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Abstract

ElyteOS is a graphical user interface written in Python 3.8.3 which enables the
automation of the processes of electrolyte preparation, measurement, data storage,
and data visualization. It provides a user-friendly interface and acts as a frame-
work for automating lab equipment with different commands as well as managing
the procedure of the experiments. Meanwhile, ElyteOS automatically saves the ex-
perimental data in a database and provides data searching and visualization tools
for researchers. Therefore, ElyteOS not only facilitates electrolyte researches but
also provides potential in optimizing battery performance and advancing battery
technologies.
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1. Motivation and significance

Batteries are crucial in energy storage and transportation.[1] As one of the most
commonly used types of batteries, lithium ion batteries transport Li ions between
the anodes and cathodes through liquid electrolytes during operation.[2] Find-
ing the optimal formulations of solvents and salts in electrolytes can significantly
improve functionality of batteries, e.g. higher conductivity electrolyte can enable
faster charging,[3] electrolytes with lower melting point can enable low temperature
operation,[4] electrolytes with high flash point reduce flammability and improve
safety.[5] A typical commercial Li-ion battery electrolyte is a formulation of more
than two solvents, one or two salts and more than two additives.[6] Therefore, opti-
mization of electrolyte formulations is laborious work as there exists a huge number
of different combinations of possible solvents and salts.[7] The adoption of lab au-
tomation in various fields, including biology [8], material science[9], and optical
physics [10], has demonstrated its potential for scientific discovery and optimiza-
tion. Incorporating lab automation into electrolyte research to optimize electrolyte
formulation could revolutionize the field, unlocking faster breakthroughs.[11]
In a previous work, we introduced a robotic platform named ‘Clio’ which makes
the optimization process more efficient by integrating a balance, a potentiostat
and a viscometer, along with accessories including a thermometer, valves, and
pumps, to automate the electrolyte property measurement. Combining the au-
tomation pipeline with Bayesian optimization, we demonstrated optimization in a
known chemical space of solvents (ethylene carbonate (EC), ethylmethyl carbonate
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(EMC), and dimethyl carbonate (DMC)) and LiPF6 as salt. This demonstrated
the potential for an acceleration factor of 11.5 relative to manually conducting
measurements.[11]
Clio has some fundamental limitations for interoperability which we address in
this work. Firstly, the software control of Clio is not easily maintainable as it is
controlled through LabView.[11, 12] Secondly, Clio is operated through command-
line Python. The lack of a GUI has reduced the accessibility of Clio, as it requires
a higher learning curve to new users.[12] Thirdly, Clio does not provide a sta-
tus management process, which makes it difficult to track experiments, especially
when encountering errors. Lastly, Clio does not incorporate any built-in data vi-
sualization function. After making batches of measurements, Clio stores all the
information in an AWS server, but users need to download the data and plot the
data manually.
Motivated by the improvements a new software could bring to further accelerate
electrolyte autonomous experimentation, we have written a software named Ely-
teOS to solve these limitations. The software keeps all the functions of Clio and
simultaneously provides solutions to the problems discussed above. Firstly, Ely-
teOS is now fully written in Python, bringing flexibility in maintenance and easy
usage. Secondly, ElyteOS offers a GUI, which helps users with minimal computer
science background to control Clio easily. In addition, the GUI incorporates log
pages to check the status of the equipment, which is crucial in the tracking and
handling of errors. It also has pages to track the inventory and the potential good
data. The GUI also provides tabular and graphical data visualization for users to
easily analyze the experiment data. The detailed functionalities of the software
are introduced in the next section.

