
Predicting Task Performance with Context-aware Scaling Laws

Kyle Montgomery1*, David Park1*, Jianhong Tu1,
Michael Bendersky2, Beliz Gunel2, Dawn Song3, Chenguang Wang1†

1Washington University in St. Louis, 2Google DeepMind, 3UC Berkeley
{kylemontgomery, d.park, chenguangwang}@wustl.edu

Abstract

Scaling laws have transformed our understand-
ing of large language models by linking up-
stream metrics like cross-entropy loss to design
factors such as model size, training data, and
compute. However, these conventional laws
fail to capture downstream task performance,
where context plays a critical role. In this work,
we propose a straightforward, interpretable
framework that jointly models downstream per-
formance as a function of the training com-
pute and the provided context. We empirically
validate our framework by fitting it on the ob-
served downstream performance of extended-
context variants of Llama-2-7B and Llama-
2-13B across 65,500 unique instances span-
ning three tasks: arithmetic reasoning, com-
mon sense reasoning, and machine translation.
Our results demonstrate that our framework
accurately models in-distribution downstream
performance, generalizes across three orders
of magnitude in training compute, and reliably
extrapolates performance as the amount of con-
text increases. These findings offer valuable in-
sights into the interplay between training com-
pute and context utilization, providing guid-
ance for designing more efficient long-context
LLMs for diverse downstream tasks. Our
code is available at https://github.com/
wang-research-lab/context-scaling.

1 Introduction

Neural scaling laws (Hestness et al., 2017; Kaplan
et al., 2020), which describe how model perfor-
mance scales with the number of model parame-
ters, the size of the training dataset, or the amount
of training compute, have shaped our understand-
ing of how large language models (LLMs) (Brown
et al., 2020; Touvron et al., 2023; Team et al., 2024;
Grattafiori et al., 2024; OpenAI et al., 2024) im-
prove with increased resources. These findings
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have guided the design and development of increas-
ingly larger models, providing a blueprint to op-
timally scale up performance under a fixed com-
pute budget (Hoffmann et al., 2022; OpenAI et al.,
2024).

While upstream metrics like cross-entropy loss
serve as convenient proxies during model devel-
opment, in real-world applications, downstream
performance often diverges from these upstream
trends (Wei et al., 2022; Hu et al., 2024). Accu-
rate upfront performance estimates for downstream
tasks can help guide model development and iden-
tify emergence or saturation on certain tasks with
fewer costly experiments. Existing works on pre-
dicting downstream performance often rely on
overly complicated, less interpretable methods. For
instance, Chen et al. (2024) utilizes a two-stage
approach using upstream loss as an intermediary,
while Ye et al. (2023) fits a multi-layered percep-
tron to predict performance on BIG-Bench (Srivas-
tava et al., 2023).

In contrast, we propose a straightforward, inter-
pretable framework that directly models the down-
stream performance of LLMs across a number of
tasks. The key is to jointly model downstream per-
formance as a function of the training compute and
the provided context. Specifically, we develop a
functional form (see Eq. (1)) which combines two
saturating power-law terms (one in the amount of
training compute and another in the amount of con-
text) along with a penalty term to account for cases
in which the context exceeds the model’s context
limit. This formulation is motivated by the intu-
ition that downstream performance improves with
increased training compute and longer, yet relevant,
context until the benefits saturate or the context
limit is exceeded. Figure 1 compares our fit to
existing methods that do not consider context.

We empirically validate our scaling framework
by fitting it on the observed downstream perfor-
mance of extended-context variants of Llama-2-7B

https://github.com/wang-research-lab/context-scaling
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Figure 1: Existing approaches ignore the impact of
context length and predict an average performance level
regardless of the number of in-context demonstrations.
In comparison, our context-aware fit closely tracks the
observed performance as additional context is provided.

and Llama-2-13B (Touvron et al., 2023; Peng et al.,
2024) across 65,500 unique instances spanning
three tasks: arithmetic reasoning, common sense
reasoning, and machine translation. Our results
demonstrate that our framework accurately predicts
downstream performance for both Llama-2-7B
and Llama-2-13B (Sec. 4). Furthermore, we
find that our fits generalize well on held-out
models spanning 3 orders of magnitude in training
compute (Sec. 4.1). Similarly, we demonstrate that
our fits generalize to longer contexts, even as the
context exceeds a model’s context limit (Sec. 4.2).
Lastly, we show that our fits generalize across
different context-extension techniques (Sec. 4.3).
These findings offer valuable insights into the
interplay between training compute and context
utilization, providing guidance for designing
more efficient long-context LLMs for diverse
downstream tasks.

Our main contributions are threefold:

• We propose a framework that extends conven-
tional neural scaling laws to downstream tasks
by incorporating the context length and con-
text limit, providing a more accurate model
of LLM performance across varying context
lengths.

• We empirically fit this framework to Llama-
2 models with extended context windows
across 3 tasks: arithmetic reasoning, common
sense reasoning, and machine translation. We
demonstrate the generality of our approach

by showing that our scaling laws hold across
3 orders of magnitude in training compute,
4 orders of magnitude in context length, and
across different context-extension techniques.

• Our framework offers an interpretable tool for
understanding the interplay between compute,
context, and downstream performance, pro-
viding insights that can guide the design of
future long-context LLMs.

2 Background

Here, we introduce relevant preliminaries, includ-
ing notation conventions and the process of ex-
tending the context window of the Llama-2 mod-
els (Touvron et al., 2023).

2.1 Notation

We adopt the following notation:

• P – aggregate performance on a downstream
task. Occasionally, we’ll use a subscript to de-
note the specific task (e.g., PMT for machine
translation).

