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Abstract

Domain generalization aims to train models that perform robustly on unseen target
domains without access to target data. The realm of vision-language foundation
model has opened a new venue owing to its inherent out-of-distribution gener-
alization capability. However, the static alignment to class-level textual anchors
remains insufficient to handle the dramatic distribution discrepancy from diverse
domain-specific visual features. In this work, we propose a novel cross-domain
Schrödinger Bridge (SB) method, namely SBGen, to handle this challenge, which
explicitly formulates the stochastic semantic evolution, to gain better generaliza-
tion to unseen domains. Technically, the proposed SBGen consists of three key
components: (1) text-guided domain-aware feature selection to isolate semantically
aligned image tokens; (2) stochastic cross-domain evolution to simulate the SB
dynamics via a learnable time-conditioned drift; and (3) stochastic domain-agnostic
interpolation to construct semantically grounded feature trajectories. Empirically,
SBGen achieves state-of-the-art performance on domain generalization in both
classification and segmentation. This work highlights the importance of modeling
domain shifts as structured stochastic processes grounded in semantic alignment.

1 Introduction

Distribution shift is a fundamental challenge in both machine learning and computer vision. Domain
Generalization (DG) addresses this challenge by training models on one or more source domains
that can generalize well to unseen target domains [45, 31, 75, 16]. A generalizable representation
is especially critical for trust-worthy artificial intelligence and plays a pivot role in safety-crucial
applications, such as autonomous driving [32, 74, 8, 77, 21] and medical imaging [11, 68, 7, 76],
where target environments are not available during training.

In visual domain generalization, the images from various domains are usually diverse in terms of
the contrast, texture, illumination, and resolution [88, 59, 48]. The emergence of vision-language
models (VLM) [59] has opened up a new venue to approach the DG problem. Its general idea is that,
the category-wise text description is capable to anchor high-level semantics despite the distribution
shift of the images from various unseen domains [31]. Specifically, existing VLM based DG methods
usually treat the VLM as a static feature extractor and apply fixed alignment strategies such as prompt
learning [86], cosine matching [1] and adversarial regularization [81] to enforce similarity between
image features and class-level text queries.
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Figure 1: Leveraging domain-agnostic category-wise text embedding to align the domain-specific
visual features from different domains is a common paradigm for domain generalization in vision-
language models (VLM). Left: Existing methods usually rely on a static alignment strategy, which
can be insufficient to handle the dramatic discrepancy and spurious correlations across domains.
Right: In contrast, this paper presents SBGen, a stochastic alignment strategy to enhance the domain
generalization ability of VLM.

Crucially, such fixed alignment strategies are developed under the assumption that visual embeddings
can be directly and reliably projected onto the textual anchors, which may not necessarily hold under
the domain shift. In fact, visual features extracted from unseen domains by an image encoder may
exhibit dramatic distribution discrepancy (shown in Fig. 1). Such degraded semantics and spurious
correlations may not be corrected by static alignment. Moreover, such a deterministic projection may
not offer a clear path to model the semantic drift caused by the domain shift, as it can be difficult
to map onto the textual semantics in a single step. Conversely, if we turn to the multi-step based
mapping, how to transform the partially-aligned intermediate states to the semantic invariance is the
key challenge.

This paper pushes this frontier by approaching VLM based DG from a fundamentally different
perspective. Rather than enforcing the static similarity between image and text features, we ask, what
if model their alignment as a stochastic semantic evolution? Is it possible to gain better generalization
to unseen domains?

We propose SBGen, a novel cross-modal Schrödinger bridge for visual domain generalization, to
realize the above objectives. Its general idea is to formulate the alignment from domain-specific
visual representations to domain-agnostic textual semantics, as a controlled stochastic process that
interpolates between two distributions while remaining close to a prior. It comprises three main
stages. First, a text-guided domain-aware feature selection component is proposed to extract local
visual tokens from source images that align with class-level textual queries, which focuses the model
on semantically relevant content while avoiding domain-specific interruption. Next, a stochastic
cross-domain evolution component is proposed to model the Schrödinger Bridge as a time-indexed
stochastic differential equation (SDE) with a learnable, query-conditioned drift. This process is then
discretized and simulated to generate a trajectory of evolving features. Finally, a stochastic domain-
agnostic interpolation component is proposed, using these features to bridge source representations
with semantic anchors.

Notably, each stage in the proposed SBGen is differentiable and can be jointly trained with a loss
function that balances task supervision and stochastic consistency. It enables us to simulate a sequence
of latent feature states that progressively reduce domain-specific bias and converge toward semantic
consistency with textual queries. In contrast to prior methods, our approach supports structured
semantic interpolation, and models an interpretable and probabilistic trajectory from biased source
features toward text-grounded, domain-agnostic representations. The proposed SBGen is evaluated on
standard domain generalization benchmarks for both classification and segmentation. It consistently
outperforms the state-of-the-art methods.

Concretely, our contributions can be summarized as follows.

• We propose cross-modal Schrödinger Bridge for visual domain Generalization (SBGen), a
novel framework that aligns domain-specific image features with domain-agnostic textual
semantics via Schrödinger Bridge–guided stochastic evolution.
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• We introduce a principled three-stage pipeline that performs text-guided feature selection,
stochastic cross-domain evolution, and semantically anchored interpolation.

• We provide a theoretical justification of the proposed SBGen through a provably tighter
generalization bound, and demonstrate its effectiveness on multiple DG benchmarks in both
classification and segmentation settings.

2 Related work

Vision-Language Models (VLMs) have emerged as effective tools for capturing deep semantic
relationships across modalities. Some typical VLMs include CLIP [59], ALIGN [34] and EVA02 [26,
25]. The expressive representations have proven effective for more complex downstream vision-
language tasks [40, 44, 87].

Domain Generalization (DG) has been extensively studied in the machine learning community [7,
12, 73, 46, 10]. More recently, the emergence of vision-language model (VLM) [59, 86] has
paved a new path for DG. One research line focuses on leveraging its inherent out-of-distribution
generalization ability [1, 23, 42]. Another closer research line usually leverages the text embedding
to augment the domain diversity or to statically align the domain-specific visual features [12, 3, 50,
13, 43, 82, 65, 16, 36, 39, 15, 79]. However, the majority of these approaches rely on the assumption
that domain-specific visual features can be directly and statically matched to domain-agnostic textual
embeddings, which may overlook the dynamic and multi-faceted characteristics of semantic shifts
caused by domain changes.

Domain Generalized Semantic Segmentation (DGSS) aims to learn a generalizable segmenta-
tion model trained only on a source domain. Earlier works usually use normalization [53, 54],
whitening [17, 57] or mask attention [21, 9]. Other works use style hallucination or randomization
techniques for domain augmentation [38, 83, 84, 35, 80]. More recently, vision foundation models
(VFM) [74, 77, 8] and VLMs [22, 32] have been used for DGSS. Despite these advancements, these
approaches usually implement a direct and static alignment between the image and text embeddings,
or enrich the domain diversity guided by the text description. They may still be insufficient to handle
the semantic drift caused by the dramatic domain shift.

Schrödinger Bridge and Stochastic Feature Transport [20, 70] have drawn increasing attention.
These frameworks define stochastic processes that interpolate between distributions via entropy-
regularized optimal transport. Recent work has explored SBs for generative modeling [72, 55, 64],
score-based dynamics [19, 66, 69], depth estimation [28], and modality translation [68, 4, 33].
However, how to explicitly model the stochastic alignment from domain-specific features to domain-
agnostic semantics using SB-driven dynamics for DG remains underexplored.

3 Preliminaries

Problem Definition. Let X and Y denote the space of input images and the space of structured labels
from a certain task (e.g., classification). Given a set of labeled source domains DS = {(xS

n , y
S
n )}

NS
n=1

with xS
n ∈ X , ySn ∈ Y , and a set of unseen target domains DU = {(xU

m, yUm)}NU
m=1, the objective is to

train a model on source domains that generalizes to these unseen domains.

Definition 1. Optimal Transport (OT). Let PS and PU be two probability distributions over
RC , respectively. The classical OT problem seeks a deterministic transport map M : RC → RC

minimizing a transport cost:

min
M :M#PS=PU

EzS∼PS

[
∥zS −M(zS)∥2

]
, (1)

where M#P
S denotes the pushforward measure of PS through M .

