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Abstract

Audio is inherently temporal and closely synchronized with the visual world,
making it a naturally aligned and expressive control signal for controllable video
generation (e.g., movies). Beyond control, directly translating audio into video is
essential for understanding and visualizing rich audio narratives (e.g., Podcasts
or historical recordings). However, existing approaches fall short in generating
high-quality videos with precise audio-visual synchronization, especially across
diverse and complex audio types. In this work, we introduce MTYV, a versatile
framework for audio-sync video generation. MTV explicitly separates audios
into speech, effects, and music tracks, enabling disentangled control over lip mo-
tion, event timing, and visual mood, respectively—resulting in fine-grained and
semantically aligned video generation. To support the framework, we additionally
present DEMIX, a dataset comprising high-quality cinematic videos and demixed
audio tracks. DEMIX is structured into five overlapped subsets, enabling scal-
able multi-stage training for diverse generation scenarios. Extensive experiments
demonstrate that MTV achieves state-of-the-art performance across six standard
metrics spanning video quality, text-video consistency, and audio-video alignment.
Project page: https://hjzheng.net/projects/MIV/,

1 Introduction

Audio is a fundamental medium in daily life, crucial for both information delivery (e.g., commu-
nication, notifications, and education) and immersive experiences (e.g., enhancing the impact of
film visuals). Despite the prevalence of audio-centric platforms (e.g., Podcasts), content presented
solely through audio lacks the visual dimension needed to fully convey the richness of events. Since
audio is naturally temporal and inherently synchronized with the visual world, researchers [[1H3] have
devoted considerable attention to translating audios into corresponding videos to enhance audience
understanding of rich audio narratives (e.g., historical recordings).

Despite great progress, existing methods face practical limitations in generating high-fidelity cine-
matic videos with precise synchronization (e.g., pouring water into the transparent cup), primarily due
to: (i) Under-specified audio-visual mapping. Current approaches handle a wide spectrum of audios
and map them to various target scenes (e.g., landscapes [4], dancing [5], music performances [6]).
This broad representation scope potentially leads to ambiguous mappings lacking specificity between
audio and visual features. (ii) Inaccurate temporal alignment. Existing methods primarily focus on
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Character-centric narrative ... A man in a brown jacket and a blue shirt ... talking on a mobile phone ...
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Figure 1: MTV demonstrates versatile audio-sync video generation capabilities following user-
provided text descriptions specifying scenes and subjects. Capabilities shown include producing
videos centered on targeted characters (1st and 2nd rows) while triggering events with sound effects
(3rd row), generating visual mood with accompanying music (4th row), and adaptively handling
camera movement (5th row). We present these generated videos in the supplementary materials.

building scene-level semantic consistency (e.g., translating engine sound to a car-centered video),
struggling with accurate timing correspondence between individual audio events and their visual
features (e.g., speech [[7]], motion [8], and visual mood [9]).

In this paper, we propose the MTV framework, enabling Multi-stream Temporal control for audio-
sync Video generation to overcome aforementioned issues, with versatile capabilities across scenarios
illustrated in Fig. [T} Instead of attempting a direct mapping from composite audios, we explicitl
separate audios into distinct controlling tracks (i.e., speech, effects, and music), inspired by CDX’2
To provide sufficient high-quality video clips with demixed audio tracks, we contribute a large-scale
DEMIX dataset with tailored data processing, including 392K video clips with 1.2K hours. These
tracks enable the model to precisely control lip motion, event timing, and visual mood, resolving
the ambiguous mapping. To further incorporate rich visual semantics beyond direct audio cues,
we leverage features (e.g., subject gesture, scene appearance, camera movement) initially derived
from a pretrained text-to-video model [10]], and subsequently finetuned using video clips from the
DEMIX dataset. To enable the progressive extension of learned high-level video semantic features
stage-by-stage, this dataset is structured into five overlapped subsets. A multi-stage training strategy
is introduced to learn concrete and localized controls (e.g., lip motion) towards more abstract and
global influences (e.g., visual mood), leading to clear audio-visual relationships.

