
Predicting Emergent Capabilities Using Sparse Features

Aneesh Kumar, Oskar Herlitz
aneesh.kumar6214@gmail.com, oskar.herlitz@gmail.com

Abstract

Reports of “emergent” capabilities in transformer-based
LLMs (abrupt, non-linear improvements in task performance)
remain controversial due to post-hoc measurement and am-
biguous definitions. We investigate whether such transi-
tions can be predicted pre-hoc from internal representations.
For each training checkpoint, we train sparse autoencoders
(SAEs) on model activations, construct a co-activation graph
over SAE features, and track graph statistics (e.g. density,
clustering, etc.). We analyze a 2-layer grokking-style trans-
former with aggregate graph metrics over eight SAE initial-
izations, and test lead-lag relationships between changes in
graph metrics and subsequent changes in accuracy under a
formalized emergence criterion. Across both settings, we find
no statistically significant evidence that global co-activation
topology forecasts emergent jumps in performance. If pre-
hoc indicators exist, they may lie outside the global graph
measures analyzed here (e.g., in task-specific circuits or lo-
calized subgraphs).

Introduction
Motivation and Definition Emergent capabilities in large
language models refer to discontinuous improvement in
tasks that appear abruptly after a certain scale or threshold
(Wei et al. 2022). We define emergence as a sharp, sustained
jump in test accuracy (formalized further in the Methodol-
ogy section). While existing scaling laws capture the trends
of emergence (Kaplan et al. 2020), they do not identify
when sharp changes occur. Predictive indicators of emer-
gence could help anticipate model behavior during training,
but existing analyses are largely retrospective, identifying
abrupt improvements after training.

Hypothesis We hypothesize that emergent capabilities can
be predicted pre-hoc by analyzing internal representations,
rather than post-hoc detection. Specifically, we propose that
emergence may be preceded by a reorganization of sparse
features that underlie model activations. Sparse Autoen-
coders (SAEs) have shown that LLM activations can be
decomposed into interpretable, disentangled features corre-
sponding to semantically meaningful directions in activation

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

space (Cunningham et al. 2024). If emergent behavior sug-
gests a structural phase transition in how such features in-
teract, then the topology of their co-activation graphs might
exhibit measurable shifts before emergent jumps in accuracy
(Nanda et al. 2023).

Methods and Our Contribution We operationalize this
hypothesis by checkpointing every 1k steps during model
training, where at each checkpoint we:

(1) Train an SAE (seed consistent across steps);
(2) Construct a co-activation graph whose nodes represent

individual sparse features and weighted edges represent the
magnitude of normalized feature co-activation; and

(3) Compute graph-level statistics such as density, clus-
tering, and component size.

We repeat this process across eight independent SAE ini-
tializations and aggregate the resulting metrics to capture
consistent representational dynamics. Finally, we perform
a lead-lag correlation analysis between changes in graph
metrics and subsequent changes in model accuracy, testing
whether any graph-level reorganization systematically pre-
cedes behavioral emergence.

Our framework bridges interpretability and scaling work
by observing emergence to probing its underlying represen-
tational precursors and assessing the limits of predictability.

Related Work
Emergence, Scaling, and Training Dynamics Scaling
laws outline smooth performance gains with model and
data size (Kaplan et al. 2020; Hoffmann et al. 2022),
while qualitative behaviors (e.g. reasoning, arithmetic) ap-
pear abruptly beyond critical scales (Wei et al. 2022). These
results frame emergence as an outcome of scaling, not as a
predictable training-time event. Closer to training dynam-
ics, work on grokking and phase transition-like behavior
analyzes abrupt generalization after prolonged overfitting
(Power et al. 2022), typically via loss-landscape diagnos-
tics. The predominant methodology is retrospective detec-
tion from validation metrics rather than pre-hoc signals.

Representation Comparisons Across Checkpoints Sev-
eral studies quantify how neural representations evolve dur-
ing training using similarity or geometric measures such as
SVCCA (Raghu et al. 2017), CKA (Kornblith et al. 2019),
and linear mode connectivity (Frankle et al. 2020). These

approaches analyze representations over time for studying
representational change; however, they remain descriptive
rather than predictive. Our work complements this by ap-
plying a predictive framework.

Sparse, Interpretable Features Sparse autoencoders
(SAEs) decompose activations into disentangled, often inter-
pretable features that capture semantically meaningful direc-
tions (Michael et al. 2023; Cunningham et al. 2024). These
results motivate the hypothesis that qualitative behavioral
changes may coincide with reorganizations in sparse feature
usage or interactions. We leverage SAEs as a measurement
tool to probe whether feature-level structure provides pre-
hoc signals of behavioral change.

