
Under review as a conference paper at ICLR 2024

PROSE: PREDICTING OPERATORS AND SYMBOLIC
EXPRESSIONS USING MULTIMODAL TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Approximating nonlinear differential equations using a neural network provides a
robust and efficient tool for various scientific computing tasks, including real-time
predictions, inverse problems, optimal controls, and surrogate modeling. Previ-
ous works have focused on embedding dynamical systems into networks through
two approaches: learning a single solution operator (i.e., the mapping from input
parametrized functions to solutions) or learning the governing system of equa-
tions (i.e., the constitutive model relative to the state variables). Both of these ap-
proaches yield different representations for the same underlying data or function.
Additionally, observing that families of differential equations often share key char-
acteristics, we seek one network representation across a wide range of equations.
Our method, called Predicting Operators and Symbolic Expressions (PROSE),
learns maps from multimodal inputs to multimodal outputs, capable of generating
both numerical predictions and mathematical equations. By using a transformer
structure and a feature fusion approach, our network can simultaneously embed
sets of solution operators for various parametric differential equations using a sin-
gle trained network. Detailed experiments demonstrate that the network benefits
from its multimodal nature, resulting in improved prediction accuracy and better
generalization. The network is shown to be able to handle noise in the data and
errors in the symbolic representation, including noisy numerical values, model
misspecification, and erroneous addition or deletion of terms. PROSE provides a
new neural network framework for differential equations which allows for more
flexibility and generality in learning operators and governing equations from data.

1 INTRODUCTION

Differential equations are important tools for understanding and studying nonlinear physical phe-
nomena and time-series dynamics. They are necessary for a multitude of modern scientific and en-
gineering applications, including stability analysis, state variable prediction, structural optimization,
and design. Consider parametric ordinary differential equations (ODEs), i.e. differential equations
whose initial conditions and coefficients are parameterized by functions with inputs from some dis-
tribution. We can denote the system by du

dt = f (u; as(t)), where u(t) ∈ Rd are states, and as(t) is
the parametric function with input parameter s. For example, as(t) could be an additive forcing term
where s follows a normal distribution. The goal of computational methods for parametric ODEs is
to evaluate the solution given a new parametric function, often with the need to generalize to larger
parameter distributions, i.e. out-of-distribution predictions.

Recently, operator learning has been used to encode the operator that maps input functions as(−) to
the solution u(−; as(−)) through a deep network, whose evaluation is more cost-efficient than fully
simulating the differential equations (Chen & Chen, 1995; Li et al., 2020; Lu et al., 2021; Lin et al.,
2021; Zhang et al., 2023a). An advantage of operator learning compared to conventional networks is
that the resulting approximation captures the mapping between functions, rather than being limited
to fixed-size vectors. This flexibility enables a broader range of downstream tasks to be undertaken,
especially in multi-query settings. However, operator learning is limited to training solutions for an
individual differential equation. In particular, current operator learning methods do not benefit from
observations of similar systems and, once trained, do not generalize to new differential equations.

1

Under review as a conference paper at ICLR 2024

Data
Encoder

Data
Decoder

Fusion

Symbol
Encoder

Inputs PredictionsPROSE Network

Symbol
Decoder

Operators

Symbolic Expressions

Data

Symbolic Guesses

Query
Locations

𝑧ᇱ = 0.9𝑧 − 0.3𝑧ଷ + 0.6 −
xଶ + yଶ 1.0 + 0.2 z + 0.1 z xଷ

𝑧ᇱ = −0.2 𝑦 + 0.0 exp x + 1.0 sin 𝑥
𝑧ᇱ = 1.0 𝑥 𝑦 + 2.8 𝑧

𝑧ᇱ = ? 𝑧 + ? 𝑧ଷ + ?
𝑧ᇱ = ? 𝑦 + ? exp x + [?]
𝑧ᇱ = ?

Autoregressive

Figure 1: PROSE network illustration. The inputs and outputs (predictions) are multimodal, each
including numerical values (data) and symbolic expressions (governing equations). Here we include
just the third term in the governing equations for simpler visualization.

Problem Statement We consider the problem of encoding multiple ODEs and parametric func-
tions, for use in generalized prediction and model discovery. Specifically, we are given N ODEs fj ,
and parametric functions ajs(t), with the goal of constructing a single neural network to both identify
the system and the operator from parametric functions ajs(−) to solutions. Consider a family of dif-
ferential equations indexed by j = 1, · · · , N , with the form du

dt = fj
(
u; ajs(t)

)
, where the solutions

are denoted by uj(−; ajs(−)). The solution operator Gj encodes the solution’s dependence on ajs
and corresponds to the jth ODE. When utilizing standard operator learning, it becomes necessary
to train separate deep networks for each of the N equations. That approach can quickly become
impractical and inefficient, especially in the context of most nonlinear scientific problems.

This work introduces a multimodal framework for simultaneously encoding multiple operators for
use in predicting states at query locations and discovering the governing model that represents the
equations of motion describing the data. For data prediction, a novel transformer-based approach
which we call multi-operator learning is employed. This entails training the network to learn the
solution operator across a set of distinct parametric dynamical systems. In other words, the network
learns a single operator Ḡ that represents the family of mappings

{
G1, · · · , GN

}
by leveraging

shared characteristics among their features. This should also allow the network to predict new oper-
ators that share commonalities with those from the family of operators used in training, i.e. gener-
alize to new operators. During testing or prediction, the governing equations (i.e. the mathematical
equations defining the dynamics of dependent variables for a given data sequence) are not known,
so the algorithm also produces a symbolic expression using a generative model. In other words,
the network learns a syntax for representing and articulating differential equations. In this way, the
approach yields a network capable of evaluating dependent variables at query locations over wide
parameter sets and also “writes” the mathematical differential equation associated to the data. This
can be viewed as a large language model for differential equations.

Main Contributions The Predicting Operators and Symbolic Expression (PROSE) framework
introduces a new approach to learning differential equations from data. The key components of the
architecture are illustrated are Figure 1. The main contributions and novelty are summarized below.

• PROSE is the first method to generate both the governing system and an operator network
from multiple distinct ODEs. It is one of the first multi-operator learning approaches.

• PROSE incorporates a new modality through a fusion structure. Unlike text modality or
labels, the symbolic expression can accurately generate the system solution.

• The network architecture introduces new structural elements, including a fusion trans-
former that connects the data and embedded symbols.

• We demonstrate accuracy in generating valid ODEs (validity is of > 99.9% on in-
distribution tests and > 97.89% on out-of-distribution predictions), showing that PROSE
can generate new ODEs from data.

