
Bayesian-guided Label Mapping for Visual
Reprogramming

Chengyi Cai1 Zesheng Ye1 Lei Feng2 Jianzhong Qi1 Feng Liu1∗
1The University of Melbourne 2Singapore University of Technology and Design

{chengyi.cai1,zesheng.ye,jianzhong.qi}@unimelb.edu.au
feng_lei@sutd.edu.sg fengliu.ml@gmail.com

Abstract

Visual reprogramming (VR) leverages the intrinsic capabilities of pretrained vision
models by adapting their input or output interfaces to solve downstream tasks whose
labels (i.e., downstream labels) might be totally different from the labels associated
with the pretrained models (i.e., pretrained labels). When adapting the output
interface, label mapping methods transform the pretrained labels to downstream
labels by establishing a gradient-free one-to-one correspondence between the two
sets of labels. However, in this paper, we reveal that one-to-one mappings may
overlook the complex relationship between pretrained and downstream labels.
Motivated by this observation, we propose a Bayesian-guided Label Mapping
(BLM) method. BLM constructs an iteratively-updated probabilistic label mapping
matrix, with each element quantifying a pairwise relationship between pretrained
and downstream labels. The assignment of values to the constructed matrix is
guided by Bayesian conditional probability, considering the joint distribution of the
downstream labels and the labels predicted by the pretrained model on downstream
samples. Experiments conducted on both pretrained vision models (e.g., ResNeXt)
and vision-language models (e.g., CLIP) demonstrate the superior performance
of BLM over existing label mapping methods. The success of BLM also offers a
probabilistic lens through which to understand and analyze the effectiveness of VR.
Our code is available at https://github.com/tmlr-group/BayesianLM.

1 Introduction

Repurposing pretrained models from data-rich domains [6, 28, 58] has emerged as an effective
strategy to address downstream tasks without re-training a task-specific model. For visual tasks,
visual reprogramming (VR) [3, 4, 48, 51]–also called adversarial reprogramming [12, 38, 47]–
repurposes a pretrained model for downstream tasks without changing the model. In particular, VR
(full task setup detailed in Appendix A) modifies the model’s input interface by adding trainable noise
patterns to the images of downstream tasks. Since pretrained and downstream tasks typically have
distinct label spaces, a label mapping (LM) function is needed to map outputs of the pretrained models
to downstream labels. Often, existing VR methods adopt a gradient-free one-to-one LM [4, 12, 47],
avoiding the computational cost of training fully-connected output layers through backpropagation.

However, we find that a one-to-one LM overlooks the complex many-to-many relationship between
pretrained and downstream labels, which may limit the performance of VR. In Figure 1, we repurpose
a model pretrained on ImageNet [45] for downstream classification tasks using a one-to-one LM
strategy [4], and present statistical results. The two subfigures Figure 1a and Figure 1b, illustrate
drawbacks from the perspectives of individual images and the entire dataset, respectively. Figure
1a shows the distribution of logits (i.e., model output before the softmax layer) for the most likely

∗Correspondence to Feng Liu (fengliu.ml@gmail.com)

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/tmlr-group/BayesianLM

CIFAR10-Dog

Downstream
Label

Pretrained Model Output

× × × × × × ×

Optimal (1-to-1 Mapping)

Pretrained Model Output

Flowers102 -
Osteospermum

Downstream
Label Optimal (1-to-1 Mapping)

× × × × × × ×

CIFAR10 - Downstream Label

Pr
et

ra
in

ed
 la

be
l

Suboptimal Solution
 Optimal 1-to-1 Mapping

(a) Drawbacks Over Individual Images (b) Drawbacks Over the Entire Downstream Dataset

Ignored Probabilities

Figure 1: Drawbacks of one-to-one LM from the perspectives of (a) individual images and (b) the
entire dataset. An ImageNet-pretrained classifier is reused in downstream tasks. In (a), images ‘Dog’
and ‘Osteospermum’ from downstream tasks are mapped into only one pretrained label, respectively,
ignoring other probabilities. In (b), the distribution of [predicted pretrained label yS, ground-truth
downstream label yT] pairs reveals the existence of suboptimal solutions, where ‘Automobile’ cannot
be paired with the optimal pretrained label ‘Moving Van’, which has already been mapped to ‘Truck’.

predicted pretrained labels of two images from downstream tasks: a ‘Dog’ image from CIFAR10 [30]
and an ‘Osteospermum’ image from Flowers102 [40]. For the ‘Dog’ image, multiple pretrained labels
like ‘Chihuahua’, ‘Basenji’–subclasses of dogs–receive high logits. Similarly, for the ‘Osteospermum’
image, pretrained labels such as ‘Sea Urchin’, ‘Daisy’, which share similar features, also score high.
Despite these connections, the one-to-one LM retains only the label with the highest logit, suggesting
the probabilities of other related labels are ignored. Figure 1b shows the frequency distribution
of the predicted pretrained labels and the ground-truth downstream labels of downstream samples,
with the diagonal representing the results derived from one-to-one LM. The ‘Automobile’ class from
CIFAR10, for example, can no longer be paired with the optimal pretrained label ‘Moving Van’,
which has already been greedily mapped to the label ‘Truck’, implying suboptimal label assignments.

The above observation motivates us to go beyond these binary mappings. In Section 3, we replace
the one-to-one LM function with a probabilistic LM matrix. Each matrix element is a real number
that quantifies the relationship between a pretrained label and a downstream label, updated iteratively
during VR optimization. This allows predictions for each downstream sample to consider diverse
contributions from all pretrained labels, enabling a flexible many-to-many mapping strategy.

Specifically, we present Bayesian-guided label mapping (BLM) in Section 4, which assigns values
to elements in the probabilistic LM matrix based on Bayesian conditional probabilities, derived
from the joint distribution of the predicted pretrained labels on downstream tasks and the ground-
truth downstream labels. We further extend BLM to BLM+, which aggregates top-K predicted
probabilities instead of using a single predicted label when estimating the joint distribution, accounting
for uncertainty in the predictions. We also provide a theoretical analysis that justifies the potential of
probabilistic many-to-many LM to outperform deterministic one-to-one LM.

To show the effectiveness of BLM, experiments are conducted on 12 widely used datasets, with BLM
and BLM+ being applied to different input VR methods–padding and watermarking–on pretrained
ResNet and ResNeXt (see Section 5). The ablation study and parameter analysis are also included,
along with visualization results and discussions of why VR is effective. BLM and BLM+ are also
applied to vision-language models (see Appendix L) to demonstrate their general applicability.

In summary, both theoretical analysis and empirical findings (Tables 1-2) provide compelling evidence
that BLM and BLM+, grounded in Bayesian principles, facilitate VR to leverage pretrained knowledge
for diverse downstream tasks. Beyond performance improvement, BLM and BLM+ offer insights
into understanding the effectiveness of VR (Figures 3-4): revealing the relations between pretrained
and downstream label spaces may guide future studies into more interpretable VR methods.

2 Related Works

Model Reprogramming. Among cutting-edge transfer learning methods (see Appendix B), model
reprogramming introduces an efficient learning framework for adapting models pretrained on large-

2

scale data to downstream tasks constrained by limited resources [7]. By changing the input or output
interfaces (i.e., input or output space) purposefully, while preserving the integrity of the pretrained
model, knowledge can be reused on new tasks, sidestepping exhaustive finetuning of the model.

Many recent studies focus on repurposing diverse pretrained models for downstream tasks, including
pretrained vision models [1, 4, 38, 47, 48, 51] such as ResNet [17] and ViT [11], language models [15,
49] such as BERT [24], acoustic [21, 59, 60] and graph models [23]. Such repurposing encompasses
several types: cross-modal (e.g., from voice to time-series [60], or vision to text [38]), different tasks
within the same modality (e.g., from image classification to out-of-distribution detection [51]), and
different domains within the same task (e.g., from ImageNet to medical images [47]).

Prompting and Input VR. Prompting incorporates meticulously designed prompts (additional param-
eters) into pretrained models with specific architectures to utilize pretrained models in downstream
tasks. Leveraging ViT, VPT [22] integrates prompts alongside image embeddings, while EEVPT
[16] further enhances VPT by embedding parameters within self-attention layers. TransHP [52]
additionally learns prompt tokens to encode coarse image categories. In vision-language models such
as CLIP [44], besides text-prompting methods such as CoOP [67] and CoCoOP [66], models like
MaPLe [25] also learn layer-specific mapping functions that bridge vision and text.

Slightly different from prompt tuning, input VR offers a model-agnostic approach by introducing
trainable noise to images in the input space before feeding those images into pretrained models.
This process does not impact the visual effect of the images. Two prevalent techniques are padding-
based VR and watermarking-based VR. Padding-based models [4, 12, 47, 48] preserve the integrity
of images while introducing trainable noise patterns to the outer frames around images, whereas
watermarking-based models [1, 3, 41, 51] train noise patterns that overlay the images.

Output Mapping for VR. Because pretrained labels and downstream labels are often different,
relying solely on input VR may be insufficient for downstream tasks. To bridge this gap, output
mapping methods are introduced to facilitate alignment between different label spaces. Mainstream
approaches include deep learning-based and statistical inference-based (i.e., gradient-free) LM
methods. Deep learning-based methods insert a learnable fully connected layer to connect pretrained
and downstream labels [27, 48]. However, for tasks with large label spaces, the additional model
layers would result in extra training costs, potentially canceling the efficiency advantages of VR.

As for gradient-free LM methods, random label mapping (RLM) [12] establishes mappings between
an equal number of randomly selected pretrained labels and downstream labels, masking out other
unused ones. Frequent label mapping (FLM) [47] selects optimal one-to-one mappings using a
greedy approach based on the number of pairs between pretrained and downstream labels. Iterative
label mapping (ILM) [4] extends FLM by updating mappings at each epoch, refining the output label
mapping as input VR patterns evolve. As depicted in Figure 1, these one-to-one mappings overlook
potential probabilities and lead to suboptimal solutions. We propose BLM to address these issues.

3 Problem Formulation

Problem Setup. Consider a pretrained task with input and output variables XS and Y S, jointly
defined over X S × YS, where X S ⊆ RdS has the input dimensionality dS and YS = {1, . . . , kS}.
We have a pretrained classifier fpre : X S 7→ RkS producing a logits vector fpre(xS) ∈ RkS for
each xS ∈ X S. For a downstream task with input and output variables XT and Y T defined over
XT × YT, where XT ⊆ RdT has the input dimensionality dT and YT = {1, . . . , kT}, VR seeks to
adapt fpre to the downstream task without modifying its parameters. To achieve this, VR introduces
two functions: 1) input VR function fin(·|θ) : XT 7→ X S with learnable parameters θ that converts
downstream inputs for compatibility with fpre; and 2) output LM function fω

out(·) : RkS 7→ RkT that
aligns the output logits of fpre with the downstream label space by a transformation ω. Concretely,
given a training dataset DT = {(xT

i , y
T
i)}ni=1 with n training samples drawn from XT × YT for the

downstream task, the training objective of VR can be formulated as:

min
θ∈Θ

1

n

n∑
i=1

ℓ(yTi , (f
ω
out ◦ fpre ◦ fin)(xT

i ; θ)), (1)

where ℓ is a loss function, and fω
out ◦ fpre ◦ fin denotes the composition of input VR, pretrained

model and output LM. In this study, we focus on gradient-free LM, where fω
out does not introduce

additional trainable parameters but strategically leverages fin and fpre to determine ω.

3

Modeling Existing LM. As mentioned, fω
out serves to find a mapping between each yS ∈ YS and

yT ∈ YT. This can be achieved by constructing an output label transformation ω such that for each
downstream sample xT

i , its label ŷTi is predicted by argmax softmax(ỹTi), with:

ỹT
i ≡

 ỹ1
i

...
ỹkT
i

 = f(xT
i)

⊤ · ω =
[
f(xT

i)1 . . . f(xT
i)kS

] ω1,1 . . . ω1,kT

...
. . .

...
ωkS,1 . . . ωkS,kT

 , (2)

where f(xT
i) is shorthand for (fpre ◦ fin)(xT

i ; θ). ω can be updated iteratively [4] with input VR.

A deterministic one-to-one relation between YS and YT implies only a single “correct” yS ∈ YS

exists for each yT ∈ YT. Formally, ω in Eq. (2) is a binary matrix, where just a single element ωj,k

is set to 1 in each column of ω (i.e., ω ∈ {0, 1}kS×kT satisfying
∑kS

j=1 ωj,· = 1).

Our Probabilistic LM. Considering aforementioned drawbacks of one-to-one mappings, we propose
a probabilistic LM for VR, assigning real values to all elements in ω (i.e., ω ∈ [0, 1]kS×kT satisfying∑kS

j=1 ωj,· = 1). Each element ωyS,yT quantifies the relationship between yS ∈ YS and yT ∈ YT.
This acknowledges contributions from all pretrained labels for the prediction of downstream samples.
The flexible many-to-many LM implies the inherent complexity in label correspondence. In Section
4, we investigate how to assign values to our probabilistic LM based on Bayes’ theorem.

4 Bayesian-guided Probabilistic Label Mapping (BLM)

4.1 Method Demonstration

Interpreting p(Y T|XT). The objective of VR is to maximize p(Y T|XT) defined over the down-
stream task space. By using the law of total probability, we can express p(Y T|XT) as:

p(Y T|XT) =
∑

yS∈YS
p(Y S = yS|XT) p(Y T|Y S = yS, XT). (3)

Mirroring the structure of Eq. (2), Eq. (3) enables us to estimate p(Y T|XT) with the i.i.d observations
DT = {(xT

i , y
T
i)}ni=1 of the downstream task,

p̂(Y T|XT) =
1

n

n∑
i=1

 ∑
yS∈YS

p(Y S = yS|XT = xT
i)︸ ︷︷ ︸

➀ input VR:(fpre◦fin)(xT
i ;θ)

p(Y T = yT
i |Y S = yS, XT = xT

i)︸ ︷︷ ︸
➁ output LM:fω,yS

out

 , (4)

where ➀ denotes the predicted probability of pretrained label yS for input xT
i , obtained from fpre◦fin.

Essentially, ➀ can be viewed as the standard input VR and is orthogonal to the LM methods employed;
➁ represents the probability that the true downstream label yTi is mapped from the predicted yS and
input xT

i , which amounts to estimating the output label transformation ω ∈ [0, 1]kS×kT . Since ➀ is
independent of output LM, the focus now shifts to estimating ➁.

Estimating ωyS,yT Using Conditional Probability. Since ωyS,yT is used to quantify the contributions
from pretrained label yS to downstream label yT, we can associate it with the conditional probability:

p(Y T = yT|Y S = yS, XT) =
p(Y T = yT, Y S = yS|XT)

p(Y S = yS|XT)
. (5)

By applying fpre ◦fin toDT, we can empirically estimate the joint distribution of p(Y T = yT, Y S =
yS|XT), then obtain p(Y S = yS|XT) =

∑
yT∈YT p(Y T = yT, Y S = yS|XT), and substitute them

into Eq. (5). Two strategies, BLM and BLM+, are presented for these estimations in this paper. To help
understanding, we include a simple example to illustrate the estimation of p(Y T = yT, Y S = yS|XT)
and p(Y S = yS|XT) in Appendix C.

