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Abstract—Achieving unified multi-robot coordination and mo-
tion planning in complex, off-road or rugged urban environments
is a challenging problem. In this paper, we present a hierarchical
approach for minimizing visibility and maximizing safety with a
multi-robot team navigating through a hazardous environment.
In particular, our approach first segments the environment based
on the visibility of the robot team from an adversarial observer’s
perspective, creates a topological graph, and computes an optimal
multi-robot plan on that graph using mixed-integer programming
(MIP). This visibility information also informs the lower layers
of the autonomy stack to achieve dynamically feasible multi-
robot planning across the hierarchy. We then demonstrate our
approach in simulation in an off-road environment with multiple
vehicles and on hardware in a rugged urban environment with
a single autonomous Clearpath Warthog. We also discuss future
plans for hardware demonstrations of multi-vehicle operations
in off-road environments and the incorporation of learning to
compensate for additional environmental complexities.

I. INTRODUCTION

Intelligent planning for collaborative multi-robot teams in
complex environments remains a fundamental research prob-
lem. Even when restricted to discrete actions and states, the
multi-robot Markov decision process can quickly become
computationally intractable [1]. This situation is further ex-
acerbated when robot teams must reason about continuous-
time dynamics, dynamic obstacles, and complex off-road
conditions. In this paper, we discuss our approach, Strati-
fied Topological Autonomy with Learned Contexts (STALC),
which seeks to develop a unified framework for coordinated
motion planning with multi-robot teams. In particular, our
approach seeks to solve the problem of minimizing detection
and risk when traversing through a potentially hazardous
environment. To do this, we develop a hierarchical planning
approach that consists of three primary levels– a high-level
multi-robot graph planner, a mid-level planner for designing
low-visibility paths between nodes, and a low-level planner
for generating dynamically feasible, collision free paths. Our
approach also investigates the use of supervised learning to
construct local visibility maps to improve the fidelity of low-
visibility navigation for the local planner in complex terrains.
To evaluate the effectiveness of our approach, we test our
planner in a simulated off-road environment with multiple
vehicles and in hardware in a rugged urban environment
with a single ground vehicle. In simulation, we show that
our planning approach can effectively navigate a team of
robots through a complex off-road forested environment. In
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Fig. 1. (Top) Multiple Clearpath Warthogs executing coordinated maneuvers
in an off-road environment. (Bottom) Clearpath Warthog navigating an urban
environment while reducing visibility for a reconnaissance mission.

hardware, we show that we can achieve unified minimum-
visibility planning in an environment with a single vehicle.
We also discuss our plans for hardware testing in off-road
environments with multiple vehicles. Fig. 1 depicts both our
off-road simulation experiments and our hardware experiments
in an urban environment with a Clearpath Warthog.

II. RELATED WORK

To address the challenges associated with multi-robot plan-
ning in complex environments, researchers have often focused
on solving the coordination and motion-planning problems
independently [2], [3], without giving significant attention to
the interactions between the two.

A. Multi-Robot Coordination
For many years, researchers have considered the problem

of multi-robot coordination or task allocation. Oftentimes,
solutions formulate the problem space as a set of discrete
actions and states [4]–[8]. This includes Conflict Based Search
(CBS) methods [9], auction-based methods [10] and game
theoretic approaches [11]. However, many of these approaches
consider agents independently, ultimately ignoring interactions
and cooperation between vehicles. Vehicle interactions can
cause the decision space of the problem to grow exponentially,
which leads many researchers to consider decomposing the
problem into smaller local problems, such as in this game
theoretic approach [12]. Machine Learning (ML) approaches,
often using Graph Neural Networks [13], [14], emerge as a
way to solve the entire problem end-to-end while considering
agent interactions [15] and coordination [16], [17]. However,



ML approaches often suffer from poor generalization to en-
vironments that were not included in the training distribution
and are categorically unable to provide optimality guarantees.