2

Under review as a conference paper at ICLR 2024

2 RELATED WORKS

PROSE is both a multi-operator learning and a model discovery approach. We summarize these two
distinct research areas in this section.

Operator Learning Operator learning (Chen & Chen, 1993; 1995; Li et al., 2020; Lu et al.,
2021; Lin et al., 2021; Zhang et al., 2023a) studies neural network approximations to an opera-
tor G : U → V , where U and V are function spaces. This approach holds significant relevance
in various mathematical problems, including the solution of parametric PDEs (Bhattacharya et al.,
2020; Kovachki et al., 2021), control of dynamical systems (Lin et al., 2022; Yeh et al., 2023), and
multi-fidelity modeling (Lu et al., 2022b; Zhang et al., 2023b; Ahmed & Stinis, 2023). Operator
learning has gained substantial popularity within the mathematical and scientific machine learning
community, with applications in engineering domains (Pathak et al., 2022). Currently, methods
for neural operators focus on constructing a single operator, e.g. learning the map from the initial
conditions or parameters of a physical system to the solution at a terminal time.

In Chen & Chen (1993; 1995), the authors extended the universal approximation theory from func-
tion approximation (Cybenko, 1989; Jones, 1992; Barron, 1993) to operators. This work paved
the way for the modern development of deep neural operator learning (DON) as seen in Lin et al.
(2021); Lu et al. (2021; 2022a). Building upon the principles of Chen & Chen (1995), Zhang et al.
(2023a) further expanded this approach by constructing operator networks that remain invariant to
the input/output function discretizations. The noisy operator learning and optimization is studied in
Lin et al. (2021). Another operator approach is the Fourier neural operators (FNO) (Li et al., 2020;
Wen et al., 2022), which use Fourier transformations and their inverses in approximating operators
through kernel integral approximations. Comparative analysis can be found in Lu et al. (2022a);
Zhang et al. (2023a).

The multi-input-output network (MioNet) (Jin et al., 2022) extends operator learning to handle
multiple input/output parametric functions within the single operator framework. Recently, the In-
Context Operator Network (ICON) (Yang et al., 2023a) was developed for multi-operator learning
using data and equation labels (one-hot encoding) as prompts and a test label during inference.
This was later extended to include multimodal inputs by allowing captions which are embedded
into the input sequence using a pre-trained language model (Yang et al., 2023b). Multi-operator
learning has significant challenges, especially when encoding the operators or when addressing out-
of-distribution problems (i.e. those that extend beyond the training dataset).

Learning Governing Equations Learning mathematical models from observations of dynamical
systems is an essential scientific task, resulting in the ability to analyze relations between variables
and obtain a deeper understanding of the laws of nature. In the works Bongard & Lipson (2007);
Schmidt & Lipson (2009), the authors introduced a symbolic regression approach for learning con-
stitutive equations and other physically relevant equations from time-series data. The SINDy algo-
rithm, introduced in Brunton et al. (2016), utilizes a dictionary of candidate features that often in-
cludes polynomials and trigonometric functions. They developed an iterative thresholding method to
obtain a sparse model, with the goal of achieving a parsimonious representation of the relationships
among potential model terms. SINDy has found applications in a wide range of problems and for-
mulations, as demonstrated in Kaiser et al. (2018); Champion et al. (2019); Rudy et al. (2019); Hoff-
mann et al. (2019); Shea et al. (2021); Messenger & Bortz (2021). Sparse optimization techniques
for learning partial differential equations were developed in Schaeffer (2017) for spatio-temporal
data. This approach incorporates differential operators into the dictionary, and the governing equa-
tion is trained using the LASSO method. The ℓ1-based approaches offer statistical guarantees with
respect to the error bounds and equation recovery rates. These methods have been further refined
and extended in subsequent works, including Schaeffer & McCalla (2017); Schaeffer et al. (2017;
2018; 2020); Liu et al. (2023). In Chen et al. (2021), the Physics-Informed Neural Network with
Sparse Regression (PINN-SR) method for discovering PDE models demonstrated that the equation
learning paradigm can be leveraged within the PINNs (Raissi et al., 2019; Karniadakis et al., 2021;
Leung et al., 2022) framework to train models from scarce data. The operator inference technique
(Peherstorfer & Willcox, 2016) approximates high-dimensional differential equations by first re-
ducing the data-dimension to a small set of variables and training a lower-dimensional ODE model
using a least-squares fit over polynomial features. This is particularly advantageous when dealing

3

Under review as a conference paper at ICLR 2024

with high-dimensional data and when the original differential equations are inaccessible. More re-
cently, transformer-based sequence-to-sequence models have been proposed to perform symbolic
regression and scalar autonomous ODE model discovery from numerical inputs only (Lample &
Charton, 2020; Becker et al., 2023) (i.e. data to symbol maps).

3 METHODOLOGY

The main ingredients of PROSE include symbol embedding, transformers, and multimodal inputs
and outputs. We summarize these key elements in this section.

Transformers A transformer is an attention-driven mechanism that excels at capturing longer-
term dependencies in data (Vaswani et al., 2017; Dai et al., 2019; Beltagy et al., 2020). The vanilla
transformer uses a self-attention architecture (Bahdanau et al., 2014; Xu et al., 2015), enabling it to
capture intricate relationships within lengthy time series data. Specifically, let us denote the input
time series data as X ∈ Rn×d, where n is the number of time steps and d is the dimension of each
element in the time series. Self-attention first computes the projections: query Q = XWQ, key
K = XWK and value V = XWV , where WQ ∈ Rd×dk , WK ∈ Rd×dk , and WV ∈ Rd×dv .
It then outputs the context C ∈ Rn×dv via C = softmax

(
QKT

√
dk

)
V , where the softmax function

is calculated over all entries of each row. Self-attention discovers relationships among various ele-
ments within a time sequence. Predictions often depend on multiple data sources, making it crucial
to understand the interactions and encode various time series data (see Section 3 for details). This
self-attention idea has driven the development of the cross-attention mechanism (Lu et al., 2019;
Tsai et al., 2019; Li et al., 2021). Given two input time series data X,Y , cross-attention computes
the query, key, and value as Q = XWQ, K = YWK , and V = YWV . In the case where Y
represents the output of a decoder and X represents the output of an encoder, the cross-attention,
which directs its focus from X to Y , is commonly referred to as encoder-decoder attention (Vaswani
et al., 2017). Encoder-decoder attention serves as a crucial component within autoregressive models
(Graves, 2013; Vaswani et al., 2017; Li et al., 2021). The autoregressive model operates by making
predictions for a time series iteratively, one step at a time. To achieve this, it utilizes the previous
step’s generated output as additional input for the subsequent prediction. This approach has demon-
strated the capacity for mitigating accumulation errors (Floridi & Chiriatti, 2020), which makes it
desirable for longer-time predictions.