2. Software description

Overview: programming language selection ElyteOS is a software aimed at
automating the process of electrolyte preparation, measurement, data storage and
visualization. The measurement is conducted by Clio, a robotic system controlled
by ElyteOS, which consists of a series of commutable instruments for electrolyte
preparation and measurement. Previously, Clio was controlled via the Labview
platform. In this work, Python is chosen over Labview as the primary language for
ElyteOS and Clio due to its modularity, shareability, maintainability, and support
for version control.[11]
Primary Frameworks The rebuilt Clio uses the PySerial framework to commu-
nicate to a potentiostat, a viscometer, a balance, two pumps, and three 10-port
valves by serial signal. It also uses the HIDapi framework to send HID commands
to a thermometer and some relays (which then controls 3-way valves to direct flow

3

https://doi.org/10.26434/chemrxiv-2025-6wq3x ORCID: https://orcid.org/0000-0003-1060-5495 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2025-6wq3x
https://orcid.org/0000-0003-1060-5495
https://creativecommons.org/licenses/by/4.0/


and a DC motor to stir the electrolyte mixture). The detailed structure is provided
in figure 1.

Experiment.py

Potentiostat.pyPump.py

Valve.py

Balance.py

Thermometer.py

Motor

Relay.py

Viscometer.py

3-way valve

Serial Control

HID Control

Figure 1: Overall structure of Clio: Experiment.py serves as a manager to call the surrounding
python files, which thereby send commands to the equipments. The balance, the potentiostat,
the pumps, the 10-port valves, and the viscometer are controlled by serial commands, and the
relay (which then controls the 3-way valves and the motor) and the thermometer are controlled
by HID commands.

On the software end, ElyteOS uses PyDash library as the primary framework.
PyDash wraps JavaScript in Python and facilitates back-end and front-end con-
nection. This reduces the complexity of the software, as it only requires importing
PyDash package without any dependencies, instead of using JavaScript and con-
necting to python via Flask.[13]
Overall Architecture ElyteOS is launched with the python file Main.py, with a
total of six pages, as shown in 2, with four belonging to the experiment section
and two to the database section. The detailed structure is provided in S1, in
supplementary information. The screenshots of the pages are also provided in
pictures S2, S3, S4, S5, S6, S7 in supplementary information.

2.1. Experiment section

2.1.1. Experiment architecture

The experiment section consists of four pages, each having a specific function:
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Figure 2: Pages of ElyteOS and their information communication: When conducting exper-
iments, the user submits a compositionID to the Run Clio Page. Then, the Run Clio Page
requests inventory information from Inventory Page, conduct experiment by calling the equip-
ments, and log equipment status and errors on Log page. After running the experiment, the
data is saved into Data Page, and candidate page keeps compositions with results meeting the
user-selected benchmarks. Email notifications will also be sent when a such candidate is found,
or an error happened in the experiment. The user can then look for visualizing experiment results
on Data Page after running experiments. The user can also directly input data on Input Page
without running experiments. The blue colored items represent a page, and the pink colored
items represent the elements outside the software.

• Run-Clio Page: Serves as the primary interface for the organization of
experiments.

• Inventory Page: Tracks, stores and displays remaining materials stored in
Clio inventory, and stores all information in a CSV file.

• Candidate Page: Records and displays of promising electrolyte candidates
with favorable electrolyte properties specified by the users, and all informa-
tion is stored in a CSV file.

• Log Page: Monitors and documents the status of each piece of equipment
in Clio during experiments.
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2.1.2. Experiment functionalities