Mixed-Integer Programming (MIP) enables solving for end-
to-end optimal solutions and has been studied across a va-
riety of fields including recharging or timed delivery [18],
[19], scheduling and task allocation [20], and communication
provisioning [21]. However, MIP is NP-complete, leading
many approaches to require simplifying heuristics [22] and/or
offline computation for optimal solutions [23]. In this work,
we overcome many of the computational challenges through
a compact multi-agent planning formulation, and we present
results rapidly solving end-to-end for optimal solutions.

B. Multi-Robot Motion Planning
Many researchers have also explored multi-robot motion

planning in the context of obstacle avoidance or formation
control. For instance, [24] uses MIP and minimum snap
trajectories to design collision-free robot trajectories using a
GPU. [25] generates a modified version of A∗ to handle inter-
robot constraints. In [26], [27], the authors explore methods for
multi-vehicle formation control in the presence of obstacles.

C. Unified Approaches
Over the years, fewer researchers have attempted to provide

a unified approach for coordination and control (e.g., [28]–
[31]). In many cases, even the examples that attempt to
address the area of simultaneous multi-robot coordination
and motion planning operate on incredibly simplified and
structured environments. In this paper, we propose a unified
approach for multi-robot coordination and motion panning
where our high-level topological graph encodes information
about the underlying metric spaces.

III. PROBLEM FORMULATION

Our objective is solve for a plan for a multi-robot team that
minimizes robot team visibility and maximizes safety in an
adversarial environment. More specifically, we aim to avoid
line-of-sight observations by a static adversary in such a way
that we proceed tactically from one cover region to another.
In addition to minimizing overall visibility, we introduce three
foundational robot coordination constructs that we define as
methods to reduce the risk of traversing a path:

• Overwatch: One team at a protected vantage point over-
sees the movement of a traversing team to mitigate risk.

• Formations: In areas of high vulnerability, moving in a
formation increases awareness of the team.

• Teaming: Moving as a team in general can provide a
higher level of protection to the robots.

We relegate team coordination to planning on a high-level
graph, while minimizing visibility and maintaining formation
is managed by mid-range and low-level planners, respectively.

IV. TECHNICAL APPROACH

Our technical approach consists of a three-level planning
hierarchy including a top-level graph-based planner capable
of coordinating multi-robot teams while traversing a hazardous

environment. Our mid-level planner leverages a visibility map
and A∗ to plan minimally visible paths between the graph’s
nodes. At the lowest-level, we utilize MPPI [32] to generate
local plans, avoid obstacles, and follow the mid-range plan.
All three levels share visibility and terrain maps to maintain
consistent planning across the hierarchy.

A. Visibility Map
To enable low-visibility planning for the multi-robot team,

we construct a visibility map which is used by all three layers
of the hierarchy. We begin by assuming prior knowledge of
a digital elevation model (DEM) of the environment together
with a probability distribution, D, over R3 representing the
expected observer position. We make no assumptions about
the form of D except that we are able to sample from it.

For a given DEM and observer distribution, we first seg-
ment the environment into regions of low and high visibility
from the perspective of the observer. We accomplish this by
adapting the notion of a viewshed [33] to the context of a
distribution over observer positions. The viewshed of an area
is a binary mask marking the regions of a DEM that are visible
from a given observer position. Our goal is to estimate the
probability that each point in the environment can be seen by
the observer.

Taking N samples d ∼ D from the adversary distribution,
we compute a viewshed Vd for each sample. Discretizing
the environment into a 2D grid, for each point (x, y) in the
environment, the visibility probability is the expectation over
the viewsheds from the sampled adversary positions. We refer
to the map containing the probability of being seen at each
point as the visibility map, and write Pvis.

Ed∈D[Vd(x, y)] ≈
∑N

i=0 Vd(x, y)

N
= Pvis(x, y) (1)

B. Environment Segmentation
In order to construct a topological graph for planning, we

use the visibility map to compute a set of nodes, V , and edges,
E, together with a score for the visibility of each edge We also
compute an overwatch score for each node, edge pair (vi, ej),
denoting the overwatch that a team of robots positioned at
node i can provide for a team of robots traversing edge j.