Multimodal Machine Learning Multimodal machine learning (MML) trains models using data
from heterogeneous sources (Lu et al., 2019; Sun et al., 2019; Tan & Bansal, 2019; Li et al., 2021;
Xu et al., 2023). Of major interest in this topic are methods for the fusion of data from multiple
modalities, the exploration of their interplay, and the development of corresponding models and al-
gorithms. For instance, consider the field of visual-language reasoning (Tan & Bansal, 2019; Sun
et al., 2019; Li et al., 2019), where the utilization of visual content, such as images or videos, with
the semantics of language (Tan & Bansal, 2019) associated with these visual elements, such as cap-
tions or descriptions, leads to the development of models with richer information (Li et al., 2019).
Another illustrative example is that of AI robots, which use multimodal sensors, including cameras,
radar systems, and ultrasounds, to perceive their environment and make decisions (Feng et al., 2020;
Liu et al., 2021). In mathematical applications, researchers employ multiscale mathematical mod-
els (Efendiev et al., 2022), where each modality is essentially characterized by varying levels of
accuracy, to train a single model capable of predicting multiscale differential equations effectively.

Operator Learning Structure The authors in Chen & Chen (1995) established a universal ap-
proximation theory for continuous operators, denoted by G. Particularly, they showed that the neural
operator Gθ(u)(t) =

∑K
k=1 bk(t)pk(û) can approximate G(u)(t) for t in the output function do-

main (under certain conditions). Here p(·) and b(·) are neural networks which are called the branch
and trunk (Lu et al., 2021), and û is a discretized approximation to the input function u. In our ap-
plications, these input functions u correspond to ODE solutions sampled in the input intervals, and
the output functions are solutions over larger intervals. Based on the output-discretization invariance
property of the network (Lu et al., 2022a; Zhang et al., 2023a), the output of the operator network
can be queried at arbitrary timepoints, allowing predictions of the solution at any location.

4

Under review as a conference paper at ICLR 2024

𝒖 𝑡଴

𝒖 𝑡ଵ

𝒖 𝑡ଶ

⋮

𝒖 𝑡௡

Data Input

“cos”

⋮

“add”

⋮

“𝑧”

Symbol Input
(Polish Notation)

Data Feature

Symbol Feature

Self Attention
Layer × 2

Data Encoder

Self Attention
Layer × 4

Symbol Encoder

concat

Self Attention
Layer × 8

Feature Fusion

Fused Data Feature

Fused Symbol Feature

Encoder-Decoder
Attention Layer × 8

Symbol Decoder

Cross Attention
Layer × 8

Query Locations
𝑡௡ାଵ, 𝑡௡ାଶ, … , 𝑡ே

K

V

Q

Linear

Softm
ax

Linear

𝒖 𝑡௡ାଵ

𝒖 𝑡௡ାଶ

𝒖 𝑡௡ାଷ

⋮

𝒖 𝑡ே

Data Prediction

Data Decoder

Autoregressive Generation

Linear
Em

bedding

Next Symbol

Figure 2: PROSE architecture and the workflow. Data Input and Symbol Input are embedded
into Data Feature and Symbol Feature respectively before encoding and fusion through Feature
Fusion. PROSE uses Cross-Attention to construct the operator (upper-right structure) from Fused
Data Feature, and evaluate it at Query Locations. PROSE generates symbolic expressions in the
lower-right portion autoregressively. Attention blocks are displayed in Appendix D, where each
layer also includes a feedforward network.

+

−

2.6pow

2x2

cos

×

x11.5

Equation Encoding via Polish Notation Mathematical expressions can be
encoded as trees with operations and functions as nodes, and constants and
variables as leaves (Liang & Yang, 2022; Jiang et al., 2023). For instance, the
tree on the right represents the expression cos(1.5x1) + x2

2 − 2.6.

Trees provide natural evaluation orders, eliminating the need to use paren-
theses or spaces. Under some additional restrictions (e.g. 1 + 2 + 3 should
be processed as 1 + (2 + 3), −1 × x is equivalent to −x), there is a one-to-one correspondence
between trees and mathematical expressions. For these reasons, trees provide an unambiguous way
of encoding equations. While there are existing tree2tree methods (Tai et al., 2015; Dyer et al.,
2016), they are usually slower than seq2seq methods at training and inference time. The preorder
traversal is a consistent way of mapping trees to sequences, and the resulting sequences are known
as Polish or Prefix notation (Pogorzelski, 1965), which is used in our equation encoder. For the
above expression cos(1.5x1) + x2

2 − 2.6, its Polish notation is given by the sequence [+ cos
× 1.5 x1 − pow x2 2 2.6]. Operations such as cos are treated as single words and are not
further tokenized, but they are trainable. In comparison to LaTeX representations of mathematical
expressions, Polish notations have shorter lengths, simpler syntax, and are often more consistent.
Note that in Liang & Yang (2022); Jiang et al. (2023), binary trees of depth-3 are used to generate
symbolic approximations directly for the solution of a single differential equation.

Following Charton (2022); d’Ascoli et al. (2022); Kamienny et al. (2022), to have a reason-
able vocabulary size, floating point numbers are represented in base-10 notations, each consisting
of three components: sign, mantissa, and exponent, which are treated as words with trainable
embedding. For example, if mantissa length is chosen to be 3, then 2.6 = +1 · 260 · 10−2 is
represented as [+ 260 E-2]. For vector-valued functions, a dimension-separation token is used,
i.e. f = (f1, f2) is represented as “f1 | f2”. Similar to Charton (2022); d’Ascoli et al. (2022);
Kamienny et al. (2022), we choose mantissa length 3, resulting in a vocabulary of size about 1,100.

3.1 MODEL OVERVIEW

Our network uses hierarchical attention for feature processing and fusion, and two transformer de-
coders for two downstream tasks. Figure 2 provides an overview of the architecture. The PROSE
architecture contains five main components trained end-to-end: data encoder, symbol encoder, fea-
ture fusion, data decoder, and symbol decoder.