Topology of Representations Beyond single-feature
analysis, representation geometry and topology have been
used to characterize structure in activations (Barrett et al.
2021). Co-activation graphs summarize representational
properties over time, but these tools are largely descriptive.
We examine whether temporal changes in graph topology
precede behavioral jumps.

Positioning Prior studies either characterize emergence
retrospectively or describe representational structure with-
out linking it to future behavior. Our work extends this by
testing whether temporal changes in representational topol-
ogy—derived from sparse features—bear predictive rela-
tionships to behavioral transitions during training.

Methodology
We test whether internal representational metrics from
Sparse Autoencoders (SAEs) and Co-activation Graphs
(CAGs) predict or explain emergent behavior in transformer-
based LLMs. The pipeline has three stages: Sparse Feature
Extraction, Co-activation Graph Construction, and Metric
Analysis with a statistical predictive test.

Defining Emergence (Detector)
We define emergence to be a sharp and sustained increase
in test accuracy during training. A training step i exhibits
emergence if:

(1) The accuracy jump exceeds a threshold ai−ai−1 ≥ ∆
(2) Accuracy remains stable within a tolerance (|ak −

ai| ≤ τ) over the next H evaluations.
Default hyper-parameters (∆ = 0.20, τ = 0.02, H = 3)

can detect a large performance jump followed by a short
plateau. The method is deterministic, operating retrospec-
tively on metrics logged during the training step, reporting
the earliest step satisfying conditions (1) and (2).

Grokking Experiment
We follow the small-algorithmic dataset paradigm and
model scale in (Power et al. 2022) by implementing a two-
layer Transformer encoder with learned positional embed-
dings on the task of modular addition (mod p = 97),
where the goal is to predict (a + b) mod p from the pair
(a, b).

Dataset generation We generate a fully specified syn-
thetic dataset for modular addition: for a fixed prime p = 97,
we enumerate all ordered pairs (a, b) ∈ {0, . . . , p − 1}2
(total p2 = 9, 409 examples) and label each with c =
(a + b) mod p. We create a deterministic split by shuf-
fling indices with NumPy seeded at 42 and taking the first
⌊0.2·p2⌋ = 1,881 examples as train and the remaining 7,528
as test. Inputs are integer tokens (a, b); the target is the class
index c. No additional preprocessing is applied.

Model and Training Setup The architecture is a 2-layer
Transformer encoder (dmodel = 128, nheads = 4, dff =
256) with GELU activations, no dropout, and learned po-
sitional embeddings for three token positions. The predic-
tion is taken from the final position. We trained the model
using AdamW (lr = 10−3, weight decay = 0.1) on all
p2 = 9409 input pairs, with a deterministic 80/20 train/test
split. We trained up to 120k steps using full-batch gradient
updates (1881 examples), evaluating every 1k steps.

Sparse Feature Extraction At each checkpoint, we
record the hidden-layer activations of the Transformer en-
coder before output projection using a forward hook. These
activations have shape (N, 3, dmodel) and are later reduced
by position (averaged). Each activation vector is flattened
and used to train a Sparse Autoencoder (SAE) with ReLU
activations, MSE reconstruction loss, and an L1 penalty
(λ = 0.01) to enforce sparsity. The SAE learns an overcom-
plete basis (8192 features) representing sparse directions in
model activation space.

Co-activation Graph Construction We binarize SAE ac-
tivations using a threshold of 0.01 and compute a normalized
co-activation matrix:

Cij =
AT

i Aj

Nsqrt(rirj)

where Ai and Aj are the binary activation vector of fea-
tures i and j (respectively) across samples, while ri rj are
their respective activation rates. Undirected edges are added
between features with C(ij) > 0.3, and isolated nodes
are removed. The resulting graph captures feature-level co-
activation structure of the model.

Graph Metrics We compute standard graph statistics:
number of nodes and edges, density, average and maximum
degree, number of connected components, largest compo-
nent size, and average clustering coefficient. Modularity is
computed when clusters are present. This characterizes the
evolution of feature topology across training.

Multi-seed setup. To increase robustness and account for
variability in SAE initialization, we run this pipeline across
SAE random seeds (n = 8).

Each seed produces independent sparse features and co-
activation graphs, generating a full timeline of graph metrics
aligned by training step.

