]
=

T/L∏
z=1

Pr [X(z) = ξ(z) | X(1) = ξ(1), X(2) = ξ(2), X(3) = ξ(3), . . . , X(z − 1) = ξ(z − 1)]

Pr [X ′(z) = ξ(z) | X ′(1) = ξ(1), X ′(2) = ξ(2), X ′(3) = ξ(3), . . . , X ′(z − 1) = ξ(z − 1)]
≤ eϵ.

Specially, for z = 1 the decisions of all local learners are set to be 0, which is independent with loss function. As a result,
the privacy can not be leaked. For z ≥ 2, since each xi(z) depends on ẑi(z − 1), and ẑi(z − 1) is the combination of nodes
on the private binary tree in a specific form, according to lines 11 to 12 in Algorithm 2, we can say that all binary trees

14



Revisiting Differentially Private Algorithms for Decentralized Online Learning

� ����� ������ ������
���������	���������

����

����

����

����

����

����

��
��
��
��

�

��

��������������
��������
�����������

(a) PD-FTGL with ϵ = 10
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(b) PD-FTGL with ϵ = 1000
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(c) PD-OCG with ϵ = 10
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(d) PD-OCG with ϵ = 1000

Figure 5. Comparison of the average loss of our algorithms with different graphs, where we set n = 9.

maintained by the local learners jointly determine the decision set X . Note that in each block, each local learner operates on
the same nodes in its own private tree via Algorithm 2 in parallel. For brevity, we use m = ⌈log2(T/L−1)⌉ and label all the
nodes of a binary tree in an post-order traversal order as 1, . . . , 2m+1 − 1. Let ŝi(r) denote the noised value in the r-th node
of the binary tree maintained by learner i for any i ∈ [n] and r ∈ [2m+1 − 1]. We use Ŝ(r) = (ŝ1(r), . . . , ŝn(r)) to denote
the set of noised values at node position r on the privacy trees of all local learners i ∈ [n] and Ŝ = (Ŝ(1), . . . , Ŝ(2m+1− 1))
to denote the set of all nodes from all private trees B1, . . . , Bn. Moreover, let Υ = (Υ(1), . . . ,Υ(2m+1 − 1)) denote any
possible value of Ŝ, where Υ(r) = (ω1(r), . . . , ωn(r)) for any r ∈ [2m+1 − 1].

Due to the post-processing immunity theorem (Dwork et al., 2006), proving the (ϵ, 0)-DP property for Algorithm 1 can be
transferred to proving that

Pr
[
Ŝ = Υ

]
Pr
[
Ŝ′ = Υ

] =

2m+1−1∏
r=1

Pr
[
Ŝ(r) = Υ(r) | Ŝ(1) = Υ(1), . . . , Ŝ(r − 1) = Υ(r − 1)

]
Pr
[
Ŝ′(r) = Υ(r) | Ŝ′(1) = Υ(1), . . . , Ŝ′(r − 1) = Υ(r − 1)

] ≤ eϵ. (12)

Under the conditions Ŝ(1) = Υ(1), . . . , Ŝ(r − 1) = Υ(r − 1) and Ŝ′(1) = Υ(1), . . . , Ŝ′(r − 1) = Υ(r − 1), the local
decisions determined by the nodes from 1 to r − 1 are also fixed, as well as all leaf nodes among these nodes. Furthermore,
since the noise for each node of the binary tree for each local learner is independently sampled from the same Laplace
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distribution D, each factor in the above product satisfies

Pr
[
Ŝ(r) = Υ(r) | Ŝ(1) = Υ(1), . . . , Ŝ(r − 1) = Υ(r − 1)

]
Pr
[
Ŝ′(r) = Υ(r) | Ŝ′(1) = Υ(1), . . . , Ŝ′(r − 1) = Υ(r − 1)

]
=

Pr
[
ŝ1(r) = ω1(r), . . . , ŝn(r) = ωn(r) | Ŝ(1) = Υ(1), . . . , Ŝ(r − 1) = Υ(r − 1)

]
Pr
[
ŝ′1(r) = ω1(r), . . . , ŝ′n(r) = ωn(r) | Ŝ′(1) = Υ(1), . . . , Ŝ′(r − 1) = Υ(r − 1)

]
=

Pr
[
b1(r) = ω1(r)− s1(r), . . . ,bn(r) = ωn(r)− sn(r) | Ŝ(1) = Υ(1), . . . , Ŝ(r − 1) = Υ(r − 1)

]
Pr
[
b′
1(r) = ω1(r)− s′1(r), . . . ,b

′
n(r) = ωn(r)− s′n(r) | Ŝ′(1) = Υ(1), . . . , Ŝ′(r − 1) = Υ(r − 1)