"https://www.aicrowd.com/challenges/sound-demixing- challenge-2023
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To achieve accurate temporal alignment, we propose the Multi-Stream Temporal ControlNet (MST-
ControlNet) within the MTV framework. The interval stream is designed for specific feature
synchronization, which extracts features from the speech and effects tracks. It employs interval
interaction blocks to understand each track individually and construct their interplay, maintaining
the coherence with inferred semantic features. After that, interval feature injection module inserts
features of each track into corresponding time intervals to drive lip motion and event timing. Since
visual mood typically covers the entire video clip, the holistic stream is designed for overall aesthetic
presentation, which extracts features from the music track using the holistic context encoder. These
features then serve as style embeddings, applied uniformly to all frames through global style injection,
controlling the visual mood.

‘We summarize our contributions as follows:

* We present MTV, a versatile audio-sync video generation framework by demixing audio
inputs, achieving precise audio-visual mapping and accurate temporal alignment.

* We introduce an audio-sync video generation dataset structured into five overlapped subsets,
presenting the multi-stage training strategy for learning audio-visual relationships.

* We propose the multi-stream temporal ControlNet to distinctively process demixed audio
tracks and precisely control lip motion, event timing, and visual mood, respectively.

2 Related Works

2.1 Video Diffusion Model

The field of video generation has made significant progress with the adoption of diffusion models.
Early approaches [11H13] extend the dynamic modeling capabilities of pretrained text-to-image
diffusion models [14] by incorporating temporal layers (e.g., 3D convolutions [[15] and temporal
attention [[16]). However, these methods face inherent challenges in capturing long-range spatial-
temporal dependencies due to the convolutional architectures of their backbone (e.g., UNet [17]).
To overcome this limitation, Sora report [[18] presents the potential of the diffusion transformer
(DiT) [19] architecture, prompting a shift towards integrating 3D VAE [20] for spatial-temporal
compression and scaling up to train the entire DiT-based model. Further improvement has been
achieved by recent foundation models through adaptive layernorm modules [[10], progressive scaling
[21) 22]], and post-training techniques [23]]. These advancements in text-to-video models provide
a strong foundation and powerful generative priors that could potentially be leveraged for related
cross-modal tasks, such as high-quality audio-sync video generation.

2.2 Audio-driven Image Animation

Audio-driven image animation aims to generate dynamic visuals from a static image, synchronized
with user-provided audios. Several previous works animate general objects or scenes while maintain-
ing audio-visual consistency. Sound2Sight [24] and CCVS [235]] leverage the context of preceding
frames to achieve audio-driven subsequent frames generation. TPOS [26]] uses audios with variable
temporal semantics and amplitude to guide the denoising process. ASVA [27] incorporates a temporal
audio control module for effective audio synchronization. Other works concentrate on audio-driven
human animation. Talking head [7} 28430] focus on animating human face images to produce lip
motion that synchronize with the speech. Recent works extend animation beyond the head to include
half-body movements [31]] and introduce pose control for full-body animation [32]. Another specific
application is music-to-dance [33}134], which generates human dance according to the beat of the
music. Despite the audio-visual synchronization of these methods, their reliance on static images
restricts models’ capability to generate dynamic scenes required for cinematic videos.

2.3 Audio-sync Video Generation

Audio-sync video generation does not require additional images for reference, offering the potential
for free scene creation. Early works are designed based on VQGAN [35] and StyleGAN [36], achiev-
ing audio control through multi-modal autoregressive transformers [2]] and style code alignment
[4}137]. Recently, following the success of diffusion models demonstrating effectiveness in general
video generation, researchers have turned their attention. Highlighting the benefit of multi-modal



Table 1: Comparison of DEMIX dataset and previous datasets.