BLM. Let f(xT
i) ≡ (fpre ◦ fin)(xT

i ; θ) denote the predicted logits obtained from the pretrained
model for a given input xT

i . We define ŷSi = argmaxy′∈YS f(xT
i)y′ to be the predicted pretrained

label for xT
i and 1{·} to be the indicator function. Starting with the joint distribution p(Y T =

yT, Y S = yS|XT), we could intuitively count the frequency of (ŷSi = yS ∧ yTi = yT) to estimate:

p̂BLM(Y T = yT, Y S = yS|XT) =

∑n
i=1 1{y

T
i = yT} · 1{ŷS

i = yS}
n

. (6)

4

Padding

Watermarking

OR

Inference
Statistics
Backpropagation

Pr
et

ra
in

ed
 L

ab
el

Fi
xe

d
Pr

et
ra

in
ed

 M
od

el

L
og

its

St
ep

 1

Input Image

Input Visual
Reprogramming

D
ow

ns
tr

ea
m

 L
ab

el

Pr
ob

ab
ili

st
ic

 L
M

St
ep

 3

Pr
ed

ic
te

d

Step 4

Downstream
Task

Bayesian-guided Label Mapping

Step 2

Grou
d-T

rut
h

Dow
nst

rea
m L

ab
el

PredictedPretrained Label

Figure 2: Learning strategy of BLM and BLM+. First, input images, incorporated with VR water-
marking or padding patterns, are fed into a fixed pretrained model to obtain logits and predicted labels.
Then, the true labels (of yT) and predicted labels (of yS) are used to estimate ωBLM or ωBLM+

. Next,
using ωBLM or ωBLM+

that reweights output logits of pretrained models for the downstream labels,
the predicted results can be derived. Finally, backpropagation is performed to update the input VR.

For p(Y S = yS|XT), in addition to summing up Eq. (6) for yT ∈ YT, we add Laplace smoothing
coefficient λ to ensure the denominator of Eq. (5) being non-zero, with kS being the size of YS:

p̂BLM(Y S = yS|XT) =

∑
yT∈YT

∑n
i=1 1{y

T
i = yT} · 1{ŷS

i = yS}+ λ

n+ kS · λ
=

∑n
i=1 1{ŷ

S
i = yS}+ λ

n+ kS · λ
. (7)

Substituting Eq. (7) and Eq. (6) back to Eq. (5) yields the estimation of ω̂yS,yT to be p̂BLM(Y T =

yT|Y S = yS, XT). After column-wise sum normalization of ω̂yS,yT to satisfy
∑kS

j=1 ωj,· = 1 (as
formulated in Section 3), we obtain the final probabilistic LM, denoted as ωBLM.

BLM+. Recall that BLM estimates p(Y T = yT, Y S = yS|XT) by frequency-counting based on a
single most likely predicted label. However, this strategy disregards other high-ranking predictions that
could offer valuable information. Thus, we introduce BLM+, an extension of BLM that considers top-
K predicted probabilities of the pretrained model for the estimation of p(Y T = yT, Y S = yS|XT).
Rather than relying solely on the tally, BLM+ aggregates probabilities for samples where yS ranks
among the top-K predictions. In this way, BLM+ acknowledges the uncertainty in f(xT

i) and exploits
other potential predictions, providing more robust estimations.

Let YS
K,i ≡ {y′| argmaxy1,...yK

f(xT
i)y′} denote the set of the top-K predicted pretrained labels for

input xT
i , and p̂(yS|xT

i) ≡ (softmax ◦ f)(xT
i)yS denote the predicted probability for any yS ∈ YS

given xT
i . Then, within the BLM+ strategy, the joint density is approximated2 as:

p̂BLM+(Y
T = yT, Y S = yS|XT) =

∑n
i=1 1{y

T
i = yT} · p̂(yS|xT

i) · 1{yS ∈ YS
K,i}

n
. (8)

Similar to BLM, with the Laplace smoothing coefficient being λ and the size of YS being kS,
p(Y S = yS|XT) can be expressed by applying BLM+ as:

p̂BLM+(Y
S = yS|XT) =

∑n
i=1 p̂(y

S|xT
i) · 1{yS ∈ YS

K,i}+ λ

n+ kS · λ . (9)

Combining Eq. (9) and Eq. (8) with Eq. (5), and going through all yT ∈ YT and yS ∈ YS, we obtain
the full BLM+ estimation as ωBLM+

after column-wise sum normalization of ω̂yS,yT , similar to BLM.
In practice, we set K = ⌊α · kT⌋, with ratio α being a hyper-parameter that decides K based on the
size of downstream label space kT.

Pipeline and Learning Strategy. The learning of BLM and BLM+ allows for seamless integration
into existing VR pipelines. It is model-agnostic (e.g., pretrained ResNet or ResNeXt) and compatible
with all input VR methods (e.g., watermarking or padding). Figure 2 illustrates the learning strategy
in detail. Besides, the learning pipeline of BLM is shown in Algorithm 1, while that of BLM+ is
shown in Algorithm 2. The completed pseudocode for all LM methods (RLM, FLM, ILM, BLM,
BLM+) and a more detailed discussion of involved matrix operations are in Appendix D.

2Note that this approximation is not normalized, and thus, is not strictly equivalent to the true probability.

5

Algorithm 1 Training Pipeline of BLM
1: Input: Pretrained label space YS with kS la-

bels, downstream label space YT with kT la-
bels, downstream training set {(xT

i , y
T
i)}ni=1, pre-

trained model fpre(·), iterations E, learning rate a,
hyper-parameter λ

2: Output: Probabilistic LM ωBLM ∈ [0, 1]kS×kT

3: Initialize ωBLM ← {0}kS×kT , set θ ← 0
4: for e = 1...E do
5: # Step 1: Get Pretrained Model Outputs
6: f(xT

i ; θ) = fpre(fin(x
T
i ; θ)) for i = 1...n

7: # Step 2: Compute (or Update) the LM Matrix
8: ŷS

i ← argmaxy∈YSf(x
T
i ; θ)y for i = 1...n

9: if e=1 then Compute ωBLM using Eq. (5,6,7)
10: else Update ωBLM using Eq. (5,6,7)
11: # Step 3: Predict Downstream Labels
12: ŷT

i ← argmaxyf
ω
out(f(x

T
i ; θ))y for i = 1...n

13: # Step 4: Update VR Patterns
14: θ ← θ − a▽θ

∑n
i=1 ℓ(yT

i , fω
out(f(x

T
i ; θ)))

15: end for
16: return ωBLM

Algorithm 2 Training Pipeline of BLM+
1: Input: Pretrained label space YS with kS la-

bels, downstream label space YT with kT labels,
downstream training set {(xT

i , y
T
i)}ni=1, pretrained

model fpre(·), iterations E, learning rate a, λ, K
2: Output: Probabilistic LM ωBLM+ ∈ [0, 1]kS×kT

3: Initialize ωBLM+ ← {0}kS×kT , set θ ← 0
4: for e = 1...E do
5: # Step 1: Get Pretrained Model Outputs
6: f(xT

i ; θ) = fpre(fin(x
T
i ; θ)) for i = 1...n

7: # Step 2: Compute (or Update) the LM Matrix
8: YS

K,i ← {y
′|argmaxy1,...,yK

f(xT
i ; θ)y′} for i = 1...n

9: p̂(y|xT
i)← softmax(f(xT

i ; θ))y for y ∈ YS, i = 1...n

10: if e=1 then Compute ωBLM+ using Eq. (5,8,9)
11: else Update ωBLM+ using Eq. (5,8,9)
12: # Step 3: Predict Downstream Labels
13: ŷT

i ← argmaxyf
ω
out(f(x

T
i ; θ))y for i = 1...n

14: # Step 4: Update VR Patterns
15: θ ← θ − a▽θ

∑n
i=1 ℓ(yT

i , fω
out(f(x

T
i ; θ)))

16: end for
17: return ωBLM+

The iterative process of learning ωBLM, ωBLM+ comprises these four steps: 1) Input images, with VR
patterns, are fed into the fixed pretrained model to obtain output logits and predicted pretrained labels.
2) BLM and BLM+ replace previous LM (e.g., RLM, FLM or ILM) to estimate ω. 3) The initial
logits are reweighted using ωBLM or ωBLM+ , yielding refined predictions for downstream labels. 4)
Loss functions (e.g., cross-entropy) and backpropagation are employed to update the input VR.

4.2 Theoretical Analysis

Furthermore, we include a justification of why probabilistic many-to-many LM (e.g., BLM and
BLM+) should be favored over deterministic one-to-one LM (e.g., RLM, FLM and ILM). Define
the label spaces YS = {0, 1} and YT = {0, 1} as binary sets3. Consider the set of potential LM
functions Flm = {flm : YS → YT}, including each function flm(y

S) ∈ {yT, 1 − yT}. For any
flm ∈ Flm, the expected accuracy of flm regarding the entire downstream label space is defined as4:

Acc(flm) = EyT∈YT

 ∑
yS∈YS

p(yS) · p
(
flm(yS) = yT|yS

) , (10)

where p(yS) is the marginal distribution of the pretrained labels and p
(
flm(y

S) = yT|yS
)

is the
conditional probability that flm correctly predicts a downstream label yT from a pretrained label yS.
Let fplm and fdlm denote the probabilistic LM (Definition E.1) and deterministic LM (Definition E.2),
respectively. We finally prove that Acc(fplm) ≥ Acc(fdlm) (Corollary E.5) in Appendix E, which
further verifies the effectiveness of our methods in the view of theoretical understanding.

5 Experiments

Tasks and Baselines. Following ILM [4], we employ ResNet-18 [17] pretrained on ImageNet-1K
[45] and ResNeXt pretrained on Instagram [37] to test the performance of VR. The results are
evaluated on twelve downstream datasets: Flowers102 [40], DTD [9], UCF101 [46], Food101 [2],
GTSRB [19], EuroSAT [18], OxfordPets [43], StanfordCars [29], SUN397 [57], CIFAR10/100 [30]
and SVHN [39]. Previous gradient-free LM methods RLM [12], FLM [47] and ILM [4] are used
as the baselines. The results of deep learning-based LM will also be included for reference, where
LM is treated as a single-layer linear neural network connected to the output of the pretrained model

3This analysis focuses on the binary setting for simplicity.
4Input x is intentionally omitted as all LM methods operate on the same inputs.

6

Table 1: Performance comparison of gradient-free output LM methods (mean % ± std %). Ours are
highlighted and the highest accuracy is in bold (with deep learning-based LM in gray for reference)

ResNet-18 (ImageNet-1K) ResNeXt-101-32x8d (Instagram)

Padding Gradient-free Deep Gradient-free Deep

Methods RLM FLM ILM BLM BLM+ - FLM ILM BLM BLM+ -

Flowers102 11.0±0.5 20.0±0.3 27.9±0.7 44.4±1.1 50.1±0.6 76.7±0.2 22.5±0.5 27.9±0.3 31.5±0.4 30.1±0.7 85.2±1.3

DTD 16.3±0.7 32.4±0.5 35.3±0.9 42.0±0.5 43.9±0.4 49.1±0.3 40.3±0.5 41.4±0.7 47.8±0.4 49.4±0.4 64.0±0.2

UCF101 6.6±0.4 18.9±0.5 23.9±0.5 30.9±1.1 32.0±0.4 46.0±0.6 41.9±0.6 43.1±0.8 48.3±0.1 50.1±0.6 68.3±0.1

Food101 3.8±0.3 12.8±0.1 14.8±0.2 23.2±0.1 25.1±0.3 34.1±0.1 20.5±0.5 23.0±0.4 29.6±0.6 31.4±0.2 58.7±0.3

GTSRB 46.1±1.3 45.5±1.0 52.0±1.2 54.8±0.7 54.3±0.7 63.1±0.5 56.2±0.6 59.9±1.0 62.9±0.5 63.0±0.8 74.4±0.5

EuroSAT 82.4±0.4 83.8±0.2 85.2±0.6 86.7±0.2 86.7±0.1 92.4±0.1 87.8±0.4 86.2±0.8 87.6±0.3 88.3±0.3 93.2±0.1

OxfordPets 9.3±0.4 62.9±0.1 65.4±0.7 69.8±0.3 70.6±0.2 73.0±0.3 76.8±0.6 78.9±0.8 82.4±0.4 83.0±0.6 91.8±0.1

StanfordCars 0.9±0.1 2.7±0.1 4.5±0.1 5.4±0.1 7.7±0.1 14.3±0.1 4.6±0.1 7.0±0.2 8.3±0.1 9.3±0.3 50.5±0.5

SUN397 1.0±0.1 10.4±0.1 13.0±0.2 16.2±0.1 18.7±0.3 26.3±0.6 21.6±0.3 23.7±0.2 30.1±0.1 32.0±0.3 51.5±0.8

CIFAR10 63±0.1 65.7±0.6 65.5±0.1 66.7±0.2 66.8±0.2 72.1±0.8 80.3±0.3 81.7±0.3 82.2±0.3 82.2±0.1 83.4±0.1

CIFAR100 12.9±0.1 18.1±0.2 24.8±0.1 29.6±0.6 30.6±0.4 46.7±0.2 39.7±0.2 45.9±0.2 47.8±0.3 47.8±0.3 56.2±0.4

SVHN 73.5±0.3 73.1±0.2 75.2±0.2 74.5±0.7 74.2±0.3 82.1±0.2 79.0±0.5 81.4±0.1 79.8±0.3 79.3±0.4 85.7±0.2

Average 27.2 37.2 40.6 45.3 46.7 56.3 47.6 50.0 53.2 53.8 71.9

for training alongside VR. More dataset and implementation details are in Appendix F. Regarding
hyper-parameters of BLM, λ is set as 1, and the top-K ratio α is 0.15 (analyzed in Appendix G).

Results for Padding-based VR. Padding-based input VR adds trainable noise to the outer frames of
centered images. Table 1 shows the performance of BLM and BLM+ applied with padding-based
input VR. BLM and BLM+ yield the highest accuracy across all datasets except for SVHN. On
ResNet-18, compared to the SOTA (i.e., ILM), BLM achieves an average improvement of 4.7% across
the 12 datasets, whereas BLM+ achieves a 6.1% enhancement. On ResNeXt-101, BLM and BLM+
achieve accuracy improvements of 3.2% and 3.8% on average, respectively. The elevation in accuracy
is particularly pronounced in tasks with a higher number of classes (e.g., UCF101, CIFAR100). On
SVHN, ILM performs slightly better, which could be attributed to the minimal inter-class variation
and the smaller number of classes (which is 10) in SVHN, resulting in similar mapping values for
different downstream labels and thus reducing our method’s advantage (discussed in Appendix H).
However, compared to current gradient-free LM methods, the deep learning-based LM may still have
an advantage in the performance of downstream tasks due to the learning capacity of the linear layer
neural network. Our proposed BLM and BLM+ aim to bridge the gap between gradient-free LM
and deep learning-based LM. Additionally, BLM and BLM+ have been observed to possess greater
interpretability (see Appendix I for more experiments) and fewer parameters (see Appendix J for
details) compared to deep learning-based LM.