Definition 2. Entropy-Regularized OT. A stochastic coupling π(zS , zU ) with marginal constraints
π ∈ Π(PS , PU ) is introduced to improve the robustness of OT, minimizing:

min
π∈Π(PS ,PU )

∫
∥zS − zU∥2 dπ(zS , zU ) + ε ·KL(π∥R), (2)
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Figure 2: Overall pipeline of SBGen. Step 1: We generate initial textual object queries q0
t from

the K class text embeddings {tk}Kk=1. Step 2: To improve the segmentation capabilities of these
queries, we incorporate text-to-pixel attention within the pixel decoder. This process enhances the
semantic clarity of pixel features, while reconstructing high-resolution per-pixel embeddings Z. Step
3: The transformer decoder refines these queries for the final prediction. Each prediction output is
then assigned to its corresponding ground truth through fixed matching, ensuring that each query
consistently represents the semantic information of one class.

whereR is a reference measure and ε > 0 controls the regularization strength, enabling stochastic
transport but lacks a notion of dynamics over time.

Definition 3. Schrödinger Bridge (SB). OT is extended to the dynamic setting by introducing a
continuous-time stochastic process {Pt}t∈[0,1] that evolves from PS to PU , while being minimally
deviated from a prior diffusion process P (e.g., Brownian motion). The SB formulation is:

min
Q

KL(Q∥P) subject to Qt=0 = PS , Qt=1 = PU , (3)

where Q denotes the law of the interpolating process over latent features. This yields a family of
time-indexed distributions Pt modeling the optimal evolution of visual features across domains.

4 Methodology

We propose SBGen, a cross-modal Schrödinger Bridge framework for visual domain Generalization.
Its general idea is to learn a time-indexed stochastic process over feature distributions, evolving from
the source domain toward target-aligned representations, guided by the domain-agnostic class-level
textual queries. Specifically, it consists of three components, namely, Domain-aware Visual Feature
Selection, Stochastic Cross-Domain Evolution, and Stochastic Domain-Agnostic Interpolation. The
rigorous generalization error analysis on its upper bound is provided the supplementary material.

4.1 Domain-aware Visual Feature Selection

Assume we have an image encoder E (e.g., CLIP-ViT), which extracts the visual features from an
image x ∈ X , given by F = E(x) ∈ RH×W×C . We also assume access to a text encoder T and a
set of class names Qc (c = 1, · · · , Nc), where Nc is the number of semantic classes. Following the
textual query generation protocol [52], each class name is converted into a class-specific textual query
and embedded via T , resulting in qc = T (Qc) ∈ R1×C . The visual features F include information
such as background, textures, lighting, or object co-occurrence, which can be usually domain-specific.
In contrast, the class-specific textual embedding qc tends to capture high-level and domain-invariant
semantics. To leverage the class-wise text embeddings qc as domain-agnostic anchors for semantic
alignment, the domain-aware visual feature selection component is proposed.
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Rather than using all visual tokens uniformly, we identify class-conditioned regions in the image
feature space that exhibit high alignment with textual descriptions. This targeted selection filters out
the irrelevant content and yields a semantically grounded set of features for downstream modeling.
Specifically, the visual feature F ∈ RH×W×C can be regarded as a set of feature vectors {Fh,w ∈
R1×C}, and each Fh,w corresponds to the representation of a certain spatial position (h,w) in
the image feature. Then, the cosine similarity between each spatial feature Fh,w and each class
embedding qc is computed as

Sh,w,c =

〈
Fh,w

∥Fh,w∥
,

qc

∥qc∥

〉
, ∀h,w, c. (4)

Then, the top-k spatial locations for each class c that exhibit the highest alignment scores are selected,
which distinguishes the semantically relevant and domain-robust feature locations, avoiding noisy
or background-dominated inputs [60, 89]. Let {z(i)

0 }Ni=1 ⊂ R1×C denote the corresponding set of
visual tokens, which serve as the class- and domain-aware initial feature set. These empirical samples
from the source distribution P0 are used as input to our Schrödinger Bridge evolution process.

4.2 Stochastic Cross-Domain Evolution

Most prior VLM based DG methods adopt deterministic feature mappings or prompt tuning strategies,
which are limited in capturing uncertainty or adapting to structured variation between domains. We
explicitly model the evolution from the domain-specific visual features to the domain-agnostic text
embeddings, so as to enhance the generalization to unseen target domains. To realize this objective,
this evolution is modeled as a stochastic process governed by a Schrödinger Bridge.

The selected features z0 serve as the initial samples to form the empirical source distribution z0 ∼ PS .
Specifically, we define a time-indexed stochastic process {zt}t∈[0,1] ⊂ RC governed by the following
stochastic differential equation (SDE), given by

dzt = fθ(zt, t) dt+
√
2ε dWt, (5)

where fθ : RC × [0, 1] → RC is a learnable drift function, ε > 0 is a fixed diffusion coefficient,
and Wt denotes standard Brownian motion. The process begins at z0 ∼ PS and is regularized to
terminate near a distribution PU implicitly defined by the textual query embeddings {qc}.
Following best practices in recent Schrödinger Bridge literature [20, 70], we parameterize the drift
function fθ using a Multi-Layer Perceptron (MLP) conditioned on both the time index and class
semantics. This drift parameterization is computed as

fθ(zt, t) = MLPθ (LayerNorm(zt + γ(t) + qc)) , (6)

where γ(t) ∈ RC is a sinusoidal time embedding and qc is the target text embedding for class c. This
design encourages smooth and semantically aligned evolution under time-aware control.

Concretely, the proposed stochastic cross-domain evolution allows the alignment between the domain-
specific visual features and the semantic anchors defined by domain-agnostic text embeddings, while
maintaining flexibility to domain shifts.

4.3 Stochastic Domain-Agnostic Interpolation

Nevertheless, the proposed stochastic cross-domain evolution only specifies the initial state from
the domain-specific visual features from the source domain and the end state from the domain-
agnostic text embeddings, which does not take the transitional dynamics between domain-specific
representations and domain-invariant semantics. To address this issue, in the proposed SBGen, a
stochastic interpolation mechanism is introduced. Its general idea is to model a continuous-time
evolution of feature states that gradually transforms source-domain features into semantically aligned,
domain-agnostic representations.

By simulating the Schrödinger Bridge dynamics from t = 0 to t = 1, we generate a trajectory {zt}
that smoothly interpolates between a domain-biased initial state from the source domain and a domain-
agnostic text embeddings. Unlike deterministic mappings, this stochastic evolution accounts for
uncertainty and allows for explicit control over the extent of semantic alignment. Each intermediate
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feature zt can be interpreted as a partial semantic abstraction, providing generalization to unseen
domains and offering flexibility in selecting the optimal representational point. Specifically, we
numerically simulate the SDE in Eq. (5) using Euler–Maruyama discretization. Given a step size
∆t = 1/T and tn = n ·∆t, the discretized evolution can be computed as

ztn+1
= ztn + fθ(ztn , tn)∆t+

√
2ε∆t ξn, ξn ∼ N (0, I), (7)

with initial condition zt0 = z0 ∼ P0. The sequence {zt} captures the full evolution. We implement
this via Monte Carlo estimation over minibatches and simulate each path using Eq. (7).

We adopt this discretization to efficiently simulate the evolution from domain-specific features z0 to
domain-invariant features zT through a sequence of stochastic updates. The terminal feature ztT is
given by the unrolled summation:

ztT = zt0 +

T−1∑
n=0

fθ(ztn , tn)∆t+

T−1∑
n=0

√
2ε∆t ξn, (8)

which represents a stochastic interpolation path toward the domain-agnostic class-wise text semantics.

4.4 Prediction, Optimization & Implementation Details

The evolved features zT ∈ RK×C , obtained through the SB trajectory, are not directly used for task
prediction. Instead, they serve as refined class-aware feature anchors that are written back to the
original visual feature map F ∈ RC×H×W . For each class c, the corresponding evolved embeddings
z
(c)
T are broadcasted to their original locations. This update process yields an enhanced image feature

map F ′, in which the selected regions are aligned toward the class-conditional textual semantics.

The updated visual feature map F ′ and the class queries {qc} are then fed into the decoder D for
the final task prediction (e.g., classification and segmentation) on unseen target domains, where
classification uses global pooling followed by linear projection, and segmentation employs per-pixel
decoding via cosine similarity with class embeddings.

Afterwards, the learning objective is to minimize the expected total loss over the data distribution and
simulated paths, given by

min
θ

Ex∼DS
Ez0∼P0

[Lsup(D(F ′, {qc}), y) + λ ·KL(Qθ ∥P)] , (9)

where Lsup denotes the task-specific loss, Qθ denotes the forward path distribution induced by the
learned drift fθ to transport initial visual features z0 ∼ P0 toward class-conditional textual anchors
qt, P denotes the reference Brownian motion starting at z0, and λ ∈ R>0 is a regularization weight.
The KL loss KL(Qθ ∥P) is approximated by

∑T−1
i=0 ∥fθ(zti , ti)∥2∆t/4ε + ∥ztT − qc∥2 for each

pair of z0 and the corresponding qc.