• N – the number of model parameters, exclud-
ing embedding/de-embedding parameters.

• D – the number of tokens in the training
dataset.

• C – the amount of non-embedding training
compute. Following Kaplan et al. (2020), we
estimate C ≈ 6N FLOPs per training token,
or C ≈ 6ND FLOPs in total.

• nctx – the context limit of a model in tokens,
i.e., the maximum number of positional em-
beddings computed for any training sequence.
Often, we quote numerical values using k
to denote units of 1024 tokens. For exam-
ple, a context limit of “128k” corresponds to
128× 1024 = 131072 tokens.

• npmt – the length (in tokens) of a given input
query or context. For simplicity, npmt does
not include generated/outputted tokens.

2.2 Extending Llama-2’s Context Limit

Because the complexity of the self-attention layers
grows quadratically in the sequence length (Du-
man Keles et al., 2023; Dao et al., 2022), LLMs
are commonly pre-trained on short sequences (e.g.,
4k tokens) rather than long sequences (e.g., 128k



Base Model Non-embedding Params (N) Context Limit (nctx) Dataset Size (D) Training Compute (C)

Llama-2-7B 6,476,271,616

4k 2.0T 7.7719× 1022

8k 2.0T + 0.210B 7.7723× 1022

16k 2.0T + 0.419B 7.7732× 1022

32k 2.0T + 0.836B 7.7748× 1022

64k 2.0T + 1.678B 7.7780× 1022

128k 2.0T + 3.355B 7.7846× 1022

Llama-2-13B 12,688,184,320

4k 2.0T 1.5227× 1023

8k 2.0T + 0.210B 1.5227× 1023

16k 2.0T + 0.419B 1.5229× 1023

32k 2.0T + 0.836B 1.5232× 1023

64k 2.0T + 1.678B 1.5239× 1023

128k 2.0T + 3.355B 1.5251× 1023

Table 1: The 12 checkpoints against which we fit scaling curves. The 4k variants are the official Llama-2-7B
and Llama-2-13B checkpoints. The additional training tokens and compute from extending the context limit via
YaRN (Peng et al., 2024) are factored into D and C.

tokens). As a result, LLMs struggle to generalize
to sequences longer than those seen during pre-
training. Because we plan to explore how down-
stream performance varies with context length,
Llama-2’s original context limit of 4k tokens will
not be sufficient. Fortunately, a number of tech-
niques have been proposed that can extend the con-
text window of LLMs for a fraction of the pre-
training compute budget (Chen et al., 2023; Peng
et al., 2024; Xiong et al., 2024).

YaRN (Peng et al., 2024) is our method of choice
for extending Llama 2’s context limit. We selected
YaRN due to its high compute efficiency and strong
empirical results compared to other techniques.
YaRN involves fine-tuning the pre-trained model
for a limited number of steps on sequences exceed-
ing the pre-trained LLM’s context limit in order
to increase the effective size of the LLM’s context
limit so that it may better model long sequences.

We adopt the methodology from Peng et al.
(2024) and fine-tune Llama-2-7B and Llama-2-
13B (Touvron et al., 2023) for 400 steps with a
global batch size of 64 on sequences of length
n′

ctx (where n′
ctx > nctx) from the PG-19 cor-

pus (Rae et al., 2020). We use the AdamW opti-
mizer (Loshchilov and Hutter, 2019) with β1 = 0.9
and β2 = 0.95, and a learning rate of 2 × 10−5.
We train variants of Llama-2-7B and Llama-2-13B
with nctx ∈ {8k, 16k, 32k}, and source check-
points for nctx ∈ {64k, 128k} from Peng et al.
(2024).

In order to validate the effectiveness of the con-
text extension training, we evaluate the perfor-
mance of our 12 Llama-2 models in Table 1 on
RULER (Hsieh et al., 2024), a synthetic needle-

in-a-haystack benchmark developed to evaluate
long-context LLMs. Specifically, we evaluate each
model on 100 instances per length, for each of
RULER’s 13 tasks. Results are displayed in Table 2
and suggest that context extension via YaRN (Peng
et al., 2024) is somewhat effective. Interestingly,
models tend to underperform when evaluated at
their extended context limit, suggesting that train-
ing with a context limit well beyond the target eval-
uation range can lead to improved performance
within that desired range.

3 Method

We posit that aggregate task performance P can
be modeled as the product of two saturating power
laws in C and npmt, with a sigmoid penalty term for
when npmt > nctx. This form provides a good fit
for a range of tasks, including arithmetic reasoning,
common sense reasoning, and machine translation
tasks. Formally, we model P as

P(C, npmt, nctx) =

Saturating term in C︷ ︸︸ ︷[
1 − exp

(
−A

( C

Cc

)α)]
(1)

×
[
1 − exp

(
−B

(npmt

nc
pmt

)β)]
︸ ︷︷ ︸

Saturating term in npmt

×σ (npmt − nctx)︸ ︷︷ ︸
Penalty term

,

where A, Cc, α, B, nc
pmt, and β are parameters to

be optimized.
We select this form because we expect that the

downstream performance P is proportional to di-
minishing terms in the amount of training compute
C (which integrates both model size N and dataset
size D) (Chen et al., 2024; Owen, 2024) and the
context length (Brown et al., 2020; Caballero et al.,
2023), assuming the context remains relevant as its



Model nctx npmt = 4k npmt = 8k npmt = 16k npmt = 32k npmt = 64k npmt = 128k

Llama-2-7B

4k 0.822 0.000 0.000 0.000 0.000 0.000
8k 0.829 0.586 0.000 0.000 0.001 0.005

16k 0.795 0.58 0.378 0.000 0.000 0.002
32k 0.746 0.599 0.517 0.317 0.000 0.000
64k 0.794 0.647 0.593 0.530 0.225 0.000
128k 0.776 0.663 0.552 0.439 0.383 0.129