Encoders Two separate transformer encoders are used to obtain domain-specific features. Given
numerical data inputs and symbolic equation guesses (possibly empty or erroneous), the data en-

5

Under review as a conference paper at ICLR 2024

coder and symbol encoder first separately perform feature aggregation using self-attention. For a
data input sequence u(t0), · · · ,u(tn), each element u(ti), together with its time variable ti, goes
through a linear layer to form the Data Feature (purple feature sequence in Figure 2). PROSE then
uses self-attention to further process the Data Feature, where the time variables ti serve as the posi-
tional encoding. The symbolic input (in Polish notation) is a standard word sequence, which can be
directly processed with self-attention layers. The word embedding (for operations, sign, mantissa,
etc.) is randomly initialized and trainable. Sinusoidal positional encoding (Vaswani et al., 2017) is
used for the symbol encoder.

Feature Fusion Hierarchical attention (multi-stream to one-stream) is used in this model for fea-
ture fusion. Separately-processed data and symbol features are concatenated into a feature sequence,
and further processed through self-attention layers where modality interaction occurs. Following
Kim et al. (2021), a learnable modality-type embedding is added to the fused features, explicitly
signaling to the model which parts of the sequence are from which modality. Positional encoding is
not needed since it is already included in the individual encoders.

Data Decoder The data decoder constructs the operator via the cross-attention mechanism, estab-
lishing a link between the input-encoded time sequence (fused data features) and the output func-
tions. The query locations, representing the independent variables of these output functions, serve
as the evaluation points. Importantly, these query locations operate independently of each other,
meaning that assessing the operator at one point, ti, does not impact the evaluation of the operator at
another point, tj . As a result, the time and space complexity scales linearly with the number of query
locations. In addition, since the evaluation points are independent of the network generation, this
resembles the philosophy of the branch and trunk nets, see Operator Learning Structure in Section 3.

Symbol Decoder The symbol decoder is a standard encoder-decoder transformer, where the fused
symbol feature is the context for generation. The output equation is produced using an autoregres-
sive approach (Vaswani et al., 2017; Floridi & Chiriatti, 2020): it starts with the start-of-sentence
token and proceeds iteratively, generating each term of the equation based on prior predictions, until
it encounters the end-of-sentence token for that specific equation. During evaluation time, greedy
search (iterative selection of symbol with maximum probability) is used for efficient symbol genera-
tion. While beam search (Wu et al., 2016) can be used to improve the performance (e.g. percentage
of valid expression outputs), we empirically find that greedy search is sufficient for obtaining valid
mathematical expressions using the Polish notation formulation.

4 EXPERIMENTS

We detail the numerical experiments and studies in this section. We created a dataset of 15 distinct
multi-dimensional nonlinear ODEs. To verify the performance of the PROSE approach, we conduct
four case studies (Table 2) with different symbolic and data inputs (Table 1). Additionally, in the ab-
lation study, we confirm that the inclusion of symbolic equation information enhances the accuracy
of the data prediction. Hyperparameters and experimental conditions can be found in Appendix A.

Dataset The dataset is created from a dictionary of 15 distinct ODEs with varying dimensions:
twelve 3D systems, two 4D systems, and one 5D system. To generate samples, we uniformly sample
the coefficients of each term in the ODEs from the range [F − 0.1F, F +0.1F], where F represents
the value of interest. We refer to Appendix B for the details.

The goal is to accurately predict the solutions of ODEs at future timepoints only using observations
of a few points along one trajectory. We do not assume knowledge of the governing equation and
thus the equations are also trained using the PROSE approach. The operator’s input function is the
values along the trajectories, discretized using a 64-point uniform mesh in the interval [0, 2]. The
target operator maps this input function to the ODE solution in the interval [2, 6]. To assess PROSE’s
performance under noisy conditions, we introduce 2% Gaussian noise directly to the data samples.

The training dataset contains 512K examples, where 20 initial conditions are sampled to generate so-
lution curves for each randomly generated system. The validation dataset contains 25.6K examples,
where 4 initial conditions are sampled for each ODE system. The testing dataset contains 102,400
examples, where 4 initial conditions are sampled for each ODE system. The training dataset and the

6

Under review as a conference paper at ICLR 2024

Table 1: Experiment settings. Data-noise: additive noise on data. Unknown coefficients: replace
the input equation coefficients with placeholders. Term deletion: omit a term in the target equation
with 15% chance. Term addition: add an erroneous term with 15% chance. For the last test, all
data inputs are padded to the maximum equation dimension. “Unknown expressions” means that
the coefficients are unknown and there are terms added and removed.

Experiments
(Expression Type)

Data-
Noise

Unknown
Coefficients

Term
Deletion

Term
Addition # ODEs

Known ✓ ✗ ✗ ✗ 12
Skeleton ✓ ✓ ✗ ✗ 12

Unknown (3D) ✓ ✓ ✓ ✓ 12
Unknown (Multi-D) ✓ ✓ ✓ ✓ 15

testing dataset contain the same number of ODE systems. In terms of practical applications, given
test cases with unknown models, we are free to continue to augment the training and validation sets
with any ODE, thus the dataset can be made arbitrarily large.

To test the performance of the equation prediction, we corrupt the input equation by randomly
replacing, deleting, and adding terms. The terminologies and settings are found in Table 1.

Evaluation Metrics As PROSE predicts the operator and learns the equation, we present three
metrics to evaluate the model performance for solution and equation learning. For data prediction,
the relative L2 error is reported. For the expression outputs (symbolic sequences in Polish notation),
a decoding algorithm is used to transform the sequences into trees representing functions. The
percentage of outputs that can be transformed into valid mathematical expressions is reported. Valid
expressions (which approximate the velocity maps of ODE systems) are evaluated at 50 points in Rd

where each coordinate is uniformly sampled in [−5, 5] (i.e. a Monte Carlo estimate) and the relative
L2 error is reported. Here d is the dimension of the ODE system. More specifically, suppose f(u)
and f̂(u) are true and PROSE-generated ODE velocity maps, we report the average relative L2 error
computed at sampled points: ∥f−f̂∥2

∥f∥2
.

4.1 RESULTS

We observe in Table 2 that all experiments, even those corrupted by noise or random terms, achieve
low relative prediction errors (< 5.7%). The data prediction error decreases as we relax the condi-
tions on the symbolic guesses, i.e. when the equations are “Unknown” 5.7% to “Known” 2.94%.
Note in the case that the equations are “Known”, we expect that the equations behave more like la-
bels for the dataset. Moreover, the low expression error (< 2.1%) shows PROSE’s ability to correct
and predict accurate equations, even when erroneous ODE equations are provided.

Table 2: Performance of the model trained with different input expression types. The two
relative prediction errors are for interval [2, 4] and [2, 6], respectively.