For the classification task, the image encoder E and the text encoder T use the pre-trained CLIP
in align with the prior DG methods. The task-specific decoder D is a linear layer followed by a
Softmax layer. For the segmentation task, following prior domain generalized semantic segmentation
methods [52, 67], the image encoder E and the text encoder T use the pre-trained EVA-02 [25].
The task-specific decoder D integrates the pixel decoder of the Mask2Former model [14]. The
hyperparameters and configurations of both tasks are detailed in the supplementary material.

5 Experiments

5.1 Results on Domain Generalization in Classification

Datasets & Evaluation Metrics. PACS [41], VLCS [24], OfficeHome [71], TerraIncognita [5],
and DomainNet [58] comprise of 9,991, 10,729, 15,588, 24,330 and 0.6 million images from four,
four, four and six domains, respectively. In line with prior work [29, 12], the leave-one-domain-out
evaluation protocol is adopted, where one domain is held out as the unseen target domain, while
the remaining domains are used for training the model. Performance is reported using classification
accuracy (percentage, %) as the evaluation metric.

Compared Methods. Existing VLM based domain generalization methods are involved for com-
parison, namely, SWAD [12], CLIP [59], SMA [3], DUPRG [50], CoOp [86], MIRO [13], SEDGE
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Table 1: Comparison with the state-of-the-art methods on PACS, VLCS, OfficeHome, DomainNet and
TerraInc. By default the results are cited from [15, 65, 16, 36, 79]. Evaluation metric is classification
accuracy (in %). Top three results are highlighted as best , second and third , respectively.

Method Venue PACS VLCS OfficeHome DomainNet TerraInc Avg
ResNet-50 Pre-trained by ImageNet:
DANN [27] IJCAI’2016 83.6 78.6 65.9 38.3 46.4 65.6
Fish [63] ICML’2022 85.5 77.8 68.6 42.7 45.1 63.9
DAC-SC [37] CVPR’23 87.5 78.7 70.3 44.9 46.5 65.6
SAGM [73] CVPR’2023 86.6 80.0 70.1 45.0 48.8 66.1
ViT-B/16 Pre-trained by CLIP:
SWAD [12] NIPS’2021 91.3 79.4 76.9 51.7 45.4 68.9
CLIP [59] ICML’2021 96.2 81.7 82.0 57.5 33.4 70.2
SMA [3] NIPS’2022 92.1 79.7 78.1 55.9 48.3 70.8
DUPRG [50] ICLR’2023 97.1 83.9 83.6 59.6 42.0 73.2
CoOp [86] IJCV’2022 96.2 77.6 83.9 59.8 48.8 73.3
MIRO [13] ECCV’2022 95.6 82.2 82.5 54.0 54.3 73.7
SEDGE [43] ArXiv’2022 96.1 82.2 80.7 54.7 56.8 74.1
DPL [82] TAI’2023 97.3 84.3 84.2 56.7 52.6 75.0
CLIPOOD [65] ICML’2023 97.3 85.0 87.0 63.5 60.4 78.6
Promptstyler [16] ICCV’2023 97.2 82.9 83.6 59.4 - -
KAdaptaion [36] WACV’2025 97.5 83.0 90.3 62.7 51.9 77.1
GESTUR [39] ICCV’2023 96.0 82.8 84.2 58.9 55.7 75.5
DPR [15] CVPR’2024 97.5 86.4 86.1 62.1 57.1 77.8
CLIPCEIL++ [79] NeurIPS’2024 97.2 85.2 87.7 63.6 62.0 79.1
Ours 2025 97.4 86.7 89.9 64.4 63.5 80.4

[43], DPL [82], CLIPOOD [65], Promptstyler [16], KAdaptaion [36], GESTUR [39], DPR [15] and
CLIPCEIL++ [79]. Several prior ImageNet pre-trained domain generalization methods, namely,
DANN [27], Fish [63], DAC-SC [37] and SAGM [73], are also compared for boarder reference.

Results. Table 1 reports the outcomes on the five datasets. The proposed method shows the state-of-
the-art performance over the existing VLM based DG methods, yielding a classification accuracy of
86.7%, 64.4%, and 63.5% on VLCS, DomainNet and TerraInc, respectively. Notably, DomainNet
and TerraInc are particularly large-scale, indicating the scalability of the proposed method. Its
performance is also very close to the state-of-the-art on PACS and VLCS, where both benchmarks
have been highly saturated. Overall, the proposed method shows the best performance on the average
accuracy of five datasets, outperforming the second-best by 1.3%.

5.2 Results on Domain Generalized Semantic Segmentation

Datasets & Evaluation Metrics. Four driving-scene semantic segmentation datasets that share 19
common scene categories are used for validation. Specifically, CityScapes (C) [18] consists of 2,975
and 500 images for training and validation, respectively. The images were captured under the clear
conditions in tens of Germany cities. BDD-100K (B) [78] has 7,000 and 1,000 images for training
and validation, respectively. The images were captured under diverse conditions from a variety of
global cities. Mapillary (M) [47] is a large-scale semantic segmentation dataset, which consists
of 25,000 images from diverse conditions. GTA5 (G) [61] is another synthetic dataset, which has
24,966 simulated images from the American street landscape. Following the evaluation protocol of
existing foundation model based DGSS methods [74, 52], two commonly-used evaluation settings
are: 1) G→ C, B, M; and 2) C→ B, M, respectively. The evaluation metric is mean Intersection
of Union (mIoU, in percentage %). All the experiments report the average outcomes from three
independent repetitions.

Compared Methods. We compare with existing DGSS methods from three major categories: 1)
ResNet based methods, namely, ISW [17], GTR [56], SHADE [83], SAW [57], WildNet [38],
AdvStyle [85], SPC [30], and BlindNet [2]; 2) Mask2Former based methods, namely, HGFormer
[21] and CMFormer [9]; 3) VFM and VLM based methods, namely, DIDEX [49], REIN [74], SET
[77], FADA [8], tqdm [52], and MGRNet [67]. By default, the performance is directly cited from
prior works [9, 49, 74, 8, 52, 67], and we report two decimal results. ’*’ denotes that the original
paper only reported one decimal results.
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Table 2: Performance comparison between the proposed method and existing DGSS methods. C:
CityScapes [18]; B: BDD-100K [78]; M: Mapillary [47]; S: SYNTHIA [62]; G: GTA5 [61]. ‘-’:
results were not reported and official source code is not available; ‘*’: only reported one decimal
official results; ‘†’: re-implementation with official source code under default settings. Evaluation
metric is mIoU in %. Top three results are highlighted as best , second and third , respectively.

Method Venue Encoder G→ C G→ B G→M Avg. C→ B C→M Avg.
ImageNet Pretrained:
ISW [17] CVPR’2021 ResNet-101 36.58 35.20 40.33 - 50.73 58.64 -
GTR [56] TIP’2021 ResNet-101 37.53 33.75 34.52 - 50.75 57.16 -
SHADE [83] ECCV’2022 ResNet-101 44.65 39.28 43.34 - 50.95 60.67 -
SAW [57] CVPR’2022 ResNet-101 39.75 37.34 41.86 - 52.95 59.81 -
WildNet [38] CVPR’2022 ResNet-101 44.62 38.42 46.09 - 50.94 58.79 -
AdvStyle [85] NeurIPS’2022 ResNet-101 39.62 35.54 37.00 - - - -
SPC [30] CVPR’2023 ResNet-101 44.10 40.46 45.51 - - - -
BlindNet [2] CVPR’2024 ResNet-101 45.72 41.32 47.08 - 51.84 60.18 -
HGFormer∗[21] CVPR’2023 Swin-T - - - - 53.4 66.9 -
CMFormer [9] AAAI’2024 Swin-B 55.31 49.91 60.09 - 59.27 71.10 -
VLM Pretrained:
DIDEX∗[49] WACV’2024 Stable Diffusion 62.0 54.3 63.0 59.7 - -
VLTSeg∗[32] ACCV’2024 CLIP-L 55.6 52.7 59.6 56.0 - - -
REIN∗[74] CVPR’2024 EVA02-L 65.3 60.5 64.9 63.6 64.1 69.5 66.8
SET∗[77] MM’2024 EVA02-L 66.4 61.8 65.6 64.6 - - -
FADA∗[8] NeurIPS’2024 EVA02-L 66.7 61.9 66.1 64.9 - - -
tqdm [52] ECCV’2024 EVA02-L 68.88 59.18 70.10 66.05 64.72 76.15 70.44
MGRNet [67] AAAI’2025 EVA02-L 69.53 61.14 69.97 66.88 64.70 76.43 70.56
Ours EVA02-L 71.24 62.26 71.91 68.74 66.03 77.90 71.97

↑1.71 ↑1.12 ↑1.94 ↑1.59 ↑1.33 ↑1.47 ↑1.41

Table 3: Generalization test on various vision-language mod-
els. ‘*’: only reported one decimal official results.