Llama-2-13B

4k 0.861 0.000 0.000 0.000 0.000 0.000
8k 0.870 0.625 0.000 0.000 0.000 0.000

16k 0.865 0.679 0.392 0.000 0.000 0.000
32k 0.848 0.727 0.622 0.378 0.000 0.000
64k 0.860 0.734 0.612 0.511 0.282 0.001
128k 0.819 0.684 0.586 0.484 0.447 0.163

Table 2: Accuracy of our extended Llama-2 models on RULER (Hsieh et al., 2024).

length increases and npmt ≤ nctx. We saturate these
terms via exponentiation to ensure our predicted
performance remains below the maximum theoret-
ical performance of 1.0. The product form arises
because compute and context are complementary,
not additive; a significant lack in one dimension
limits the benefit derived from the other. For ex-
ample, providing more context is only beneficial to
the extent that the model is capable of leveraging
that additional context. We impose a sharp sigmoid
penalty term because P is measured only on the
generated tokens, and if npmt > nctx, then any gen-
erated tokens will fall beyond the range in which
the model can make reliable predictions, meaning
P degrades rapidly, especially on tasks that require
extended and coherent generations (e.g., reason-
ing through a math word problem or translating an
entire sentence).

3.1 Datasets
We evaluate our 12 models in Table 1 on 65,500
instances of varying lengths that span 3 tasks:

• Arithmetic reasoning We collect 3550 test-
ing instances across GSM8K (Cobbe et al.,
2021), MATH (Hendrycks et al., 2021),
AQUA-RAT (Ling et al., 2017), and Deep-
mind Math (Saxton et al., 2019). Because the
instances are rather short, we pack the context
with up to 511 demonstrations sampled from
the training splits of each dataset.

• Common sense reasoning We sample
1750 testing instances across PIQA (Bisk
et al., 2020), SIQA (Sap et al., 2019),
OpenBookQA (Mihaylov et al., 2018),
HellaSwag (Zellers et al., 2019), Wino-
Grande (Sakaguchi et al., 2020), ARC-
Easy/Challenge (Clark et al., 2018), and Com-

monSenseQA (Talmor et al., 2019), and pack
the context with up to 511 demonstrations
from their respective training splits.

• Machine translation We sample 250 trans-
lation instances from WMT-14 (Bojar et al.,
2014) from each of German, French, Hindi,
Czech, and Russian to English. As before,
we pack the context with up to 511 demon-
strations (of the same source language) and
measure the BLEU-4 (Papineni et al., 2002)
score of the generation against the reference
translation.

Additional details can be found in Appendix A.

3.2 Fitting Procedure
For each task, we aggregate the results for each
model by the context length, using the number of
in-context demonstrations as a proxy for length.
Within each group, we average over the context
length and metric value for each instance. In doing
so, we collect a number of records of the form
(C, npmt, nctx, avg. metric value) on which we fit
Eq. (1) for each of our 3 tasks.

To fit the scaling curves, we use a two-stage opti-
mization procedure that combines global search
with local refinement. First, we use an out-
of-the-box global optimizer to perform a broad

Parameter Lower Bound Upper Bound

A 0 100
Cc 0 1030

α 0 10
B 0 100
nc

pmt 0 131,072
β 0 10

Table 3: Upper and lower bounds on A, Cc, α, B, nc
pmt,

and β.
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Figure 2: Contours of fits at C = 7.8×1022 (red) and C = 1.5×1023 (blue) for nctx = 8k on three tasks: arithmetic
reasoning (left), common sense reasoning (middle) and machine translation (right).

Task A Cc α B nc
pmt β

Arithmetic reasoning 9.96 9.7× 1029 0.26 62.24 1.3× 105 0.56
Common sense reasoning 99.39 1.5× 1028 0.40 96.31 3.5× 103 1.12
Machine translation 5.55 5.4× 1029 0.23 31.82 3.0× 102 2.97

Table 4: Fits for P(C, npmt, nctx) on 3 downstream tasks: arithmetic reasoning, common sense reasoning, and
machine translation.

search over the parameter space. Specifically,
we use SciPy’s differential_evolution global
optimization method, an evolutionary algorithm
well suited for non-convex, non-linear optimiza-
tion problems such as this (Storn and Price, 1997).
We define finite upper and lower bounds for
each parameter, informed by Kaplan et al. (2020)
and Xiong et al. (2024). We use the same bounds
across all tasks, which are listed in Table 3. Finally,
we do a pass through a local optimizer (SciPy’s
curve_fit), using the estimate from the global
optimizer as a starting point, to achieve a precise
fit.

4 Empirical Results

We model the aggregate performance P on each of
our 3 tasks (arithmetic reasoning, common sense
reasoning, and machine translation) using Eq. (1).
Unless otherwise noted, scaling laws are fit on the
results of all 12 Llama-2 models in Table 1 using
the procedure outlined in Section 3.2. Table 4 in-
cludes the parameter values which we found to
be optimal for each task. Contours of our fits at
C = 7.8× 1022 and C = 1.5× 1023 for nctx = 8k
are provided in Figure 2. Additional contours are
provided in Appendix B. We report the mean abso-
lute prediction error |P − P̂|, which is the average
of residuals (in absolute value). When discussing
individual residuals, we’ll often include the sign of
the residual to indicate the direction (i.e., whether
we’re under- or over-predicting).