]
=

pdf
[
b1(r) = ω1(r)− s1(r), . . . ,bn(r) = ωn(r)− sn(r) | Ŝ(1) = Υ(1), . . . , Ŝ(r − 1) = Υ(r − 1)

]
pdf
[
b′
1(r) = ω1(r)− s′1(r), . . . ,b

′
n(r) = ωn(r)− s′n(r) | Ŝ′(1) = Υ(1), . . . , Ŝ′(r − 1) = Υ(r − 1)

]

(13)

where bi(r) denotes the noise added in the r-th node of local learner i and si(r) denotes the original value of this node. The
second equality is due to lines 5 to 7 in Algorithm 2, which implies that ŝi(r) = si(r) + bi(r). Then, by substituting the
probability density function of D = Lapd(0, 6

√
dϵ−1(G+ αR)(2 + log2 T )), we have

pdf
[
b1(r) = ω1(r)− s1(r), . . . ,bn(r) = ωn(r)− sn(r) | Ŝ(1) = Υ(1), . . . , Ŝ(r − 1) = Υ(r − 1)

]
pdf
[
b′
1(r) = ω1(r)− s′1(r), . . . ,b

′
n(r) = ωn(r)− s′n(r) | Ŝ′(1) = Υ(1), . . . , Ŝ′(r − 1) = Υ(r − 1)

]
=

n∏
i=1

ϵ
12

√
d(G+αR)(2+log2 T )

exp
{
− ϵ∥ωi(r)−si(r)∥1

6
√
d(G+αR)(2+log2 T )

}
ϵ

12
√
d(G+αR)(2+log2 T )

exp
{
− ϵ∥ωi(r)−s′i(r)∥1

6
√
d(G+αR)(2+log2 T )

}
=

n∏
i=1

exp

{
ϵ (∥ωi(r)− s′i(r)∥1 − ∥ωi(r)− si(r)∥1)

6
√
d(G+ αR)(2 + log2 T )

}
≤

n∏
i=1

exp

{
ϵ∥s′i(r)− si(r)∥1

6
√
d(G+ αR)(2 + log2 T )

}
.

(14)

According to Algorithm 2, si(r) is the sum of the original value of all its descendant leaf nodes. Due to the definition of
DP, F and F ′ only differ in at most one local loss function. We assume they differ at the τ -th iteration for local learner
j and denote zτ as the block that time step τ is in. According to line 14 in Algorithm 1, wi(z − 1) = dL

i (z − 1) is the
original value of leaf nodes. Let the rτ -th node denote the leaf node that contains the noised version of dL

i (zτ − 1). Here,
we consider two cases.

1. Node rτ is not a descendant of node r : Since we compute the bound under the condition that all nodes 1 to r − 1 in
binary trees of all local learners are fixed, the local decisions of all local learners generated by these nodes are also the
same under F and F ′. Since the original values in descendant leaf nodes of r depend on a subset of these decisions
and the loss functions on the blocks of these leaf nodes are also the same under F and F ′, these original values are the
same as well, which implies that

∥s′i(r)− si(r)∥1 = 0.

2. Node rτ is a descendant of node r : The condition that the local decisions determined by nodes 1 to r − 1 are the same
still holds. However, since F and F ′ differ at iteration τ , the original value of rτ , i.e., dL

i (zτ ), differs between F and
F ′. Moreover, since loss functions on other time steps are the same in F and F ′, we have

∥s′i(r)− si(r)∥ = ∥dL′
i (zτ )− dL

i (zτ )∥ ≤ ∥dL′
i (zτ )− d̄′(zτ )∥+ ∥dL

i (zτ )− d̄(zτ )∥+ ∥d̄′(zτ )− d̄(zτ )∥. (15)

According to lines 9 to 10 in Algorithm 1, gradients on one block do not interfere with each other, which implies that

∥∥d̄′(zτ )− d̄(zτ )
∥∥ =

∥∥∥∥∥∥ 1n
n∑

i=1

∑
t∈Tzτ

((
∇f ′

t,i (xi(zτ ))− αx′
i(zτ )

)
− (∇ft,i (xi(zτ ))− αxi(zτ ))

)∥∥∥∥∥∥
≤ 1

n

∥∥∇f ′
τ,j(xj(zτ ))−∇fτ,j(xj(zτ ))

∥∥ ≤ 2G

n
.
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Then, by using Lemma D.3, we have

∥∥dL′
i (zτ )− d̄′(zτ )

∥∥+ ∥∥dL
i (zτ )− d̄(zτ )

∥∥ ≤ 4L(G+ αR)

nT
.