Experiment token It is important to determine the details of the experiment–in
this case, the composition of the electrolyte needed to be measured. Therefore,
ElyteOS uses tokens to keep track of the compositions. A single experiment token
is represented by a composition ID with four sections. The first section speci-
fies the types of solvents used; the second section indicates the mass fraction of
each type of solvent in the mixture; the third section identifies the types of salts
used; and the final section represents the molality of each salt in the mixture.
Sections are separated by a vertical bar, and items within the same section are
separated by an underscore. For example, an electrolyte solution composed of 60%
dimethyl carbonate (DMC) and 40% ethyl methyl carbonate (EMC) as solvents,
lithium hexafluorophosphate (LiPF6) and lithium bis(fluorosulfonyl)imide (LiFSI)
as salts with molalities 1 mol/kg and 1.5 mol/kg, respectively, would have the
CompositionID: DMC EMC|60 40|LiPF6 LiFSI|1 1.5. ElyteOS uses the encoded
information to prepare the mixture and measure its properties[11]
Experiment status The experiment status is also important as it mainly tracks
the Clio status and determines the starting of ongoing experiments. It is governed
by two variables: is running and error status. The is running variable checks
whether an experiment is in progress and is represented with two possible values:
”No experiment is running” and ”running experiments. The error status variable
checks whether Clio encounters an error with values corresponds to the specific
error Clio encounters. If Clio does not encounter an error, the error status variable
is set to ”No errors”.
Both experiment tokens and experiment statuses are crucial in the experiment
processes, which are addressed in the following paragraphs.
Processes The experiment flow consists of three processes: the User process, the
Manager process, and the Experiment process. The three processes run indepen-
dently, except for the commands sent by the User process and the Manager process
to launch or terminate the experiment process. The processes are managed by the
Multiprocess Package in Python.
User process The User process mainly interacts with the users, who provide the
tokens, i.e. the compositionIDs. Then, the process verifies the validity of IDs with
an ID validator (which will be covered in later sections). After the verification of
IDs, the process adds the tokens into the experiment queue. The flowchart of User
process is provided in S8 in supplementary information.
In addition to adding the experiment tokens, the User process also controls the
error status of the experiment. During the process of an experiment, the user
has the option to click on the ”stop Clio” button, which sets the status of the
experiment from ”No errors” into ”Clio is Locked”, and halts the experiment
process. Furthermore, when Clio encounters an error during an experiment, the
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experiment process will halt automatically and update the error status to reflect
the error type Clio encountered. In such a case, the user can click the ”trouble
resolved” button to reset the error status to ”No errors” and restart the experiment.
Manager process The Manager process primarily operates an interval, which
checks every 0.1 seconds to determine whether to launch the experiment process.
If the ”is running” variable indicates no experiment is running, the ”error status”
variable shows no errors, and the experiment queue is not empty, the experiment
process pops the first token from the experiment queue, passes the token into the
experiment process, sets the ”is running” variable to be ”Running experiments”,
and starts the experiment process. Otherwise, it will not perform operations until
the next check is made. The flowchart of the Manager process is provided in S9
in supplementary information.
Experiment process The experiment process is the core of the execution of the
experiment, guided by the operation manager. It starts by receiving the token, or
CompositionID, and then parses it into the information for the inventory manager,
which then computes, logs, and returns the required quantities for each component
in the inventory. If the inventory is infeasible for the composition to be prepared,
the inventory manager returns an error. Otherwise, it updates the inventory after
the composition is prepared.
After that, the operation manager calls the equipment manager, which repeatedly
generates commands to control the equipment. The status of the equipment is
logged after each execution of a command. In case of errors in any piece of equip-
ment, the experiment manager logs the errors, stops the experiment process, and
returns the error. The operation manager then sends users an email notification
regarding the error message so that the errors can be resolved promptly.
If an experiment completes without errors, the operation manager sends the mea-
sured information to the candidate manager, which evaluates whether the elec-
trolyte meets the desired requirement to determine whether to store or discard
the composition. Whenever an electrolyte with desired properties is found, the
operation manager sends an email notification to the users.
Finally, the operation manager stores the measured data of the composition in
the database and sets the is running variable into ”No experiment is running”
regardless of whether the composition has the desired properties, completing the
whole measurement process. The flowchart of Experiment process is provided in
S10 in supplementary information.