Table 2: Performance comparison of gradient-
free LM methods for watermarking-based VR
on ResNet-18 (mean % ± std %). Ours are
highlighted and the highest accuracy is in bold (

with deep learning-based LM in gray for reference)

Watermarking Gradient-free Deep

Methods ILM BLM BLM+ -

Flowers102 23.2±0.5 39.2±0.6 44.1±0.9 82.4±0.4

DTD 29.0±0.7 40.1±0.2 43.0±0.2 48.9±0.5

UCF101 24.4±0.9 32.9±0.8 35.4±0.5 53.1±0.2

Food101 13.2±0.1 21.5±0.4 22.9±0.1 30.4±0.9

GTSRB 76.8±0.9 82.1±0.7 82.0±0.8 89.5±0.3

EuroSAT 84.3±0.5 84.4±0.5 84.8±0.2 89.2±0.2

OxfordPets 70.0±0.6 72.4±0.6 73.3±0.1 77.6±0.8

StanfordCars 3.4±0.1 5.5±0.1 7.4±0.1 30.7±0.3

SUN397 13.4±0.2 18.4±0.1 19.4±0.2 32.9±0.3

CIFAR10 68.9±0.4 74.9±0.2 75.7±0.1 71.7±0.6

CIFAR100 33.8±0.2 41.2±0.3 41.6±0.3 39.9±0.5

SVHN 78.3±0.3 79.2±0.1 78.8±0.2 83.7±0.2

Average 43.2 49.3 50.7 60.8

Results for Watermarking-based VR. BLM
and BLM+ can be applied to different input
VR methods. For the watermarking-based VR
method, which overlays trainable noise pat-
terns on resized images, the results of BLM
and BLM+ with ResNet-18 as the pretrained
model are shown in Table 2. Since ILM is the
best-performing baseline, we only include its
results here for comparison. Our BLM and
BLM+ methods again outperform ILM, achiev-
ing an average gain in accuracy of 6.1% and
7.5%, respectively. Therefore, in the case of
watermarking-based VR, BLM and BLM+ also
close the gap between current gradient-free and
deep learning-based LM. Results in Tabel 2
underscore the applicability of our output LM
methods with different input VR.

Results for Vision-Language Models. The
application of our BLM and BLM+ on vision-
language models (i.e., CLIP), along with the
performance, and visualization results are dis-

7

Hay Komondor
0.1024 + +0.0773

Or

Porcupine
DTD -
Fibrous

= 0.0693+ Hay Porcupine
0.1508 0.0879

Beaver
0.0879++ +

0.0386 + +0.0381

Or

= 0.0367+ 0.0371 0.0326 0.0320++ +

0.0907 + +0.0828

Or

= 0.0803+ 0.1010 0.0862 0.0808++ +Food101 -
Edamame Green snake Artichoke Green mamba Green mamba Green snake Vine snake

CIFAR10 -
Dog Cocker Spaniel English springer English setter Beagle Wire-haired fox terrierEnglish springer

Downstream Task Top Weighted Pretrained Labels Applying BLM+ Top Weighted Pretrained Labels Applying BLM

Figure 3: Visualization results of top weighted pretrained labels yS and weights ωyS,yT for some
yT applying BLM and BLM+. Downstream labels ‘Edamame’, ‘Fibrous’, and ‘Dog’ are shown as
examples. ResNet-18 pretrained on ImageNet is used. More results are in Appendix K.

cussed in Appendix L. BLM and BLM+ achieve the average accuracy of 79.1% and 79.3% across 12
datasets, respectively, and outperform the baseline methods on 11 datasets.

Ablation Study. Table 3 presents the ablation study results of BLM and BLM+. For BLM, we list
the results of replacing probabilistic LM with a one-to-one LM, denoted as ‘-Bayes’, and the results
of calculating ωBLM only once in the first epoch without subsequent iterations, denoted as ‘-Iter’.
For BLM+, the removal of aggregating probabilities results in BLM; hence, we report the results of
aggregating all probabilities instead of top-K predicted probabilities, denoted as ‘-Top-K’. Like that
for BLM, ‘-Iter’ shows the results of calculating ωBLM+ only once without subsequent iterations.
Besides, when both ‘-Top-K’ and ‘-Bayes’ are applied to BLM+, BLM+ degenerates into the same
results as ‘-Bayes’ of BLM, which is displayed in the previous column of Table 3.

Table 3: Ablation study results of BLM and BLM+, using ResNet-
18 as the pretrained model (showing the mean accuracies (%), with
ours highlighted and the best in bold)

Method BLM BLM+

- Bayes - Iter Ours - Top-K - Iter Ours

Flowers102 27.9 30.8 44.4 48.2 43.6 50.1
DTD 35.3 38.0 42.0 42.4 42.0 43.9

UCF101 23.9 28.8 30.9 30.9 33.2 32.0
Food101 14.8 18.4 23.2 23.6 22.8 25.1
GTSRB 52.0 44.6 54.8 50.5 44.8 54.3
EuroSAT 85.2 85.0 86.7 85.1 85.4 86.7

OxfordPets 65.4 68.1 69.8 59.9 70.6 70.6
StanfordCars 4.5 2.8 5.4 6.5 6.2 7.7

SUN397 13.0 14.5 16.2 17.3 16.4 18.7
CIFAR10 65.5 63.9 66.7 65.2 63.5 66.8

CIFAR100 24.8 23.2 29.6 30.8 26.2 30.6
SVHN 75.2 64.6 74.5 70.0 62.6 74.2

For BLM, employing ‘Bayes’
to compute ω improves ac-
curacy across most datasets,
with slightly smaller gains ob-
served for datasets with fewer
classes (EuroSAT, CIFAR10,
and SVHN). For BLM+, ap-
plying ‘Top-K’ assists in filter-
ing out redundant information,
yielding positive impacts across
most datasets. In particular,
on the OxfordPets dataset, to
classify cat and dog breeds, us-
ing top-K predicted probabil-
ity effectively filters out numer-
ous irrelevant categories in the
pretrained label space, which
leads to significant improve-
ments. Furthermore, for both
BLM and BLM+, iterative up-

dates are crucial as the initial input VR may deviate considerably from the final iteration. The greater
the disparity between the domains of downstream and pretrained tasks (GTSRB, SVHN), the more
pronounced the impact of the input VR, thereby emphasizing the necessity of iteration updates.

Visualization Results. The probabilistic LM obtained by BLM or BLM+ can elucidate the connection
between pretrained and downstream label spaces. Figure 3 shows the visualization results for three

8

'

coral reef
0.131

jackfruit

teddy

+ 0.126

+ 0.068

......

cauliflower
0.147

jackfruit

Airedale

+ 0.131

+ 0.066

0.179

jackfruit
+ 0.119

cauliflower

guacamole
+ 0.054

jackfruit

cauliflower

broccoli

0.167

+ 0.106

+ 0.066

jackfruit

cauliflower

broccoli

0.185

+ 0.126

+ 0.072
pineapple

jackfruit

cauliflower

0.194

+ 0.130
jackfruit

cauliflower

0.185

+ 0.133

+ 0.074
pineapple

jackfruit

cauliflower

0.184

+ 0.134

+ 0.074
pineapple

jackfruit

cauliflower

0.183

+ 0.134

+ 0.075
pineapple

jackfruit

cauliflower

0.183

+ 0.134

+ 0.075

......

......

Training Loss
Weight Changes between Adjacent Epochs

Task:
Flowers102

Marigold

V
is

ua
l

R
ep

ro
gr

am
m

in
g

Epochs

To
p

W
ei

gh
te

d
Pr

et
ra

in
ed

La

be
ls

A
pp

ly
in

g
B

LM
+

+ 0.069
pineapple

Figure 4: Visualization of input VR and top-weighted pretrained labels applying BLM+. Training
loss and weight changes (Euclidean norm) of probabilistic LM ωBLM+ per iteration are plotted below.
Pretrained ResNet-18 is used, and the downstream label ‘Marigold’ is selected as an example.

labels in downstream tasks, taking ResNet-18 pretrained on ImageNet-1K as an example. Each
column of ω computed using BLM or BLM+ is a vector with length kS = 1000, representing the
weights assigned to the 1,000 outputs–one for each yS–of the pretrained model corresponding to
a downstream label yT. The top-weighted labels (i.e., yS where ωyS,yT is larger) for ‘Edamame’
correspond to organisms such as snakes and artichokes, which share similarities in color and shape.
Similarly, the predominant labels associated with ‘Fibrous’ from the texture dataset include rough-
textured items like ‘Hay’ and ‘Komondor’. ‘Dog’ encompasses various sub-breed canines. These
findings suggest that BLM and BLM+ establish an optimal probabilistic LM between label spaces,
and handle similarity or inclusion relationship, addressing the drawbacks in Figure 1.

Discussion of Why VR Is Effective. From a visualization perspective, Figure 4 shows the top-
weighted pretrained labels and input VR patterns θ at different iteration stages using BLM+. The
training loss for each iteration and changes in ω, measured by the Euclidean norm, are also plotted.
During the update of ω and θ, the pretrained labels with top ωyS,yT for yT being ‘Marigold’ transition
gradually from dissimilar labels such as ‘Reef’ and ‘Teddy’ to ‘Cauliflower’ and ‘Pineapple’ which
share more similarities in color, shape and texture. Meanwhile, the training loss diminishes gradually,
and ω converges, demonstrating the effectiveness of VR and BLM+.

Impact of Label Space Sizes kT. Figure 5 shows the relationship between different sizes of the
downstream label space and the accuracy improvement achieved by BLM and BLM+. Tasks with
larger label spaces report more pronounced performance improvements. While simpler tasks with
smaller label spaces might not fully showcase the power of our approach, the strength of BLM and
BLM+ lies in unraveling the complex many-to-many relationship that often arises in tasks with more
numerous classes. In such scenarios, our probabilistic LM methods demonstrate their full potential.

Impact of Training Dataset Sizes n. Figure 6 illustrates the impact of varying training dataset
sizes for the downstream task on different LM methods. Regarding CIFAR100 as the downstream
task, compared with RLM and ILM, BLM and BLM+ yield higher accuracy consistently. With
approximately a 40% fraction of the downstream training data, BLM or BLM+ can achieve similar
accuracy compared with training on the entire dataset.

Other Experiments. The parameter experiments and performance analysis regarding the impact of
Laplace smoothing coefficient λ and top-K ratio α for BLM and BLM+ are detailed in Appendix G.
The visualization and analysis of LM matrices derived from gradient-free and deep learning-based
methods can be found in Appendix I. Training cost analysis is discussed in Appendix J. Additional
visualization results of LM methods applied to pretrained vision models are presented in Appendix K.
Lastly, the application of BLM and BLM+ for vision-language models is explored in Appendix L.

9

Figure 5: Accuracy improvement (%) of BLM and BLM+
compared with ILM given different sizes (kT) of the down-
stream label space, using pretrained ResNet-18.

0.25 0.50 0.75 1.00
Task Data Fraction - CIFAR100

10

15

20

25

30

A
cc

ur
ac

y
(%

)

RLM
ILM

BLM (Ours)
BLM+ (Ours)

Figure 6: Accuracy (%) of methods
when varying training dataset sizes n
for downstream task CIFAR100, us-
ing pretrained ResNet-18.

6 Conclusion

We focus on output LM methods for VR and reveal the drawbacks in current gradient-free LM
methods, which use one-to-one mappings that overly simplify the relationship between the pretrained
and downstream label spaces. To address this issue, we propose BLM, which calculates probabilistic
LM matrices guided by Bayes’ theorem. Additionally, we aggregate the probability of top-K
predicted pretrained labels instead of counting a single label during the estimation of probabilistic
LM matrices, yielding an improved method BLM+. Both theoretical analysis and experimental
results validate the effectiveness of BLM and BLM+ while offering insights into understanding the
effectiveness of VR through a probabilistic lens.

Acknowledgement

CYC, ZSY, and FL are supported by the Australian Research Council (ARC) with grant num-
ber DE240101089, and FL is also supported by ARC with grant number DP230101540 and the
NSF&CSIRO Responsible AI program with grant number 2303037. JZQ is supported by ARC with
grant number DP240101006. This research is also supported by The University of Melbourne’s
Research Computing Services and the Petascale Campus Initiative. We sincerely appreciate the time
and dedication of the reviewers in carefully reviewing our manuscript.

References
[1] Hyojin Bahng, Ali Jahanian, Swami Sankaranarayanan, and Phillip Isola. Exploring visual

prompts for adapting large-scale models. arXiv preprint arXiv:2203.17274, 2022.

[2] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative
components with random forests. In ECCV, 2014.

[3] Chengyi Cai, Zesheng Ye, Lei Feng, Jianzhong Qi, and Feng Liu. Sample-specific masks for
visual reprogramming-based prompting. In ICML, 2024.

[4] Aochuan Chen, Yuguang Yao, Pin-Yu Chen, Yihua Zhang, and Sijia Liu. Understanding and
improving visual prompting: A label-mapping perspective. In CVPR, 2023.

10

[5] Hao Chen, Ran Tao, Han Zhang, Yidong Wang, Xiang Li, Wei Ye, Jindong Wang, Guosheng
Hu, and Marios Savvides. Conv-adapter: Exploring parameter efficient transfer learning for
convnets. In CVPR, 2024.

[6] Hao Chen, Jindong Wang, Ankit Shah, Ran Tao, Hongxin Wei, Xing Xie, Masashi Sugiyama,
and Bhiksha Raj. Understanding and mitigating the label noise in pre-training on downstream
tasks. In ICLR, 2024.

[7] Pin-Yu Chen. Model reprogramming: Resource-efficient cross-domain machine learning. In
AAAI, 2024.

[8] Haoang Chi, Feng Liu, Wenjing Yang, Long Lan, Tongliang Liu, Bo Han, William Cheung, and
James Kwok. Tohan: A one-step approach towards few-shot hypothesis adaptation. NeurIPS,
2021.

[9] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi.
Describing textures in the wild. In CVPR, 2014.

[10] Ruijiang Dong, Feng Liu, Haoang Chi, Tongliang Liu, Mingming Gong, Gang Niu, Masashi
Sugiyama, and Bo Han. Diversity-enhancing generative network for few-shot hypothesis
adaptation. In ICML, 2023.

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. In ICLR, 2020.

[12] Gamaleldin F Elsayed, Ian Goodfellow, and Jascha Sohl-Dickstein. Adversarial reprogramming
of neural networks. In ICLR, 2018.

[13] Zhen Fang, Jie Lu, Feng Liu, Junyu Xuan, and Guangquan Zhang. Open set domain adaptation:
Theoretical bound and algorithm. IEEE TNNLS, 2020.

[14] Zhen Fang, Jie Lu, Feng Liu, and Guangquan Zhang. Semi-supervised heterogeneous domain
adaptation: Theory and algorithms. IEEE TPAMI, 2022.

[15] Karen Hambardzumyan, Hrant Khachatrian, and Jonathan May. Warp: Word-level adversarial
reprogramming. In ACL-IJCNLP, 2021.

[16] Cheng Han, Qifan Wang, Yiming Cui, Zhiwen Cao, Wenguan Wang, Siyuan Qi, and Dongfang
Liu. E 2 vpt: An effective and efficient approach for visual prompt tuning. In ICCV, 2023.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

[18] Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel
dataset and deep learning benchmark for land use and land cover classification. IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing, 2019.