Method DINOv2[51] CLIP[59]
G → C G → B G → M Avg. G → C G → B G → M Avg.

REIN∗[74] 66.4 60.4 66.1 64.3 57.1 54.7 60.5 57.4
SET [77] 68.06 61.64 67.68 65.79 58.2∗ 55.3∗ 61.4∗ 58.3∗

FADA [8] 68.23 61.94 68.09 66.09 58.7∗ 55.8∗ 62.1∗ 58.9∗

MGRNet [67] 73.87 62.91 73.52 70.10 62.31 56.09 66.47 61.62
Ours 72.85 63.59 73.90 70.11 63.17 57.82 66.94 62.64

↓-1.02 ↑0.68 ↑0.38 ↑0.01 ↑0.86 ↑1.73 ↑0.47 ↑1.02

Table 4: Comparison between stochas-
tic evolution and static alignment
methods.

Method G→C G→B G→G Avg.
Baseline 68.88 59.18 70.10 66.05

DCM 69.78 60.92 70.84 67.18
w.o. TID 70.01 61.16 71.13 67.43

Ours 71.24 62.26 71.91 68.74

Table 5: Ablation studies on each component of the proposed
method. Evaluation metric is mIoU in %.

Component G → C G → B G → M Avg. C → B C → M Avg.
1) Baseline 68.88 59.18 70.10 66.05 64.72 76.15 70.44
2) DFS 69.45 60.07 70.04 66.52 65.17 76.85 71.01
3) DFS, SCE 69.74 61.02 71.09 67.28 64.68 76.93 70.81
4) DFS, SDI 70.68 61.55 71.36 67.86 65.38 77.16 71.27
5) DFS, SCE, SDI 71.24 62.26 71.91 68.74 66.03 77.90 71.97

Table 6: Impact of time step T .
T G→C G→B G→G Avg.
2 68.97 59.83 70.35 66.38
3 70.15 60.24 70.85 67.08
4 70.82 60.77 71.06 67.55
5 71.24 62.26 71.91 68.74
6 71.03 61.90 71.38 68.10

Results. Table 2 reports the outcomes. The proposed method outperforms all the compared methods.
Specifically, with the same EVA02-L VLM backbone, it outperforms the second-best MGRNet [67]
by 1.71%, 1.12% and 1.94% in mIoU on the C, B, and M unseen domains, respectively, when using
G as the source domain. It outperforms the second-best MGRNet [67] by 1.33%, and 1.47% in mIoU
on the B, and M unseen domains, respectively, when using C as the source domain.

Generalization on Various Foundation Models. We further test the generalization ability of the
proposed method when using other foundation models, namely, DINOv2 [51] and CLIP [59]. Since
the proposed method requires the class-wise text as input, we use CLIP text encoder under all the
experiments. The experiments are conducted when using GTA as the source domain. Table 3 reports
the outcomes. The proposed method shows a better generalization ability over these foundation
models than the prior arts.

Effectiveness over Static Alignment. To validate the effectiveness of the stochastic evolution in the
proposed method, we compare it with two static alignment methods, namely, direct cosine matching
(DCM) and without time-indexed dynamics (w.o. TID). The experiments are conducted when
using GTA as the source domain. The results in Table 4 show that the stochastic evolution clearly
outperforms both static alignment methods, indicating its contribution to the overall performance.
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Unseen Image Groud Truth WildNet tqdm OursCMFormer FADA

Figure 3: Exemplar segmentation results of existing DGSS methods (WildNet [38], CMFormer [9],
FADA [8], tqdm [52]), and the proposed SBGen on unseen target domains.

Table 7: Impact of the optimal transport solving methods on
generalization performance.

Method G → C G → B G → M Avg. C → B C → M Avg.
Baseline 68.88 59.18 70.10 66.05 64.72 76.15 70.44
CFM [69] 70.73 61.05 70.64 67.47 64.81 76.57 70.69
Sinkhorn 69.62 60.18 70.57 66.79 65.29 76.48 70.89
Ours 71.24 62.26 71.91 68.74 66.03 77.90 71.97

Table 8: Computational cost analysis.
The GPU hour refers to one single
A100 GPU hardware.

Method GPU Hours #Para. Model Size
Baseline 79.0 788.59M 5.60GB

Ours 79.2 790.17M 5.61GB

5.3 Ablation Studies

On Each Component. On top of a VFM and a task-specific head, the proposed method consists
of three key components, namely, Domain-aware Visual Feature Selection (DFS), Stochastic Cross-
Domain Evolution (SCE), and Stochastic Domain-Agnostic Interpolation (SDI). Table 5 leverages
four experiment settings to inspect how each component impacts the overall performance. Overall,
all the components contribute positively to the generalization performance. Specifically, DFS leads
to an up to 0.47% mIoU improvement on GTA5→C/B/M (Avg.) setting. SCE further improves the
performance by 0.76% mIoU on the same setting. SDI brings an additional 0.58% mIoU improvement,
reaching the final performance of 68.74%.

On Time Step T . Table 6 further studies how the time step T impacts the generalization performance.
By default, T is set to 5 under all of our experiments. We further test the situation when it is 2, 3, 4,
5, and 6. The results show that the generalization performance achieves the optimal when it is set to
be 5. A too-small time step may lead to the under-training problem, while a too-large time step may
already saturate the performance but lead to more computation overhead.

Impact of Optimal Transport Solving. We compare the proposed method with Conditional Flow
Matching (CFM) [69] and the commonly-used Sinkhorn transport (Sinkhorn). Table 7 shows that
these methods achieve a very similar result. The proposed method shows a slight improvement, which
may be explained that it is more tailored for the alignment between image and text embeddings.

Computational Cost Analysis. We’ve compared the proposed method with the baseline in terms
of the training time, parameter number and model size under the DGSS experimental setting. Ta-
ble 8 shows that although the proposed method achieves an acceptable trade-off between computa-
tional cost and performance improvement over the baseline. Specifically, the increase of GPU hour is
0.2 hours, the parameter number increase is 1.58 million, and the model size increase is 0.01GB. The
GPU hour refers to the A100 GPU hardware.

On Hyper-parameter λ. The hyper-parameter λ in Eq.9 balances the impact of the task-specific loss
and the cross-modal Schrödinger Bridge loss. To test its impact, we conduct the experiments when
it is set 0.01, 0.1, 1, 10 and 100, respectively. The results in Table 9 show that when λ is set to 1,
the generalization performance achieves the optimal. A too small λ (e.g., 0.01) may not impose a
sufficient alignment between the domain-agnostic class text and the domain-specific visual features.
A too large λ (e.g., 100) may overwhelm the task loss, leading to a performance drop.

On Feature Selection Ratio K. By default, K is set to be 0.3 under all of our experiments. To
inspect its impact, we conduct the experiments when it is set to be 0, 0.1, 0.2, 0.4 and 0.5, respectively.
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Table 9: Impact of hyper-parameter λ. Evalua-
tion metric is mIoU in %.
λ G → C G → B G → M Avg.
0.01 69.83 60.67 70.68 67.06
0.1 70.65 61.72 71.34 67.90
1 71.24 62.26 71.91 68.74
10 71.01 61.17 71.27 67.82
100 70.37 61.26 71.28 67.64

Table 10: Impact of hyper-parameter
K. Evaluation metric is mIoU in %.

K G→C G→B G→G Avg.
0 70.39 60.57 70.54 67.17

0.1 70.57 60.81 70.90 67.43
0.2 71.04 61.58 71.59 68.07
0.3 71.24 62.26 71.91 68.74
0.4 71.15 62.04 71.37 68.19
0.5 70.92 61.75 71.16 67.94

The results in Table 10 show that when K is set to 0.3, the segmentation performance on unseen
target domains achieves the optimal performance. A too small K (e.g., 0 and 0.1) may not select
sufficient visual features to align with the domain-agnostic class features, which may under-fit the
representation. A too large K (e.g., 0.4 and 0.5) may introduce more visual features that are not
domain-specific, which results in a slight performance drop.

5.4 Qualitative Results

On Visual Prediction Maps. Fig. 3 displays some visual prediction maps on unseen CityScapes,
BDD and MAP target domains, when using GTA5 as the source domain. The proposed method shows
a more precise per-pixel prediction than existing state-of-the-art DGSS methods, namely, WildNet
[38], CMFormer [9], FADA [8], and tqdm [52].