On the arithmetic reasoning task, we achieve
an excellent fit, with an average prediction error
|P − P̂| of just 0.010. Similarly, on common sense
reasoning and machine translation, we observe av-
erage prediction errors of 0.037 and 0.007, respec-
tively. Additionally, we model the behavior around
the boundary condition at npmt = nctx surprisingly
well.

Our results confirm that P can be jointly deter-
mined by the training compute and context length.
Increasing C corresponds to an increase in P , in
effect shifting up the contour by some diminishing
amount in C in the region where npmt < nctx. Sim-
ilarly, increasing npmt when npmt is small leads to
significant gains in P , which diminish (sub-linearly
for arithmetic reasoning and super-linearly for com-
mon sense reasoning and machine translation) and
saturate quickly. In the context of our task con-
struction, this makes a lot of sense; the first few
in-context task demonstrations go far in improv-
ing the generated responses, but once the model
has seen enough context to sufficiently capture the
task structure, additional demonstrations provide
little marginal benefit (Brown et al., 2020). Ad-
ditionally, the optimal number of demonstrations
is task-dependent; our results suggest that models
make better use of additional demonstrations on
arithmetic reasoning tasks than they do on common
sense reasoning or machine translation tasks.

The remainder of this section aims to study
the extent to which our fits generalize to out-of-



Model C nctx PAR − P̂AR PCSR − P̂CSR PMT − P̂MT

Qwen-2.5-0.5B 3.8× 1022 32k +0.057 +0.008 -0.057
Gemma-2-2B 2.4× 1022 4k +0.066 +0.260 +0.059
Gemma-2-9B 4.0× 1023 4k +0.069 +0.051 +0.017
Gemma-2-27B 2.0× 1024 4k +0.024 -0.099 -0.054
Llama-2-70B 8.2× 1023 4k -0.002 -0.031 -0.025

Table 5: Generalization of fit on test models for arithmetic reasoning (AR), common sense reasoning (CSR), and
machine translation (MT).
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Figure 3: Contours of fits at C = 7.8 × 1022 (red) and C = 1.5 × 1023 (blue) for nctx = 128k on three tasks:
arithmetic reasoning (left), common sense reasoning (middle) and machine translation (right). Held-out observations
are colored in purple and green for Llama-2-7b and Llama-2-13b, respectively.

distribution amounts of training compute (Sec-
tion 4.1), context length (Section 4.2), and context-
extension method (Section 4.3). Finally, Sec-
tion 4.4 analyzes the role of the sigmoid penalty
term.

4.1 Generalization along C

Our scaling laws are fit over a narrow range
of C, specifically 7.8 × 1022 ≤ C ≤ 1.5 ×
1023. To test how well our fits generalize out-
side of this range, we evaluate several testing mod-
els (namely, Qwen2.5-0.5B (Yang et al., 2025),
Gemma-2 (Team et al., 2024), and Llama-2-
70B (Touvron et al., 2023)) ranging between 0.5B
to 70B parameters and spanning 3 orders of mag-
nitude in C. We evaluate these models at their
respective context limits

†
, and report the prediction

error on each task in Table 5.
We observe good generalization across these 5

testing models, with many of the prediction errors
falling near or below 5 points. Interestingly, our
fits generalize the worst to Gemma-2-2B, despite
generalizing well to Gemma-2-9B and Gemma-2-
27B. Moreover, we achieve stronger generalization
on arithmetic reasoning and machine translation

†
While Gemma-2 has a context limit of 8k tokens, it uses

sliding window attention for every odd layer. Since this be-
havior is not supported in vLLM (Kwon et al., 2023), we treat
Gemma-2 as if its context limit is 4k tokens.

tasks compared to common sense reasoning, which
aligns with our in-distribution results. Finally, these
results suggest we tend to underestimate the perfor-
mance when C is small, and slightly overestimate
performance when C is large.

4.2 Generalization along npmt

In order to measure how well our scaling laws
generalize to longer contexts, we refit our scaling
curves, this time holding out observations where
the context length exceeds 10,000 tokens. Figure 3
displays contours of our fits at C = 7.8 × 1022

and C = 1.5× 1023 for nctx = 128k for each task.
Again, we see strong generalization along npmt,
achieving prediction errors of just 0.017, 0.067,
and 0.006 across the held-out observations on arith-
metic reasoning, common sense reasoning, and
machine translation, respectively. These low er-
ror rates across diverse tasks demonstrate that our
joint scaling framework can reliably extrapolate
to longer context lengths, making it particularly
suitable for long-context LLM design.

Interestingly, on common sense reasoning and
machine translation tasks, we observe that P is
inversely proportional to nctx for some fixed npmt.
That is, as we extend the context, performance
slightly worsens. We hypothesize that this decline
is not due to an intrinsic scaling trend but rather be-
cause the training mix used to extend the context is



misaligned with these tasks. For example, our train-
ing mix is sourced from PG-19 (Rae et al., 2020),
which includes predominantly English text, so it’s
unsurprising that machine translation performance
worsens with increased training.

4.3 Does the choice of context extension
technique matter?

A number of different techniques have been pro-
posed for extending the context length of a model
with rotary positional embeddings (Chen et al.,
2023; Peng et al., 2024; Xiong et al., 2024). It’s nat-
ural to wonder how sensitive our fit scaling curves
are to one’s choice of context extension technique.
To test this, we evaluate Together’s Llama-2-7B
model (Together.ai, 2023) extended to 32k con-
text via positional interpolation (Chen et al., 2023).
We evaluate this model at its context limit of 32k
tokens across our 3 tasks and compute the predic-
tion error for each, that is, the difference between
the observed performance P and the predicted per-
formance P̂ . We compare against the prediction
error on the Llama-2-7B checkpoint extended to
nctx = 32k via YaRN (Peng et al., 2024). It’s worth
noting the training mix and quantity are different
between these two models; Together’s was trained
on 1.5B tokens of a diverse data mix, while we
follow Peng et al. (2024) and train on just 0.836B
tokens from PG-19 (Rae et al., 2020). Still, our
compute estimates for both models are sufficiently
similar (7.777× 1022 vs 7.775× 1022 FLOPs, re-
spectively).