2.2. Database section

2.2.1. Database architecture

As described above, ElyteOS itself provides a database to store the experiment
data by offering two pages for the database in addition to the pages for the ex-
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periment section. Currently, the database uses SQLite as the primary database to
store all data from the experiment.
Why SQL Currently, databases can be categorized into two types: structural
(SQL) and nonstructural (NoSQL, such as MongoDB). A structural database
is chosen as the primary database for ElyteOS due to the simple and tabular
structure (The detailed format will be covered in the next section). Additionally,
the advantages of structured query language perfectly satisfy the requirements of
the database. The advantages include safety, which ensures data reliability and
the ACID property; standardization, which facilitates softwares to adapt to other
structural databases; strong queries capabilities, which help to perform complex
operations including data filtering; and space efficiency, which allows the software
to store a large volume of experimental data.
The lack of SQL’s flexibility can be resolved by allowing the database to have
multiple tables to accommodate more complex structures. This approach effec-
tively resolves the limitation of SQL and meets the requirements of the ElyteOS
database.
Experiment Data Structures As SQL requires structured data, it is important
to breakdown the components of an electrolyte experiment data point, which is
listed below:
ID: Unique identifier 32-byte integer generated through special algorithms
CompositionID: String
Density, Conductivity, Viscosity, Mass, Volume, Resistance, Tempera-
ture: all 64-bit floats
Date: datetime object
Trial Number: 64-bit integer
In order to facilitate data filtering (which will be addressed in later paragraphs),
the data structure is modified when writing the data into the database. The
variables stored inside the database can be categorized into six groups: dependent
variables, independent variables, solvent mass percentage, salt molality, solvent
molar ratio, and salt molar ratio. Density, Conductivity, Viscosity, Mass, Volume,
and Resistance are dependent variables. Meanwhile, Temperature, Date and Trial
Number are independent variables.
The remaining categories are not stored directly from data points. Instead, they
are parsed from the compositionID, which contains information about the elec-
trolyte components, including a tabular representation of the percentage of sol-
vents and molality of salts. Tables S1, S2, S3, S4 and S5 illustrate the overall
structure of the database.
In the tables above, the same ID in each table is associated with the same piece
of data record. When performing data retrieval, the tables are joined on the IDs
to display the complete experiment records.
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2.2.2. Database functionalities

Data insertion Although Clio is designed to upload experiment data into the
database automatically, ElyteOS allows the users to input the experiment data.
The users can either manually enter data directly with the given text fields or
upload a CSV file for the software to parse. After submission, the data validator
verifies the validity of the input.
The validator verifies a piece of data records by checking whether it satisfies all
of the following criteria. Firstly, the validator checks whether all numeric inputs
fall within the correct range (typically above zero). Secondly, it ensures that the
compositionID satisfies correct format. Specifically, each compositionID must con-
sist of four sections with the required separators. Thirdly, the number of solvents
must match the number of the corresponding percentages, and the number of salts
must match the number of the corresponding molalities. Moreover, the percentage
values of solvents mass ratios must be between 0 and 100 and sum up to 100.
After the validation process, the data is parsed into the correct format and a query
generator generates a series of queries to insert the data into a database. In order
to ensure atomicity (i.e., avoid partial or inconsistent uploads), the changes will
only be committed after all the queries are executed.
Data filtering After entering the data into the database, it is important to retrieve
the data, which contains two steps: data filtering and visualization. Data filtering
is important as retrieving all stored data and manually identifying necessary ones
is impractical. Therefore, ElyteOS offers a data filtering function, enabling users
to extract necessary data under predefined criteria.
The filtering criteria are simple: users can define whether a set of given variables
falls within particular ranges. For each variable, the users can check the corre-
sponding checkbox to include it in the visualization. After selection, a two-column
table is generated for each selected variable: one column contains the ID, the other
contains the corresponding variable’s values.
After defining criteria for individual variables, users can specify the relationships
between the criteria. ElyteOS enables the users to select whether the criteria
associated with a certain type of variable should have “and” or “or” relations.
The relationships determine whether the corresponding tables are inner-joined
(and-relationships) or outer-joined (or-relationships).
Data visualization: After a successful join, ElyteOS allows the user to select
whether to display the joined table or graphs. Displaying a table is straightforward
as PyDash can directly display tables through dataframes. For graphs, however,
more complex algorithms is required.
Displaying the graph: Plotly is used as the primary package for plotting the
data, as it is compatible with dash and convenient for users to analyze the data in-
teractively. Plotly supports 2D and 3D graphs, therefore it allows at the maximum
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of three axes (i.e., two independent variables and one dependent variable). When
only one independent variable is selected, a series of 2D plots will be generated,
each representing the selected independent variable plotted against each depen-
dent variable. When multiple independent variables (specifically, the ones related
to solvents and salts) are selected, ElyteOS looks for all pairwise combinations
of the variables, and each pair is plotted against all selected dependent variables.
For example, if the user selects 5 independent variables and 3 dependent variables,
ElyteOS generates a total of 3× 5× (5− 1)/2 = 30 plots.
In summary, the ElyteOS software achieves the pipeline of lab automation by
managing the experiments, inventory, equipments, and storing the data for filtering
and retrival as well. The automation processes reduce the time for the users to
manually perform experiments and manage data.