On Feature Space. We further inspect if the proposed method can alleviate the domain gap between
the source domain and unseen target domains over the baseline. For each sample in each domain,

Baseline Ours

BDD100K Mapillary GTA5 CityScapes

Figure 4: t-SNE visualization. Feature embedding is
extracted from the last VFM layer. Left: baseline; Right:
ours.

we extract the features before the task-
specific decoder, flatten them into a feature
embedding, and then project the embed-
ding into a latent space by t-SNE visual-
ization. All the experiments are conducted
under the G→ C, B, M setting. As shown
in Fig. 5, the samples from three unseen tar-
get domains are more uniformly distributed
and aligned closer to the source domain
by the proposed method, indicating its ef-
fectiveness to mitigate the domain gap by
aligning the domain-specific visual features
to the domain-agnostic text embedding.

6 Conclusion

This paper introduced SBGen, a principled stochastic domain generalization framework, which
bridges domain-specific image features and domain-agnostic textual semantics through Schrödinger
Bridge dynamics. It leverages textual queries to guide visual feature selection and employs a time-
conditioned stochastic evolution to model a continuous trajectory from source domain representations
to semantic targets, enabling robust generalization to unseen target domain samples. Extensive
experiments show its superiority over domain generalization in both classification and segmentation.

Future Work, Limitation & Societal Impact. Future work may explore extensions to multimodal
generalization across more complex modalities (e.g., audio and video), and efficient approximations of
high-dimensional Schrödinger Bridge dynamics. However, the proposed SBGen requires a simulation
of multiple-step stochastic differential equation (SDE) for each batch, which additionally adds
multiple forward passes and increases the complexity over the baseline. Still, it exhibits a good
trade-off between the complexity and the clear performance improvement on unseen target domains.
This work can benefit domain generalization in various real-world applications, contributing to more
reliable artificial intelligence systems. We do not envision its negative societal impact.

10



References
[1] Sravanti Addepalli, Ashish Ramayee Asokan, Lakshay Sharma, and R Venkatesh Babu. Leveraging

vision-language models for improving domain generalization in image classification. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 23922–23932, 2024.

[2] Woo-Jin Ahn, Geun-Yeong Yang, Hyun-Duck Choi, and Myo-Taeg Lim. Style blind domain generalized
semantic segmentation via covariance alignment and semantic consistence contrastive learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3616–3626,
2024.

[3] Devansh Arpit, Huan Wang, Yingbo Zhou, and Caiming Xiong. Ensemble of averages: Improving model
selection and boosting performance in domain generalization. Advances in Neural Information Processing
Systems, 35:8265–8277, 2022.

[4] Eslam Mohamed BAKR, Liangbing Zhao, Vincent Tao Hu, Matthieu Cord, Patrick Perez, and Mohamed
Elhoseiny. ToddlerDiffusion: Interactive structured image generation with cascaded Schrödinger bridge.
In International Conference on Learning Representations, 2024.

[5] Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In Proceedings of the
European Conference on Computer Vision, pages 456–473, 2018.

[6] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. A theory of learning from different domains. Machine learning, 79:151–175, 2010.

[7] Qi Bi, Jingjun Yi, Hao Zheng, Wei Ji, Haolan Zhan, Yawen Huang, Yuexiang Li, and Yefeng Zheng.
Samba: Severity-aware recurrent modeling for cross-domain medical image grading. Advances in Neural
Information Processing Systems, 37:75829–75852, 2024.

[8] Qi Bi, Jingjun Yi, Hao Zheng, Haolan Zhan, Yawen Huang, Wei Ji, Yuexiang Li, and Yefeng Zheng.
Learning frequency-adapted vision foundation model for domain generalized semantic segmentation.
Advances in Neural Information Processing Systems, 37:94047–94072, 2024.

[9] Qi Bi, Shaodi You, and Theo Gevers. Learning content-enhanced mask transformer for domain generalized
urban-scene segmentation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pages 819–827, 2024.

[10] Qi Bi, Jingjun Yi, Haolan Zhan, Wei Ji, and Gui-Song Xia. Learning fine-grained domain generalization
via hyperbolic state space hallucination. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pages 1853–1861, 2025.

[11] Qi Bi, Jingjun Yi, Hao Zheng, Wei Ji, Yawen Huang, Yuexiang Li, and Yefeng Zheng. Learning generalized
medical image representation by decoupled feature queries. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2025.

[12] Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, and Sungrae
Park. Swad: Domain generalization by seeking flat minima. In Advances in Neural Information Processing
Systems, volume 34, pages 22405–22418, 2021.

[13] Junbum Cha, Kyungjae Lee, Sungrae Park, and Sanghyuk Chun. Domain generalization by mutual-
information regularization with pre-trained models. In European Conference on Computer Vision, pages
440–457, 2022.

[14] Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexander Kirillov, and Rohit Girdhar. Masked-
attention mask transformer for universal image segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1290–1299, 2022.

[15] De Cheng, Zhipeng Xu, Xinyang Jiang, Nannan Wang, Dongsheng Li, and Xinbo Gao. Disentangled
prompt representation for domain generalization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 23595–23604, 2024.

[16] Junhyeong Cho, Gilhyun Nam, Sungyeon Kim, Hunmin Yang, and Suha Kwak. PromptStyler: Prompt-
driven style generation for source-free domain generalization. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 15702–15712, 2023.

[17] Sungha Choi, Sanghun Jung, Huiwon Yun, Joanne T Kim, Seungryong Kim, and Jaegul Choo. RobustNet:
Improving domain generalization in urban-scene segmentation via instance selective whitening. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11580–
11590, 2021.

11



[18] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson,
Uwe Franke, Stefan Roth, and Bernt Schiele. The Cityscapes dataset for semantic urban scene understand-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
3213–3223, 2016.

[19] Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger bridge
with applications to score-based generative modeling. Advances in Neural Information Processing Systems,
34:17695–17709, 2021.

[20] Valentin De Bortoli, James Thornton, Jeremy Heng, Bernhard Schölkopf, Martin Arbel, and Arthur Gretton.
Diffusion Schrödinger bridge with applications to score-based generative modeling. In Advances in Neural
Information Processing Systems, volume 34, pages 17089–17103, 2021.

[21] Jian Ding, Nan Xue, Gui-Song Xia, Bernt Schiele, and Dengxin Dai. HGFormer: Hierarchical grouping
transformer for domain heneralized semantic segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 15413–15423, 2023.

[22] Mohammad Fahes, Tuan-Hung Vu, Andrei Bursuc, Patrick Pérez, and Raoul de Charette. A simple recipe
for language-guided domain generalized segmentation. arXiv preprint arXiv:2311.17922, 2023.

[23] Alex Fang, Gabriel Ilharco, Mitchell Wortsman, Yuhao Wan, Vaishaal Shankar, Achal Dave, and Ludwig
Schmidt. Data determines distributional robustness in contrastive language image pre-training (CLIP). In
International Conference on Machine Learning, pages 6216–6234, 2022.

[24] Chen Fang, Ye Xu, and Daniel N Rockmore. Unbiased metric learning: On the utilization of multiple
datasets and web images for softening bias. In Proceedings of the IEEE International Conference on
Computer Vision, pages 1657–1664, 2013.

[25] Yuxin Fang, Quan Sun, Xinggang Wang, Tiejun Huang, Xinlong Wang, and Yue Cao. EVA-02: A visual
representation for neon genesis. arXiv preprint arXiv:2303.11331, 2023.

[26] Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang, Tiejun Huang, Xinlong Wang,
and Yue Cao. EVA: Exploring the limits of masked visual representation learning at scale. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 19358–19369, 2023.

[27] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette,
Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks. Journal of Machine
Learning Research, 17(59):1–35, 2016.

[28] Ming Gui, Johannes Schusterbauer, Ulrich Prestel, Pingchuan Ma, Dmytro Kotovenko, Olga Grebenkova,
Stefan Andreas Baumann, Vincent Tao Hu, and Björn Ommer. Depthfm: Fast generative monocular
depth estimation with flow matching. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pages 3203–3211, 2025.

[29] Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In International Conference
on Learning Representations, 2020.

[30] Wei Huang, Chang Chen, Yong Li, Jiacheng Li, Cheng Li, Fenglong Song, Youliang Yan, and Zhiwei
Xiong. Style projected clustering for domain generalized semantic segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3061–3071, 2023.

[31] Zeyi Huang, Andy Zhou, Zijian Ling, Mu Cai, Haohan Wang, and Yong Jae Lee. A sentence speaks a
thousand images: Domain generalization through distilling CLIP with language guidance. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 11685–11695, 2023.