Table 6 lists the results. In general, the prediction
errors we observe on Together’s Llama-2-7B model
extended via positional interpolation are similar to
the prediction errors we observe on our Llama-2-
7B model extended via YaRN. These results sug-
gest that the choice of context extension technique
has little impact on the scaling properties of down-
stream performance.

4.4 Ablation over the penalty term

To quantify the impact of our sigmoid penalty for
prompt lengths exceeding the model’s context limit,
we fit Eq. (1) on the arithmetic reasoning task with
and without the penalty term. Table 7 reports the
resulting prediction errors. We observe that with-
out the penalty term, the fit underestimates per-
formance when npmt ≤ nctx and overestimates
performance when npmt > nctx, confirming the
importance of the penalty term.

5 Related Work

Hestness et al. (2017) and Kaplan et al. (2020)
introduce scaling laws which describe the relation-
ship between upstream model performance (e.g.,
cross-entropy loss) and model design features (e.g.,
the number of model parameters, the size of the
training dataset, or the total amount of training
compute). Henighan et al. (2020) extends this anal-
ysis to other types of autoregressive models (e.g.,
generative image and video modeling). Hoffmann
et al. (2022) and OpenAI et al. (2024) describe the
use of scaling laws to train compute-optimal LLMs,
and Caballero et al. (2023) introduces a form of
smoothly broken neural scaling laws to better cap-
ture non-monotonic scaling.

Several works have focused on scaling laws
for predicting downstream performance. Wei et al.
(2022) and Hu et al. (2024) focus on predicting
abilities that “emerge” in LLMs when trained on
enough compute. Isik et al. (2024) explores scal-
ing laws for transfer learning on machine trans-
lation tasks, while Schaeffer et al. (2025) studies
scaling laws for downstream multiple-choice tasks.
Other works have employed a collaborative ap-
proach and source performance data from public
benchmarks to better generalize across different
model families (Zhang et al., 2024; Ruan et al.,
2024; Polo et al., 2025; Gadre et al., 2024). Chen
et al. (2024) and Ruan et al. (2024) employ a
two-stage approach, using an intermediary (e.g.,
upstream loss) for predicting downstream perfor-
mance. Both Owen (2024) and Ye et al. (2023)
aim to predict aggregate performance on bench-
marks such as BIG-Bench (Srivastava et al., 2023).
Comparatively, this work introduces a dependence
on the context length and suggests that you can
predict downstream performance and obtain strong
generalization (even across model families) with a
straightforward, interpretable functional form.

Both Kaplan et al. (2020) and Caballero et al.
(2023) briefly explore the scaling of upstream per-
formance as it relates to context length. Xiong et al.
(2024) extends the context limit of Llama-2 and
finds that validation loss scales as a power law in
the context length, but stops short of exploring the
relationship between downstream performance and
context length. Caballero et al. (2023) and Brown
et al. (2020) explore the diminishing returns of in-
creasing the number of in-context demonstrations.
To the best of our knowledge, our work is the first
to explicitly focus on the scaling relationship be-



Model C npmt PAR − P̂AR PCSR − P̂CSR PMT − P̂MT

Llama-2-7B (PI) 7.777× 1022 32k +0.014 +0.079 -0.005
Llama-2-7B (YaRN) 7.775× 1022 32k +0.005 +0.014 -0.005

Table 6: Generalization of fit on test models for arithmetic reasoning (AR), common sense reasoning (CSR), and
machine translation (MT) at nctx = 32k.

|P − P̂ |npmt≤nctx |P − P̂ |npmt>nctx |P − P̂ |

With penalty term 0.010 0.014 0.010
Without penalty term 0.019 0.104 0.029

Table 7: Prediction errors on the arithmetic reasoning task, with and without the sigmoid penalty term.

tween downstream performance and context length,
and the first attempt to unify the understanding of
scaling with respect to both context and compute.

The ability of an LLM to extrapolate to longer
sequences depends heavily on its positional en-
codings. While some positional encoding tech-
niques (e.g., ALiBi (Press et al., 2022)) offer lim-
ited length extrapolation, other common techniques
(e.g., RoPE (Su et al., 2024)) don’t. As a result,
a number of techniques to efficiently extend the
context window of LLMs have been proposed.

Some techniques offer training-free context ex-
tension, typically by adjusting the attention mech-
anism itself. Jin et al. (2024) leverages a bi-
level attention mechanism, applying standard self-
attention to adjacent tokens and grouped attention
for distant tokens. InfLLM is a memory-based tech-
nique that integrates sliding-window attention with
block-level context memory (Xiao et al., 2024).
Similarly, LM-Infinite employs a Λ-shaped atten-
tion mask, effectively masking attention over to-
kens in the middle, and restricts the maximum
positional difference between any two tokens to
the maximum sequence length seen during pre-
training (Han et al., 2024). On the other hand, An
et al. (2024) introduces dual-chunk attention, which
decomposes the attention computation into chunk-
based modules to better capture the relative posi-
tional information between distant tokens.