Aggregating across seeds. For each training step and
graph metric M , we compute the mean, standard deviation,

and 95% confidence interval across seeds:

M̄t =
1

n

n∑
s=1

Mt,s, CI95 = 1.96
σt√
n
.

Detecting predictive signals. We formalize a predictive
signal as a statistically significant lead-lag correlation be-
tween changes in a graph metric and subsequent changes
in accuracy. For each metric M , lag k, and test accuracy A
(across 5 different lags), we compute per seed:

rk = corr(∆Mt−k, ∆At) ,

∆Mt = Mt −Mt−1,

∆At = At −At−1.

Correlations are averaged across seeds using the Fisher z-
transform:

z = tanh−1(r), z̄ =
1

n

∑
s

zs, r̄ = tanh(z̄),

with 95% confidence intervals computed in z-space and
transformed back. We consider a metric practically predic-
tive if it exhibits an r̄ > 0.5, following the conventional
interpretation of effect sizes (Cohen 1988).

Visualization. Figure 1 shows the cross-seed aggregation
of each metric at each training step, emphasizing variabili-
ty/consistency across seeds. Figure 2 presents a heatmap of
mean lead-lag correlations (r̄) for all metrics and lags, cen-
tered at zero.

Experiments & Results
We conduct a controlled grokking experiment on a two-
layer transformer trained on modular addition, enabling fine-
grained temporal analysis of representational dynamics dur-
ing a hypothesized phase transition (emergence). We test
the framework’s ability to correlate sparse feature-based co-
activation graph metrics with test accuracy.

Grokking Experiment (2-Layer Transformer)
This experiment was implemented in PyTorch and run lo-
cally on an NVIDIA RTX 4070 GPU. We analyze whether
the graph-based metrics derived from sparse feature co-
activation can anticipate emergence during training. On
the two-layer transformer trained on modular addition, we
checkpoint and evaluate every 1k steps. At each checkpoint,
we extract hidden activations, train a Sparse Autoencoder
with 8192 features, binarize activations at a threshold of
0.01, and construct a co-activation graph using normalized
pairwise co-activations Cij (edges for Cij > 0.3).

Findings We compute graph statistics (density, average
clustering, edge count, largest-component size, and mod-
ularity) across training and align them with test accuracy
across 8 SAE seeds. We observe emergence detected at step
22,000 using the method defined previously.

Graph density and clustering fluctuate within narrow
ranges, modularity shows transient local variation, and SAE
sparsity decreases steadily until convergence (Figure 1). The
lack of structure across all seeds suggests that feature-level

Figure 1: Evolution of test accuracy and graph metrics over
the first 30k steps. The dashed line marks the detected emer-
gence point (at step 22,000). No metric exhibited clear pre-
dictive structure preceding the accuracy jump.

co-activation topology remains stable, implying structural
graph statistics alone are insufficient predictors.

To formally examine whether any metric changes were
correlated with abrupt improvements in test accuracy, we
conducted a lead-lag correlation analysis. For each met-
ric M and lag k, we compute per-seed correlations rk =
corr(∆Mt−k,∆At) and aggregate them across seeds using
Fisher z-transformation.

Figure 2: lead-lag correlations (r̄) between changes in graph
metrics and changes in test accuracy, averaged across eight
SAE seeds. Rows denote metrics; columns denote lag off-
sets in 1k-step intervals. All correlations remain weak (|r̄| <
0.35), implying the absence of strong predictive structure.

Figure 2 summarizes the resulting mean correlations r̄
as a heatmap. All correlations are of insignificant magni-
tude (|r̄| < 0.5), and their 95% confidence intervals include
zero, indicating no statistically reliable predictive signals.
The largest effect was a modest negative correlation for SAE
sparsity at lag 4 (r̄ = −0.34), suggesting that transient in-
creases in sparsity slightly preceded decreases in accuracy,
but this trend was not significant.

Conclusion
We tested whether co-activation topology of sparse features
is correlated with behavioral emergence during training. In
a grokking setting with a clear accuracy jump, none of
the graph-level statistics we analyzed (density, clustering,
edge count, largest-component size, modularity)–aggregated
across eight SAE seeds–exhibited reliable lead-lag correla-
tions with subsequent accuracy changes. All mean effects
were small |r̄| < 0.35. Taken together, our results provide
negative evidence for global co-activation topology as a pre-
hoc predictor of emergence under our methods and configu-
ration.