Method \ Year | Modality | Scene \ Audio component | Specifications
\ | Text Audio | People Objects Cinematic | Speech Effects Music Demix | Clips Hours
UCF-101 [38] 2012 v v - - - v v - 13K 27
HIMV-200K [39] |2017| - v v v v - - v - 200K -
AudioSet [40] 2017 | - v v v - v v v - 2.IM 58K
VoxCeleb2 [41] 2018 | - v v - - v - - - 150K 2.4K
VGGSound [42] |2020| - v v v - v v v - 200K 550
WebVid-10M [43] [ 2021 | v - v v - - - - - 10.7M 52K
Landscape [4] 2022 - v - v - - v - - 9K 26
InternVid [44] 2024 | v v v v - v v v - 7.1IM 760K
Ours (DEMIX) 2025 v v v v v v v v v 392K 1.2K

conditions, TA2V [6] demonstrates that conditioning on both text descriptions and audio inputs sig-
nificantly enhances the quality of generated videos. To achieve audio-visual alignment at both global
and temporal levels, TempoTokens [[1]] designs a lightweight adapter for text-to-video generation
model. Introducing a unified diffusion architecture, MM-Diffusion [3] enables both joint audio-video
generation and zero-shot audio-sync video generation. Leveraging diffusion-based latent aligners for
open-domain audio-visual generation, Xing et al.[3] achieve the audio-sync video editing and open-
domain content creation. Although great progress has been made, audio-sync video generation still
faces under-specific audio-visual mapping and inaccurate temporal alignment. Therefore, achieving
cinematic quality remains challenging.

3 Dataset

We introduce the DEMIX dataset, tailored for training demixed audio-sync video generation models.

Data source. The training data is sourced from three aspects: (i) 65 hours of talking head videos
from CelebV-HQ [45]]; (ii) 4,923 hours of cinematic videos from MovieBench [46] (69h), Condensed
Movies [47] (1,270h), and Short-Films 20K [48]] (3,584h); and (iii) 8,903 hours film-related videos
from YouTube. All collected videos include their accompanying audio tracks.

Video filtering. Following previous video generation models [[10} 12, 49], we use PySceneDetect [S0]]
to segment video into single-shot clips. Audiobox-aesthetics [S1] is further used to assess the quality
of accompanying audio, removing clips with low scores. For the left video clips, we annotate each
one with text descriptions using LLaVA-Video [52].

Demixing filtering. To improve audio demixing reliability, we employ a dual-demixing comparison
strategy, comparing demixing outputs from MVSEP [53]] (speech, effects, music) and Spleeter [54]]
(speech, others). After that, we calculate the L1 distance between the speech tracks. Next, the
‘others’ track from Spleeter is conditionally compared: to the effects track from MVSEP if music is
silent (below -45dB), and to the music track if effects are silent. Clips are discarded only if high L1
distances are found on any of the comparable pairs.

Voice-over filtering. To build clear audio-visual relationships for cinematic videos, we first detect
whether people are present in the videos using YOLO [55]. Next, we perform speaker diarization for
the accompanying audio using Scribe [56] to identify active speaker segments and count the number
of speakers. After that, we detect the active speaker from videos for each frame using TalkNet [57].
As a result, we can discard clips where speech occurs in the audio but the video analysis detects
neither a visible person nor an active speaker in the corresponding frames.

Subset division. To facilitate multi-stage training for versatile audio-sync video generation models,
the filtered DEMIX data is structured into five overlapped subsets. The basic face subset comprises
all talking head videos. The remaining cinematic and film-related videos are then categorized to form
the other subsets: assignment to single character or multiple characters depends on the annotated
human count, while assignment to sound event or visual mood occurs if the respective effects or
music track is non-silent.

Data statistics. After data collection and filtering, our DEMIX dataset includes 18K basic face, 54K
single character, 39K multiple characters, 166K sound event, and 195K visual mood data, tailored for
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Figure 2: The pipeline of our MTV framework. (a-c) MTV is built on a pretrained text-to-video
model [10] that provides strong generative priors for synthesizing diverse visual scenarios. (d)
Explicitly separated audio tracks (i.e., speech, effects, music) are fed into our proposed multi-stream
temporal ControlNet to ensure synchronization for lip motion, event timing, and visual mood. (e)
The MTV framework is trained on our contributed DEMIX dataset with five overlapped subsets and
tailored text structures, enabling a multi-stage training strategy for audio-sync video generation.

cinematic videos, totaling non-overlapped 392K clips with 1.2K hours, accompanied by demixed
audio tracksﬂ For comprehensive evaluation, we hold out 1K video clips from the dataset to form
the testing set. We provide an additional comparison with existing audio-related datasets [4} 38-44]]
in Tab. [T} highlighting that ours is tailored for versatile audio-sync video generation using demixed
audio tracks, while robustly covering scenarios with people, objects, and cinematic visuals.