Additionally, a number of techniques have been
proposed that focus on rescaling the positional en-
codings. Concurrently, Chen et al. (2023) and kaio-
kendev (2023) introduced position interpolation,
which extends the context window by linearly in-
terpolating the position indices to be within the pre-
trained context limit. Xiong et al. (2024) proposes
decreasing the rotational angle (base frequency)
of RoPE to prevent the relative positional infor-

mation from decaying. Building on this, NTK-
aware interpolation (bloc97, 2023b) adjusts the
scaling for each RoPE dimension based on its
frequency, thereby mitigating the loss of high-
frequency details. bloc97 (2023a) introduces NTK-
by-parts interpolation, which selectively interpo-
lates lower-frequency dimensions while preserving
higher-frequency components to maintain local rel-
ative positioning. YaRN (Peng et al., 2024) com-
bines NTK-by-parts with a mechanism to rescale
the logits in the attention softmax to further im-
prove performance on long sequences. In this work,
we utilize YaRN to extend the context limit of the
Llama-2 models due to its high compute efficiency
and strong empirical results compared to other tech-
niques.

6 Conclusion

In this work, we introduce a straightforward, in-
terpretable framework that jointly models down-
stream performance as a function of the training
compute and the provided context. Extensive exper-
iments on arithmetic reasoning, common-sense rea-
soning, and machine translation tasks demonstrate
that our framework not only fits the in-distribution
performance accurately but also generalizes well
across 3 orders of magnitude in the amount of non-
embedding training compute C, 4 orders of mag-
nitude in the amount of input context length, and
even to other context-extension techniques. These
findings reveal that downstream performance ben-
efits from increased compute and longer, relevant
context, but only up to a saturation point. Our
work thus provides actionable insights for design-
ing more effective long-context LLMs and bridges
the gap between upstream scaling metrics and real-
world task performance.



Limitations

While our proposed context-aware scaling frame-
work provides an interpretable approach to mod-
eling downstream performance, it does come with
limitations. Specifically, our formulation relies
on a set of assumptions (e.g., performance scales
with training compute and context) that may not
hold under extreme scaling regimes or in the pres-
ence of adversarial attacks like many-shot jailbreak-
ing (Anil et al., 2024). Moreover, factors such as
the pre-training data mix, post-training and align-
ment, and architectural choices, which can all in-
fluence downstream model performance, are not
explicitly accounted for. However, these factors
likely affect the optimal parameters of a fit without
necessarily changing the structure of Eq. (1). For
example, post-training alignment (e.g., instruction
tuning) might improve a model’s zero-shot perfor-
mance, resulting in a higher value for the parameter
A compared to a non-aligned base model. Future
work could investigate how these factors and others
influence the identified parameters, enhancing the
framework’s predictive power while retaining its
interpretable form. Lastly, our scaling curves are fit
to a narrow range of training compute, and may fail
to generalize well to LLMs trained on an amount
of compute that extends far beyond this range.
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Şenel, Maarten Bosma, Maarten Sap, Maartje ter
Hoeve, Maheen Farooqi, Manaal Faruqui, Mantas
Mazeika, Marco Baturan, Marco Marelli, Marco
Maru, Maria Jose Ramírez Quintana, Marie Tolkiehn,
Mario Giulianelli, Martha Lewis, Martin Potthast,
Matthew L. Leavitt, Matthias Hagen, Mátyás Schu-
bert, Medina Orduna Baitemirova, Melody Arnaud,
Melvin McElrath, Michael A. Yee, Michael Co-
hen, Michael Gu, Michael Ivanitskiy, Michael Star-
ritt, Michael Strube, Michał Swędrowski, Michele
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A Dataset Details

GSM8K (Cobbe et al., 2021) We filter out in-
stances over 256 tokens in length, and select 511
training instances and 250 testing instances at ran-
dom. During inference, we allow up to 400 new
tokens. The average token lengths of the train-
ing and testing instances were 177.64 and 177.43
respectively. The generated responses averaged
around 172.13 tokens in length. To evaluate, we
extract the model’s final answer and compare it
with the reference answer, checking for numerical
equivalence.

MATH (Hendrycks et al., 2021) We filter out
instances over 256 tokens in length, and select 511
training instances and 250 testing instances at ran-
dom. During inference, we allow up to 400 new
tokens. The average token lengths of the training
and testing instances were 160.54 and 155.74 re-
spectively. The generated responses also averaged
around 184.0 tokens in length. To evaluate, we
extract the model’s final answer and compare it
with the reference answer, checking for numerical
equivalence.

AQUA-RAT (Ling et al., 2017) We filter out in-
stances over 256 tokens in length, and select 511
training instances and 250 testing instances at ran-
dom. We allow up to 5 new tokens during genera-
tion. The average token lengths of the training and
testing instances were 88.45 and 93.09 respectively.
The generated responses also averaged around 3.44
tokens in length. To evaluate, we check to see if the
choice returned by our model matches the reference
answer.

DeepMind Math (Saxton et al., 2019) The
dataset is categorized into 56 subsets. We filter
out instances over 256 tokens in length, and select
511 training instances and 50 testing instances at
random from each subset. We allow up to 400

new tokens during generation. The average to-
ken lengths of the training and testing instances
were 57.94 and 61.05 respectively. The generated
responses also averaged around 85.71 tokens in
length. To evaluate, we extract the model’s final
answer and compare it with the reference answer,
checking for numerical equivalence.

PIQA (Bisk et al., 2020) We filter out instances
over 256 tokens in length, and select 511 training
instances and 250 testing instances at random. We
allow up to 5 new tokens during generation. The
average token lengths of the training and testing
instances were 81.16 and 81.55 respectively. The
generated responses also averaged around 3.46 to-
kens in length. To evaluate, we check to see if the
choice returned by our model matches the reference
answer.