[32] Christoph Hümmer, Manuel Schwonberg, Liangwei Zhong, Hu Cao, Alois Knoll, and Hanno Gottschalk.
VLTSeg: Simple transfer of CLIP-based vision-language representations for domain generalized semantic
segmentation. arXiv preprint arXiv:2312.02021, 2023.

[33] Yuhwan Jeong, Hoonhee Cho, and Kuk-Jin Yoon. Towards robust event-based networks for nighttime via
unpaired day-to-night event translation. In European Conference on Computer Vision, pages 286–306,
2024.

[34] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung,
Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with noisy text
supervision. In International Conference on Machine Learning, pages 4904–4916, 2021.

12



[35] Sunghwan Kim, Dae-hwan Kim, and Hoseong Kim. Texture learning domain randomization for domain
generalized segmentation. Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 677–687, 2023.

[36] Gyuseong Lee, Wooseok Jang, Jinhyeon Kim, Jaewoo Jung, and Seungryong Kim. Domain generalization
using large pretrained models with mixture-of-adapters. In IEEE/CVF Winter Conference on Applications
of Computer Vision, pages 8259–8269, 2025.

[37] Sangrok Lee, Jongseong Bae, and Ha Young Kim. Decompose, adjust, compose: Effective normalization
by playing with frequency for domain generalization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11776–11785, 2023.

[38] Suhyeon Lee, Hongje Seong, Seongwon Lee, and Euntai Kim. WildNet: Learning domain generalized
semantic segmentation from the wild. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9936–9946, 2022.

[39] Byounggyu Lew, Donghyun Son, and Buru Chang. Gradient estimation for unseen domain risk minimiza-
tion with pre-trained models. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 4436–4446, 2023.

[40] Boyi Li, Kilian Q Weinberger, Serge Belongie, Vladlen Koltun, and Rene Ranftl. Language-driven
semantic segmentation. In International Conference on Learning Representations, 2022.

[41] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. Deeper, broader and artier domain
generalization. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
5543–5551, 2017.

[42] Xuanlin Li, Yunhao Fang, Minghua Liu, Zhan Ling, Zhuowen Tu, and Hao Su. Distilling large vision-
language model with out-of-distribution generalizability. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 2492–2503, 2023.

[43] Ziyue Li, Kan Ren, Xinyang Jiang, Bo Li, Haipeng Zhang, and Dongsheng Li. Domain generalization
using pretrained models without fine-tuning. arXiv preprint arXiv:2203.04600, 2022.

[44] Feng Liang, Bichen Wu, Xiaoliang Dai, Kunpeng Li, Yinan Zhao, Hang Zhang, Peizhao Zhang, Peter
Vajda, and Diana Marculescu. Open-vocabulary semantic segmentation with mask-adapted CLIP. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7061–7070,
2023.

[45] Puneet Mangla, Shivam Chandhok, Milan Aggarwal, Vineeth N Balasubramanian, and Balaji Krishna-
murthy. INDIGO: intrinsic multimodality for domain generalization. arXiv preprint arXiv:2206.05912,
2022.

[46] Hyeonseob Nam, HyunJae Lee, Jongchan Park, Wonjun Yoon, and Donggeun Yoo. Reducing domain
gap by reducing style bias. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8690–8699, 2021.

[47] Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulo, and Peter Kontschieder. The mapillary vistas dataset
for semantic understanding of street scenes. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 4990–4999, 2017.

[48] Thao Nguyen, Gabriel Ilharco, Mitchell Wortsman, Sewoong Oh, and Ludwig Schmidt. Quality not quan-
tity: On the interaction between dataset design and robustness of CLIP. Advances in Neural Information
Processing Systems, 35:21455–21469, 2022.

[49] Joshua Niemeijer, Manuel Schwonberg, Jan-Aike Termöhlen, Nico M Schmidt, and Tim Fingscheidt.
Generalization by adaptation: Diffusion-based domain extension for domain-generalized semantic segmen-
tation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages
2830–2840, 2024.

[50] Hongjing Niu, Hanting Li, Feng Zhao, and Bin Li. Domain-unified prompt representations for source-free
domain generalization. arXiv preprint arXiv:2209.14926, 2022.

[51] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre
Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. DINOv2: Learning robust visual
features without supervision. arXiv preprint arXiv:2304.07193, 2023.

13



[52] Byeonghyun Pak, Byeongju Woo, Sunghwan Kim, Dae-hwan Kim, and Hoseong Kim. Textual query-
driven mask transformer for domain generalized segmentation. In European Conference on Computer
Vision, pages 37–54, 2024.

[53] Xingang Pan, Ping Luo, Jianping Shi, and Xiaoou Tang. Two at once: Enhancing learning and general-
ization capacities via IBN-Net. In Proceedings of the European Conference on Computer Vision, pages
464–479, 2018.

[54] Xingang Pan, Xiaohang Zhan, Jianping Shi, Xiaoou Tang, and Ping Luo. Switchable whitening for deep
representation learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 1863–1871, 2019.

[55] Stefano Peluchetti. Diffusion bridge mixture transports, Schrödinger bridge problems and generative
modeling. Journal of Machine Learning Research, 24(374):1–51, 2023.

[56] Duo Peng, Yinjie Lei, Lingqiao Liu, Pingping Zhang, and Jun Liu. Global and local texture randomization
for synthetic-to-real semantic segmentation. IEEE Transactions on Image Processing, 30:6594–6608,
2021.

[57] Duo Peng, Yinjie Lei, Munawar Hayat, Yulan Guo, and Wen Li. Semantic-aware domain generalized
segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 2594–2605, 2022.

[58] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching for
multi-source domain adaptation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 1406–1415, 2019.

[59] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, and Gretchen Krueger. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning, pages
8748–8763, 2021.

[60] Yongming Rao, Wenliang Zhao, Guangyi Chen, Yansong Tang, Zheng Zhu, Guan Huang, Jie Zhou, and
Jiwen Lu. DenseCLIP: Language-guided dense prediction with context-aware prompting. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 18082–18091, 2022.

[61] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing for data: Ground truth from
computer games. In Proceedings of the European Conference on Computer Vision, pages 102–118, 2016.

[62] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Antonio M Lopez. The SYNTHIA
dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3234–3243, 2016.

[63] Yuge Shi, Jeffrey Seely, Philip Torr, N Siddharth, Awni Hannun, Nicolas Usunier, and Gabriel Synnaeve.
Gradient matching for domain generalization. In International Conference on Learning Representations,
2012.

[64] Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion schrödinger bridge
matching. Advances in Neural Information Processing Systems, 36:62183–62223, 2023.

[65] Yang Shu, Xingzhuo Guo, Jialong Wu, Ximei Wang, Jianmin Wang, and Mingsheng Long. CLIPood:
Generalizing CLIP to out-of-distributions. In International Conference on Machine Learning, pages
31716–31731, 2023.

[66] Vignesh Ram Somnath, Matteo Pariset, Ya-Ping Hsieh, Maria Rodriguez Martinez, Andreas Krause, and
Charlotte Bunne. Aligned diffusion Schrödinger bridges. In Uncertainty in Artificial Intelligence, pages
1985–1995, 2023.

[67] PeiYuan Tang, Xiaodong Zhang, Chunze Yang, Haoran Yuan, Jun Sun, Danfeng Shan, and Zijiang James
Yang. Unleashing the power of visual foundation models for generalizable semantic segmentation. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pages 20823–20831, 2025.

[68] Reihaneh Teimouri, Marta Kersten-Oertel, and Yiming Xiao. CT-based brain ventricle segmentation via
diffusion Schrödinger bridge without target domain ground truths. In International Conference on Medical
Image Computing and Computer-Assisted Intervention, pages 135–144, 2024.

[69] Alexander Tong, Nikolay Malkin, Kilian Fatras, Lazar Atanackovic, Yanlei Zhang, Guillaume Huguet, Guy
Wolf, and Yoshua Bengio. Simulation-free schrödinger bridges via score and flow matching. In AISTATS,
2024.

14



[70] Francisco Vargas, Pierre Thodoroff, Austen Lamacraft, and Neil Lawrence. Solving Schrödinger bridges
via maximum likelihood. Entropy, 23(9):1134, 2021.

[71] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep hashing
network for unsupervised domain adaptation. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 5385–5394, 2017.

[72] Gefei Wang, Yuling Jiao, Qian Xu, Yang Wang, and Can Yang. Deep generative learning via Schrödinger
bridge. In International Conference on Machine Learning, pages 10794–10804, 2021.

[73] Ye Wang, Junyang Chen, Mengzhu Wang, Hao Li, Wei Wang, Houcheng Su, Zhihui Lai, Wei Wang, and
Zhenghan Chen. A closer look at classifier in adversarial domain generalization. In Proceedings of the
31st ACM International Conference on Multimedia, pages 280–289, 2023.