[19] Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Christian Igel.
Detection of traffic signs in real-world images: The german traffic sign detection benchmark. In
IJCNN, 2013.

[20] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

[21] Yun-Ning Hung, Chao-Han Huck Yang, Pin-Yu Chen, and Alexander Lerch. Low-resource
music genre classification with cross-modal neural model reprogramming. In ICASSP, 2023.

[22] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan,
and Ser-Nam Lim. Visual prompt tuning. In ECCV, 2022.

[23] Yongcheng Jing, Chongbin Yuan, Li Ju, Yiding Yang, Xinchao Wang, and Dacheng Tao. Deep
graph reprogramming. In CVPR, 2023.

11

[24] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT, 2019.

[25] Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fa-
had Shahbaz Khan. Maple: Multi-modal prompt learning. In CVPR, 2023.

[26] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[27] Eliska Kloberdanz, Jin Tian, and Wei Le. An improved (adversarial) reprogramming technique
for neural networks. In ICANN, 2021.

[28] Jannik Kossen, Mark Collier, Basil Mustafa, Xiao Wang, Xiaohua Zhai, Lucas Beyer, Andreas
Steiner, Jesse Berent, Rodolphe Jenatton, and Effrosyni Kokiopoulou. Three towers: Flexible
contrastive learning with pretrained image models. NeurIPS, 2023.

[29] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for
fine-grained categorization. In ICCV workshops, 2013.

[30] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[31] Tao Lei, Junwen Bai, Siddhartha Brahma, Joshua Ainslie, Kenton Lee, Yanqi Zhou, Nan Du,
Vincent Zhao, Yuexin Wu, Bo Li, et al. Conditional adapters: Parameter-efficient transfer
learning with fast inference. NeurIPS, 2023.

[32] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source
hypothesis transfer for unsupervised domain adaptation. In ICML, 2020.

[33] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial
domain adaptation. NeurIPS, 2018.

[34] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Unsupervised domain
adaptation with residual transfer networks. NeurIPS, 2016.

[35] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

[36] Yadan Luo, Zijian Wang, Zi Huang, and Mahsa Baktashmotlagh. Progressive graph learning
for open-set domain adaptation. In ICML, 2020.

[37] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan Li,
Ashwin Bharambe, and Laurens van der Maaten. Exploring the limits of weakly supervised
pretraining. In ECCV, 2018.

[38] Paarth Neekhara, Shehzeen Hussain, Jinglong Du, Shlomo Dubnov, Farinaz Koushanfar, and
Julian McAuley. Cross-modal adversarial reprogramming. In WACV, 2022.

[39] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NeurIPS workshop,
2011.

[40] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large
number of classes. In 2008 Sixth Indian conference on computer vision, graphics & image
processing. IEEE, 2008.

[41] Changdae Oh, Hyeji Hwang, Hee-young Lee, YongTaek Lim, Geunyoung Jung, Jiyoung Jung,
Hosik Choi, and Kyungwoo Song. Blackvip: Black-box visual prompting for robust transfer
learning. In CVPR, 2023.

[42] Junting Pan, Ziyi Lin, Xiatian Zhu, Jing Shao, and Hongsheng Li. St-adapter: Parameter-
efficient image-to-video transfer learning. NeurIPS, 2022.

[43] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In
CVPR, 2012.

12

[44] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021.

[45] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. IJCV, 2015.

[46] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human
actions classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

[47] Yun-Yun Tsai, Pin-Yu Chen, and Tsung-Yi Ho. Transfer learning without knowing: Reprogram-
ming black-box machine learning models with scarce data and limited resources. In ICML,
2020.

[48] Hsi-Ai Tsao, Lei Hsiung, Pin-Yu Chen, Sijia Liu, and Tsung-Yi Ho. AutoVP: an automated
visual prompting framework and benchmark. In ICLR, 2024.

[49] Ria Vinod, Pin-Yu Chen, and Payel Das. Reprogramming language models for molecular
representation learning. NeurIPS, 2020.

[50] Boyu Wang, Jorge Mendez, Mingbo Cai, and Eric Eaton. Transfer learning via minimizing the
performance gap between domains. NeurIPS, 2019.

[51] Qizhou Wang, Feng Liu, Yonggang Zhang, Jing Zhang, Chen Gong, Tongliang Liu, and Bo Han.
Watermarking for out-of-distribution detection. NeurIPS, 2022.

[52] Wenhao Wang, Yifan Sun, Wei Li, and Yi Yang. Transhp: Image classification with hierarchical
prompting. NeurIPS, 2023.

[53] Zixin Wang, Yadan Luo, Zhi Chen, Sen Wang, and Zi Huang. Cal-sfda: Source-free domain-
adaptive semantic segmentation with differentiable expected calibration error. In ACM MM,
2023.

[54] Wei-Hung Weng, Jonathan Deaton, Vivek Natarajan, Gamaleldin F Elsayed, and Yuan Liu.
Addressing the real-world class imbalance problem in dermatology. In Machine learning for
health, 2020.

[55] Wikipedia contributors. Cartesian product — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305, 2024.

[56] Wikipedia contributors. Cosine similarity — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/w/index.php?title=Cosine_similarity&oldid=1224774490, 2024.

[57] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In CVPR, 2010.

[58] Zhuoyan Xu, Zhenmei Shi, Junyi Wei, Fangzhou Mu, Yin Li, and Yingyu Liang. Towards
few-shot adaptation of foundation models via multitask finetuning. In ICLR, 2024.

[59] Chao-Han Huck Yang, Bo Li, Yu Zhang, Nanxin Chen, Rohit Prabhavalkar, Tara N Sainath, and
Trevor Strohman. From english to more languages: Parameter-efficient model reprogramming
for cross-lingual speech recognition. In ICASSP, 2023.

[60] Chao-Han Huck Yang, Yun-Yun Tsai, and Pin-Yu Chen. Voice2series: Reprogramming acoustic
models for time series classification. In ICML, 2021.

[61] Li Yi, Gezheng Xu, Pengcheng Xu, Jiaqi Li, Ruizhi Pu, Charles Ling, A Ian McLeod, and Boyu
Wang. When source-free domain adaptation meets learning with noisy labels. arXiv preprint
arXiv:2301.13381, 2023.

[62] Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-models. arXiv preprint arXiv:2106.10199,
2021.

13

https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305
https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305
https://en.wikipedia.org/w/index.php?title=Cosine_similarity&oldid=1224774490
https://en.wikipedia.org/w/index.php?title=Cosine_similarity&oldid=1224774490

[63] Maxime Zanella and Ismail Ben Ayed. Low-rank few-shot adaptation of vision-language models.
In CVPR, 2024.

[64] Yichi Zhang, Yinpeng Dong, Siyuan Zhang, Tianzan Min, Hang Su, and Jun Zhu. Exploring
the transferability of visual prompting for multimodal large language models. In CVPR, 2024.

[65] Ziyi Zhang, Weikai Chen, Hui Cheng, Zhen Li, Siyuan Li, Liang Lin, and Guanbin Li. Divide
and contrast: Source-free domain adaptation via adaptive contrastive learning. NeurIPS, 2022.

[66] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning
for vision-language models. In CVPR, 2022.

[67] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for
vision-language models. IJCV, 2022.

[68] Yitao Zhu, Zhenrong Shen, Zihao Zhao, Sheng Wang, Xin Wang, Xiangyu Zhao, Dinggang
Shen, and Qian Wang. Melo: Low-rank adaptation is better than fine-tuning for medical image
diagnosis. In IEEE International Symposium on Biomedical Imaging, 2024.

14

A The Problem Setting of VR

Pr
et

ra
in

ed
 M

od
el

Downstream Tasks

Pr
et

ra
in

ed
 M

od
el

Reuse and Repurpose

In
pu

t V
is

ua
l R

ep
ro

gr
am

m
in

g

O
ut

pu
t L

ab
el

 M
ap

pi
ng

Pattern

Digits

Flowers

............

Variable Fixed Reprogramming

Pretrained Domain
withAbundant Data

Pr
et

ra
in

ed
 L

ab
el

Pr
et

ra
in

ed
 L

ab
el

D
ow

ns
tr

ea
m

 L
ab

el

Figure 7: The problem setting of Visual Reprogramming. The left part shows the pretrained model
and corresponding dataset, while the right part shows downstream tasks. The pretrained model is
fixed, whereas the input VR and output LM modules are variable.

The task of VR reuses fixed pretrained models for downstream tasks. As illustrated in Figure 7, an
input VR module operates before pretrained models, directly altering the input space of downstream
tasks. Concurrently, an output LM function acts after pretrained models, taking the predicted
pretrained labels as input and outputting those for downstream tasks. Hence, VR achieves the
reusability of pretrained models for downstream tasks without adapting the model parameters,
primarily through modifications to the input and output spaces.

B Recent Work in Transfer Learning

Visual reprogramming is one type of methods that aim to obtain models on downstream tasks with
the help of pretrained models. This process is similar to the aim of transfer learning which is used
to leverage knowledge from a data-rich domain [13] or a pretrained model [50] to address tasks on
other domains. The former is known as domain adaptation, and the latter is known as finetuning.

Finetuning. Given a pretrained model, finetuning uses trainable parameters to accommodate new task-
specific information of the downstream tasks. As pretrained models grow in size, recent progresses
in transfer learning have prioritized parameter-efficient finetuning (PEFT) [20] to support resource-
friendly adaptation. Regarding PEFT, the prevailing methods can be categorized as follows. The
most widely adopted approach is selective finetuning [45, 62], which adjusts a subset of parameters
from the pretrained model while keeping the remaining components fixed, thereby reducing the
total number of trainable parameters for downstream tasks. Other methods may involve adding
adapters [5, 31, 42], which introduce extra trainable layers or parameters to the pretrained model and
finetune only these adapters during training. Moreover, low-rank adaptation methods [20, 63, 68]
have also been proposed for pretrained Vision Transformers. They apply low-rank decomposition
to the parameters during training, achieving remarkable performance on downstream tasks with a
significantly reduced number of parameters. Additionally, Prompt Tuning methods [16, 22, 52],
similarly directed at pretrained Vision Transformers, integrate trainable parameters parallel to the
features at the input and intermediate layers. The primary distinction of these methods from VR
[1, 3, 4, 47, 48, 64] lies in their necessity to be designed according to different pretrained model
architectures and may also involve modifying the model weights. In contrast, VR is model-agnostic
and does not require alterations to pretrained model parameters.

Domain Adaptation. Domain adaptation (DA) aims to bridge distributional gap by aligning feature
spaces of the source task to the target domain with different data distributions [14, 36, 53]. Often,
DA is achieved by learning invariant representations or transforming parameters to manage domain-
specific shifts of the source and target data. CDAN [33] addresses this by introducing a conditional
discriminator for class label-conditioned feature adaptation, while UDA [34] leverages residual layers
to capture both domain-specific and domain-shared representations. More recently, source-free
DA [32, 61, 65], which seeks adaptation without access to the source data, has gained popularity due

15

to growing concerns over data privacy and storage limitations, as well as the need for adaptation in
scenarios where source data is inaccessible [8, 10].

C A Simple Probability Estimation Example

Ground Truth

Downstream

Labels

𝑓𝑖𝑛 𝑖 𝜃

Cocker

Spaniel

English

Springer

Egyptian

Cat

Cat

Dog

𝑓𝑝𝑟𝑒 .

ො𝑦𝑖
𝑆

(𝑥1,Dog)

(𝑥2,Dog)

(𝑥3,Dog)

(𝑥4,Cat)

Downstream

Task

Apply VR
Predicted

Pretrained

Label𝑦𝑇

P
re

tr
ai

n
ed

 M
o
d

el

Frequency Distribution

Cat Dog

Cocker Spaniel 0 2

English Springer 0 1

Egyptian Cat 1 0

Joint Distribution

Cat Dog

Cocker Spaniel 0 1/2

English Springer 0 1/4

Egyptian Cat 1/4 0

Distribution

Probability

Cocker Spaniel 1/2

English Springer 1/4

Egyptian Cat 1/4

𝑝 𝑌𝑇 = 𝑦𝑇 , 𝑌𝑠 = ȁ𝑦𝑆 𝑋𝑇

𝑝 𝑌𝑠 = ȁ𝑦𝑆 𝑋𝑇

𝑋𝑇 × 𝑌𝑇 𝑥 ;

Figure 8: A simple example to help understand how to estimate p(Y T = yT, Y S = yS | XT) and
p(Y S = yS | XT).

We aim to estimate p(Y T = yT, Y S = yS | XT) and p(Y S = yS | XT) for BLM and BLM+ in this
paper. Here, we employ a simple example (without Laplace smoothing) to help understand how to
estimate these two probabilities.

The conditional probability p(Y T = yT, Y S = yS | XT) represents the joint distribution of Y T and
Y S, given the input reprogramming fin(·; θ), the pretrained model fpre(·), and the variable XT of
the downstream task. Similarly, p(Y S = yS | XT) represents the distribution of Y S under these
conditions.

We consider the following example shown in Figure 8. It is assumed that YT = {Cat, Dog} and
YS = {CockerSpaniel, EnglishSpringer, EgyptianCat}. The Downstream samples are

{(x1, Dog), (x2, Dog), (x3, Dog), (x4, Cat)} ∈ XT × YT.

If the reprogrammed predictions calculated by fpre(fin(xi; θ)) are
{x1 : CockerSpaniel, x2 : CockerSpaniel, x3 : EnglishSpringer, x4 : EgyptianCat},

then the joint distribution p(Y T = yT, Y S = yS | XT) can be estimated as a matrix with the
following nonzero values:

p(Y T = Dog, YS = CockerSpaniel | XT) = 1

2
,

p(Y T = Dog, YS = EnglishSpringer | XT) = 1

4
,

p(Y T = Cat, YS = EgyptianCat | XT) = 1

4
,

as is shown in Figure 8. Similarly, p(Y S = yS | XT) can also be estimated.

D Detailed Procedures of Output LM Methods

This section provides a detailed exposition of gradient-free LM methods. Such methods, derived
from data distributions, obviate the need for gradients in the output mapping phase. The pseudocode
is presented below. Similar to Section 3, ω represents the one-to-one LM or probabilistic LM.

16

D.1 Random Label Mapping (RLM)

Algorithm 3 Random Label Mapping for VR

1: Input: Pretrained label space YS with kS labels, downstream label space YT with kT labels
2: Output: One-to-one LM ω ∈ {0, 1}kS×kT

3: Initialize ω ← {0}kS×kT , temp set T ← {} to store matched pretrained labels
4: # Computing output mapping ω
5: for yT ∈ YT do
6: Randomly select yS ∈ YS − T
7: ωyS,yT ← 1

8: T ← T ∪ {yS}
9: end for

10: return ω

The process of random label mapping (RLM) is outlined in Algorithm 3. , where the computation
of ω does not involve the downstream training set. The algorithm establishes a random one-to-one
mapping between the pretrained and the downstream labels, ensuring that each yT corresponds to a
unique yS. RLM is computed once before learning the input VR f(·; θ).