Experiments
(Expression Type)

Relative
Prediction Errors (%)

Relative
Expression Error (%)

Percentage of Valid
Expressions (%)

Known 2.74, 2.94 0.00 100.00
Skeleton 3.39, 4.59 2.10 99.98

Unknown (3D) 3.43, 4.63 2.11 99.95
Unknown (Multi-D) 3.95, 5.66 1.88 99.94

Data vs. Equation Prediction. We present the results of 10K testing samples in the “Unknown
(3D)” experiment in Table 3. We see that the data prediction (whose features are influenced by the
symbolic terms) is more accurate than using the learned governing equation directly. This shows the
value of constructing a data prediction component rather than only relying on the learned governing
equation. However, as in Kamienny et al. (2022), the predicted equations can be further refined

7

Under review as a conference paper at ICLR 2024

using optimization techniques, typically Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm,
where the predicted expression parameters can be used as a close initial guess.

Table 3: Performance of data decoder output and symbol decoder output plus the backward
differentiation formula (BDF method).

Prediction Generation Method
Relative

Prediction Error (%)
Percentage of Valid

Expression Outputs (%)

Data decoder output 4.59 99.96Symbol decoder output + BDF method 14.69

Out-of-distribution Case Study. We study our model’s ability to generalize beyond the training
distribution. Specifically, we test on datasets whose parameters are sampled from a large interval
[F − λF, F + λF], where F represents a value of interest. We choose λ = 0.15, 0.20, which are
greater than the training setting λ = 0.10. The results are shown in Table 4. This shows that the
approach can be used for prediction even in the case where the parameter values were not observed
during training time.

Table 4: Out-of-distribution Testing Performance. The trained model is from the Unknown (3D)
experiment. Relative prediction errors are reported for intervals [2, 4] and [2, 6], respectively.

Parameter Sample
Relative Range λ

Relative
Prediction Errors (%)

Relative
Expression Error (%)

Percentage of Valid
Expression Outputs (%)

0.10 3.43, 4.63 2.11 99.95
0.15 3.89, 5.71 3.21 99.44
0.20 4.94, 7.66 4.83 97.89

Ablation Study. Since the model is multimodal in both inputs and outputs, we investigate the
performance gains by using the equation embedding in the construction of the features. In particular,
we compare the performance of the full PROSE model with multimodal input/output (as shown in
Figure 2) and the PROSE model with only the data modality (i.e. no symbol encoder/decoder or
fusion structures).

16 32 64
Data Input Grid Size

0.0

1.0

2.0

3.0

4.0

Re
la

tiv
e

Pr
ed

ict
io

n
Er

ro
r (

%
)

2.58 2.64 2.59

3.30
3.10 3.03

Multimodal I/O
Data-modality only

Figure 3: Comparing the PROSE model with
multimodal input/output and the PROSE
model with only the data modality. The mod-
els are trained with different data input lengths
for 60 epochs. The relative prediction errors are
computed on the same output grid.

Figure 4: Sampled attention maps of feature
fusion layers. For each map, non-zero values
in the upper left and bottom right corner repre-
sent in-modality interactions and non-zero val-
ues in the upper right and bottom left blocks rep-
resent cross-modality interactions. Other maps
are presented in Appendix D.

The comparison tests are run using varying numbers of input sensors. For consistency, noise on the
data samples is not included in this test, although the symbolic inputs do have unknown coefficients

8

Under review as a conference paper at ICLR 2024

and terms added/removed. As shown in Figure 3, the PROSE model with multimodal input/output
consistently outperforms the data-modality-only model, demonstrating performance gains through
equation embedding. Notably, we do not observe any degradation in the full PROSE model’s per-
formance when reducing the number of input sensors, whereas the data-modality-only model’s per-
formance declines as sensors are removed from the input function. This showcases the value of the
symbol modality in supplying additional information for enhancing data prediction.

In Figure 4, we plot 4 (out of the 64 = 8 layers × 8 heads) attention maps corresponding to the
Feature Fusion layers on one four-wing attractor example (see Appendix B). This uses the full
PROSE model with multimodal input/output and with a data input grid size 32. The non-zero values
(which appear as the yellow/green pixels) indicate the connections between the features. More
importantly, the non-zero values in the bottom-left and upper-right blocks indicate a non-trivial
cross-modality interaction. Together with the improved relative error shown in Figure 3, we see the
overall improvements using our multimodal framework.

Output Example. In Figure 5, we display a typical PROSE output from the “Unknown (3D)”
experiment in Table 2. Each curve is one trajectory of one state variable ui(t) for i = 1, 2, 3. The
target solution curves (with noise) are the dashed lines (only up to t = 2 is seen during testing) and
the predicted solution curves are the solid lines. We display the target equation and the generated
equation, which is exact with respect to the terms generated and accurate up to two digits (noting
that the mantissa has length three).

Target:


u′
1 = −0.327u1 − u2 − u3 − 0.25u2

2

u′
2 = −0.327u2 − u3 − u1 − 0.25u2

3

u′
3 = −0.327u3 − u1 − u2 − 0.25u2

1

Generated:


u′
1 = −0.32u1 − u2 − u3 − 0.25u2

2

u′
2 = −0.32u2 − u3 − u1 − 0.25u2

3

u′
3 = −0.32u3 − u1 − u2 − 0.25u2

1

Relative Prediction Error: 3.29%
Relative Expression Error: 0.36%

Figure 5: An example of PROSE’s outputs. Target solution curves are dashed lines and predicted
solution curves are solid lines. The input is the data up to t = 2. The numbers in the legend refer to
the coordinate of the state variable ui(t) for i = 1, 2, 3. The target and PROSE generated equations
are displayed.

5 DISCUSSION

The PROSE network is developed for model and multi-operator discovery. The network architec-
ture utilizes hierarchical transformers to incorporate the data and embedded symbols in a symbiotic
way. We show that the learned symbolic expression helps reduce the prediction error and provides
further insights into the dataset. Experiments show that the generated symbolic expressions are
mathematical equations with validity of > 99.9% on in-distribution tests and > 97.89% on out-of-
distribution tests, and with numerical error of about 2% (in terms of relative L2 norm). This shows
that the network is able to generate ODE models that correctly represent the dataset and does so by
incorporating information from other similar ODEs.

The symbolic expression and data fusion yield a scientifically relevant multimodal formulation. In
particular, the expressions provide alternative representation for the dataset and its predicted values,
enabling the extraction of more refined information such as conserved quantities, stationary points,
bifurcation regimes, hidden symmetries, and more. Additionally, since the symbolic expressions are
valid functions, they can be used for evaluation and thus lead to alternative predictive algorithms (i.e.
simulating the ODE). One future direction is the construction of a PROSE approach for nonlinear
partial differential equations with spatio-temporal queries.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Shady E Ahmed and Panos Stinis. A multifidelity deep operator network approach to closure for
multiscale systems. Computer Methods in Applied Mechanics and Engineering, 414:116161,
2023.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal function.
IEEE Transactions on Information theory, 39(3):930–945, 1993.