4 Method

This section begins with an overview of our MTV framework for audio-sync video generation
(Sec. @ Next, we detail the Multi-stream Temporal ControlNet (MST-ControlNet), including
the interval stream for specific feature synchronization, and the holistic stream for overall aesthetic
presentation (Sec.[d.2)). Finally, we present the multi-stage training strategy for effectively learning
audio-visual relationships (Sec. [4.3).

4.1 Overview

MTYV generates audio-sync videos based on user-provided text descriptions y (specifying the scenes
and subjects) and demixed audio tracks a = {a®, a®, a™} (representing speech, effects, and music) to
respectively drive the lip motion, event timing, and visual mood. The pipeline is illustrated in Fig.[2]

Video compression. As presented in Fig.[2|(a), MTV is equipped with a pretrained spatio-temporal
variational autoencoder (VAE) encoder £ to map video clips z into latent code zop = £(x). After that,
its corresponding VAE decoder D is used to reconstruct video clips from the latent code z = D(z).

Denoising network. As presented in Fig. [2](b), we concatenate the text embeddings f¥ and noised
latent code z, before feeding them into the network to ensure the video-text correspondence. The
expert Adaptive LayerNorm (AdaLLN) [10] then independently processes text and video features within
this unified sequence. Next, 3D full-attention is used to interact semantics of text embeddings with
corresponding video features. After being extracted by MST-ControlNet, audio cues are integrated
via the interval feature injection and holistic style injection mechanisms. Finally, a feed-forward
network (FFN) is used to refine the resulting video features.

Denoising process. As presented in Fig. 2] (c), MTV finally generates audio-sync videos by iteratively
denoising latent codes. During training, at each time step ¢ € {0,...,T}, Gaussian noise €; ~

Dataset samples are visualized in the supplementary materials.



N(0,1) is added to the clean latent code zq to produce a noised latent code z; = /@20 + /1 — ayéy.
A diffusion transformer ¢y is trained to predict the noise €;, given the noised latent code z;, demixed
audio tracks a, denoising time step ¢, and text descriptions y. The diffusion transformer is trained by
minimizing the loss:

Lam = Et,zo,eth(O,l) [||€t - GQ(Zta a,t, y)||2] : (1)
For inference, we iteratively denoise a randomly sampled noise zr ~ N(0, 1) to obtain the latent
code z{, to generate video clips with the VAE decoder 2’ = D(z{)).

4.2 Multi-stream Temporal ControlNet

After explicitly separating audios into speech, effects, and music tracks, we propose the MST-
ControlNet to achieve accurate temporal alignment by respectively controlling lip motion, event
timing, and visual mood. As presented in Fig. 2] (d), the architecture consists of an audio encoding
module followed by two specialized streams.

Audio encoding. Given demixed audio tracks a = {a®, a®, ™}, we initially extract their correspond-
ing features { f*, f°, f™} from the demixed tracks using wav2vec [58]. After that, speech and effect
features are fed into the interval stream for specific feature synchronization. Instead, music features
are fed into the holistic stream for overall aesthetic presentation.

Interval stream. We design the interval stream to interval-wise control the lip motion and event
timing. Specifically, we separately process speech features f® and effect features f© with a stack of
linear layers and concatenate them before feeding them into NV interval interaction blocks. Within
each block, these features are processed independently (via AdaLN, Gate, and FFN) to refine per-track
understanding. To model their interplay at each time interval 4, the corresponding speech features f}
and effects features f are jointly processed by a self-attention [f?, f¢] = SelfAttn([f?, f]). This
interaction also maintains the coherence with inferred semantic features. Finally, interacted speech
features f° and effects features f° are integrated into their corresponding time intervals via the
interval feature injection mechanism:

hs = CrossAttn(h, f5), hS = CrossAttn(hy, f°), )

where h; represents the video latent code at i-th interval. CrossAttn(-,-) means a cross-attention,
where the latent code serves as the query and the audio features as the key and value. Let M be the
number of intervals, the resulting latent code is then updated as b’ = {h$ + h$}M,.