We naively bound the ℓ1-norm of a vector by ∥x∥1 ≤
√
d∥x∥ where d denotes the dimensionality of x. By substituting

the above bound of ∥d̄′(zτ )− d̄(zτ )∥ and the above inequality into (15), we finally have

∥s′i(r)− si(r)∥1 ≤
√
d

(
4L(G+ αR)

nT
+

2G

n

)
≤ 6

√
d(G+ αR)

n
.

By substituting the above bound of ∥s′i(r)− si(r)∥1 into (14), we can bound (13) by

Pr
[
Ŝ(r) = Υ(r) | Ŝ(1) = Υ(1), . . . , Ŝ(r − 1) = Υ(r − 1)

]
Pr
[
Ŝ′(r) = Υ(r) | Ŝ′(1) = Υ(1), . . . , Ŝ′(r − 1) = Υ(r − 1)

] ≤ exp

{
nϵ · 6

√
d(G+αR)

n

6
√
d(G+ αR)(2 + log2 T )

}
= e

ϵ
2+log2 T .

Now, we can obtain the bound for each factor in the product of (12) by substituting the above inequality into (13). Moreover,
since under the condition that when considering the node r for r ∈ [2m+1 − 1], noised value in nodes 1 to r − 1 are fixed,
a change in the value of a leaf node affects only its ancestor nodes, which total m + 1 nodes. Since the same position
nodes in the private trees maintained by each local learner are operated in the same block, changing one factor of the
product in (12) will only affect m+ 1 other factors, where m+ 1 is the number of layers in the binary tree. By substituting
m = ⌈log2(T/L− 1)⌉, we can finally prove the (ϵ, 0)-DP guarantee for Algorithm 1 by

Pr
[
Ŝ = Υ

]
Pr
[
Ŝ′ = Υ

] ≤
m+1∏
i=1

e
ϵ

2+log2 T ≤ eϵ.

D. Proof of the Regret Bound in Theorem 3.6
For any z ∈ [T/L], we define a virtual global decision as

ȳ(z) = argmin
x∈K

〈
z−1∑
τ=1

d̄(τ),x

〉
+

α(z − 1)L+ 2h

2
∥x∥2 (16)

where d̄(τ) = 1
n

∑n
i=1 di(τ). As in Lemma D.1, we first notice that if the local decision xi(z) is close to ȳ(z + 1), the

regret RT,i will be bounded well.

Lemma D.1. Suppose Assumptions 3.1, 3.2, 3.3, and 3.4 hold, and E [∥xi(z)− ȳ(z + 1)∥] ≤ Ξ(z) for any i ∈ [n] and
z ∈ [T/L], where Ξ(z) is related to z. Then, for any i ∈ [n], Algorithm 1 satisfies E[RT,i] ≤ 3nGL

∑T/L
z=1 Ξ(z) + nhR2.

Instead of directly bounding the distance between xi(z) and ȳ(z + 1), we further introduce an intermediate variable, i.e., a
non-private version of xi(z) defined as yi(1) = 0 and

yi(z) = argmin
x∈K

⟨zi(z − 1),x⟩+ α(z − 2)L+ 2h

2
∥x∥2

for z ≥ 2, where zi(z) =
∑z−1

τ=1 d
L
i (τ) are the non-private partial sum. Then, it is easy to verify that

E [∥xi(z)− ȳ(z + 1)∥] ≤ E [∥xi(z)− yi(z)∥] + ∥yi(z)− ȳ(z + 1)∥ . (17)

To bound E[∥xi(z)− yi(z)∥], we introduce the following lemma.

Lemma D.2. (Lemma 5 in Duchi et al. (2011)) Let ΠK(u, η) = argminx∈K ⟨u,x⟩+ η
2∥x∥

2. We have

∥ΠK(u, η)−ΠK(v, η)∥ ≤ 1

η
∥u− v∥.

17
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Let bi(r) denote the noise added for node r in the private tree of local learner i. Due to the variance of noise distribution D,
for any i ∈ [n] and r ∈

[
2⌈log2(T/L−1)⌉+1 − 1

]
, we have

E
[
∥bi(r)∥2

]
≤

d∑
p=1

2

(
6
√
d(G+ αR)(2 + log2 T )

ϵ

)2

= 72d

(√
d(G+ αR)(2 + log2 T )

ϵ

)2

.