Sören Becker, Michal Klein, Alexander Neitz, Giambattista Parascandolo, and Niki Kilbertus. Pre-
dicting ordinary differential equations with transformers. In Proceedings of the 40th International
Conference on Machine Learning, ICML’23. JMLR.org, 2023.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and Andrew M Stuart. Model reduc-
tion and neural networks for parametric pdes. arXiv preprint arXiv:2005.03180, 2020.

Josh Bongard and Hod Lipson. Automated reverse engineering of nonlinear dynamical systems.
Proceedings of the National Academy of Sciences, 104(24):9943–9948, 2007.

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the national academy of
sciences, 113(15):3932–3937, 2016.

Kathleen Champion, Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Data-driven discovery
of coordinates and governing equations. Proceedings of the National Academy of Sciences, 116
(45):22445–22451, 2019.

François Charton. Linear algebra with transformers, 2022.

Tianping Chen and Hong Chen. Approximations of continuous functionals by neural networks with
application to dynamic systems. IEEE Transactions on Neural networks, 4(6):910–918, 1993.

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural networks
with arbitrary activation functions and its application to dynamical systems. IEEE Transactions
on Neural Networks, 6(4):911–917, 1995.

Zhao Chen, Yang Liu, and Hao Sun. Physics-informed learning of governing equations from scarce
data. Nature communications, 12(1):6136, 2021.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Stéphane d’Ascoli, Pierre-Alexandre Kamienny, Guillaume Lample, and François Charton. Deep
symbolic regression for recurrent sequences, 2022.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A. Smith. Recurrent neural network
grammars. In Proceedings of the 2016 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, pp. 199–209. Association
for Computational Linguistics, 2016.

Yalchin Efendiev, Wing Tat Leung, Guang Lin, and Zecheng Zhang. Efficient hybrid explicit-
implicit learning for multiscale problems. Journal of Computational Physics, 467:111326, 2022.

10

Under review as a conference paper at ICLR 2024

Di Feng, Christian Haase-Schütz, Lars Rosenbaum, Heinz Hertlein, Claudius Glaeser, Fabian Timm,
Werner Wiesbeck, and Klaus Dietmayer. Deep multi-modal object detection and semantic seg-
mentation for autonomous driving: Datasets, methods, and challenges. IEEE Transactions on
Intelligent Transportation Systems, 22(3):1341–1360, 2020.

Luciano Floridi and Massimo Chiriatti. Gpt-3: Its nature, scope, limits, and consequences. Minds
and Machines, 30:681–694, 2020.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

Moritz Hoffmann, Christoph Fröhner, and Frank Noé. Reactive sindy: Discovering governing reac-
tions from concentration data. The Journal of chemical physics, 150(2), 2019.

Zhongyi Jiang, Chunmei Wang, and Haizhao Yang. Finite expression methods for discovering
physical laws from data. arXiv preprint arXiv:2305.08342, 2023.

Pengzhan Jin, Shuai Meng, and Lu Lu. Mionet: Learning multiple-input operators via tensor prod-
uct. SIAM Journal on Scientific Computing, 44(6):A3490–A3514, 2022.

Lee K Jones. A simple lemma on greedy approximation in hilbert space and convergence rates for
projection pursuit regression and neural network training. The annals of Statistics, pp. 608–613,
1992.

Eurika Kaiser, J Nathan Kutz, and Steven L Brunton. Sparse identification of nonlinear dynamics
for model predictive control in the low-data limit. Proceedings of the Royal Society A, 474(2219):
20180335, 2018.

Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and Francois Charton. End-to-
end symbolic regression with transformers. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=GoOuIrDHG_Y.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without convo-
lution or region supervision. In International Conference on Machine Learning, pp. 5583–5594.
PMLR, 2021.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces.
arXiv preprint arXiv:2108.08481, 2021.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. In International
Conference on Learning Representations, 2020.

Wing Tat Leung, Guang Lin, and Zecheng Zhang. Nh-pinn: Neural homogenization-based physics-
informed neural network for multiscale problems. Journal of Computational Physics, 470:
111539, 2022.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang. Visualbert: A simple
and performant baseline for vision and language. arXiv preprint arXiv:1908.03557, 2019.

Ruilong Li, Shan Yang, David A Ross, and Angjoo Kanazawa. Ai choreographer: Music condi-
tioned 3d dance generation with aist++. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 13401–13412, 2021.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Senwei Liang and Haizhao Yang. Finite expression method for solving high-dimensional partial
differential equations. arXiv preprint arXiv:2206.10121, 2022.

11

https://openreview.net/forum?id=GoOuIrDHG_Y

Under review as a conference paper at ICLR 2024

Guang Lin, Christian Moya, and Zecheng Zhang. Accelerated replica exchange stochastic gradient
langevin diffusion enhanced bayesian deeponet for solving noisy parametric pdes. arXiv preprint
arXiv:2111.02484, 2021.

Guang Lin, Christian Moya, and Zecheng Zhang. On learning the dynamical response of nonlinear
control systems with deep operator networks. arXiv preprint arXiv:2206.06536, 2022.

Guang Lin, Christian Moya, and Zecheng Zhang. B-deeponet: An enhanced bayesian deeponet
for solving noisy parametric pdes using accelerated replica exchange sgld. Journal of Com-
putational Physics, 473:111713, 2023. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.
2022.111713. URL https://www.sciencedirect.com/science/article/pii/
S0021999122007768.

Yicheng Liu, Jinghuai Zhang, Liangji Fang, Qinhong Jiang, and Bolei Zhou. Multimodal motion
prediction with stacked transformers. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7577–7586, 2021.

Yuxuan Liu, Scott G McCalla, and Hayden Schaeffer. Random feature models for learning interact-
ing dynamical systems. Proceedings of the Royal Society A, 479(2275):20220835, 2023.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolin-
guistic representations for vision-and-language tasks. Advances in neural information processing
systems, 32, 2019.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, 2021.

Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and
George Em Karniadakis. A comprehensive and fair comparison of two neural operators (with
practical extensions) based on fair data. Computer Methods in Applied Mechanics and Engineer-
ing, 393:114778, 2022a.