3. Illustrative examples

The software functions described above are crucial in electrolyte research and in
the development of the automation system itself. The next part provides two ex-
amples: a grid search example and a calibration example. The grid search example
demonstrates how the experiment system and the database system interact to ad-
vance electrolyte research, while the calibration example shows the importance of
the database in constructing the automation pipeline.

3.1. Electrolyte Experiment

The importance of GUI in running experiments and performing data analysis can
be demonstrated in a grid search example on the molality of the salt in aqueous
electrolytes. In this experiment, the relationship between the molality of Li2SO4

salt in water and the resulting ionic conductivity is tested. A total of six com-
positions are selected, which include 0.43 mol/kg, 0.86 mol/kg, 1.29 mol/kg, 1.72
mol/kg, 2.15 mol/kg, and 2.58 mol/kg. Each composition is measured twice.
The measurement starts by creating a CSV file containing a list of CompositionIDs.
The general format of the IDs follows: H2O|100|Li2SO4|x, where x denotes the
selected molality of Li2SO4. Each ID is repeated twice. The CSV file for this
experimental campaign is provided in tables titled CompositionIDs to run.csv.
In this experiment, the ionic conductivity threshold is set at 55 mS/cm, indicat-
ing electrolyte candidates with good ionic transport capabilities. After running
the experiments, the compositions that meet the criteria (H2O|100|Li2SO4|1.72,
H2O|100|Li2SO4|2.15, and H2O|100|Li2SO4|2.58) are displayed on the good can-
didate page, and all experimental results are stored in the database. During data
retrieval, the filtering and sorting criteria applied to the database are depicted in
figure 3. The generated table is provided in tables titled Grid search result.csv,
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the generated plots are provided in supplementary information figures S13 and S14,
and the processed graph is shown in figure 4.

Figure 3: Li2SO4 and H2O are selected because they are the components of the electrolytes.
A filter is applied to the time period when the experiment was performed. Conductivity and
resistance are also checked. Additionally, a filter on resistance less than 5000 Ω is applied to
eliminate any possible incorrect measurements.

In figure 4, the conductivity of the electrolyte increases with the molality of Li2SO4,
peaks at approximately 58 ms/cm when Li2SO4 molality reaches around 2.15
mol/kg, and then decreases as the molality continues to increase. The compo-
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Figure 4: Scatter plot for conductivity vs Li2SO4 molality: Electrolytes with Li2SO4 molality of
1.72, 2.15, and 2.58 (in mol/kg) are considered good candidates.

sition H2O|100|Li2SO4|2.15 is identified as the recommended composition as it
has the highest conductivity.
In our previous work, Clio, we have demonstrated acceleration in automating the
experiment processes of electrolyte research.[11] Building upon this foundation,
ElyteOS further accelerates this approach by providing data visualization tools
to support users performing data analysis and drawing conclusions. In addition,
it provides notifications to inform users when a candidate electrolyte meets the
selected criteria. Furthermore, ElyteOS informs users when an error occurs for
timely troubleshooting. To facilitate the debugging process, ElyteOS provides log
files to track the status of the equipment. Lastly, the inventory page helps users
plan the experiments and replace the samples in time to avoid any shortage of
samples during the experiments. In general, ElyteOS accelerates the experiment
process by facilitating all aspects of research processes and avoiding delays caused
by errors.
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3.2. Flow rate selection