Then, let Si denote the set of nodes selected to compute the private sum ẑi(z − 1). According to Algorithm 2, for any
i ∈ [n], we have |Si| ≤ ⌈log2(T/L− 1)⌉+ 1, because there is at most one node for each level of the private tree in the set
Si. Applying Lemma D.2 and combining the above inequality, for any i ∈ [n] and z ≥ 2, we have

E [∥xi(z)− yi(z)∥] ≤ E
[
∥ẑi(z − 1)− zi(z − 1)∥

α(z − 2)L+ 2h

]
≤
∑
r∈Si

E[∥bi(r)∥]
α(z − 2)L+ 2h

≤ 9d (G+ αR) (2 + log2 T )
2

ϵ(α(z − 2)L+ 2h)
. (18)

Next, we analyze the bound of ∥yi(z)− ȳ(z + 1)∥, which requires an additional lemma.

Lemma D.3. Let d̄(z) = 1
n

∑n
i=1 di(z). Under Assumptions 3.1, 3.2, 3.3, and 3.4, for any i ∈ [n] and z ∈ ⌈T/L⌉, when

setting parameters as in (7), Algorithm 1 ensures that∥∥dL
i (z)− d̄(z)

∥∥ ≤ 2L(G+ αR)

nT
. (19)

Applying Lemmas D.2 and D.3, for any z ≥ 2, we have

∥yi(z)− ȳ(z − 1)∥ ≤ 1

α(z − 2)L+ 2h

z−2∑
τ=1

∥∥dL
i (τ)− d̄(τ)

∥∥ ≤ 2(z − 2)L(G+ αR)

nT (α(z − 2)L+ 2h)
≤ 2(G+ αR)

n(α(z − 2)L+ 2h)
. (20)

Now, we still need to analyze ∥ȳ(z − 1) − ȳ(z + 1)∥. To this end, we define ℓz(x) =
〈
d̄(z),x

〉
+ αL

2 ∥x∥2 and
Jz(x) =

∑z
τ=1 ℓτ (x) + h∥x∥2 for any z ∈ [T/L]. It is easy to verify that the function Jz(x) is (αzL + 2h)-strongly

convex and ȳ(z + 1) = argminx∈K Jz(x).

Moreover, as proven by Hazan & Kale (2012), for any λ-strongly convex functions f(x) over the set K with x∗ =
argminx∈K f(x), it holds that

λ

2
∥x− x∗∥2 ≤ f(x)− f(x∗), ∀x ∈ K. (21)

Combining (21) with the strong convexity of Jz(x), for any 1 ≤ z′ ≤ z, we have

∥ȳ(z′)− ȳ(z + 1)∥2 ≤ 2

αzL+ 2h
(Jz(ȳ(z

′))− Jz(ȳ(z + 1)))

=
2

αzL+ 2h
(Jz′−1(ȳ(z

′))− Jz′−1(ȳ(z + 1))) +
2

αzL+ 2h

z∑
τ=z′−1

(ℓτ (ȳ(z
′))− ℓτ (ȳ(z + 1)))

≤ 2

αzL+ 2h

z∑
τ=z′−1

(ℓτ (ȳ(z
′))− ℓτ (ȳ(z + 1))) .

Additionally, for any z ≥ 1, it is easy to verify that

|ℓz(x)− ℓz(y)| ≤| ⟨∇ℓz(x),x− y⟩ | ≤ ∥∇ℓz(x)∥ ∥x− y∥ ≤
∥∥d̄(z − 1) + αLx

∥∥ ∥x− y∥

≤

(
1

n

n∑
i=1

∥di(z − 1)∥+ αL∥x∥

)
∥x− y∥ ≤ L(G+ 2αR) ∥x− y∥

where the last inequality is due to the following inequality derived under Assumptions 3.1 and 3.2

max
i∈[n]

∥di(z)∥ = max
i∈[n]

∥∥∥∥∥∑
t∈Tz

(∇ft,i (xi(z))− αxi(z))

∥∥∥∥∥ ≤ max
i∈[n]

∑
t∈Tz

(∥∇ft,i (xi(z))∥+ α ∥xi(z)∥) ≤ L(G+ αR). (22)

18
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Then, for any 1 ≤ z′ ≤ z, we have

∥ȳ(z′)− ȳ(z + 1)∥ ≤ 2

αzL+ 2h
L(z − z′ + 1)(G+ 2αR). (23)

Combining (18), (20) and the above inequality, for z ≥ 2, we have

E [∥xi(z)− yi(z)∥+ ∥yi(z)− ȳ(z + 1)∥] ≤ 2(G+ αR)

n(α(z − 2)L+ 2h)
+

9d (G+ αR) (2 + log2 T )
2

ϵα(z − 2)L+ 2h
+

4L(G+ 2αR)

αzL+ 2h
.

For z = 1, due to xi(1) = yi(1) = ȳ(1) = 0, we have

E [∥xi(1)− yi(1)∥+ ∥yi(1)− ȳ(2)∥] ≤ 2L(G+ 2αR)

αL+ 2h
.