OpenBookQA (Mihaylov et al., 2018) We filter
out instances over 256 tokens in length, and select
511 training instances and 250 testing instances at
random. We allow up to 5 new tokens during gener-
ation. The average token lengths of the training and
testing instances were 47.74 and 49.39 respectively.
The generated responses also averaged around 3.3
tokens in length. To evaluate, we check to see if the
choice returned by our model matches the reference
answer.

SIQA (Sap et al., 2019) We filter out instances
over 256 tokens in length, and select 511 training
instances and 250 testing instances at random. We
allow up to 1 new token during generation. The
average token lengths of the training and testing
instances were 56.68 and 56.87 respectively. The
generated responses also averaged around 3.35 to-
kens in length. To evaluate, we check to see if the
choice returned by our model matches the reference
answer.

HellaSwag (Zellers et al., 2019) We filter out
instances over 256 tokens in length, and select 511
training instances and 250 testing instances at ran-
dom. We allow up to 5 new tokens during gener-
ation. The average token lengths of the training
and testing instances were 153.06 and 156.05 re-
spectively. The generated responses also averaged
around 3.67 tokens in length. To evaluate, we check
to see if the choice returned by our model matches
the reference answer.

WinoGrande (Sakaguchi et al., 2020) We filter
out instances over 256 tokens in length, and select
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511 training instances and 250 testing instances at
random. We allow up to 5 new tokens during gener-
ation. The average token lengths of the training and
testing instances were 53.98 and 53.87 respectively.
The generated responses also averaged around 3.33
tokens in length. To evaluate, we check to see if the
choice returned by our model matches the reference
answer.

ARC Easy (Clark et al., 2018) We filter out in-
stances over 256 tokens in length, and select 511
training instances and 250 testing instances at ran-
dom. We allow up to 5 new tokens during genera-
tion. The average token lengths of the training and
testing instances were 66.69 and 67.14 respectively.
The generated responses also averaged around 3.46
tokens in length. To evaluate, we check to see if the
choice returned by our model matches the reference
answer.

ARC Challenge (Clark et al., 2018) We filter
out instances over 256 tokens in length, and select
511 training instances and 250 testing instances at
random. We allow up to 5 new tokens during gener-
ation. The average token lengths of the training and
testing instances were 75.65 and 76.83 respectively.
The generated responses also averaged around 3.43
tokens in length. To evaluate, we check to see if the
choice returned by our model matches the reference
answer.

CommenSenseQA (Talmor et al., 2019) We fil-
ter out instances over 256 tokens in length, and
250 select 511 training instances and testing in-
stances at random. We allow up to 5 new tokens
during generation. The average token lengths of
the training and testing instances were 50.42 and
49.92 respectively. The generated responses also
averaged around 1.0 tokens in length. To evaluate,
we check to see if the choice returned by our model
matches the reference answer.

WMT14 (CS-EN) (Bojar et al., 2014) We filter
out instances over 256 tokens in length, and select
511 training instances and 250 testing instances
at random. We allow up to 256 new tokens dur-
ing generation. The average token lengths of the
training and testing instances were 95.01 and 85.25
respectively. The generated responses also aver-
aged around 77.77 tokens in length. We use BLEU-
4 (Papineni et al., 2002) to score the generated
translations relative to the reference translations.

WMT14 (DE-EN) (Bojar et al., 2014) We filter
out instances over 256 tokens in length, and select
511 training instances and 250 testing instances
at random. We allow up to 256 new tokens dur-
ing generation. The average token lengths of the
training and testing instances were 85.53 and 77.68
respectively. The generated responses also aver-
aged around 77.77 tokens in length. We use BLEU-
4 (Papineni et al., 2002) to score the generated
translations relative to the reference translations.

WMT14 (FR-EN) (Bojar et al., 2014) We filter
out instances over 256 tokens in length, and select
511 training instances and 250 testing instances
at random. We allow up to 256 new tokens dur-
ing generation. The average token lengths of the
training and testing instances were 95.94 and 84.29
respectively. The generated responses also aver-
aged around 78.73 tokens in length. We use BLEU-
4 (Papineni et al., 2002) to score the generated
translations relative to the reference translations.

WMT14 (HI-EN) (Bojar et al., 2014) We filter
out instances over 256 tokens in length, and select
511 training instances and 250 testing instances at
random. We allow up to 256 new tokens during
generation. The average token lengths of the train-
ing and testing instances were 34.01 and 147.09
respectively. The generated responses also aver-
aged around 53.11 tokens in length. We use BLEU-
4 (Papineni et al., 2002) to score the generated
translations relative to the reference translations.

WMT14 (RU-EN) (Bojar et al., 2014) We filter
out instances over 256 tokens in length, and select
511 training instances and 250 testing instances
at random. We allow up to 256 new tokens dur-
ing generation. The average token lengths of the
training and testing instances were 73.54 and 86.56
respectively. The generated responses also aver-
aged around 77.24 tokens in length. We use BLEU-
4 (Papineni et al., 2002) to score the generated
translations relative to the reference translations.