Holistic stream. The holistic stream is designed to control the visual mood for the entire video clip.
Specifically, we process the music features f™ through a holistic context encoder, comprising three
linear layers and a 1D convolutional layer to extract features representing the visual mood. Since
the environmental ambiance typically covers the entire video clip, an average pooling is applied
to merge all the intervals and transform them into holistic music features f™. Next, these features
are regarded as style embeddings. By independently transforming these features into scale factor
~™ = Linear(f™) and shift factor 8™ = Linear( /™), we modulate the video latent code h’ uniformly
across all intervals via the holistic style injection:

™ =h o™ +1)+ 8", 3)

where A™ is the modulated latent code, fed into the denoising network to refine video features.

4.3 Multi-stage training strategy

As the dataset is structured as five overlapped subsets, we introduce the multi-stage training strategy
to progressively scale up the model stage-by-stage.

Text structure. As presented in Fig.[2](e), we create a template to structure text descriptions, enabling
our MTV framework to be compatible with these distinct training subsets. Specifically, this template
begins with a sentence indicating the number of participants (e.g., “Two person conversation”), based
on Scribe [56] speaker counts. It then consists of subsequent entries for each individual, starting
with a unique identifier (e.g., Personl, Person2) followed by their respective appearance description.
Following these individual entries, an explicit identifier for the currently active speaker is specified.
Finally, a sentence provides an overall description of the scene. Notably, when there is no active
speaker in the video, only the overall description will be provided.



Table 2: Quantitative experiment results of comparison and ablation. 1 ({) means higher (lower) is
better. Throughout the paper, best performances are highlighted in bold.

Method \ FVD | Temp-C (%)1 Text-C(%)1 Audio-C(%)1T Sync-CT Sync-DJ|
Comparison with state-of-the-art methods
MM-Diffusion [5] | 879.77 94.15 15.61 543 1.53 11.21
TempoTokens [1] | 795.88 93.13 24.68 6.71 145 10.48
Xing et al. [3] 805.23 93.30 24.51 7.30 1.55 10.50
Ours MTV) 626.06 95.40 26.55 26.22 3.17 9.43
Ablation study
W/o SE 667.81 95.30 26.49 24.68 2.46 9.55
W/o SI 626.46 94.84 25.50 19.64 2.53 9.76
W/o TB 698.36 95.14 26.37 24.50 2.31 9.78

Training schedule. We train the model from concrete and localized controls towards more abstract
and global influences. Initially, we train the model to learn lip motion using the basic face subset. It
then learns human pose, scene appearance, and camera movement on the single character subset. To
handle scenarios with multiple speakers, we subsequently train the model on the multiple characters
subset. Following this, our training focus shifts to event timing and extending subject understanding
from humans to objects using the sound event subset. Finally, we train the model on the environmental
ambiance subset to improve its representation of visual mood.

Training details. We initialize our spatial-temporal VAE and DiT backbone with pretrained weights
from CogVideoX [10] and train our model to generate audio-sync videos at a 480 x 720 resolution.
For each stage, we train our model for 40K steps on 24 NVIDIA A800 GPUs using the Adam-based
optimizer [59] with a learning rate of 1 x 10~°, where MST-ControlNet and attention layers of the
backbone are trainable. For inference, our model requires 280s to generate a 49-frame audio-sync
video on a NVIDIA A100 GPU.

S Experiments

5.1 Comparison with state-of-the-art methods

As audio-sync video generation is an emerging task, the relevant comparison methods are still
developing. We compare our method with three recent state-of-the-art approaches in our DEMIX
dataset. For TempoTokens [1]] and Xing et al. [3], we evaluate them using both text descriptions
and corresponding audios as their original configuration. Since MM-Diffusion [5] can only support
audio inputs and its training focuses on specific landscape and dancing, we finetune it to ensure a fair
comparison. 50 videos are randomly selected from the testing set for evaluation.