Finally, we can derive the regret bound in Theorem 3.6 by first substituting the above two inequalities into (17) and then
using Lemma D.1.

E. Proof of Lemma D.1
According to Assumptions 3.2 and 3.3, for any x ∈ K, it is not hard to verify that

ft,j(xi(z))− ft,j(x)

≤ft,j(xj(z))− ft,j(x) +G ∥xj(z)− xi(z)∥

≤ ⟨∇ft,j(xj(z)),xj(z)− x⟩ − α

2
∥xj(z)− x∥2 +G ∥xj(z)− xi(z)∥

≤ ⟨∇ft,j(xj(z)), ȳ(z + 1)− x⟩ − α

2
∥xj(z)− x∥2 + ⟨∇ft,j(xj(z)),xj(z)− ȳ(z + 1)⟩

+G ∥xj(z)− ȳ(z + 1) + ȳ(z + 1)− xi(z)∥

≤ ⟨∇ft,j(xj(z)), ȳ(z + 1)− x⟩ − α

2
∥xj(z)− x∥2 + 2G ∥xj(z)− ȳ(z + 1)∥+G ∥xi(z)− ȳ(z + 1)∥ .

(24)

Recall that we suppose for any i ∈ [n] and z ∈ [T/L], there exists a Ξ(z) such that E [∥xi(z)− ȳ(z + 1)∥] ≤ Ξ(z). Then,
we have

E [ft,j(xi(z))− ft,j(x)] ≤ ⟨∇ft,j(xj(z)), ȳ(z + 1)− x⟩ − α

2
∥xj(z)− x∥2 + 3GΞ(z).

Furthermore, we notice that

∥xj(z)− x∥2 = ∥xj(z)− ȳ(z + 1)∥2 + 2 ⟨xj(z)− ȳ(z + 1), ȳ(z + 1)− x⟩+ ∥ȳ(z + 1)− x∥2

= ∥xj(z)− ȳ(z + 1)∥2 + 2 ⟨xj(z), ȳ(z + 1)− x⟩+ ∥x∥2 − ∥ȳ(z + 1)∥2

≥ 2 ⟨xj(z), ȳ(z + 1)− x⟩+ ∥x∥2 − ∥ȳ(z + 1)∥2.

(25)

Combining the above two inequalities, for any z ≥ 1 and x ∈ K, we have

E [ft,j(xi(z))− ft,j(x)] ≤ ⟨∇ft,j(xj(z))− αxj(z), ȳ(z + 1)− x⟩ − α

2

(
∥x∥2 − ∥ȳ(z + 1)∥2

)
+ 3GΞ(z).

By summing up the above inequality overall T iterations and n local learners, for any x ∈ K, we have

E[RT,i] = E

T/L∑
z=1

∑
t∈Tz

n∑
j=1

(ft,j(xi(z))− ft,j(x))


≤

T/L∑
z=1

∑
t∈Tz

n∑
j=1

(
⟨∇ft,j(xj(z))− αxj(z), ȳ(z + 1)− x⟩ − α

2

(
∥x∥2 − ∥ȳ(z + 1)∥2

))
+

T/L∑
z=1

∑
t∈Tz

n∑
j=1

3GΞ(z)

≤n

T/L∑
z=1

(〈
d̄(z), ȳ(z + 1)− x

〉
+

αL

2

(
∥ȳ(z + 1)∥2 − ∥x∥2

))
+ 3nLG

T/L∑
z=1

Ξ(z).

(26)

To bound the first term in the right side of (26), we introduce the following lemma.
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Lemma E.1. (Lemma 6.6 in Garber & Hazan (2016)) Let {ft(x)}Tt=1 be a sequence of functions and x∗
t ∈

argminx∈K
∑t

τ=1 fτ (x) for all t ∈ [T ]. Then, it holds that

T∑
t=1

ft(x
∗
t )−min

x∈K

T∑
t=1

ft(x) ≤ 0.

Let ℓ0(x) = h∥x∥2 and ℓz(x) =
〈
d̄(z),x

〉
+ αL

2 ∥x∥2 for any z ∈ [T/L]. Then, for any x ∈ K, it is easy to verify that

T/L∑
z=1

(〈
d̄(z), ȳ(z + 1)− x

〉
+

αL

2

(
∥ȳ(z + 1)∥2 − ∥x∥2

))

=

T/L∑
z=1

(ℓz(ȳ(z + 1)− ℓz(x)) ≤ h∥x∥2 − h∥ȳ(z + 1)∥2 ≤ hR2

(27)

where the first inequality is due to Lemma E.1 and ȳ(z + 1) = argminx∈K
∑z

τ=0 ℓτ (x). Finally, we complete this proof by
substituting (27) into (26).