Lu Lu, Raphaël Pestourie, Steven G Johnson, and Giuseppe Romano. Multifidelity deep neural
operators for efficient learning of partial differential equations with application to fast inverse
design of nanoscale heat transport. Physical Review Research, 4(2):023210, 2022b.

Daniel A Messenger and David M Bortz. Weak sindy for partial differential equations. Journal of
Computational Physics, 443:110525, 2021.

Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertı́k, Sergey B. Kirpichev,
Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina Rath-
nayake, Sean Vig, Brian E. Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shivam
Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, Štěpán Roučka,
Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Scopatz. Sympy:
symbolic computing in python. PeerJ Computer Science, 3:e103, 2017.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Four-
castnet: A global data-driven high-resolution weather model using adaptive fourier neural opera-
tors. arXiv preprint arXiv:2202.11214, 2022.

Benjamin Peherstorfer and Karen Willcox. Data-driven operator inference for nonintrusive
projection-based model reduction. Computer Methods in Applied Mechanics and Engineering,
306:196–215, 2016.

H. A. Pogorzelski. Review: Jan lukasiewicz, jerzy slupecki, panstwowe wydawnictwo, remarks on
nicod’s axiom and on ”generalizing deduction”. Journal of Symbolic Logic, 30(3):376–377, 1965.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

12

https://www.sciencedirect.com/science/article/pii/S0021999122007768
https://www.sciencedirect.com/science/article/pii/S0021999122007768

Under review as a conference paper at ICLR 2024

Samuel Rudy, Alessandro Alla, Steven L Brunton, and J Nathan Kutz. Data-driven identification
of parametric partial differential equations. SIAM Journal on Applied Dynamical Systems, 18(2):
643–660, 2019.

Hayden Schaeffer. Learning partial differential equations via data discovery and sparse optimiza-
tion. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473
(2197):20160446, 2017.

Hayden Schaeffer and Scott G McCalla. Sparse model selection via integral terms. Physical Review
E, 96(2):023302, 2017.

Hayden Schaeffer, Giang Tran, and Rachel Ward. Learning dynamical systems and bifurcation via
group sparsity. arXiv preprint arXiv:1709.01558, 2017.

Hayden Schaeffer, Giang Tran, and Rachel Ward. Extracting sparse high-dimensional dynamics
from limited data. SIAM Journal on Applied Mathematics, 78(6):3279–3295, 2018.

Hayden Schaeffer, Giang Tran, Rachel Ward, and Linan Zhang. Extracting structured dynamical
systems using sparse optimization with very few samples. Multiscale Modeling & Simulation, 18
(4):1435–1461, 2020.

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. science,
324(5923):81–85, 2009.

Daniel E Shea, Steven L Brunton, and J Nathan Kutz. Sindy-bvp: Sparse identification of nonlinear
dynamics for boundary value problems. Physical Review Research, 3(2):023255, 2021.

Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and Cordelia Schmid. Videobert: A joint
model for video and language representation learning. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pp. 7464–7473, 2019.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved semantic representations
from tree-structured long short-term memory networks. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), pp. 1556–1566. Association for Com-
putational Linguistics, 2015.

Hao Tan and Mohit Bansal. Lxmert: Learning cross-modality encoder representations from trans-
formers. arXiv preprint arXiv:1908.07490, 2019.

Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang, J Zico Kolter, Louis-Philippe Morency, and
Ruslan Salakhutdinov. Multimodal transformer for unaligned multimodal language sequences.
In Proceedings of the conference. Association for Computational Linguistics. Meeting, volume
2019, pp. 6558. NIH Public Access, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M Benson. U-
fno—an enhanced fourier neural operator-based deep-learning model for multiphase flow. Ad-
vances in Water Resources, 163:104180, 2022.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa,
Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa,
Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s neural
machine translation system: Bridging the gap between human and machine translation, 2016.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich
Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual
attention. In International conference on machine learning, pp. 2048–2057. PMLR, 2015.

13

Under review as a conference paper at ICLR 2024

Peng Xu, Xiatian Zhu, and David A Clifton. Multimodal learning with transformers: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

Liu Yang, Siting Liu, Tingwei Meng, and Stanley J Osher. In-context operator learning with data
prompts for differential equation problems. Proceedings of the National Academy of Sciences,
120(39):e2310142120, 2023a.

Liu Yang, Tingwei Meng, Siting Liu, and Stanley J Osher. Prompting in-context operator learning
with sensor data, equations, and natural language. arXiv preprint arXiv:2308.05061, 2023b.

Christopher Yeh, Jing Yu, Yuanyuan Shi, and Adam Wierman. Online learning for robust voltage
control under uncertain grid topology. arXiv preprint arXiv:2306.16674, 2023.

Zecheng Zhang, Wing Tat Leung, and Hayden Schaeffer. Belnet: basis enhanced learning, a mesh-
free neural operator. Proceedings of the Royal Society A, 479(2276):20230043, 2023a.

Zecheng Zhang, Christian Moya, Wing Tat Leung, Guang Lin, and Hayden Schaeffer. Bayesian
deep operator learning for homogenized to fine-scale maps for multiscale pde. arXiv preprint
arXiv:2308.14188, 2023b.

A EXPERIMENT SETUP

Training A standard cross-entropy loss Ls is used for the symbolic outputs. While it is possible
to simplify and standardize equations with SymPy (Meurer et al., 2017), d’Ascoli et al. (2022)
showed that for their symbolic regression task, such simplification decreases training loss but not
testing loss, thus we did not include it in our experiments.

Relative squared error Ld is used for the data predictions. In comparison to the standard
mean squared error, the relative squared error makes the learning process more uniform across
different types of ODE systems, as solution curves of different systems may have very different
value ranges.

The data loss Ld and symbol loss Ls are combined to form the final loss function L = αLd + βLs,
where the weights α, β are hyperparameters. Unless otherwise specified, the models are trained
using the AdamW optimizer for 80 epochs where each epoch is 2,000 steps. On 2 NVIDIA GeForce
RTX 4090 GPUs with 24 GB memory each, the training takes about 19 hours.

Hyperparameters The model hyperparameters are summarized in Table 5, and the optimizer hy-
perparameters are summarized in Table 6.

Table 5: Model hyperparameters. FFN means feedforward network.

Hidden dimension for attention 512 Hidden dimension for FFNs 2048
Number of attention heads 8 Fusion attention layers 8
Data encoder attention layers 2 Data decoder attention layers 8
Symbol encoder attention layers 4 Symbol decoder attention layers 8

Table 6: Optimizer hyperparameters.