[74] Zhixiang Wei, Lin Chen, Yi Jin, Xiaoxiao Ma, Tianle Liu, Pengyang Lin, Ben Wang, Huaian Chen, and
Jinjin Zheng. Stronger, fewer, & superior: Harnessing vision foundation models for domain generalized
semantic segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 28619–28630, 2023.

[75] Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, and Ludwig Schmidt.
Robust fine-tuning of zero-shot models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7959–7971, 2022.

[76] Jingjun Yi, Qi Bi, Hao Zheng, Haolan Zhan, Wei Ji, Yawen Huang, Shaoxin Li, Yuexiang Li, Yefeng
Zheng, and Feiyue Huang. Hallucinated style distillation for single domain generalization in medical
image segmentation. In International Conference on Medical Image Computing and Computer-Assisted
Intervention, pages 438–448, 2024.

[77] Jingjun Yi, Qi Bi, Hao Zheng, Haolan Zhan, Wei Ji, Yawen Huang, Yuexiang Li, and Yefeng Zheng.
Learning spectral-decomposited tokens for domain generalized semantic segmentation. In Proceedings of
the 32nd ACM International Conference on Multimedia, pages 8159–8168, 2024.

[78] Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao, Vashisht Madhavan, and Trevor
Darrell. BDD100K: A diverse driving video database with scalable annotation tooling. arXiv preprint
arXiv:1805.04687, 2(5):6, 2018.

[79] Xi Yu, Shinjae Yoo, and Yuewei Lin. CLIPceil: Domain generalization through CLIP via channel
refinement and image-text alignment. Advances in Neural Information Processing Systems, 37:4267–4294,
2024.

[80] Xiangyu Yue, Yang Zhang, Sicheng Zhao, Alberto Sangiovanni-Vincentelli, Kurt Keutzer, and Boqing
Gong. Domain randomization and pyramid consistency: Simulation-to-real generalization without access-
ing target domain data. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 2100–2110, 2019.

[81] Jiaming Zhang, Xingjun Ma, Xin Wang, Lingyu Qiu, Jiaqi Wang, Yu-Gang Jiang, and Jitao Sang. Ad-
versarial prompt tuning for vision-language models. In European Conference on Computer Vision, pages
56–72, 2024.

[82] Xin Zhang, Shixiang Shane Gu, Yutaka Matsuo, and Yusuke Iwasawa. Domain prompt learning for
efficiently adapting clip to unseen domains. Transactions of the Japanese Society for Artificial Intelligence,
38(6):B–MC2_1, 2023.

[83] Yuyang Zhao, Zhun Zhong, Na Zhao, Nicu Sebe, and Gim Hee Lee. Style-hallucinated dual consistency
learning for domain generalized semantic segmentation. In Proceedings of the European Conference on
Computer Vision, pages 535–552, 2022.

[84] Yuyang Zhao, Zhun Zhong, Na Zhao, Nicu Sebe, and Gim Hee Lee. Style-hallucinated dual consistency
learning: A unified framework for visual domain generalization. International Journal of Computer Vision,
132(3):837–853, 2023.

[85] Zhun Zhong, Yuyang Zhao, Gim Hee Lee, and Nicu Sebe. Adversarial style augmentation for domain
generalized urban-scene segmentation. In Advances in Neural Information Processing Systems, pages
338–350, 2022.

[86] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-language
models. International Journal of Computer Vision, 130(9):2337–2348, 2022.

15



[87] Ziqin Zhou, Yinjie Lei, Bowen Zhang, Lingqiao Liu, and Yifan Liu. ZegCLIP: Towards adapting clip for
zero-shot semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11175–11185, 2023.

[88] Chaoyang Zhu and Long Chen. A survey on open-vocabulary detection and segmentation: Past, present,
and future. arXiv preprint arXiv:2307.09220, 2023.

[89] Xueyan Zou, Zi-Yi Dou, Jianwei Yang, Zhe Gan, Linjie Li, Chunyuan Li, Xiyang Dai, Harkirat Behl,
Jianfeng Wang, Lu Yuan, Nanyun Peng, Lijuan Wang, Yong Jae Lee, and Jianfeng Gao. Generalized
decoding for pixel, image, and language. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 15116–15127, 2023.

16



Technical Appendices and Supplementary Material

Contents

1 Introduction 1

2 Related work 3

3 Preliminaries 3

4 Methodology 4

4.1 Domain-aware Visual Feature Selection . . . . . . . . . . . . . . . . . . . . . . . 4

4.2 Stochastic Cross-Domain Evolution . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.3 Stochastic Domain-Agnostic Interpolation . . . . . . . . . . . . . . . . . . . . . . 5

4.4 Prediction, Optimization & Implementation Details . . . . . . . . . . . . . . . . . 6

5 Experiments 6

5.1 Results on Domain Generalization in Classification . . . . . . . . . . . . . . . . . 6

5.2 Results on Domain Generalized Semantic Segmentation . . . . . . . . . . . . . . 7

5.3 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.4 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 Conclusion 10

A Theoretical Analysis: Generalization Error Bound 18

B Pseudo-code: Schrödinger Bridge-Guided Domain Generalization 20

C More Implementation Details 20

D More Feature Space Analysis 21

E More Visual Prediction Results 21

17



A Theoretical Analysis: Generalization Error Bound

In this section, we derive a generalization error bound on the unseen target domains of the proposed
SBGen, and demonstrate its superiority over the generalization error bound over the VLM baseline.

We start from some key definitions. Let P0 and P1 denote the source and the target feature distributions
in RC . Let Q denote the law of our learned stochastic evolution (Schrödinger Bridge) from P0 to P1.
The risk of a classification or segmentation model h w.r.t. distribution P can be defined as

RP (h) = Ez∼P

[
ℓ
(
h(z), y

)]
, (10)

where the task loss function ℓ is bounded in [0, 1], and y denotes the ground truth.

The analysis will be based on the deduction of the empirical error on source domain and the expected
error on target domain, defined as

RP1(h) (target risk) to RP0(h) (source risk). (11)

Lemma 1. Ben-David Transfer Bound. Let P0 and P1 be two distributions over a common feature
space Z ⊆ RC , corresponding to the source and target domains, respectively. Let h : Z → Y be a
hypothesis, and let ℓ : Y × Y → [0, 1] be a bounded loss function. Then, the target risk of h satisfies:

RP1(h) ≤ RP0(h) + DistanceTV(P0, P1) + ϵjoint, (12)

where RP (h) := E(z,y)∼P [ℓ(h(z), y)] denotes the expected risk under distribution P ,
DistanceTV(P0, P1) := 1

2

∫
|dP0 − dP1| denotes the total variation distance between the dis-

tributions, and ϵjoint := minh′∈H [RP0
(h′) +RP1

(h′)] denotes the joint risk of the optimal shared
hypothesis.

Proof. Please refer to [6] for the detailed proof.

Theorem 1. Variation Distance via Schrödinger Bridge. Let Q be the solution to the Schrödinger
Bridge problem between distributions P0 and P1 over RC , i.e., a path measure such that Qt=0 = P0

and Qt=1 = P1. Let P denote the reference Brownian motion with the same marginals at t = 0 and
t = 1. Then the total variation distance between P0 and P1 is bounded by the KL divergence between
Q and P as:

DistanceTV(P0, P1) = DistanceTV(Q0,Q1) ≤
√

1
2KL(Q ∥P). (13)

Proof: We apply Pinsker’s inequality to the marginals of the SB process:

DistanceTV(µ, ν) ≤
√

1
2KL(µ ∥ ν) for all probability measures µ, ν. (14)

Since the Schrödinger Bridge process Q interpolates from P0 to P1 over time t ∈ [0, 1], and Q0 = P0,
Q1 = P1, we apply Pinsker’s inequality to the terminal marginal distributions of Q and P.

Because Q and P are path measures with the same support, we have:

DistanceTV(Q0,Q1) ≤
√

1
2KL(Q ∥P), (15)

and by definition Q0 = P0, Q1 = P1, so:

DistanceTV(P0, P1) ≤
√

1
2KL(Q ∥P). (16)

Theorem 2. Generalization Error Bound of Schrödinger Bridge. Let P0 and P1 be the source
and target feature distributions over RC . Let Qθ be the path distribution induced by the Schrödinger
Bridge model trained to transport z0 ∼ P0 to zT ∼ P1, and let P be the Brownian reference process.
Let hθ be the hypothesis (e.g., classifier or segmenter) composed with the SB mapping. Then, the
expected target-domain risk is bounded as:

RP1
(hθ) ≤ RP0

(hθ) +
√

1
2KL(Qθ ∥P) + ϵjoint, (17)
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where RP (h) := E(z,y)∼P [ℓ(h(z), y)] is the expected risk under distribution P , and ϵjoint :=
minh′∈H [RP0

(h′) +RP1
(h′)] is the optimal joint risk over the hypothesis class.