F. Proof of Lemma D.3
Let Hk = [dk

1(z)
⊤;dk

2(z)
⊤; . . . ;dk

n(z)
⊤] ∈ Rn×d for k = 0, . . . , L and H−1 = H0. According to (5), it is easy to verify

that
Hk+1 = (1 + θ)PHk − θHk−1 for k = 0, . . . , L− 1. (28)

Moreover, according to the convergence property of the accelerated gossip strategy, we have the following lemma.
Lemma F.1. (Proposition 1 in Ye et al. (2023)) Under Assumption 3.4, the iterations of (28) with θ = (1+

√
1− σ2

2(P ))−1

ensure that ∥∥HL − H̄
∥∥
F
≤

√
14

(
1−

(
1− 1√

2

)√
1− σ2(P )

)L ∥∥H0 − H̄
∥∥
F

where H̄ = 1
n11

⊤H0 and ∥ · ∥F denotes the Frobenius norm.

Note that 1
n11

⊤H0 = [d̄(z)⊤; d̄(z)⊤; . . . ; d̄(z)⊤]. From Lemma F.1, we have

∥∥dL
i (z)− d̄(z)

∥∥ ≤ ∥HL − 1

n
11⊤H0∥F ≤

√
14

(
1−

(
1− 1√

2

)√
1− σ2(P )

)L ∥∥∥∥H0 − 1

n
11⊤H0

∥∥∥∥
F

≤ 2
√
14

(
1−

(
1− 1√

2

)√
1− σ2(P )

)L

∥H0∥F

= 2
√
14

(
1−

(
1− 1√

2

)√
1− σ2(P )

)L
√√√√ n∑

i=1

∥d0
i (z)∥2.

Let c = 1− 1√
2

. Due to L =
⌈
4 ln(nT

√
14n)/

√
ρ
⌉

and c−1 < 4, it is not hard to verify that

(
1− c

√
1− σ2(P )

)L
≤
(
1− c

√
1− σ2(P )

) 4 ln(nT
√

14n)√
1−σ2(P ) ≤

(
1− c

√
1− σ2(P )

) ln(nT
√

14n)

c
√

1−σ2(P )

≤
(
1− c

√
1− σ2(P )

) ln(nT
√

14n)

ln(1−c
√

1−σ2(P ))
−1

=
1

nT
√
14n

where the first inequality is due to 1− c
√
1− σ2(P ) < 1 and the second inequality is due to lnx−1 ≥ 1− x for any x > 0.

Combining the above two inequalities, we can finally derive the lemma as∥∥dL
i (z)− d̄(z)

∥∥ ≤
2
√
14
∑n

i=1 ∥di(z)∥2

nT
√
14n

≤
2maxi∈[n] ∥di(z)∥

nT
≤ 2L(G+ αR)

nT

where the last inequality is due to (22).
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G. Proof of Corollaries 3.7 and 3.8
For Corollary 3.7, by substituting α > 0 and h = G

√
14LT (2 + log2 T )/R into (8), we have

E[RT,i] ≤ 4nGR
√
LT (2 + log2 T ) + nL

T/L∑
z=1

2GR
√
L√

T (2 + log2 T )

+ nL

T/L∑
z=2

(
4dGR(2 + log2 T )

3/2

ϵ
√
TL

+
GR

n
√
LT (2 + log2 T )

)

≤ 7nGR
√
LT (2 + log2 T ) +

4ndGR(2 + log2 T )
3/2

√
T

ϵ
√
L

.

Similarly, for Corollary 3.8, we substitute α > 0 and h = αL into (8) and obtain that

E[RT,i] ≤ nαLR2 + nL

T/L∑
z=1

12G(G+ 2αR)

α(z + 2)
+ nL

T/L∑
z=2

(
27dG (G+ αR) (2 + log2 T )

2

αϵzL
+

6G(G+ αR)

nαzL

)
≤ nαLR2 +

12nGL(G+ 2αR) (1 + ln(T/L))

α

+
27ndG (G+ αR) (2 + log2 T )

2 (1 + ln(T/L))

αϵ
+

6nG(G+ αR) (1 + ln(T/L))

nα

≤ 24nGL(G+ 2αR) (1 + ln(T/L))

α
+

27nd(G+ 2αR) (2 + log2 T )
3

αϵ
+ nαLR2.