B Full Results

In this section, we present full aggregate results
in Tables 8, 9, and 10 for arithmetic reasoning,
common sense reasoning, and machine translation
respectively. Figures 4, 5,and 6 provide contours
of our fits at C = 7.8× 1022 and C = 1.5× 1023.



k 0 shots 1 shot 3 shots 7 shots 15 shots 31 shots 63 shots 127 shots 255 shots 511 shots

Llama-2-7b-hf 0.089 0.099 0.115 0.120 0.136 0.127 0.094 0.014 0.014 0.000
Yarn-Llama-2-7b-8k 0.076 0.097 0.109 0.117 0.134 0.131 0.137 0.071 0.000 0.000
Yarn-Llama-2-7b-16k 0.072 0.095 0.109 0.116 0.130 0.133 0.143 0.139 0.073 0.002
Yarn-Llama-2-7b-32k 0.069 0.092 0.104 0.113 0.127 0.127 0.135 0.134 0.143 0.076
Yarn-Llama-2-7b-64k 0.057 0.094 0.108 0.115 0.132 0.128 0.143 0.140 0.150 0.138
Yarn-Llama-2-7b-128k 0.049 0.091 0.106 0.113 0.129 0.126 0.136 0.135 0.149 0.140

Llama-2-13b-hf 0.088 0.115 0.131 0.137 0.148 0.141 0.092 0.011 0.005 0.000
Yarn-Llama-2-13b-8k 0.086 0.110 0.126 0.132 0.146 0.149 0.151 0.082 0.000 0.000
Yarn-Llama-2-13b-16k 0.081 0.110 0.135 0.146 0.153 0.163 0.172 0.145 0.077 0.010
Yarn-Llama-2-13b-32k 0.077 0.111 0.129 0.145 0.154 0.162 0.171 0.169 0.134 0.065
Yarn-Llama-2-13b-64k 0.073 0.106 0.130 0.146 0.156 0.158 0.169 0.167 0.159 0.136
Yarn-Llama-2-13b-128k 0.069 0.108 0.123 0.138 0.157 0.157 0.174 0.165 0.163 0.153

Table 8: Accuracy on arithmetic reasoning, aggregated over every instance in the task.

k 0 shots 1 shot 3 shots 7 shots 15 shots 31 shots 63 shots 127 shots 255 shots 511 shots

Llama-2-7b-hf 0.376 0.489 0.518 0.536 0.536 0.527 0.302 0.000 0.000 0.000
Yarn-Llama-2-7b-8k 0.356 0.476 0.518 0.530 0.530 0.523 0.491 0.278 0.000 0.000
Yarn-Llama-2-7b-16k 0.342 0.468 0.508 0.522 0.532 0.519 0.521 0.486 0.264 0.000
Yarn-Llama-2-7b-32k 0.325 0.459 0.500 0.496 0.522 0.508 0.501 0.534 0.457 0.276
Yarn-Llama-2-7b-64k 0.346 0.456 0.503 0.513 0.502 0.498 0.490 0.515 0.470 0.458
Yarn-Llama-2-7b-128k 0.338 0.450 0.496 0.490 0.504 0.486 0.490 0.507 0.465 0.486

Llama-2-13b-hf 0.453 0.604 0.649 0.660 0.659 0.600 0.344 0.000 0.000 0.000
Yarn-Llama-2-13b-8k 0.469 0.610 0.662 0.656 0.675 0.652 0.603 0.318 0.000 0.000
Yarn-Llama-2-13b-16k 0.464 0.594 0.656 0.654 0.658 0.650 0.658 0.584 0.308 0.000
Yarn-Llama-2-13b-32k 0.432 0.586 0.642 0.640 0.642 0.642 0.646 0.626 0.567 0.322
Yarn-Llama-2-13b-64k 0.481 0.589 0.642 0.636 0.638 0.634 0.645 0.620 0.614 0.582
Yarn-Llama-2-13b-128k 0.480 0.578 0.636 0.632 0.628 0.630 0.634 0.616 0.609 0.612

Table 9: Accuracy on Commonsense Reasoning tasks, aggregated over every instance in the task.

k 0 shots 1 shot 3 shots 7 shots 15 shots 31 shots 63 shots 127 shots 255 shots 511 shots

Llama-2-7b-hf 0.031 0.147 0.155 0.154 0.156 0.159 0.049 0.011 0.000 0.000
Yarn-Llama-2-7b-8k 0.034 0.142 0.155 0.146 0.151 0.152 0.152 0.010 0.006 0.000
Yarn-Llama-2-7b-16k 0.031 0.138 0.152 0.144 0.147 0.144 0.143 0.143 0.006 0.003
Yarn-Llama-2-7b-32k 0.026 0.138 0.147 0.141 0.143 0.142 0.141 0.140 0.146 0.005
Yarn-Llama-2-7b-64k 0.033 0.129 0.144 0.142 0.148 0.141 0.148 0.142 0.144 0.134
Yarn-Llama-2-7b-128k 0.040 0.125 0.140 0.140 0.144 0.142 0.145 0.136 0.136 0.130

Llama-2-13b-hf 0.023 0.166 0.175 0.180 0.181 0.175 0.058 0.015 0.000 0.000
Yarn-Llama-2-13b-8k 0.029 0.161 0.171 0.175 0.177 0.170 0.174 0.014 0.011 0.000
Yarn-Llama-2-13b-16k 0.025 0.157 0.170 0.171 0.176 0.166 0.173 0.166 0.010 0.005
Yarn-Llama-2-13b-32k 0.025 0.152 0.168 0.166 0.171 0.168 0.164 0.156 0.160 0.007
Yarn-Llama-2-13b-64k 0.066 0.152 0.162 0.163 0.166 0.169 0.163 0.160 0.162 0.160
Yarn-Llama-2-13b-128k 0.101 0.145 0.155 0.162 0.163 0.163 0.163 0.154 0.157 0.154

Table 10: Accuracy on Machine Translation tasks, aggregated over every instance in the task.



Figure 4: Contours of our fit at C = 7.8× 1022 (left) and C = 1.5× 1023 (right) for the arithmetic reasoning task.

Figure 5: Contours of our fit at C = 7.8× 1022 (left) and C = 1.5× 1023 (right) for the common sense reasoning
task.

Figure 6: Contours of our fit at C = 7.8× 1022 (left) and C = 1.5× 1023 (right) for the machine translation task.
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