D.2 Frequent Label Mapping (FLM)

Algorithm 4 Computing Frequency Distribution Matrix of [predicted pretrained label, ground-truth
downstream label]

1: Input: Downstream training set {(xT
i , y

T
i)}ni=1, given input VR fin(·; θ) and pretrained model

fpre(·) with the jth dimension being fpre(·)j
2: Output: Frequency distribution matrix d ∈ ZkS×kT

3: Initialize d← {0}kS×kT

4: # Computing frequency distribution matrix d
5: for i = 1...n do
6: ŷi

S ← argmaxj(fpre(fin(x
T
i ; θ))j)

7: dŷi
S,yi

T ← dŷi
S,yi

T + 1
8: end for
9: return d

Algorithm 5 Frequent Label Mapping for VR

1: Input: Pretrained label space YS with kS labels, downstream label space YT with kT labels,
downstream training set {(xT

i , y
T
i)}ni=1, given pretrained model fpre(·)

2: Output: One-to-one LM ω ∈ {0, 1}kS×kT

3: Initialize ω ← {0}kS×kT , temp set T ← {} to store matched pretrained labels, initialize fin(·; θ)
(θ ← 0)

4: # Computing frequency distribution matrix d
5: Use Algorithm 4 to obtain d
6: # Computing output mapping ω
7: while size of T is not kT do
8: Find the maximum dyS,yT in d
9: ωyS,yT ← 1

10: dyS,t ← 0 for t = 1, 2, ..., kT
11: ds,yT ← 0 for s = 1, 2, ..., kS
12: T ← T ∪ {yS}
13: end while
14: return ω

The procedure of frequent label mapping (FLM) is outlined in Algorithm 5. Initially, it utilizes
the pretrained model to obtain predicted pretrained labels for samples of the downstream task.

17

Subsequently, it computes a joint distribution matrix between the predicted pretrained labels and the
ground-truth downstream labels. Finally, employing a greedy algorithm, it iteratively identifies the
maximum value in the rows and columns corresponding to unmatched label pairs in the matrix to
determine the one-to-one mappings. FLM is also computed prior to the training of fin(·; θ).

D.3 Iterative Label Mapping (ILM)

Algorithm 6 Iterative Label Mapping for VR

1: Input: Pretrained label space YS with kS labels, downstream label space YT with kT labels,
downstream training set {(xT

i , y
T
i)}ni=1, given pretrained model fpre(·), total iteration number

E, learning rate a
2: Output: One-to-one LM matrix ω ∈ {0, 1}kS×kT

3: Initialize ω ← {0}kS×kT , temp set T ← {} to store matched pretrained labels, initialize fin(·; θ)
(θ ← 0)

4: for e = 1...E do
5: # Computing frequency distribution matrix d
6: Use Algorithm 4 to obtain d
7: # Computing output mapping ω
8: while size of T is not kT do
9: Find the maximum dyS,yT in d

10: ωyS,yT ← 1
11: dyS,t ← 0 for t = 1, 2, ..., kT
12: ds,yT ← 0 for s = 1, 2, ..., kS
13: T ← T ∪ {yS}
14: end while
15: # Training fin(·; θ)
16: θ ← θ − a · ∇θ

∑n
i=1 ℓ(y

T
i , f

ω
out(fpre(fin(x

T
i ; θ))))

17: end for
18: return ω

As an enhanced version of FLM, iterative label mapping (ILM) employs interleaved updates with
θ at each epoch, as outlined in Algorithm 6. Such interleaved updates take into consideration the
variations in the output space induced by updates to the input VR during the training process, thereby
ensuring that the output LM will be matched with the updated VR.

D.4 Bayesian-guided Label Mapping (BLM)

The detailed procedure of Bayesian-guided label mapping (BLM) proposed in this paper is shown in
Algorithm 7. Compared to ILM, BLM replaces the previous one-to-one mapping ω ∈ {0, 1}kS×kT

with probabilistic LM ω ∈ [0, 1]kS×kT , both satisfying
∑kS

j=1 ωj,· = 1 as stated in Section 3.
Meanwhile, the process of matrix computation for BLM is based on the Bayes’ theorem (detailed in
Section 4) to reflect the complex relationship among label spaces, rather than determining the optimal
match through the oversimplified greedy algorithm.

D.5 Improved Bayesian-guided Label Mapping (BLM+)

As mentioned in Section 4, BLM+ extends BLM by incorporating the aggregation of top-K predicted
probabilities, shown in Algorithm 9.

This divergence manifests in the computation process of the joint distribution matrix between
predicted pretrained labels and ground-truth downstream labels. Previous methods (i.e., RLM, ILM,
BLM) computed a non-negative integer matrix d ∈ ZkS×kT based on the frequency of occurrence of
samples (Algorithm 4).

In BLM+, the calculation entails replacing the deterministic frequencies with predicted probabilities
from the top K pretrained labels to estimate the joint distribution matrix d ∈ RkS×kT , as is shown
in Algorithm 8. In the procedure, the probability aggregation substitutes the binary frequency
distribution {0, 1} with a probability distribution within the range of [0, 1], while the top-K technique

18

Algorithm 7 Bayesian-guided Label Mapping for VR

1: Input: Pretrained label space YS with kS labels, downstream label space YT with kT labels,
downstream training set {(xT

i , y
T
i)}ni=1, given pretrained model fpre(·), total iteration number

E, learning rate a, Laplace smoothing λ
2: Output: Probabilistic LM ω ∈ [0, 1]kS×kT

3: Initialize ω ← {0}kS×kT , initialize fin(·; θ) (θ ← 0), temp matrix P = [P1, ..., PkS
]⊤ ∈ RkS

4: for e = 1...E do
5: # Computing frequency distribution matrix d
6: Use Algorithm 4 to obtain d
7: # Computing output mapping ω

8: PyS ←
∑kT

t=1 dyS,t + λ for yS = 1...kS
9: ωyS,yT ← dyS,yT/PyS for yS = 1...kS, y

T = 1...kT
10: # Column normalization of ω
11: ωyS,yT ← ωyS,yT/

∑kS

s=1 ωs,yT for yS = 1...kS, y
T = 1...kT

12: # Training fin(·; θ)
13: θ ← θ − a · ∇θ

∑n
i=1 ℓ(y

T
i , f

ω
out(fpre(fin(x

T
i ; θ))))

14: end for
15: return ω

Algorithm 8 Computing Probability Aggregation Matrix by Top-K Predicted Probabilities

1: Input: Downstream training set {(xT
i , y

T
i)}ni=1, given input VR fin(·; θ) and pretrained model

fpre(·) with the jth dimension being fpre(·)j , Laplace smoothing λ, top-K value k
2: Output: Probability aggregation matrix d′ ∈ RkS×kT

3: Initialize d′ ← {0}kS×kT , temp matrix Q = [Q1, ..., Qk]
⊤ ∈ Rk, K = [K1, ...,Kk]

⊤ ∈ N+k

4: # Computing aggregation distribution matrix d′

5: for i = 1...n do
6: Q← TopKj(softmax(fpre(fin(x

T
i ; θ))j), k) # top-K

7: K ← TopKIndicesj(fpre(fin(x
T
i ; θ))j , k)

8: d′Ks,yi
T ← d′Ks,yi

T +Qs for s = 1...k # Probability Aggregation
9: end for

10: return d′

serves to retain the most probable k predicted labels rather than selecting only one (i.e., BLM) or all
labels (denoted as ‘-Top-K’ in ablation studies in Section 5).

D.6 A Quick Version of ILM, BLM, and BLM+

The baseline method FLM calculates the mapping ω once and keeps it fixed, while ILM and our
methods update ω at each step. However, updating ω does not require running the model twice to
obtain current predictions for each epoch. Instead, predictions from the most recent epoch can be
reused. Therefore, only in the first epoch is it necessary to run the pretrained model an additional
time to initialize the weights of LM, which is the same as FLM. In subsequent epochs, these methods
do not require any extra runs. More details can be found in the quick version of our released code.

E Detailed Theoretical Analysis

E.1 Justification and Analysis

In this section, we investigate why probabilistic LM should be favored over deterministic one-to-
one mapping. This analysis assumes the existence of true correspondences between labels in the
pretrained and downstream domains. We establish that, under certain conditions, probabilistic
LM (Definition. E.1) outperforms deterministic LM (Definition E.2) in estimating the distribution of
true label correspondences, quantified by the expected accuracy of the LM function (Eq. (10)).

19

Algorithm 9 Improved Bayesian-guided Label Mapping for VR

1: Input: Pretrained label space YS with kS labels, downstream label space YT with kT labels,
downstream training set {(xT

i , y
T
i)}ni=1, given pretrained model fpre(·) with the jth dimension

being fpre(·)j , total iteration number E, learning rate a, Laplace smoothing λ, top-K value k
2: Output: Probabilistic LM ω ∈ [0, 1]kS×kT

3: Initialize ω ← {0}kS×kT , initialize fin(·; θ) (θ ← 0), temp matrix P = [P1, ..., PkS]
⊤ ∈ RkS

4: for e = 1...E do
5: # Computing probability aggregation matrix d′

6: Use Algorithm 8 to obtain d′

7: # Computing output mapping ω

8: PyS ←
∑kT

t=1 dyS,t + λ for yS = 1...kS
9: ωyS,yT ← dyS,yT/PyS for yS = 1...kS, y

T = 1...kT
10: # Column normalization of ω
11: ωyS,yT ← ωyS,yT/

∑kS

s=1 ωs,yT for yS = 1...kS, y
T = 1...kT

12: # Training fin(·; θ)
13: θ ← θ − a · ∇θ

∑n
i=1 ℓ(y

T
i , f

ω
out(fpre(fin(x

T
i ; θ))))

14: end for
15: return ω

This analysis focuses on the comparisons of LM. Given that the pretrained model fpre, input x, and
input transformations fin are the same across different LM methods, we will omit these notations
below unless explicitly needed. We begin by introducing key definitions.
Definition E.1 (probabilistic label mapping (PLM)). Let Fplm ⊂ Flm be a set of mapping functions
such that for all fplm ∈ Fplm, we have

p(fplm(y
S) = yT|yS) = ωyS,yT , s.t.

∑
yS∈YS

ωyS,yT = 1,∀yT ∈ YT. (11)

Here, p(fplm(yS) = yT|yS) is the conditional probability that a pretrained label yS is mapped to a
downstream label yT.

Definition E.2 (deterministic label mapping (DLM)). Let Fdlm ⊂ Flm be a set of mapping func-
tions, defined by fdlm(y

S) = g(yS) for all yS ∈ YS, where g(yS) specifies a deterministic rule,
either g(yS) = yS for identity mapping; or g(yS) = 1 − yS for flip mapping, respectively. Then,
deterministic label mapping is defined as: ∀fdlm ∈ Fdlm,

p(fdlm(y
S) = yT|yS) = δyS,g(yS), with δyS,g(yS) =

{
1 if g(yS) = yT

0 otherwise
, (12)

where δ is the Kronecker delta function, ensuring yT is uniquely mapped from a pretrained label yS.

Then, we demonstrate the conditions where Acc(fplm) ≥ Acc(fdlm). Since DLM is defined by g,
following either identity mapping or flip mapping exclusively, each case will be discussed separately.
Lemma E.3. Given a collection of paired labels {(yS, yT)}ni=1. If the aggregate conditional
probabilities p(yS = 1|yT = 0) ≥ p(yS = 0|yT = 0) and p(yS = 0|yT = 1) ≥ p(yS = 1|yT = 1)
hold true, and considering fdlm is defined by identity mapping as outlined in Definition E.2, then it
follows that Acc(fplm) ≥ Acc(fdlm).

Lemma E.3 (proof in Appendix E.2) implies that PLM achieves at least as high expected accuracy as
DLM defined by identity mapping, under the following conditions: for downstream samples with
yT = 0, the inequality is satisfied when they are more likely to correspond to pretrained samples
with yS = 1 than those with yS = 0; for downstream samples with yT = 1, the inequality is satisfied
when the corresponding pretrained samples are more likely to have yS = 0 than yS = 1.

Uncertainty in Label Inter-Dependencies. Essentially, the conditions above reflect potential
complex patterns of label correspondence that arise when inter-dependencies between the labels
exist across domains. While this “label mismatch” problem has been discussed in binary settings,
it can be generalized to multi-class settings without loss of generality. Unlike DLM, which merely

20

relies on a static mapping rule and hence may fail when true label correspondence conflicts with
this predefined rule, PLM captures the conditional probabilities of yT given yS. By harnessing the
inherent uncertainty encoded in the probabilistic form of ω, PLM is expected to achieve more robust
label mapping predictions.

Next, we compare PLM with DLM using the flip mapping rule.

Lemma E.4. Given a collection of paired labels {(yS, yT)}ni=1. If the aggregate conditional
probabilities p(yS = 0|yT = 0) ≤ p(yS = 1|yT = 0) and p(yS = 0|yT = 1) ≤ p(yS = 1|yT = 1),
and fdlm is defined by flip mapping as outlined in Definition E.2, then Acc(fplm) ≥ Acc(fdlm).

Lemma E.4 (proof in Appendix E.2) establishes another sufficient condition under which PLM could
achieve an expected accuracy at least as high as DLM defined by flip mapping. The condition applies
to all downstream samples, regardless of their labels (both yT = 0 or yT = 1), stating that it is more
likely that their corresponding pretrained label being yS = 1 rather than yS = 0.

Bias in Label Correspondences. The bias in Label correspondence refers to a phenomenon where a
disproportionate number of downstream samples correspond to pretrained samples with a specific
label. For example, consider a medical diagnosis task where both pretrained and downstream data
come from populations with low disease prevalence, the label correspondences may exhibit this
bias [54]. While this bias may be overlooked by DLM, it could be captured and even exploited by
PLM, which flexibly adjusts the weighting schemes, e.g., assigning higher value to ω1,0 than ω0,0 for
samples where yT = 0, and to ω1,1 over ω0,1 for samples where yT = 1.

Corollary E.5. Let fplm and fdlm denote the label mapping functions defined in Definition E.1
and Definition E.2, respectively. Given pretrained and downstream label spaces YS = {0, 1} and
YT = {0, 1}, if for any joint distribution over YS × YT,

∃ a ∈ {0, 1} s.t. p(yS = a|yT = ā) ≥ p(yS = ā|yT = ā), (13)

where ā is the opposite label of a, then we have Acc(fplm) ≥ Acc(fdlm).

Remark E.6. Corollary E.5 implies a theoretical foundation for preferring PLM over DLM in scenarios
where the label mapping relationship between two domains is uncertain, biased and potentially
deviates from a deterministic one-to-one mapping assumption. This finding holds importance in
label mappings for VR, as the label spaces may encompass multi-class settings. Furthermore, in VR
settings, the pretrained labels derived from fpre predictions, are subject to increased uncertainties and
biases influenced by the quality and distribution of the pretrained model and dataset5.

E.2 Completed Proof of Lemma E.3 and Lemma E.4

Lemma E.7 (cf. Lemma E.3). Given a collection of paired labels {(yS, yT)}ni=1. If the aggregate
conditional probabilities p(yS = 1|yT = 0) ≥ p(yS = 0|yT = 0) and p(yS = 0|yT = 1) ≥ p(yS =
1|yT = 1) hold true, and fdlm is defined by identity mapping as outlined in Definition E.2, then
Acc(fplm) ≥ Acc(fdlm).