Limitations Our analysis is limited to one algorithmic
task. Future work may examine other tasks as well as: tem-
poral derivatives of graph structure, richer similarity mea-
sures (e.g. spectral embeddings), and scaling trends across
models to identify whether more subtle structural signatures
anticipate emergent behavior.

References
Barrett, D. G. T.; Dherin, B.; Chien, S.; and Botev, A. 2021.
Analyzing internal representations of neural networks using
persistent homology. arXiv preprint arXiv:2106.05304.
Cohen, J. 1988. Statistical Power Analysis for the Behav-
ioral Sciences. Hillsdale, NJ: Lawrence Erlbaum Asso-
ciates, 2nd edition.
Cunningham, H.; et al. 2024. Sparse Autoencoders Find
Highly Interpretable Features in Language Model Activa-
tions. In Proceedings of ICLR 2024.
Frankle, J.; Dziugaite, G. K.; Roy, D. M.; and Carbin, M.
2020. Linear Mode Connectivity and the Lottery Ticket Hy-
pothesis. In Proceedings of the 8th International Conference
on Learning Representations (ICLR).
Hoffmann, J.; Borgeaud, S.; Mensch, A.; Buchatskaya, E.;
Cai, T.; Rutherford, E.; Casas, D. d. L.; Hendricks, L. A.;
Welbl, J.; Clark, A.; et al. 2022. Training compute-optimal
large language models. arXiv preprint arXiv:2203.15556.
Kaplan, J.; McCandlish, S.; Henighan, T.; Brown, T. B.;
Chess, B.; Child, R.; Gray, S.; Radford, A.; Wu, J.; and
Amodei, D. 2020. Scaling Laws for Neural Language Mod-
els. arXiv preprint arXiv:2001.08361.
Kornblith, S.; Norouzi, M.; Lee, H.; and Hinton, G. 2019.
Similarity of Neural Network Representations Revisited. In
Proceedings of the 36th International Conference on Ma-
chine Learning (ICML), 3519–3529.
Michael, J.; Zou, A.; Raffel, C.; Bansal, M.; et al. 2023.
Sparse autoencoders find highly interpretable features in lan-
guage models. arXiv preprint arXiv:2310.13072.
Nanda, N.; Chan, L.; Lieberum, T.; Smith, J.; and Steinhardt,
J. 2023. Progress measures for grokking via mechanistic
interpretability. arXiv preprint arXiv:2301.05217.
Power, A.; Burda, Y.; Edwards, H.; Babuschkin, I.; and
Misra, V. 2022. Grokking: Generalization Beyond Over-
fitting on Small Algorithmic Datasets. arXiv preprint
arXiv:2201.02177.

Raghu, M.; Gilmer, J.; Yosinski, J.; and Sohl-Dickstein, J.
2017. SVCCA: Singular Vector Canonical Correlation Anal-
ysis for Deep Learning Dynamics and Interpretability. In
Proceedings of the 31st Conference on Neural Information
Processing Systems (NeurIPS).
Wei, J.; Tay, Y.; Bommasani, R.; Raffel, C.; Zoph, B.;
Borgeaud, S.; Yogatama, D.; Bosma, M.; Zhou, D.; Metzler,
D.; et al. 2022. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682.

Appendices
Appendix A: Pythia as a Non-Emergent Baseline
Role and scope. We include EleutherAI Pythia-410M as
a non-emergent baseline to characterize SAE-based co-
activation topology in a regime where validation behavior
is smooth, contrasting our grokking-style transformer. We
implement a separate feature extraction and co-activation
pipeline here. Because no behavioral jump was observed,
we report representational topology only and make no pre-
diction claims.

Setup We extracted hidden activations from layer ℓ=20 at
publicly released checkpoints and trained a separate linear
Sparse Autoencoder (SAE) per checkpoint:

ĥ = D · ReLU(E · h), (1)
where E ∈ Rm×d and D ∈ Rd×m with m = 8192.
SAEs were optimized with MSE reconstruction plus

an ℓ1 sparsity penalty (λ=0.01), using AdamW (lr=10−3,
wd=10−5), batch size 1024, and 800 epochs. Latents
z=ReLU(Eh) were binarized by a fixed threshold τ=0.01
to obtain activation indicators af=1[zf>τ].