H. Proof of Theorem 3.9
Since the operation of CG does not introduce any additional sensitive data, the (ϵ, 0)-DP guarantee of Theorem 3.9 can be
proved in the same way as that of Theorem 3.6 in the Appendix C. Therefore, here we only prove the regret guarantee in
Theorem 3.9. For z ≥ 3, we define

x∗
i (z) = argmin

x∈K
Fz−1,i(x) = argmin

x∈K
⟨ẑi(z − 2),x⟩+ α(z − 3)L+ 2h

2
∥x∥2.

For z = 1 and z = 2, we set x∗
i (z) = 0. Thus, when z = 1 and z = 2, we have ∥xi(z)− x∗

i (z)∥ = 0. For z ≥ 3, since it is
easy to verify that Fz−1,i(x) is (α(z − 3)L+ 2h)-strongly convex, we have

∥xi(z)− x∗
i (z)∥

2 ≤ 2

α(z − 3)L+ 2h
(Fz−1(xi(z))− Fz−1(x

∗
i (z))) .

To bound the approximation error of linear optimization steps in CG, we introduce the definition of smooth functions and a
lemma about the convergence rate of CG.
Definition H.1. A function f(x) : K → R is called β-smooth over K, if it holds that f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+
β
2 ∥x− y∥2 for any x,y ∈ K.
Lemma H.2. (Derived from Theorem 1 in Jaggi (2013)) If function F (x) : K → R is convex and β-smooth, and ∥x∥ ≤ R
holds for any x ∈ K, Algorithm 4 ensures F (xL)−minx∈K F (x) ≤ 8βR2/(L+ 2).

By utilizing Lemma H.2 and the fact that Fz−1(x) is (α(z − 3)L+ 2h)-smooth, we have

∥xi(z)− x∗
i (z)∥ ≤

√
2 (Fz−1(xi(z))− Fz−1(x∗

i (z)))

α(z − 3)L+ 2h
≤ 4R√

L
. (29)

Then, similar to the analysis in Appendix D, we set zi(1) = 0 and zi(z) =
∑z−1

τ=1 d
L′

i (τ) for z ≥ 2. Moreover, we define
yi(1) = yi(2) = 0 and for z ≥ 3,

yi(z) = argmin
x∈K

⟨zi(z − 2),x⟩+ α(z − 3)L+ 2h

2
∥x∥2.
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Therefore, for z = 1 and z = 2, it holds that ∥x∗
i (z)− yi(z)∥ = 0. For z ≥ 3, similar to (18) in Appendix D, it is easy to

verify that

E [∥x∗
i (z)− yi(z)∥] ≤

9d (G+ αR) (2 + log2 T )
2

ϵ (α(z − 3)L+ 2h)
. (30)

Next, following the analysis in Appendix D, we reuse the definition of ȳ(z) in (16). Note that the value of L′ in (10) is the
same as the value of L in (7). Therefore, according to the proof of Lemma D.3, it is easy to verify that

∥∥∥dL′

i (τ)− d̄(τ)
∥∥∥ for

Algorithm 3 also enjoys the same upper bound as in (19) of Lemma D.3. By further combining with Lemma D.2, for z ≥ 3,
we have

∥yi(z)− ȳ(z − 2)∥ ≤ 1

α(z − 3)L+ 2h

z−3∑
τ=1

∥∥∥dL′

i (τ)− d̄(τ)
∥∥∥ ≤ 2(z − 3)L(G+ αR)

nT (α(z − 3)L+ 2h)
≤ 2(G+ αR)

n (α(z − 3)L+ 2h)
. (31)

Note that (23) in Appendix D also holds for Algorithm 3. Combining (31) and (23), for z ≥ 3, we have

∥yi(z)− ȳ(z + 1)∥ ≤∥yi(z)− ȳ(z − 2)∥+ ∥ȳ(z − 2)− ȳ(z + 1)∥ ≤ 2(G+ αR)

n (α(z − 3)L+ 2h)
+

6L(G+ 2αR)

αzL+ 2h
. (32)

For z = 1 and z = 2, since yi(1) = yi(2) = ȳ(1) = 0, we have

∥yi(1)− ȳ(2)∥ = ∥ȳ(1)− ȳ(2)∥ ≤ 2L(G+ 2αR)

αL+ 2h
, ∥yi(2)− ȳ(3)∥ = ∥ȳ(1)− ȳ(3)∥ ≤ 4L(G+ 2αR)

αL+ 2h
(33)

where the two inequalities are due to (23).