Before achieving full automation, calibration is required to ensure that all labo-
ratory equipment works correctly. For density measurement calibration, the mass
measurement and actual volume pumped into the balance are both important.
The accuracy of the pump depends heavily on the selected flow rate. Therefore,
several flow rates are chosen when pumping the liquid (specifically, 5 ml/min, 4
ml/min, 3 ml/min, 2.5 ml/min, 2 ml/min, and 0.5ml/min) to calibrate on Febru-
ary 3 and 4, 2025. The flow rate greater than 5.5 ml / min is above the maximum
flow rate of the pump, while the flow rate less than 0.5 ml / min may cause the
measurements to be time inefficient. After calibration, the results can be obtained
through the database. The filters applied for checking calibration result are shown
in figure 5. The results are provided in DI Calibration results Feb 3.csv and
DI Calibration results Feb 4.csv.
According to the results, the flow rate of 4 ml/min is preferred, as it has the lowest
bias and a relatively low variance. To ensure the reliability of Clio, the flow rate
of 4 ml/min is chosen for the final flow rate to measure the density.

4. Impact

While our previous work, Clio, has demonstrated how lab automation can accel-
erate battery electrolyte [11], its new software, ElyteOS, further facilitates the
research procedure. By providing a GUI with self-explanatory elements, ElyteOS
reduces the learning curve to the users. With the logger for experimental status
and inventory manager, ElyteOS ensures that the lab automation process is reliable
and traceable, enabling users to debug errors and monitor experiment processes.
In addition, the database and visualization tools in ElyteOS provide an all-in-one
process for users conducting experiments, enabling them to analyze the data, draw
scientific conclusions, and even perform further studies (for example, using data
from the database and performing machine learning to predict the properties of
electrolytes) more easily.[14]
As lab automation is gaining prominence in multiple scientific domains, ElyteOS
demonstrates an adaptable approach to improve the accessibility, robustness, and
efficiency of experiments. A similar approach is applicable beyond Clio or bat-
tery electrolyte research[15], which helps researchers from various fields greatly by
streamlining the research process.[16]

5. Conclusions

ElyteOS provides a user-friendly Python-based GUI that drives an autonomous ex-
perimentation pipeline for electrolyte preparation, testing, and data management.
Through ElyteOS, users can configure the experimental workflow and orchestrate
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Figure 5: Filters applied for Calibration: A filter on date is applied based on the time the
calibration happened. Another filter with Trial number greater than 2 is applied to avoid any
underlying effect when starting a new set of experiments. Density is also checked to determine
the effect of flow rates on the accuracy and precision of density measurement.

different types of instrument used in battery electrolyte research. The equipment
manager, inventory manager, and candidate manager of the GUI can help users
conveniently track the status of the experiment process and effectively resolve is-
sues. The integration of the database with filtering and visualization tools also
helps researchers visualize and analyze the data in an efficient process. In gen-
eral, the development of ElyteOS provides better accessibility to researchers with
an accelerated process with reduced workload in the research, optimization, and

14

https://doi.org/10.26434/chemrxiv-2025-6wq3x ORCID: https://orcid.org/0000-0003-1060-5495 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2025-6wq3x
https://orcid.org/0000-0003-1060-5495
https://creativecommons.org/licenses/by/4.0/


discovery of electrolytes for advancing battery technologies.
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Supplementary information

Additional Figures

• Figure S1 shows the overall structure and data flow between the python files.

• Figures S2, S3, S4, S5, S6, S7 show the overall structure and data flow
between the python files.

• Figure S8, S9, S10, S11 shows the process of each data flow happens in the
software.

• Figure S12 shows the calibration results of the pumps.

• Figure S13 and S14 show the calibration results of the pumps.
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Figure S1: File structures of the software: The arrows with the same color denotes the same
data flow when a user is operating on the interface. All six pages are contained in the Main.py
Python file.
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Figure S2: Run Clio page of GUI: The user can either upload the CSV file to add a list of Com-
positionIDs into the experiment queue, or enter the CompositionID manually. The experiment
queue reflects the ongoing compositions to be tested. The experiment status indicates whether
Clio is running the experiment, and the error status indicates whether Clio encounters an error
or not.