Quantitative comparisons. As presented in Tab.[2] we quantitatively evaluate performance across
three main aspects: (i) Visual quality is assessed using Frechét Video Distance (FVD) [60]. (ii)
Temporal consistency (Temp-C) is measured by calculating similarity between consecutive frames
using CLIP [61]]. (iii) We examine text-video alignment via Text Consistency (Text-C) [62]], audio-
video alignment using Audio Consistency (Audio-C) [63]], and specifically lip motion synchronization
with Sync-C and Sync-D [64]. As a result, our framework outperforms state-of-the-art methods
across all six quantitative metrics. These metric details are provided in the supplementary materials.

Qualitative comparisons. As presented in Fig. 3] qualitative comparisons with state-of-the-art
methods [11 3} 5] highlight the advantages of our framework. For instance, even after finetuning
MM-Diffusion [5] for over 320K steps using the official code on 8§ NVIDIA A100 GPUs, it still
struggles with generating cinematic videos. TempoTokens [1] struggles to generate cinematic videos
for complex text-specified scenarios, resulting in unrealistic human expressions (Fig. [3|left). Xing et
al. [3] find it difficult to effectively achieve audio synchronization for specific event timing, leading
to incorrect rendering of human gestures for guitar performance (Fig. [3|right). In contrast, our MTV
framework faithfully generates audio-sync videos with cinematic quality.
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Figure 4: Ablation study results of different MST-ControlNet variants.

5.2 Ablation Study

To evaluate the effectiveness of key components within MST-ControlNet, we conduct ablation studies
against three baseline configurations, as shown in Fig. @] and Tab.

W/o SE (Separate Extraction). We extract all features from demixed audio tracks using interval
interaction blocks. This prevents music features from shaping the overall aesthetic presentation,
leading to reduced visual mood (Fig. ] left, degraded FVD and Temp-C).

W/o SI (Separate Injection). We extract features from demixed audio tracks by their respective
encoders. These features are then concatenated and injected into the denoising network via a shared
cross-attention. This reduces conditional consistency (Fig. dleft, decreased Text-C and Audio-C).

W/o TB (Training Backbone). We freeze all weights of DiT backbone and only train our proposed
MST-ControlNet to preserve more generative priors. This impairs the specific feature synchronization,
especially the lip motion synchronization (Fig. right, reduced Sync-C and Sync-D).



Table 3: User study results. Ours (MTV) clearly produces a higher score than state-of-the-art methods.

Subjective criteria \ MM-Diffusion [3] TempoTokens [1] Xing et al. [3] Ours (MTV)
Semantic consistency 0.96% 13.60% 11.28% 74.16 %
Motion fluency 0.64% 8.96% 12.56% 77.84%
Overall preference 0.72% 12.00% 12.40% 74.88 %

Table 4: Quantitative experiment results with alternative pre-trained components.

Method \ FVD | Temp-C (%)1 Text-C(%)7T Audio-C(%)7T Sync-CT Sync-D |
CogVideoX+Wav2Vec | 626.06 95.40 26.55 26.22 317 9.43
CogVideoX+Beats 598.53 95.91 26.25 25.28 3.02 9.52
Wan14B+Wav2Vec 353.61 96.36 27.23 26.49 3.08 9.56

5.3 User Study

To better evaluate our method from a human perception perspective, we conduct three subjective
user study experiments in Tab. 3] We present videos generated by our method and all baselines
to participants and ask them to choose the best one based on the following criteria: (i) Semantic
consistency. How well the video content aligns with the text description. (ii) Motion fluency. The
realism and temporal coherence of the motion. (iii) Overall preference. How good the holistic
quality of the video is. For each study, we randomly select 50 text descriptions from the test set, and
the evaluations are conducted by 25 volunteers. The table below shows the percentage of times each
method is chosen as the winner. Our method is consistently favored by human observers and has
achieved the highest scores across all three subjective criteria.