Combining (24), (25), (29), (30), and (32), for any z ≥ 3 and x ∈ K, we have

E [ft,j(xi(z))− ft,j(x)]

≤⟨∇ft,j(xj(z))− αxj(z), ȳ(z + 1)− x⟩ − α

2

(
∥x∥2 − ∥ȳ(z + 1)∥2

)
+ 2GE

[∥∥xj(z)− x∗
j (z)

∥∥]+GE [∥xi(z)− x∗
i (z)∥] + 2G

∥∥x∗
j (z)− yj(z)

∥∥+G ∥x∗
i (z)− yi(z)∥

+ 2G ∥yj(z)− ȳ(z + 1)∥+G ∥yi(z)− ȳ(z + 1)∥

≤ ⟨∇ft,j(xj(z))− αxj(z), ȳ(z + 1)− x⟩ − α

2

(
∥x∥2 − ∥ȳ(z + 1)∥2

)
+

12GR√
L

+
27dG (G+ αR) (log2 T + 2) log2 T

ϵ (α(z − 3)L+ 2h)
+

6G(G+ αR)

n (α(z − 3)L+ 2h)
+

18GL(G+ 2αR)

αzL+ 2h
.

For z = 1 and z = 2, similar to the above inequality, we can utilize (33) and xi(z) = x∗
i (z) = yi(z) = 0 to show that

ft,j(xi(z))− ft,j(x) ≤ ⟨∇ft,j(xj(z))− αxj(z), ȳ(z + 1)− x⟩ − α

2

(
∥x∥2 − ∥ȳ(z + 1)∥2

)
+

12GL(G+ 2αR)

αL+ 2h
.

Then, by summing up overall T iterations and n local learners, we have

E

T/L∑
z=1

∑
t∈Tz

n∑
j=1

(ft,j(xi(z))− ft,j(x))


≤

T/L∑
z=1

∑
t∈Tz

n∑
j=1

(
⟨∇ft,j(xj(z))− αxj(z), ȳ(z + 1)− x⟩ − α

2

(
∥x∥2 − ∥ȳ(z + 1)∥2

))
+

24nGL2(G+ 2αR)

αL+ 2h

+ nL

T/L∑
z=3

(
12GR√

L
+

27dG (G+ αR) (2 + log2 T )
2

ϵ (α(z − 3)L+ 2h)
+

6G(G+ αR)

n (α(z − 3)L+ 2h)
+

18GL(G+ 2αR)

αzL+ 2h

)

≤n

T/L∑
z=1

(〈
d̄(z), ȳ(z + 1)− x

〉
+

αL

2

(
∥ȳ(z + 1)∥2 − ∥x∥2

))
+ nL

T/L∑
z=1

24GL(G+ 2αR)

αzL+ 2h

+ nL

T/L∑
z=3

(
12GR√

L
+

27dG (G+ αR) (2 + log2 T )
2

ϵ (α(z − 3)L+ 2h)
+

6G(G+ αR)

n (α(z − 3)L+ 2h)

)
.

(34)

Note that (27) in the proof of Lemma D.1 still holds here. It is easy to complete this proof by substituting (27) into (34).
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I. Proof of Corollaries 3.10 and 3.11
For Corollary 3.10, by substituting α = 0, h =

√
15LTG/R and L =

√
T into (11), we have

E[RT,i] ≤ 4nGRT 3/4 +

T∑
t=1

4nGR

T 1/4
+ n

T∑
t=1

(
12GR

T 1/4
+

4dGR(2 + log2 T )
2

ϵT 3/4
+

GR

nT 3/4

)
.

≤ 21nGRT 3/4 +
4ndGRT 1/4 (2 + log2 T )

2

ϵ
.

For Corollary 3.11, we set α > 0, h = αL and L = T 2/3(ln−2/3 T ) into (11), and obtain that

E[RT,i] ≤ nαR2T 2/3 ln−2/3 T + n

T/L∑
z=1

24G(G+ 2αR)T 2/3 ln−2/3 T

α(z + 1)
+ 12nGRT 2/3 ln2/3 T

+ n

T/L∑
z=3

(
27dG (G+ αR) (2 + log2 T ) log2 T

αϵ(z − 1)
+

6G(G+ αR)

nα(z − 1)

)

≤ nαR2T 2/3 ln−2/3 T +
24nGL(G+ 2αR)T 2/3

(
ln−2/3 T + ln1/3 T

)
α

+ 12nGRT 2/3 ln2/3 T

+

(
27dG (G+ αR) (2 + log2 T ) (1 + ln(T/L)) log2 T

αϵ
+

6G(G+ αR) (1 + ln(T/L))

nα

)

≤
36nGT 2/3

(
ln−2/3 T + ln1/3 T

)
(G+ 2αR)

α
+ nαR2T 2/3 ln−2/3 T

+ 12nGRT 2/3 ln2/3 T +
27ndG(G+ αR) (2 + log2 T )

3

αϵ
.
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