1) Node Selection: To identify the regions of low visibility
(which we call cover regions) from the visibility map, we
threshold the map to extract regions below a pre-defined
visibility cutoff (nominally 0.1) and perform a connected-
components search to find discrete regions whose size exceeds
a threshold value. The nodes of the topological graph are
placed at the centroid of each cover region.

2) Graph Pruning & Edge Weight Calculation: Next, we
compute the set of graph edges and their costs to traverse. Ini-
tially, we consider the topological graph to be fully-connected.
In order to reduce the number of edges considered in the
optimization, we prune the graph by eliminating redundant
edges. A redundant edge is any edge e connecting node vi to
node vj where the optimal path from vi to vj passes through
a cover region associated with another node vk /∈ {vi, vj}.

When traversing a path, S = {s1, s2, ..., sn}, si = [xi, yi]
T ,

through the environment, we consider the total probability of



non-detection, pnd, as the product of the probabilities of non-
detection at each cell (assuming independence).

pnd =
∏
s∈S

(1− Pvis(s)) (2)

Taking the negative log of this quantity, we find that we can
compute negative log non-detection probability by summing
the contributions of each cell along the path.

− log(pnd) =
∑
s∈S

− log(1− Pvis(s)) (3)

As the probability of detection approaches one, the cost to
traverse a cell approaches infinity. In order to avoid infinite
values in the optimization problem, we bound the maximum
probability of detection at each cell to 1−ϵ (for a small positive
ϵ). We call the map containing the negative log non-detection
probabilities at each cell Nvis.

To identify redundant edges and compute the edge weights
for the graph, we use an optimal path planning algorithm to
compute a path between each pair of nodes in the graph. In
this work we use a standard A∗ planner where the heuristic
cost, h(s), is the Euclidean distance from the current position
to the goal, g(s) denotes the cost to follow the optimal path
from the start to s, and the successor cost, c(s, s′), is the
cost to go from a cell in the map to a neighbor, with terms
incorporating both the distance and the detection probability.

c(s, s′) = ||s− s′||(1 + λpNvis(s
′)) (4)

g(s′) = g(s) + c(s, s′) (5)

In (4), λp is a scaling factor weighting the contribution of
the visibility cost. Since the true cost-to-go is equal to the
heuristic cost plus a non-negative visibility term, the heuristic
h(s) is trivially admissible.

After computing a path between each pair of nodes, we
eliminate those paths (and their corresponding edges in the
graph) that pass through a cover region which is not their
start or goal. Finally, we compute the weight for each edge that
remained after the pruning step described above by considering
the optimal path Se.

we =
∑
s∈Se

Nvis(s) (6)

3) Overwatch: An overwatch opportunity represents the
ability of a team of robots positioned in a cover region to
provide support to another team as they traverse an edge in
the graph. For each node, edge pair, (vi, ej), we compute
an overwatch score, which quantifies the visibility of edge
ej from node vi. The process of computing this overwatch
score is very similar to the visibility map calculation; however,
instead of sampling from the adversary distribution, we instead
sample uniformly from the cover region associated with vi to
produce the visibility map for an observer located at node
vi, which we call the overwatch map, Ovi . We then apply
equations (3), (6) to Ovi to compute the overwatch score for
each edge in the graph.

Fig. 2. (Left) View from four cameras oriented along the body-frame axes on
an autonomous ground vehicle. (Right) Output of the learned visibility map
(bottom) compared against the ground truth (top).

C. Graph Planner

We encode the dynamic topological graph structure in a MIP
problem by tracking the number of agents at each location
(node or edge) and constraining the flow between nodes and
edges to enforce movement on the graph. We define cost
functions for for the cost of traversing (based on the edge
weights on the graph), the cost reduction from overwatch, and
a cost for time. Overall, we minimize these cost functions in
order to reduce visibility and the time to complete a particular
objective. Our cost functions depend the positions of the robots
relative to their teammates and reflect the dynamic element of
the topological graphs, i.e. the cost of traversing decreases
when the conditions for overwatch, moving in formation, or
other general teaming are met. Further implementation details
of this approach are presented in [34].