Proof. Expand Eq. (10) by taking all possibilities of yT, we have:

Acc(flm) = EyT∈YT

 ∑
yS∈YS

p(yS) · p
(
flm(y

S) = yT|yS
)

=
∑

yT∈YT

p(yT)

 ∑
yS∈YS

p(yS|yT) · p
(
flm(y

S) = yT|yS, yT
)

=
∑

yT∈YT

p(yT)

 ∑
yS∈YS

p(yS|yT) · p
(
flm(y

S) = yT|yS
) .

(14)

5For the analysis purpose, in this section we simplify the setting and operate with ground-truth YS. In
practice, VR does not have access to true yS but must rely on the predicted yS from the well-trained fpre instead.

21

Note that the conditional independence holds since the output of flm relies solely on the input yS. For
DLM defined by identity mapping, p(fdlm(yS) = yT|yS) = 1 if yS = yT, and 0 otherwise. Taking
into account all the samples, the expected accuracy Acc(fdlm) can then be expressed by

Acc(fdlm) =
∑

yT∈YT

p(yT) p(yS = yT|yT)

= p(yT = 0)p(yS = 0|yT = 0) + p(yT = 1)p(yS = 1|yT = 1).

(15)

As for PLM, the expected accuracy can be rewritten as

Acc(fplm) =
∑

yT∈YT

p(yT)
∑

yS∈YS

ωyS,yT · p(yS|yT)

= p(yT = 0)
[
ω0,0 · p(yS = 0|yT = 0) + ω1,0 · p(yS = 1|yT = 0)

]
+ p(yT = 1)

[
ω0,1 · p(yS = 0|yT = 1) + ω1,1 · p(yS = 1|yT = 1)

]
,

(16)

where ω0,0 stands for ωyS=0,yT=0, and similarly for the remaining ω0,1, ω1,0, ω1,1.

To evaluate the expected accuracy of fplm and fdlm, we look into the comparison separately for each
yT. Specifically, for the samples with yT = 0, we aim to show that

p(yT = 0)
[
ω0,0 · p(yS = 0|yT = 0) + ω1,0 · p(yS = 1|yT = 0)

]
≥ p(yT = 0)p(yS = 0|yT = 0).

(17)

Given the constraints ω0,0 + ω1,0 = 1 and p(yS = 0|yT = 0) + p(yS = 1|yT = 0) = 1, the LHS of
Eq. (17) becomes

p(yT = 0)
[
ω0,0 · p(yS = 0|yT = 0) + ω1,0 · p(yS = 1|yT = 0)

]
= p(yT = 0)

[
(ω0,0 · p(yS = 0|yT = 0) + ω1,0(1− p(yS = 0|yT = 0))

]
= p(yT = 0)

[
(ω0,0 − ω1,0) · p(yS = 0|yT = 0) + ω1,0

]
.

(18)

The inequality we need to show is then simplified to p(yT = 0)[(ω0,0 − ω1,0) · p(yS = 0|yT =
0) + ω1,0] ≥ p(yT = 0)p(yS = 0|yT = 0). This inequality holds if p(yS = 0|yT = 0) ≤ p(yS =
1|yT = 0).

Similarly, for samples with yT = 1, the inequality of interest is

p(yT = 1)
[
ω1,0 · p(yS = 1|yT = 0) + ω1,1 · p(yS = 1|yT = 1)

]
≥ p(yT = 1)p(yS = 1|yT = 1).

(19)

This holds if p(yS = 1|yT = 1) ≤ p(yS = 0|yT = 1).

Both conditions can be satisfied without conflict. Thus, we can confirm Lemma E.3 by evaluating
these conditions jointly.

Lemma E.8 (cf. Lemma E.4). Given a collection of paired labels {(yS, yT)}ni=1. If the aggregate
conditional probabilities p(yS = 0|yT = 0) ≤ p(yS = 1|yT = 0) and p(yS = 0|yT = 1) ≤ p(yS =
1|yT = 1), and fdlm is defined by flip mapping as outlined in Definition E.2, then Acc(fplm) ≥
Acc(fdlm).

Proof. When defined deterministically by flip mapping, DLM can be equivalently expressed as
p(fdlm(y

S) = yT|yS) = 1 if yS ̸= yT, and 0 otherwise. This allows the expected accuracy of DLM
to be expanded as:

Acc(fdlm) =
∑

yT∈YT

p(yT) p(yS ̸= yT|yT)

=
∑

yT∈YT

p(yT)
(
1− p(yS = yT|yT)

)
= p(yT = 0)

(
1− p(yS = 1|yT = 0)

)
+ p(yT = 1)

(
1− p(yS = 0|yT = 1)

)
.

(20)

22

Meanwhile, the expected accuracy of PLM remains consistent as in Eq. (16). Again, to show that
Acc(fplm) ≥ Acc(fdlm) holds, we compare the expected accuracy with respect to different yT
samples separately.

For samples with yT = 0, we need to show
p(yT = 0)

[
ω0,0 · p(yS = 0|yT = 0) + ω1,0 · p(yS = 1|yT = 0)

]
≥ p(yT = 0)p(yT = 0)

(
1− p(yS = 1|yT = 0)

)
.

(21)

Given the constraints that ω0,0 + ω1,0 = 1 and p(yS = 1|yT = 0) = 1 − p(yS = 0|yT = 0), the
LHS of Eq. (21) can be expressed by

p(yT = 0)
[
ω0,0 · p(yS = 0|yT = 0) + ω1,0 · p(yS = 1|yT = 0)

]
= p(yT = 0)

[
(ω0,0 − ω1,0) · p(yS = 0|yT = 0) + ω1,0

]
.

(22)

We rearrange the terms:
p(yT = 0)

[
(ω0,0 − ω1,0) · p(yS = 0|yT = 0) + ω1,0

]
≥ p(yT = 0)

(
1− p(yS = 0|yT = 0)

)
(ω0,0 − ω1,0) · p(yS = 0|yT = 0) + ω1,0 ≥ 1− p(yS = 0|yT = 0)

1− p(yS = 0|yT = 0)− ω1,0 + ω1,0 · p(yS = 0|yT = 0)

p(yS = 0|yT = 0)
≤ ω0,0

1− p(yS = 0|yT = 0)− ω1,0 · (1− p(yS = 0|yT = 0))

p(yS = 0|yT = 0)
≤ ω0,0

(1− ω1,0) · (1− p(yS = 0|yT = 0))

p(yS = 0|yT = 0)
≤ ω0,0.

(23)
It is then concluded that Eq. (23) holds if p(yS = 0|yT = 0) ≤ p(yS = 1|yT = 0).

As with yT = 1 samples, a similar derivation is performed to satisfy the inequality
p(yT = 1)

[
ω0,1 · p(yS = 0|yT = 1) + ω1,1 · p(yS = 1|yT = 1)

]
≥ p(yT = 0)p(yT = 0)

(
1− p(yS = 1|yT = 0)

)
.

(24)

Resembling yT = 0 samples, the derivation yields the condition p(yS = 0|yT =) ≤ p(yS = 1|yT =
1).

Notably, the condition p(yS = 0|yT = 0) ≤ p(yS = 1|yT = 0) does not conflict with p(yS =
0|yT =) ≤ p(yS = 1|yT = 1), and both conditions can be jointly satisfied.

F Training Details

F.1 Dataset Information

Additional dataset information is presented in Table 4. For a fair comparison, we adhere to the data
partitioning scheme employed by ILM [4] through all datasets. The batch size for Oxfordpets and
DTD is set to be 64 while 256 for the remaining datasets.

F.2 Parameter Information

Consistent training settings are maintained to ensure a fair comparison. For training input VR patterns,
we apply the Adam optimizer [26] with an initial learning rate of 0.01. The number of epochs is
200, with the learning rate decay being 0.1, scheduled at epochs 100 and 145. All experiments
are conducted on a single A100 GPU and the average accuracy of three distinct random seeds are
reported.

G Parameter Analysis

G.1 Choosing Hyper-parameters

As described in Section 4, the ratio α is used in calculating k = ⌊α · kT⌋. The experimental results to
tune hyper-parameters α and λ are reported in Table 5. α is chosen among [0.01, 0.05, 0.15, 0.5, 1],

23

Table 4: Detailed dataset information

Dataset Original Image Size Training Set Size Testing Set Size Number of Classes

Flowers102 128 × 128 4,093 2,463 102
DTD 128 × 128 2,820 1,692 47

UCF101 128 × 128 7,639 3,783 101
Food101 128 × 128 50,500 30,300 101
GTSRB 32 × 32 39,209 12,630 43
EuroSAT 128 × 128 13,500 8,100 10

OxfordPets 128 × 128 2,944 3,669 37
StanfordCars 128 × 128 6,509 8,041 196

SUN397 128 × 128 15,888 19,850 397
CIFAR10 32 × 32 50,000 10,000 10
CIFAR100 32 × 32 50,000 10,000 100

SVHN 32 × 32 73,257 26,032 10

Table 5: Tuning ratio α and Laplace λ (ResNet-18, Flowers102, average accuracy (%))
α|λ 0.01 0.1 1 10 100 1000

0.01 40.5±0.8 41.7±1.4 44.1±0.1 45.1±0.6 42.9±0.4 40.5±0.4
0.05 46.2±0.4 45.8±0.8 48.9±0.2 47.2±0.4 45.2±0.8 43.0±0.1
0.15 48.2±0.4 49.4±1.0 50.1±0.6 48.1±0.6 45.4±0.7 44.6±0.2
0.1 48.6±0.8 50.0±1.0 48.4±0.4 48.4±0.6 45.8±0.9 45.6±0.5
1 49.1±0.8 50.2±0.2 49.3±0.7 49.3±0.6 45.3±0.7 44.4±0.7

Average 46.5±0.6 47.4±0.9 48.1±0.4 47.6±0.5 44.9±0.7 43.6±0.4

while λ is chosen among [0.01, 0.1, 1, 10, 100, 1000]. The optimized λ is determined first to be 1 by
the average accuracy of different α values, followed by deriving an optimal α = 0.15.

While the same hyper-parameters may not necessarily be optimal across different datasets, for the
sake of consistency and fairness, this paper employs identical hyper-parameters for all datasets.

G.2 Analyzing Hyper-parameters

Figures 9 and Figure 10 illustrate the impact of λ and α on accuracy. It is observed that the optimal
hyper-parameters vary across different datasets.

In general, as λ increases, the test accuracy initially rises and then declines. This parameter is used
to balance the contributions of individual pretrained labels. An over-small λ might overly rely on
the distribution of pretrained labels obtained from pretrained models, while a too-large one might
overlook differences among pretrained labels. Meanwhile, with an increase in α, accuracy first
increases, then plateaus or slightly decreases. This is because excessively small or large α values may
lead to the neglect of certain crucial labels or the emphasis on redundant ones during the estimation
of the probability aggregation matrix. Therefore, choosing moderate values for λ and α appears to be
more appropriate.

G.3 Task-specific Hyper-parameters

We used universal hyper-parameters to show that BLM and BLM+’s performance gains over baselines
are not sensitive to hyper-parameters. However, we assume that the dataset-specific tuning for
hyper-parameters could yield more optimized results.

Additional experiments are conducted using a validation set and training set split of 30% and 70%
to find optimal hyper-parameters for each dataset. Results are shown in Table 6. We observe that
optimal hyper-parameters tailored for each dataset achieve better performance compared to using
shared hyper-parameters, which matches our assumption.

24

Figure 9: Accuracy with different Laplace λ. Figure 10: Accuracy with different Ratio α.

Table 6: Difference between task-specific parameters and shared parameters
Flowers102 UCF101 DTD OxfordPets CIFAR10

Specific α 0.15 0.15 0.5 0.5 0.5
Specific λ 1 1 1 10 10

Accuracy (Trained on 70% Samples) 45.82 31.84 43.75 72.27 66.54
Shared α 0.15 0.15 0.15 0.15 0.15
Shared λ 1 1 1 1 1

Accuracy (Trained on 70% Samples) 45.82 31.84 42.31 70.52 66.04

H Limitations of BLM and BLM+

Less effective for tasks with very few classes. As shown in Table 1, when the number of classes
(i.e., size of the label space) in downstream tasks is smaller (10 classes in SVHN and 10 classes in
EuroSAT) and the original task is relatively simple, the advantage of BLM and BLM+ is not very
pronounced. This is because BLM and BLM+ replace the one-to-one mapping with a pairwise-
connected probabilistic LM. While this optimization yields positive results in most tasks, for a
small subset of simple tasks, the one-to-one mapping may better reflect the relationship between the
pretrained label space and the downstream label space. For such tasks, BLM and BLM+ no longer
exhibit significant effects.

Not solving the cases where VR is not applicable for downstream tasks. For example, in the case
of the StanfordCars dataset in vision models, as shown in Table 1 and Table 2, the accuracy of the
downstream task remains consistently low (<10%) through learning using input VR. While applying
BLM and BLM+ in such scenarios yields better results compared to using one-to-one mapping, it
still cannot significantly enhance VR performance to the extent of being comparable to finetuning the
entire model.

I Visualization of Label Mapping Matrices

Based on the example of ResNet-18 pretrained on ImageNet-1K applying to the downstream task
CIFAR10, Figure 11 depicts the visualization results of LM matrices. The first row in Figure 11

25

P
retrain

ed
 L

ab
els -- Im

ag
eN

et (w
ith

 th
e first 1

0
 classes sh

o
w

n
)

T
e
n

c
h

G
o

ld
fish

A
ir

p
la

n
e

B
ir

d
C

a
t

D
e
e
r

D
o

g

S
tin

g
r
a

y
C

o
c
k

F
r
o

g
H

o
r
se

H
en

O
str

ic
h

S
h

ip
T

r
u

c
k

G
re

a
t W

h
ite

S
h

a
r
k

H
a

m
m

e
r
h

e
a

d
T

ig
e
r
 S

h
a

r
k

A
u

to
m

o
b

ile

E
lec

tr
ic R

a
y

D
o
w

n
stream

 L
ab

els -- C
IF

A
R

1
0

Figure 11: The visualization results of the LM matrices. Using the example of ResNet-18 pretrained
on ImageNet-1K applied to the downstream task CIFAR10, the left figure displays the first 10
rows and 10 columns of the LM matrices (including the result matrix of the first 10 pretrained and
downstream labels), while the right figure presents specific labels. Compared to gradient-free LM
methods (i.e., BLM and BLM+), deep learning-based methods (i.e., a single-layer unrestricted neural
network ω ∈ RkS×kT and a single-layer neural network with Sigmoid ω ∈ [0, 1]kS×kT) demonstrate
less interpretability in revealing the relationship between labels.

shows the results of gradient-free methods BLM and BLM+, while the second row shows deep
learning-based methods which learn a linear neural network for fω

out. ‘Deep Learning’ refers to a
single-layer neural network without constraints (i.e., ω ∈ RkS×kT), while ‘Deep Learning + Sigmoid’
refers to applying the Sigmoid function to restrict ω ∈ [0, 1]kS×kT aligning with the range of ωBLM

and ωBLM+. The right part of Figure 11 depicts the specific pretrained and downstream labels
corresponding to these matrices.