5.4 Analysis of Pre-trained Components

We evaluate the robustness of our proposed method by integrating it with alternative pre-trained
components. Specifically, we test replacing the audio encoder (Wav2Vec/BEATs) and the video
backbone (CogVideoX/Wan14B) in Tab. E}

BEATS. Since Wav2Vec [58] is a common setting for speech encoding (e.g., Hallo3 [7]), this baseline
only replaces it with BEATs [65]] for both the effects and music tracks. As shown in Tab. 4] this
baseline achieves comparable (or slightly better) video-related metrics (i.e., FVD and Temp-C) but
shows a slight degradation on audio-related metrics (i.e., Audio-C, Sync-C, and Sync-D), suggesting
that our current choice of Wav2Vec [58]] is a robust and effective one for this task.

Wan14B. Since Wan14B [21]] shares a similar DiT-based structure with CogVideoX [10]], we can
integrate our proposed MST-ControlNet into it without architectural changes. Specifically, our
interval feature injection and holistic style injection modules are added after each text cross-attention
layer. The quantitative results below show this baseline achieves better performance on video-
and text-related metrics (i.e., FVD, Temp-C, and Text-C) due to the stronger capabilities of the
Wan14B [21]], while achieving comparable performance on all audio-related metrics (i.e., Audio-C,
Sync-C, and Sync-D).

5.5 Application

As presented in Fig. [5] our model support four typical scenarios: (i) By integrating text-to-video
generative priors and learned audio-visual synchronized capabilities, our model can create vivid
virtual characters. (ii) Given user-provided images and taking them as arbitrary keyframes, our model
can drive the image according to the given audios. (iii) Although our model generates video segments
of 49 frames, it can achieve long video generation by using the generated frame to initialize the
next segment. (iv) Following training-free approaches [66], our model can generate scene transitions
guided by providing time-varying text descriptions.
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Figure 5: Examples of versatile application scenarios for our proposed MTV framework.
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Figure 6: Examples of controllability study for text descriptions and demixed audios.

5.6 Controllability

As shown in Fig. [6] leveraging control from both text descriptions and the three demixed audio
tracks (i.e., speech, effects, music), our model can offer controllability across following four key
aspects: (i) Modifying the text descriptions while keeping all audio tracks fixed allows the visual
scene appearance to be edited without affecting the audio synchronization. (ii) Given a demixed
speech track, the model enables precise control over the synchronized lip motion of the generated
character. (iii) Similarly, with a demixed effects track, the model accurately synchronizes event
timing with the sound effects. (iv) By changing the demixed music track, the model creates different
visual moods for the generated video.

6 Conclusion

In this work, we presented MTYV, a versatile framework for audio-sync video generation. MTV
leverages generative priors from pretrained text-to-video models [10] and is trained on our contributed
DEMIX dataset that provides sufficient cinematic videos with demixed audio tracks. Equipped
with our proposed MST-ControlNet, MTV is able to independently control lip motion, event timing,
and visual mood. Combined with a multi-stage training strategy for effective learning of complex
audio-visual relationships, MTV achieves state-of-the-art performance across six evaluation metrics.

Limitation. Although our approach demonstrates the potential of using demixed audio tracks for
precise video control, it is fundamentally limited by the scope of categories provided by upstream
audio demixing techniques [53} 54]. We believe the capabilities of audio-sync video generation
methods will further progress with advancements in audio demixing methods.
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to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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In the case of closed-source models, it may be that access to the model is limited in
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to have some path to reproducing or verifying the results.

5. Open access to data and code
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tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: Both the dataset and the codes will be released upon acceptance.
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* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The experiments are presented in detail.
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* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Error bars are not reported because it would be too computationally expensive.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: These can be found in Sec. 43|
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The authors are fully aware of the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: This paper has no societal impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: They are cited clearly.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
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has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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14.

15.

16.

Answer: [Yes]
Justification: Codes and the dataset will be released upon acceptance.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
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Justification: We clearly describe the usage of LLMs to annotate our dataset.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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