D. Mid-Level Planner

When navigating between two nodes in the graph, we utilize
a mid-level planner to generate a minimally visible path to
follow. Our mid-level planner queries the graph pruner for
the precomputed A∗ path between the two nodes. The path is
truncated based on the robot’s current position, then passed to
the low level planner.

E. Low Level Planner

To avoid obstacles, which may not exist in the global map,
and to generate dynamically feasible trajectories, we leverage
a local planner. In particular, we use MPPI [32], and design
a set of cost-functions to enable following of the minimal-
visibility A∗ paths as well as maintaining formations between
vehicles. We not only specify the position in the formation for
each vehicle, but we also share receding-horizon trajectories
among the team to enable predictive collision avoidance.

F. Learned Visibility Map

While the A∗ paths generated from the DEM provide a
good approximate path for minimizing visibility, teams will
necessarily need to traverse visible areas when traveling be-
tween cover regions, or to deviate from the planned path while
avoiding previously unknown obstacles or non-traversible ter-
rain. In order to minimize visibility during these periods, we
are also developing a learned perception model using image
data from the onboard cameras to predict a local visibility map
for each robot. This enables the incorporation of information
about new sources of cover, such as buildings or vegetation,



(a) Meadow environment [35] (b) Visibility map

(c) Pruned A∗ paths (d) Node 1 overwatch visibility (e) Dynamic topological graph (f) Robot team path solution

Fig. 3. Sequential steps in our method for a simulated meadows environment, as seen in (a). In (b), we generate a visibility map to segment the regions
of cover (outlined in red). The observer’s hilltop location is indicated by the green covariance ellipse. We then generate A∗ paths between these regions of
cover and prune the edges between nodes based on these paths, as seen in blue in (c). For each node we generate visibility maps for overwatch, (d) shows an
example for node 1. Using this information, we form our dynamic topological map in (e). Overwatch opportunities are indicated from the overwatch nodes to
edges that can be observed with pink arrows. We then use MIP to solve for paths for each robot in the team through this graph, shown in (f). A robot team
of 3 starts at node 3 with the objective of at least one agent reaching node 5 while minimizing visibility through overwatch and teaming.

(a) A∗ Path with LIDAR detections (b) Step 1 (c) Step 2 (d) Step 3

(e) Step 4 (f) Step 5 (g) Step 6 (h) Step 7

Fig. 4. Clearpath Warthog following A∗ paths to minimize visibility to potential observers while navigating between regions of cover.

into the local planner when such features do not appear in
the DEM. We train the local visibility map predictor using
virtual camera views from a simulation environment. Virtual
cameras are placed in concentric rings facing inwards toward
the robot, and the visibility of the robot in each camera is
logged during a series of trajectories. We then use the images
from four onboard cameras to learn a polar grid map where
each cell represents a fixed range of angles and distances
from the robot’s local coordinate frame and its value holds
the estimated visibility from that cell, as seen in Fig. 2.

V. RESULTS AND DISCUSSION

We evaluate our approach in both simulation and prelimi-
nary hardware experiments. For a large simulated environment
(≈ 500m × 500m), we are able to generate a topological graph
from a visibility map and achieve coordinated maneuvers with
a team of 3 ground vehicles (see Fig. 3). In preliminary hard-
ware tests, we demonstrated minimum visibility planning with

a single autonomous ground vehicle by coupling our high-
level graph-based planner with the mid-level A∗ planner and
low-level stochastic model predictive control approach. To do
this, we constructed both a visibility map and a traversability
map from an a priori mesh of the urban environment. Fig. 4
depicts a sequence of steps tracking an A∗ path in a hardware
experiment. Moving forward, we plan to test multiple robots
in an off-road environment by leveraging a priori terrain
elevation data. As demonstrated in our simulation experiments,
we hypothesize that our hierarchical planning approach will
be able to effectively generate coordinated tactics using a
priori data while compensating for changing environments
with the lower-levels of the autonomy stack. Future research
will include receding-horizon graph-based planning to update
the visibility map online to account for changing conditions.
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