It is observed that BLM and BLM+ are good at revealing similarities between pretrained and
downstream labels. For example, for the downstream label ‘Airplane’, which visually resembles
‘Great White Shark’, ‘Hammerhead’ and ‘Stingray’, the weights in ωBLM or ωBLM+ tend to be
higher. Conversely, for dissimilar labels like ‘Truck’ and ‘Ostrich’, the weights will be approaching
0. However, the weight matrices obtained from deep learning-based methods fail to capture such
clear-label relationship. The results demonstrate the advantages of BLM and BLM+ in terms of
interpretability.

J Training Cost Analysis

The Required Number of Epochs. Different label mapping methods require varying numbers of
epochs to converge. We initially used 200 epochs as with [4] to ensure a fair comparison with the
baseline methods. Additional experiments are conducted to assess the impact of different epoch
numbers from [60, 100, 150] on our BLM and BLM+ model, using ResNet-18 as the pretrained
model. The results are shown in Table 7.

We found that running 100 epochs yields results comparable to those achieved with 200 epochs. This
demonstrates that BLM and BLM+ require less convergence time, highlighting their efficiency.

26

Table 7: Impact of epoch numbers on different label mapping methods

.

BLM BLM+ ILM FLM

Epochs 60 100 150 200 60 100 150 200 200 200
Average Accuracy
on 12 Tasks (%) 44.5 45.2 45.5 45.3 45.8 46.4 46.9 46.7 40.6 37.2

Table 8: Training cost analysis of LM & VR and none-VR finetuning (on Flowers102)

Gradient-free LM
Deep

Learning-
based LM

Finetuning

FLM ILM BLM BLM+ BLM* BLM+* - Linear Fully

Back-
propagation when

Learning LM
No No No No No No Yes - -

ResNet-18

Parameter
Number (M) 0.10 0.10 0.10 0.10 0.10 0.10 0.20 0.51 11.7

Whole
Time (min) 11.97 12.04 11.95 13.06 6.03 6.52 12.34 14.03 15.28

ResNeXt-101

Parameter
Number (M) 0.10 0.10 0.10 0.10 0.10 0.10 0.20 2.0 88.8

Whole
Time (min) 24.68 24.81 24.51 24.71 12.33 12.44 24.80 24.49 35.07

Overall Time Consumption. Table 8 presents a comparison of different output mapping methods in
terms of computational resources, utilizing the Flowers102 dataset as the downstream task. Gradient-
free LM refers to estimating output mappings using statistical methods, while deep learning-based
LM treats label mapping as a single linear layer neural network attached after the pretrained models.
‘BLM*’ and ‘BLM+*’ refer to training with only 100 epochs as is shown in Table 7. It should be
noted that the running times for ILM, BLM, and BLM+ are measured using the quick version (see
Appendix D.6 for details). Apart from VR methods, which fix the pretrained model, the time costs
associated with directly finetuning pretrained models are also listed. Here, the term ‘Linear’ refers to
finetuning the final layer of the pretrained model, while ‘Fully’ refers to finetuning the entire model.

Besides, regarding the performance of finetuning methods on downstream tasks compared with
VR, please refer to [4] for more discussion. Since we mainly focus on LM methods for VR in this
paper, which has a different problem setting with finetuning, the performance comparison of VR and
finetuning will not be addressed here.

We therefore analyze the efficiency of BLM and BLM+ from three perspectives:

• Extra Consumption of Calculating the Mapping Matrix Compared with One-to-One Map-
ping: Compared to the baseline method ILM, the additional cost for BLM and BLM+
primarily involves the gradient-free multiplication and division within the mapping matrix
(which is sized according to the source and target label spaces, 1000 × 102 in this case).
This additional cost is minimal, as shown in Table 8.

• Time Consumption of Updating the Mapping Matrix per Epoch: Compared with FLM,
updating ω in ILM, BLM, and BLM+ does not require running the model to obtain current
predictions for each epoch. Instead, predictions from the most recent epoch can be reused
(see Appendix D.6). As a result, there is no noticeable time overhead for updating ω per
epoch, as indicated by Table 8.

• Time Consumption of LM and VR Compared with Deep Learning-based Methods: It is
observed that methods based on deep learning introduce a substantial number of extra
parameters (which would further increase with larger downstream label space and higher

27

pretrained model complexity) along with the necessity of backpropagation for gradient
computation. Conversely, the gradient-free LM methods along with VR emphasized in this
study do not encounter these challenges.

K More Results on Visual Classification Tasks

Sea urchin Porcupine Cardoon

0.3508

+ + +

0.2127

0.0578

Flowers102 -
Globe thistle

=

Applying ILM

=

Porcupine Skunk

0.5777

+ + +

0.1805

0.0578

Cauliflower

Or

Jackfruit

0.1892

+ + +

0.1338 0.0743

Or

Pineapple

0.2306 0.1630 0.1082

Acorn squash Banana Zucchini

+ + + Or

Sea urchin

Pencil sharpener Acorn squash Zucchini

+ + +

0.3053 0.2363 0.1832

0.2943 0.2158 0.0981

Jackfruit Tennis ballCauliflower

+ + +

Flowers102 -
Marigold

Flowers102 -
Gazania

Sea urchin

Jackfruit

Zucchini

Downstream Top Weighted Pretrained Labels Applying BLM+ Top Weighted Pretrained Labels Applying BLM

Figure 12: Label mapping results of ILM, BLM, BLM+ for VR on Flowers102 dataset.

Snail Centipede Coil

0.0824

+ + +

0.0750

0.0647

DTD - Spiralled

=

Applying ILM

=

0.0911

+ + +

0.0820

0.0683

Hay

Or

Komondor

0.1024

+ + +

0.0773 0.0693

Or

Porcupine

0.0764 0.0709 0.0550

Harvestman Cauliflower Triceratops

+ + + Or

Ringneck snake Hen-of-the-woods Dragonfly

+ + +

0.1524 0.1219 0.0914

0.1508 0.0879 0.0879

Porcupine BeaverHay

+ + +

DTD - Fibrous

DTD - Cracked

Centipede Snail CoilCoil

Hay

Stone wall

Downstream Top Weighted Pretrained Labels Applying BLM+ Top Weighted Pretrained Labels Applying BLM

Figure 13: Label mapping results of ILM, BLM, BLM+ for VR on DTD dataset.

Figures 12-16 illustrate the visualization results of label mapping using ILM (one-to-one mapping),
BLM, and BLM+ for VR on various datasets with pretrained ResNet-18. For BLM and BLM+, the
top three contributing pretrained labels corresponding to the downstream label are presented, along
with their respective weights.

Results when the pretrained and downstream labels exhibit appearance resemblance. Figures 12
and 15 respectively depict the outcomes on Flowers102 and Food101 datasets, each about classifica-
tion tasks of various flowers and food. BLM+ is adept at assigning higher weights to pretrained labels
with a greater resemblance to the downstream label in terms of color, shape, and intricate features.
In terms of color, as evidenced in Figure 15, the top-weighted labels for ‘Edamame’ comprise ‘Green
Snake’, ‘Artichoke’, and ‘Green Mamba’, all sharing a green hue. Regarding shape, in Figure 12,
the ‘Gazania’ with petal stripes corresponds to top weighted labels such as ‘Banana’ and ‘Zucchini’,
which exhibit similar striping patterns. As for intricate features, in Figure 12, the ‘Globe Thistle’
with needle-like appearance aligns with top weighted labels including ‘Sea Urchin’, ‘Porcupine’, and
‘Cardoon’, which possess akin prickly characteristics.

28

Ballplayer Scoreboard Maze

0.1965

+ + +

0.0672

0.0352

UCF101 -
Baseball pitch

=

Applying ILM

=

0.2513

+ + +

0.1759

0.0880

Acoustic guitar

Or

Banjo

0.0709

+ + +

0.0679 0.0577

Or

Stage

0.0671 0.0650 0.0568

Lipstick Ice lolly Hair spray

+ + + Or

iPod

+ + +

0.1249 0.1171 0.0878

0.1233 0.0925 0.0756

+ + +

Flagpole Beaker

UCF101 -
Playing guitar

UCF101 -
Apply lipstick

Ballplayer

Acoustic guitar BanjoMuzzle

Lipstick Ice lolly

Ballplayer

Lipstick

Electric guitar

Downstream Top Weighted Pretrained Labels Applying BLM+ Top Weighted Pretrained Labels Applying BLM

Figure 14: Label mapping results of ILM, BLM, BLM+ for VR on UCF101 dataset.

Green snake Artichoke Green mamba

0.0907

+ + +

0.0828

0.0803

Food101 -
Edamame

=

Applying ILM

=

0.1010

+ + +

0.0862

0.0808

Butternut squash

Or

Espresso

0.0506

+ + +

0.0373 0.0342

Or

Fig

0.0806 0.0422 0.0363

Wok Frying pan Dutch oven

+ + + Or

Comic book

+ + +

0.1161 0.0913 0.0695

0.0791 0.0452 0.0395

+ + +

Food101 -
Creme brulee

Food101 -
Bibimbap

WashbasinBullet train

Cucumber

Butternut squash

Wok Frying pan

Green mamba Green snake Vine snake

Espresso

Wok

Downstream Top Weighted Pretrained Labels Applying BLM+ Top Weighted Pretrained Labels Applying BLM

Figure 15: Label mapping results of ILM, BLM, BLM+ for VR on Food101 dataset.

Results when the pretrained and downstream labels exhibit similarities in texture. Figure 13
presents the results on the DTD dataset, which pertains to the classification of various textures. Both
BLM+ and BLM assign higher weights to labels sharing akin textures. For example, ‘Spiralled’
corresponds to top-weighted labels embodying spiral-shaped entities such as ‘Snail’, ‘Centipede’,
and ‘Coil’, while ‘Fibrous’ aligns with entities possessing a rough and fibrous texture, including
‘Hay’, ‘Komondor’, and ‘Porcupine’.

Results when the pretrained and downstream labels exhibit similarities in backgrounds. Fig-
ure 14 illustrates the results on the UCF101 dataset, a dataset for action classification. In this task,
both BLM and BLM+ tend to assign higher weights to pretrained labels with backgrounds or environ-
ments akin to the downstream labels. For example, the action ‘Apply Lipstick’ often involves the
presence of a human face; hence, pretrained labels such as applying ‘Lipstick’, eating ‘Ice Lolly’,
and spraying ‘Hair Spray’ contribute significantly. Likewise, labels closely associated with ‘Baseball
pitch’ include ‘Ballplayer’ and ‘Scoreboard’, featuring backgrounds of vast grass fields.

Results when pretrained and downstream labels exhibit inclusion relationship. Figure 16
illustrates the results on the CIFAR10 dataset, which comprises images broadly categorized into
ten main classes, with each category corresponding to several subcategories within the pretrained
domain. It is noted that unlike the singular class selection of ILM, both BLM and BLM+ allocate
similar weights to multiple subcategories. For example, ‘Dog’ corresponds to different breeds such as
‘Cocker Spaniel’, ‘English Springer’, and ‘English Setter’, while ‘Bird’ encompasses subcategories

29

Cocker Spaniel English springer English setter

0.0386

+ + +

0.0381

0.0367

CIFAR10 - Dog

=

Applying ILM

=

Beagle Wire-haired fox terrier

0.0371

+ + +

0.0326

0.0320

Jeep

Or

Tractor

0.0503

+ + +

0.0501 0.0463

Or

SnowplowCIFAR10 - Truck

0.0464 0.0441 0.0418

Peacock Albatross Little blue heron

+ + + Or

CIFAR10 - Bird

English springer

Junco Albatross Goldfinch

+ + +

0.0463 0.0435 0.0424

0.0471 0.0469 0.0468

Tractor JeepShopping cart

Book jacket

Chihuahua

Pay-phone

+ + +

Downstream Top Weighted Pretrained Labels Applying BLM+ Top Weighted Pretrained Labels Applying BLM

Figure 16: Label mapping results of ILM, BLM, BLM+ for VR on CIFAR10 dataset.

including ‘Peacock’, ‘Albatross’, and ‘Little Blue Heron’. Hence, the learning framework of BLM
and BLM+ demonstrates effective handling of the inclusion relationship between label spaces.

L Applications on Vision-Language Models

L.1 Learning Framework

The distinction between Vision-Language Models (VLM) and vision models lies in (1) vision models
take a single image as input, whereas VLMs take a pair of text and images as input; and (2) vision
models have fixed pretrained labels, with model outputs being logits, while VLMs lack pretrained
labels, with model outputs being the cosine similarity [56] between images and text embeddings. As
a result, when applying BLM and BLM+ to VLM, it is necessary to design an input text set to replace
the original pretrained labels in vision models.

In this paper, we follow a previous work [4] and construct the input texts set by taking the Cartesian
product [55] of the downstream label set and the prompt set. BLM and BLM+ can be applied to
compute the joint frequency distribution (for BLM) or aggregated predicted probability (for BLM+)
between the input texts and the downstream ground-truth labels. This enables the mapping from
candidate input texts to probable classification results.

The full process of learning ωBLM, ωBLM+ for vision models or VLMs is illustrated in Figure 17.
Besides, the pipeline and algorithm details are the same as BLM and BLM+ for vision models shown
in Figure 2, Algorithm 7 and 9.

L.2 Performance Results

Table 9 presents the performance of BLM and BLM+ applied to VLMs across 12 datasets. For a
fair comparison, we follow the previous work [1] to employ CLIP as the pretrained model and a
watermarking-based VR with an outer frame size of 30. We utilized an initial learning rate of 40 and
a Cosine Annealing learning rate schedule [35], with a total of 200 epochs. An SGD optimizer with a
momentum of 0.9 was employed for learning the Input VR. Results without label mapping (denoted
by ‘None’) and one-to-one mapping served as the baseline, and the average accuracy was computed
over three different random seeds.

From the performance results, it can be observed that except for the EuroSAT dataset, which has a
small number of classes and simpler tasks (this limitation will be discussed in detail in Appendix H),
BLM or BLM+ achieves improvements across all other tasks. They achieve the average accuracy of
79.1% and 79.3%, respectively, without increasing the number of model parameters to be trained.
This empirical evidence demonstrates that BLM and BLM+ can also be effectively applied to VLMs.

30

Corresponding
Downstream Label

Pr
ed

ic
te

d
Pr

et
ra

in
ed

L
ab

el
 &

 P
ro

b

Downstream Task Input Visual
Reprogramming

 Downstream
 Label Set Corresponding

Downstream
Label

Vision - Language Models

X-axis: Downstream Label Set

Fi
xe

d
Pr

et
ra

in
ed

 V
is

io
n-

L
an

gu
ag

e
M

od
el

Z-axis: Frequency or Probability
 Distribution

Z-axis: Frequency or Probability
 Distribution

Fi
xe

d
Pr

et
ra

in
ed

 V
is

io
n

M
od

el

Downstream Task Input Visual
Reprogramming

Vision Models

Template Set

C
os

in
e

Si
m

ila
ri

ty
&

 P
ro

b

......

......