Co-activation graph. For sparse features f, g, we com-
puted Jaccard similarity

Jaccardfg =
|Af ∩Ag|
|Af ∪Ag|

, Af = {t ∈ S : af (t) = 1}

(2)
Edges were retained when Jaccardfg ≥ t with t = 0.01.
For computational efficiency, we analyzed 1024 features per
checkpoint (subset of 8192). We reported node/edge counts,
modularity Q density δ= 2|E|

|V |(|V |−1) , node/edge counts, de-
gree statistics, and community detection via spectral cluster-
ing.

Computational constraints Given the model size and our
computational limits, we analyzed a single checkpoint (the
final one) and a subset of SAE features per checkpoint (up to
1024). We cached co-activation matrices and skipped zero-
variance features. These choices were pragmatic.

Results Validation accuracy evolved smoothly with no
discrete jump; hence, no emergence event was detected. Co-
activation graphs were large and structured: at the last train-
ing checkpoint we observed 1, 024 nodes and 69, 433 edges,
with 10 communities via spectral clustering. Across the in-
spected checkpoints, density and average clustering varied
modestly, and the largest component size was stable. In line
with the negative-control role, we did not perform forecast-
ing (lead–lag) analysis for Pythia.

Interpretation. In a non-emergent, large-model regime,
SAE-derived co-activation topology appears coherent at the.
This complements the grokking setting (where an emer-
gence event exists and forecasting was tested): global co-
activation topology neither forecasts behavior when an event
does occur (grokking) nor fabricates forecasting claims
when no event exists (Pythia).

Limitations specific to Pythia (1) Separate implementa-
tion: results are not a code-level replication of the grokking
pipeline. (2) Subsampling of features and checkpoints due
to compute constraints; quantitative values may shift with
larger budgets. (3) Single-checkpoint descriptive analysis
(no multi-seed aggregation), does not show temporal as-
pect of representational change. (4) No predictive-analysis
or layer sweeps are reported; we used ℓ = 20, τ = 0.01,
t = 0.01.

Appendix B: AAAI Reproducibility Checklist
• Includes a conceptual outline and/or pseudocode descrip-

tion of AI methods introduced: Yes
• Clearly delineates statements that are opinions, hypothe-

sis, and speculation from objective facts and results: Yes
• Provides well marked pedagogical references for less-

familiare readers to gain background necessary to repli-
cate the paper: Yes

• Does this paper make theoretical contributions?: No
• Does this paper rely on one or more datasets? Yes
• A motivation is given for why the experiments are con-

ducted on the selected datasets: Yes
• All novel datasets introduced in this paper are included

in a data appendix: N/A
• All novel datasets introduced in this paper will be made

publicly available upon publication of the paper with a
license that allows free usage for research purposes: N/A

• All datasets drawn from the existing literature (poten-
tially including authors’ own previously published work)
are accompanied by appropriate citations: N/A

• All datasets drawn from the existing literature (poten-
tially including authors’ own previously published work)
are publicly available: N/A

• All datasets that are not publicly available are described
in detail, with explanation why publicly available alter-
natives are not scientifically satisficing: Yes

• This paper states the number and range of values tried
per (hyper-) parameter during development of the paper,
along with the criterion used for selecting the final pa-
rameter setting: Yes

• Any code required for pre-processing data is included in
the appendix: Yes

• All source code required for conducting and analyzing
the experiments is included in a code appendix: Yes

• All source code required for conducting and analyzing
the experiments will be made publicly available upon
publication of the paper with a license that allows free
usage for research purposes: Yes

• All source code implementing new methods have com-
ments detailing the implementation, with references to
the paper where each step comes from: Partial

• If an algorithm depends on randomness, then the method
used for setting seeds is described in a way sufficient to
allow replication of results: Yes

• This paper specifies the computing infrastructure used
for running experiments (hardware and software), includ-
ing GPU/CPU models; amount of memory; operating
system; names and versions of relevant software libraries
and frameworks: Partial

• This paper formally describes evaluation metrics used
and explains the motivation for choosing these metrics:
Yes

• This paper states the number of algorithm runs used to
compute each reported result: No

• Analysis of experiments goes beyond single-dimensional
summaries of performance (e.g., average; median) to in-
clude measures of variation, confidence, or other distri-
butional information: Yes

• The significance of any improvement or decrease in
performance is judged using appropriate statistical tests
(e.g., Wilcoxon signed-rank): Yes.

• This paper lists all final (hyper-)parameters used for each
model/algorithm in the paper’s experiments: Yes

Appendix C: Code Appendix
https://github.com/aneesh6214/nyx-soso-predicting-
emergence/tree/aneesh/grokking-experiment