Learning rate 10−4 Weight decay 10−4

Scheduler Inverse square root Warmup steps 10% of total steps
Batch size per GPU 256 Gradient norm clip 1.0
Data loss weight α 6.0 Symbol loss weight β 1.0

B CHAOTIC AND MULTISCALE ODE DATASET

In this section, we provide the details of all ODE systems. We also include the parameters of interest.

14

Under review as a conference paper at ICLR 2024

Thomas’ cyclically symmetric attractor
u′
1 = sin(u2)− bu1

u′
2 = sin(u3)− bu2

u′
3 = sin(u1)− bu3

b = 0.17

Lorenz 3D system 
u′
1 = σ(u2 − u1)

u′
2 = u1(ρ− u3)− u2

u′
3 = u1u2 − βu3


σ = 10

β = 8/3

ρ = 28

Aizawa attractor


u′
1 = (u3 − b)u1 − du2

u′
2 = du1 + (u3 − b)u2

u′
3 = c+ au3 − u3

3/3− u2
1 + fu3u

3
1



a = 0.95

b = 0.7

c = 0.6

d = 3.5

e = 0.25

f = 0.1

Chen-Lee attractor 
u′
1 = au1 − u2u3

u′
2 = −10u2 + u1u3

u′
3 = du3 + u1u2/3

{
a = 5

d = −0.38

Dadras attractor


u′
1 = u2/2− au1 + bu2u3

u′
2 = cu2 − u1u3/2 + u3/2

u′
3 = du1u2 − eu3



a = 1.25

b = 1.15

c = 0.75

d = 0.8

e = 4

Rössler attractor 
u′
1 = −u2 − u3

u′
2 = u1 + au2

u′
3 = b+ u3(u1 − c)


a = 0.1

b = 0.1

c = 14

Halvorsen attractor
u′
1 = au1 − u2 − u3 − u2

2/4

u′
2 = au2 − u3 − u1 − u2

3/4

u′
3 = au3 − u1 − u2 − u2

1/4

a = −0.35

Rabinovich–Fabrikant equation
u′
1 = u2(u3 − 1 + u2

1) + γu1

u′
2 = u1(3u3 + 1− u2

1) + γu2

u′
3 = −2u3(α+ u1u2)

{
α = 0.98

γ = 0.1

Sprott B attractor 
u′
1 = au2u3

u′
2 = u1 − bu2

u′
3 = c− u1u2


a = 0.4

b = 1.2

c = 1

15

Under review as a conference paper at ICLR 2024

Sprott-Linz F attractor 
u′
1 = u2 + u3

u′
2 = −u1 + au2

u′
3 = u2

1 − u3

a = 0.5

Four-wing chaotic attractor
u′
1 = au1 + u2u3

u′
2 = bu1 + cu2 − u1u3

u′
3 = −u3 − u1u2


a = 0.2

b = 0.01

c = −0.4

Duffing equation


u′
1 = 1

u′
2 = u3

u′
3 = −δu3 − αu2 − βu3

2 + γ cos(ωu1)



α = 1

β = 5

γ = 8

δ = 0.02

ω = 0.5

Lorenz 96 system{
u′
i = (ui+1 − ui−2)ui−1 − ui + F, i = 1, . . . , N

u−1 = uN−1, u0 = uN , uN+1 = u0
F = 8

Double Pendulum
u′
1 = u3

u′
2 = u4

u′
3 =

−3g/l sin(u1)−g/l sin(u1−2u2)−2 sin(u1−u2)(u
2
4+u2

3 cos(u1−u2))
3−cos(2(u1−u2))

u′
4 =

sin(u1−u2)(4u
2
3+4g/l cos(u1)+u2

4 cos(u1−u2))
3−cos(2(u1−u2))

{
g = 9.81

l = 1

The initial conditions for the ODE systems are sampled uniformly from the hypercube [−2, 2]d

where d is the dimension of the system. The ODE systems are solved on the interval [0, 6] using
BDF method with absolute tolerance 10−6 and relative tolerance 10−5. Unless otherwise specified,
the data part contains function values at 192 uniform grid points in the time interval [0, 6], where
the first 64 points in the interval [0, 2] are used as data input points, and the last 128 points in the
interval [2, 6] are used as data labels. 2% Gaussian observation noise is added to the data samples.
More precisely, if u is the underlying true equation values, the observed value is ũ = u+ση where
η ∼ N (0, I) and σ is chosen such that the signal-to-noise ratio σ||η||2

||u||2 is 2%.

C ADDITIONAL RESULTS

In Table 7, we show the relative L2 prediction error per equation type for all 3D equations. We also
computed the dataset deviation (Lin et al., 2023) per equation type, which is the relative prediction
error when the output is the average of all training examples of one equation class. The higher the
dataset deviation, the more complicated the dataset (a model that simply predicts the average will
have poor performance).

D VISUALIZATONS

Figure 6 shows the training and validation loss curves for experiments “Unknown (3D)” and “Skele-
ton” (described in Table 2). Figure 7 contains the attention architecture details. Figure 8 shows the
full attention maps for one four-wing attractor example.

16

Under review as a conference paper at ICLR 2024

Table 7: Per Equation-type Performance of the model in the experiment Unknown (3D). The
relative prediction error is for [2, 6].

Equation Type
of Free

Parameters
Relative

Prediction Error (%) Dataset Deviation (%)

Thomas’ cyclically symmetric attractor 1 2.51 99.99
Lorenz 3D system 3 2.64 41.98
Aizawa attractor 6 6.48 80.48

Chen-Lee attractor 2 3.56 100.00
Dadras attractor 5 9.79 105.29
Rössler attractor 3 2.61 99.99

Halvorsen attractor 1 5.80 83.21
Rabinovich–Fabrikant equation 2 4.87 100.04

Sprott B attractor 3 4.02 102.87
Sprott-Linz F attractor 1 4.14 193.87

Four-wing chaotic attractor 3 4.21 100.00
Duffing equation 5 4.87 58.88

Figure 6: Example training and validation loss curves.

17

Under review as a conference paper at ICLR 2024

Multi-Head
Attention

Linear

Add & Norm

Output

N×

Add & Norm

Q K V

Q=K=V for Self-Attention

(a) Cross-attention (b) Encoder-decoder attention

Figure 7: Attention block details. Self-attention is a special case of cross-attention with the same
source.

18

Under review as a conference paper at ICLR 2024

Figure 8: Attention maps of 8 Feature Fusion layers for a four-wing attractor example.

19

	Introduction
	Related Works
	Methodology
	Model Overview

	Experiments
	Results

	Discussion
	Experiment Setup
	Chaotic and MultiScale ODE Dataset
	Additional Results
	Visualizatons