Text Input
Set

Y-axis: Text Input Set

Inference
Statistics

Pr
ob

ab
ili

st
ic

 L
M

Pr
ob

ab
ili

st
ic

 L
M

Inference
Statistics

X-axis: Downstream Label Set

Y-axis: Pretrained Label Set

Figure 17: The framework of learning ωBLM or ωBLM+ for pretrained vision models (upper) or
VLMs (lower). As described in Section 4, for vision models, ωBLM or ωBLM+ is derived from
the frequency distribution (in BLM) or probability aggregation matrix (in BLM+) where pairs of
[predicted pretrained label, ground-truth downstream label] are calculated. Nevertheless, for VLMs,
the predicted pretrained label is replaced by possible text inputs from the Cartesian product of the
downstream label set, and the prompt set. The cosine similarities of images and text embedding are
calculated in VLMs to replace the output logits in vision models.

L.3 Visualization Results

Figures 18-22 show the visualization results of top-weighted input texts on different datasets applying
BLM and BLM+. It is evident that, unlike the single optimal text input in one-to-one mapping, BLM
and BLM+ assign different weights to many possible descriptions. For example, in CIFAR10, an
image of a bird may be described as ‘a low-resolution photo of a bird’, ‘a close-up photo of the bird’,
or ‘this is a photo of a bird’, among others. Such methods affirm different expressions instead of only
one description using one-to-one LM.

These experiments further demonstrate that BLM and BLM+ can be used to enhance the performance
of input VR in VLMs while providing reasonable explanations for why input VR in VLMs can
effectively work.

31

Table 9: Performance comparison on VLMs (mean % ± std %)

CLIP (ViT-B32) Baseline Ours

Method None One-to-one
Mapping

BLM BLM+

Flowers102 70.5±0.7 75.5±1.0 76.9±1.9 76.4±1.5
DTD 61.4±0.6 59.5±1.1 60.9±0.9 61.5±0.3

UCF101 67.5±0.1 67.9±0.6 72.2±0.2 72.3±0.4
Food101 79.2±0.2 78.1±0.3 79.3±0.1 79.4±0.1
GTSRB 91.4±0.4 91.3±0.2 91.5±0.2 90.9±1.0
EuroSAT 96.6±0.1 96.5±0.1 96.3±0.1 96.3±0.1

OxfordPets 88.4±0.1 86.8±0.6 88.6±0.5 89.0±0.4
StanfordCars 57.9±0.1 55.8±0.1 59.8±0.7 60.3±0.2

SUN397 61.4±0.2 60.6±0.1 63.1±0.2 63.8±0.2
CIFAR10 94.0±0.2 94.1±0.1 94.2±0.2 94.1±0.3

CIFAR100 75.1±0.2 74.8±0.1 75.4±0.5 75.5±0.3
SVHN 91.3±0.2 91.3±0.2 91.5±0.1 91.7±0.1

Average 77.9 77.7 79.1 79.3

 0.0982 * a jpeg corrupted photo of the king protea
+ 0.0954 * a jpeg corrupted photo of a king protea
+ 0.0738 * a cropped photo of a king protea
+ 0.0622 * art of the king protea
+ 0.0622 * a cropped photo of the king protea
+

Origin 1-To-1 Mapping

 0.0651 * a photo of a small gaura
+ 0.0576 * a photo of the small gaura
+ 0.0569 * a photo of a gaura
+ 0.0475 * a close-up photo of the gaura
+ 0.0472 * a photo of the gaura
+

Origin 1-To-1 Mapping

Origin 1-To-1 Mapping

 0.0705 * a dark photo of a fire lily
+ 0.0687 * a dark photo of the fire lily
+ 0.0512 * a bright photo of the fire lily
+ 0.0410 * a bright photo of a fire lily
+ 0.0385 * a bad photo of a fire lily
+

 0.1436 * a photo of the weird fire lily
+ 0.1276 * a jpeg corrupted photo of the fire lily
+ 0.1276 * a dark photo of the fire lily
+ 0.0957 * a photo of the dirty fire lily
+ 0.0957 * the embroidered fire lily
+

 0.1429 * the embroidered king protea
+ 0.1429 * a jpeg corrupted photo of the king protea
+ 0.1250 * a rendering of the king protea
+ 0.1112 * art of the king protea
+ 0.1112 * a close-up photo of the king protea
+

 0.1005 * a photo of the cool gaura
+ 0.0804 * a photo of the dirty gaura
+ 0.0804 * a photo of a dirty gaura
+ 0.0603 * a jpeg corrupted photo of the gaura
+ 0.0603 * a good photo of the gaura
+

this is a photo of a fire lily

this is a photo of a gaura

this is a photo of a king protea a cropped photo of a king protea

a photo of a small gaura

a close-up photo of the fire lily

Top Weighted Input Texts Applying BLM

Top Weighted Input Texts Applying BLM

Top Weighted Input Texts Applying BLM+ Top Weighted Input Texts Applying BLM

Top Weighted Input Texts Applying BLM+

Top Weighted Input Texts Applying BLM+

Figure 18: Results of ILM, BLM, BLM+ for VR on Flowers102 dataset.

32

 0.0738 * a photo of a large porous
+ 0.0716 * a photo of a dirty porous
+ 0.0553 * a photo of the dirty porous
+ 0.0530 * a photo of the large porous
+ 0.0488 * a pixelated photo of the porous
+

Origin 1-To-1 Mapping

 0.0824 * a sculpture of a perforated
+ 0.0637 * This is a photo of a perforated
+ 0.0517 * a rendering of a perforated
+ 0.0479 * a photo of a weird perforated
+ 0.0446 * a pixelated photo of a perforated
+

Origin 1-To-1 Mapping

Origin 1-To-1 Mapping

 0.0765 * a sculpture of a honeycombed
+ 0.0756 * a photo of a large honeycombed
+ 0.0741 * this is a photo of a honeycombed
+ 0.0598 * a photo of many honeycombed
+ 0.0543 * a rendering of a honeycombed
+

 0.0924 * a rendering of a honeycombed
+ 0.0597 * a photo of a large honeycombed
+ 0.0528 * This is a photo of a honeycombed
+ 0.0528 * the origami honeycombed
+ 0.0528 * a origami grooved
+

 0.1002 * a photo of a dirty porous
+ 0.0837 * a black and white photo of the porous
+ 0.0732 * a photo of the hard to see crosshatched
+ 0.0732 * a sculpture of a bumpy
+ 0.0732 * a photo of the dirty porous
+

 0.0887 * a photo of a large perforated
+ 0.0887 * a sculpture of a perforated
+ 0.0798 * a rendering of a perforated
+ 0.0638 * this is a photo of a perforated
+ 0.0573 * a black and white photo of a perforated
+

this is a photo of a honeycombed

this is a photo of a perforated

this is a photo of a porous a photo of a large porous

a sculpture of a perforated

a pixelated photo of a honeycombed

Top Weighted Input Texts Applying BLM

Top Weighted Input Texts Applying BLM+ Top Weighted Input Texts Applying BLM

Top Weighted Input Texts Applying BLM+

Top Weighted Input Texts Applying BLM+ Top Weighted Input Texts Applying BLM

Figure 19: Results of ILM, BLM, BLM+ for VR based on CLIP on DTD Dataset.

Top Reweighted Text Embeddings Applying BLM++ Top Reweighted Source Classes Applying BLM

 0.0504 * a bowling in a video game
+ 0.0470 * the bowling in a video game.
+ 0.0398 * a cartoon bowling
+ 0.0380 * the cartoon bowling
+ 0.0376 * a rendering of a bowling
+

Origin 1-To-1 Mapping

 0.0619 * a billiards in a video game
+ 0.0610 * the billiards in a video game
+ 0.0531 * a low resolution photo of a billiards
+ 0.0502 * a rendition of a billiards
+ 0.0500 * a cartoon billiards
+

Origin 1-To-1 Mapping

Origin 1-To-1 Mapping

 0.0532 * a photo of a hard to see tennis swing
+ 0.0529 * art of the tennis swing
+ 0.0526 * art of a tennis swing
+ 0.0510 * a photo of the hard to see tennis swing
+ 0.0506 * a pixelated photo of the tennis swing
+

Top Reweighted Text Embeddings Applying BLM++

Top Reweighted Text Embeddings Applying BLM++

Top Reweighted Source Classes Applying BLM

Top Reweighted Source Classes Applying BLM

 0.0878 * art of a tennis swing
+ 0.0860 * a photo of a hard to see tennis swing
+ 0.0860 * art of the tennis swing
+ 0.0856 * a low resolution photo of a tennis swing
+ 0.0691 * the embroidered tennis swing
+

 0.0590 * art of the bowling
+ 0.0557 * a bowling in a video game
+ 0.0557 * a photo of the weird bowling
+ 0.0548 * a photo of a cool bowling
+ 0.0537 * a photo of the cool bowling
+

 0.0726 * a low resolution photo of a billiards
+ 0.0712 * a billiards in a video game
+ 0.0629 * graffiti of a billiards
+ 0.0629 * a toy billiards
+ 0.0629 * a photo of a dirty billiards
+

this is a photo of a tennis swing

this is a photo of a billiards

this is a photo of a bowling a photo of the cool bowling

the billiards in a video game

a pixelated photo of the tennis swing

Figure 20: Results of ILM, BLM, BLM+ for VR based on CLIP on UCF101 dataset.

33

 0.0225 * a good photo of a churros
+ 0.0225 * this is a photo of a churros
+ 0.0219 * a photo of a nice churros
+ 0.0215 * art of a churros
+ 0.0215 * a photo of a cool churros
+

Origin 1-To-1 Mapping

 0.0222 * a photo of the hamburger
+ 0.0219 * a photo of the nice hamburger
+ 0.0219 * a good photo of the hamburger
+ 0.0218 * a photo of the cool hamburger
+ 0.0214 * a low resolution photo of the hamburger
+

Origin 1-To-1 Mapping

Origin 1-To-1 Mapping

 0.0254 * a bright photo of the croque madame
+ 0.0249 * this is a photo of a croque madame
+ 0.0248 * a bright photo of a croque madame
+ 0.0247 * a photo of a cool croque madame
+ 0.0246 * a good photo of a croque madame
+

 0.0340 * a bright photo of the croque madame
+ 0.0329 * the cartoon croque madame
+ 0.0325 * a photo of my croque madame
+ 0.0316 * a photo of the dirty croque madame
+ 0.0313 * a rendering of the croque madame
+

 0.0291 * a photo of the nice churros
+ 0.0289 * a close-up photo of the churros
+ 0.0287 * this is a photo of a churros
+ 0.0282 * a good photo of the churros
+ 0.0278 * art of a churros
+

 0.0429 * the cartoon hamburger
+ 0.0419 * a photo of the dirty hamburger
+ 0.0416 * a bright photo of the hamburger
+ 0.0411 * a photo of the nice hamburger
+ 0.0410 * a pixelated photo of the hamburger
+

this is a photo of a croque madame

this is a photo of a hamburger

this is a photo of a churros a pixelated photo of the churros

a pixelated photo of the hamburger

a bright photo of the croque madame

Top Weighted Input Texts Applying BLM

Top Weighted Input Texts Applying BLM

Top Weighted Input Texts Applying BLM+ Top Weighted Input Texts Applying BLM

Top Weighted Input Texts Applying BLM+

Top Weighted Input Texts Applying BLM+

Figure 21: Results of ILM, BLM, BLM+ for VR based on CLIP on Food101 dataset.

 0.0365 * a low resolution photo of a bird
+ 0.0361 * a close-up photo of the bird
+ 0.0358 * this is a photo of a bird
+ 0.0351 * a photo of the weird bird
+ 0.0350 * a blurry photo of a bird
+

Origin 1-To-1 Mapping

 0.0415 * a photo of a small dog
+ 0.0415 * the cartoon dog
+ 0.0408 * a low resolution photo of a dog
+ 0.0404 * a low resolution photo of the dog
+ 0.0401 * a cartoon dog
+

Origin 1-To-1 Mapping

Origin 1-To-1 Mapping

 0.0437 * a low resolution photo of a horse
+ 0.0435 * a pixelated photo of the horse
+ 0.0429 * a jpeg corrupted photo of a horse
+ 0.0428 * a low resolution photo of the horse
+ 0.0426 * a jpeg corrupted photo of the horse
+

 0.0382 * a blurry photo of a horse
+ 0.0382 * a pixelated photo of a horse
+ 0.0378 * a low resolution photo of a horse
+ 0.0376 * a jpeg corrupted photo of a horse
+ 0.0374 * a pixelated photo of the horse
+

 0.0300 * a close-up photo of a bird
+ 0.0297 * a photo of a cool bird
+ 0.0296 * a low resolution photo of a bird
+ 0.0295 * a bright photo of a bird
+ 0.0292 * a cartoon bird
+

 0.0335 * a photo of a small dog
+ 0.0335 * a photo of the cool dog
+ 0.0334 * a close-up photo of a dog
+ 0.0327 * a low resolution photo of a dog
+ 0.0326 * a pixelated photo of the dog
+

this is a photo of a horse

this is a photo of a dog

this is a photo of a bird a low resolution photo of a bird

a pixelated photo of the dog

a pixelated photo of the horse

Top Weighted Input Texts Applying BLM

Top Weighted Input Texts Applying BLM+ Top Weighted Input Texts Applying BLM

Top Weighted Input Texts Applying BLM+

Top Weighted Input Texts Applying BLM+ Top Weighted Input Texts Applying BLM

Figure 22: Results of ILM, BLM, BLM+ for VR based on CLIP on CIFAR10 dataset.

34

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract are detailed in the introduction part, and
further discussed in each section. Each paragraph in the introduction is provided with a
corresponding link to certain sections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Appendix H.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

35

Answer: [Yes]

Justification: All assumptions and proof are included in Appendix E.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All implementation details (described in Appendix F) have been included.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

36

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The link to the code has been provided in the abstract.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Detailed dataset information is included in Section 5 and Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Experiments are run on three seed with the standard divination being reported
in Table 1, 2 and 9, and also shown in strip areas in Figure 9-10.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

37

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computer resources have been discussed in Appendix F and detailed in
Appendix J.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Since methods proposed in this paper are used to improve the performance of
VR in downstream classification tasks, there is no potential societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

38

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: The paper does not release data or models that have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Creators or original owners of code or data have been cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

39

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

40

	Introduction
	Related Works
	Problem Formulation
	Bayesian-guided Probabilistic Label Mapping (BLM)
	Method Demonstration
	Theoretical Analysis

	Experiments
	Conclusion
	The Problem Setting of VR
	Recent Work in Transfer Learning
	A Simple Probability Estimation Example
	Detailed Procedures of Output LM Methods
	Random Label Mapping (RLM)
	Frequent Label Mapping (FLM)
	Iterative Label Mapping (ILM)
	Bayesian-guided Label Mapping (BLM)
	Improved Bayesian-guided Label Mapping (BLM+)
	A Quick Version of ILM, BLM, and BLM+

	Detailed Theoretical Analysis
	Justification and Analysis
	Completed Proof of Lemma E.3 and Lemma E.4

	Training Details
	Dataset Information
	Parameter Information

	Parameter Analysis
	Choosing Hyper-parameters
	Analyzing Hyper-parameters
	Task-specific Hyper-parameters

	Limitations of BLM and BLM+
	Visualization of Label Mapping Matrices
	Training Cost Analysis
	More Results on Visual Classification Tasks
	Applications on Vision-Language Models
	Learning Framework
	Performance Results
	Visualization Results