Proof: From Lemma 1, the basic transfer bound gives:

RP1(hθ) ≤ RP0(hθ) + DistanceTV(P0, P1) + ϵjoint. (18)

From Theorem 1, we apply Pinsker’s inequality to the SB marginals:

DistanceTV(P0, P1) ≤
√

1
2KL(Qθ∥P). (19)

Substituting yields:

RP1(hθ) ≤ RP0(hθ) +
√

1
2KL(Qθ∥P) + ϵjoint. (20)

Theorem 3. Tighter Generalization Bound for Schrödinger Bridge Model. Let P0 and P1 be the
source and target distributions over RC . Let Qθ denote the Schrödinger Bridge process that evolves
samples from P0 to P1 with reference prior P. Let Mϕ : RC → RC be a deterministic baseline
transport (e.g., cosine projection or prompt-aligned mapping), and let Pϕ

1 := Mϕ#P0 denote the
induced pushforward distribution. Let ℓ be a bounded loss function and hθ, hϕ the hypotheses
composed with the SB and baseline mappings, respectively. Then the generalization error of the SB
model satisfies a strictly tighter upper bound:

RP1
(hθ) ≤ RP0

(hθ) +
√

1
2KL(Qθ∥P) + ϵjoint, (21)

RP1
(hϕ) ≤ RP0

(hϕ) + DistanceTV(P0, P
ϕ
1 ) + ϵjoint. (22)

Moreover, since Qθ minimizes the entropy-regularized transport cost from P0 to P1, and Mϕ induces
a deterministic coupling, √

1
2KL(Qθ∥P) < DistanceTV(P0, P

ϕ
1 ) (23)

unless Mϕ itself induces the SB-optimal coupling.

Proof: The bound for the SB model is established in Theorem 2. For the deterministic baseline, we
consider the mapping z1 = Mϕ(z0) and define Pϕ

1 := Mϕ#P0 as the transformed distribution.

Using the basic transfer bound (Lemma 1) again:

RP1(hϕ) ≤ RP0(hϕ) + DistanceTV(P0, P
ϕ
1 ) + ϵjoint. (24)

In contrast, the SB model produces a path distribution Qθ over zt such that Qt=0 = P0, Qt=1 = P1.
Applying Pinsker’s inequality as in Theorem 2, we have:

DistanceTV(P0, P1) ≤
√

1
2KL(Qθ∥P). (25)

Since the Schrödinger Bridge is known to minimize the KL divergence over all couplings between P0

and P1, and the deterministic map Mϕ induces a coupling πϕ(z0, z1) = δ(z1 −Mϕ(z0)), we have:

KL(Qθ∥P) < KL(πϕ∥R), (26)

for any reference couplingR, unless πϕ itself is the SB-optimal coupling.

Therefore, the divergence and the TV-based generalization bound is strictly tighter under the SB
transport.

Corollary 1. Match of the generalization bound between the SB model and the Deterministic
Baseline. Under the assumptions of Theorem 3, the generalization bounds of the Schrödinger Bridge
model and the deterministic baseline coincide if and only if the SB-induced coupling Qθ corresponds
to a deterministic map M∗ satisfying:

Qθ(z0, z1) = δ(z1 −M∗(z0)) · P0(z0), (27)

and this map M∗ pushes P0 exactly onto P1, i.e.,

M∗
#P0 = P1. (28)
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Algorithm 1 Schrödinger Bridge-Guided Domain Generalization

Require: Source images {xi}Ni=1, class text queries {Qc}Cc=1, vision encoder E , text encoder T ,
time horizon T , noise scale ε, number of steps L

Ensure: Learned drift model Uθ, prediction decoder D
1: Initialize Uθ, D
2: for each training iteration do
3: Sample mini-batch {xi, yi}Bi=1 from source domain
4: ### Domain-aware Visual Feature Selection ###
5: Extract dense visual features: Fi = E(xi)
6: Encode class queries: qc = T (Qc)
7: Compute similarity scores Sh,w,c = ⟨Fh,w, qc⟩
8: Select top-k features: Fs ← query-guided selection from F
9: for each feature vector z0 ∈ Fs do

10: Initialize zt ← z0
11: for l = 1 to L do
12: t← l

L
13: Sample noise ξ ∼ N (0, I)
14: ### Stochastic Cross-Domain Evolution & Domain-Agnostic Interpolation ###
15: Update: zt ← zt + Uθ(zt, t)∆t+

√
2ε∆t ξ

16: end for
17: Store final evolved feature zT
18: end for
19: ### Prediction Head ###
20: Predict: ŷcls, ŷseg ← D({zT }, {qc})
21: Compute task losses Lsup
22: Estimate SB divergence (e.g., via score matching or IPFP): LSB
23: Update parameters via ∇θ(Lsup + λ ·KL(Qθ|P))
24: end for

In this case, the KL divergence collapses to:

KL(Qθ∥P) = 2 ·DistanceTV
2(P0, P1), (29)

and the generalization bounds for both models are equal:

RP1(hθ) = RP1(hϕ). (30)

We conclude this section by the following remark. The proposed SBGen, a Schrödinger Bridge
guided framework, not only provides a principled dynamic interpolation between source and target
distributions but also holds a strictly tighter generalization error upper bound compared to the
deterministic baseline.

B Pseudo-code: Schrödinger Bridge-Guided Domain Generalization

A pseudo-code implementation of the proposed SBGen is given in Algorithm 1.

C More Implementation Details

Following prior work [52], the same training configuration is set for all types of pre-trained foundation
models (e.g., CLIP, DINOv2, and EVA02), and for both domain generalization in classification and
semantic segmentation.

In all the experiments, the images are cropped and resized into 512×512 pixels. The batch size
is set 16, with an AdamW optimizer. The initial learning rate is set to be 1 × 10−5 for all the
synthetic-to-real settings, and is set to be 1 × 10−4 for all the real-to-real settings. The learning
rate of the backbone is further scaled by 0.1. The training does not terminate after 20,000 iterations.
Following [52], a linear warm-up is applied after 1500 iterations, followed by a linear decay. Some
common data augmentation techniques, namely, random scaling, random cropping, random flipping,
color jittering, and rare class sampling, are also used.
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Photo Art Green Sketch

Figure 5: t-SNE visualization. Feature embedding is extracted before the decoder. Left: EVA02
baseline; Right: ours.

Domain generalization in classification. For the classification task, the image encoder E and
the text encoder T use the pre-trained CLIP in align with the prior DG methods. The task-specific
decoder D is a linear layer followed by a Softmax layer.

Domain generalization in segmentation. Following prior domain generalized semantic segmen-
tation methods [52, 67], the default image encoder E and the text encoder T use the pre-trained
EVA-02 [25]. The image encoder E can also be switched to CLIP, SAM and DINOv2 in our ex-
periments. The task-specific decoder D integrates the pixel decoder of the Mask2Former model
[14].

D More Feature Space Analysis

Fig.4 in the main text inspects whether the proposed SBGen can improve the generalization ability over
the baseline, on the task of domain generalized semantic segmentation (DGSS). In the supplementary
material, we further inspect whether the proposed SBGen can improve the generalization ability over
the baseline on domain generalization in the classification task.

Specifically, we extract the feature of each sample from the PACS dataset before the decoder and
concatenate it into a feature vector. Then, we display the feature vector of each sample regardless of
the domain identity by t-SNE visualization. Feature vectors from the Photo, Art Painting, Cartoon
and Sketch domains are colored in red, yellow, green and blue, respectively.

The feature space of the original baseline and the proposed SBGen is visualized in the left and right
of Fig. 5, respectively. In each cluster that shares the same semantic category, the samples from
different domains are more uniformly distributed by the proposed SBGen, indicating its effectiveness
to mitigate the domain gap.

E More Visual Prediction Results

Fig. 6 shows more results under G → B, M, C setting. The segmentation results show that the
proposed SBGen shows better pixel-wise prediction than the compared DGSS methods, especially in
terms of the completeness of objects.

21



Unseen images CMFormerWildNet tqdm OursFADA

Figure 6: Visual segmentation results on unseen target domains under the G→ B, M, C setting. The
proposed SBGen is compared with WildNet [38], CMFormer [9], FADA [8], and tqdm [52].
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from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work focuses on a fundamental problem in machine learning and conducts
experiments on standard datasets. We do not envision such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, all the assets have been properly cited, with a license to use for academia
and no commercial purpose.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research of this paper does not involve
LLMs as any important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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