Additional Tables

Tables S1, S2, S3, S4, S5, show the structure of the database.
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Figure S3: Inventory page of GUI: The page automatically updates the compositions of elec-
trolytes and their respective remaining volumes in each bottle connected to the 10-port valves.
The user can edit the inventory with the ”edit” button.

Figure S4: Candidate page of GUI: The page lists the list of compositions of the candidates
meeting the criteria. The user can clear the composition list with the ”clear” button.

ID Density (g/ml) Conductivity (mS/cm) Viscosity (cP) Temp. (°C) Date Trial

A 1.00 2.00 3.00 4.00 2025-02-03T00:00:00 1

B 5.00 6.00 7.00 8.00 2025-02-04T00:00:00 2

Table S1: Experiment Table: The table contains the record ID, the density, the conductivity, the
viscosity, the temperature, the date, and the trial number. The compositionID is not directly
stored inside this table. Instead, it is parsed and stored in the next four tables. Please note that
the tables only serve to demonstrate the structures and do not reflect the actual information
inside the database.
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Figure S5: Log page of GUI: The page loads and displays the log files made by the loggers to let
the users keep track of the status of the experiment. The log files are sorted and named based
on the starting time of the experiments.

ID Solvent Percentage

A DMC 50
A EMC 50
B DMC 25
B EMC 75

Table S2: Solvent Mass Percentage Table

ID Salt Molality
A LiPF6 1.5
A LiFSI 1.5
B LiPF6 2.5

Table S3: Salt Molality Table
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Figure S6: Data page of GUI: The items on the top half of the page show the variables. The
users can select and filter the variables to visualize the data. Then, the users can download the
generated tables or graphs using the download button.
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Figure S7: Data page of GUI: The user can either upload a CSV file to the database directly, or
enter data manually with the textboxes provided. The user can also delete pieces of record by
entering their id.

ID Solvent Molar ratio
A DMC 0.416
A EMC 0.360
B DMC 0.222
B EMC 0.577

Table S4: Solvent Molar Ratio Table

ID Salt Molar ratio
A LiPF6 0.112
A LiFSI 0.112
B LiPF6 0.200

Table S5: Salt Molar Ratio Table
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Figure S8: User flow of GUI: The user can upload the compositionID to the experiment operator
(in Run.py) which will check whether the compositionID is valid. If yes, the ID will be stored in
Queue. The user can also explicitly change the experiment status by using the buttons on the
GUI to halt or resume running experiments.
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Figure S9: Manager flow of GUI: It repeatly checks whether it is time to start a new experiment.
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Figure S10: Experiment flow of GUI: The experiment flow parses the compositionID, prepares
the sample with the inventory, controls the equipment, and store the data. The experiment flow
also keeps track of the inventory, the candidates, and the status of the equipments.
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Figure S11: Data flow of GUI: The user or the experiment process inputs data, and the validator
process ID and store the data. Also, the user can apply filters to fetch data from the database.
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Figure S12: Calibration results for different flow rates with distilled water: As the flow rate
decreases, the bias and the variance both increase. When the flow rate is chosen to be 4ml/min,
both the bias and the variance are low. Therefore, the flow rate 4ml/min is preferred for density
measurement in DI water.

Figure S13: Scatter plot for Resistance vs Li2SO4 molality: The plot is automatically generated
by ElyteOS. The chosen molalities (in mol/kg) include 0.43, 0.86, 1.29, 1.72, 2.15, and 2.58.
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Figure S14: Scatter plot for conductivity vs Li2SO4 molality: The plot is also automatically gen-
erated by ElyteOS. The conductivity of the electrolyte is inversely proportional to the resistance
inside the given chamber. The product of the resistance and conductivity of the same electrolyte
in the same cell is the cell constant, which is measured to be 10.0236965757 cm−1.
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