
Evaluating supernets for neural architecture search 1

Anonymous1 2

1Anonymous Institution 3

Abstract In order to address the costly process of evaluating candidate architectures in neural archi- 4

tecture search (NAS), ENAS introduced supernets, a single network representing the entire 5

search space. DARTS then added a set of architecture weights to this structure, allowing 6

an entirely gradient-descent-based approach to NAS and leading to supernets becoming a 7

common feature of efficient NAS algorithms. Although following research has demonstrated 8

numerous improved techniques for training supernets, these methods are typically com- 9

pared solely through the performances of the final architectures selected from the supernets 10

without any direct comparison of the supernets themselves. We provide methods which 11

exploit the availability of NAS benchmark data sets to provide a robust direct evaluation 12

of trained supernets, both of the weights shared across candidate architectures as well as 13

architecture weights. We also use these methods to analyze the process of NAS training and 14

provide insight on how the top supernet NAS algorithms are able to effectively exploit the 15

supernet structure. 16

1 Introduction 17

Neural architecture search (NAS) provides a data-driven algorithmic approaches to the complex 18

design problem of building a neural network. However, the initial approach of evaluating candidate 19

architectures by training each one resulted in search algorithms requiring 1000s of GPU-hours for 20

a single run (Zoph et al., 2018). 21

Pham et al. (2018) provided a method to search for an architecture in a comparable amount of 22

time as required to train the final model by training a single supernetwork instead of individual 23

candidate networks. The supernet is a single model representing the entire architecture search 24

space, essentially a superposition of every allowed candidate model. Then Liu et al. (2019) took 25

advantage of this structure sharing weights across all candidates by adding trainable architecture 26

weights to each possible operation in the supernet, allowing for search and training to be conducted 27

via gradient descent. These innovations combined to offer a practical and promising approach to 28

NAS. 29

However, while the marriage of gradient-based NAS with supernets may simplify the implemen- 30

tation of NAS algorithms, it also serves to obscure the search process. While NAS algorithms can 31

generally be described as an iterative process of search over candidate architectures and obtaining 32

estimates of their performance (Elsken et al., 2019), in DARTS this only occurs implicitly. DARTS 33

does not actually evaluate individual candidate architectures at any point in training, instead 34

training over a “continuous relaxation” of possible architectures Liu et al. (2019). This collapse of 35

the NAS training loop to gradient-based training of two sets of interdependent weights makes it 36

more difficult to ascertain why, in various contexts, some NAS algorithms are highly effective and 37

others fail. 38

We address these limitations through the direct evaluation of trained supernets using NAS 39

benchmark datasets. We propose two separate general-purpose methods focused on separate 40

components of the supernet. One method is focused on evaluating the shared weights of the 41

supernet, determining how suitable they are for the various architectures in the search space which 42

share them. The second method evaluates the architecture weights (or architecture distribution) 43

Submitted to AutoML 2023 © 2023 the authors, released under CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

learned by DARTS-like algorithms during the process of training the supernet. Both methods make 44

use of NAS benchmarks to analyze how the learned weights vary across the architecture search 45

space in comparison to trained-from-scratch test accuracy. We implement these methods in the 46

NASLib library with the intention of making them widely available as evaluation tools. 47

The methods we demonstrate provide additional insight into the algorithms evaluated, revealing 48

not only differences in performance obfuscated by similarities in the final test accuracy, but also 49

insight into how these algorithms are able to successfully exploit the structure of the supernet. We 50

are able to demonstrate a greater capacity for supernets to identify top performing architectures 51

than previously described (White et al., 2021). 52

The primary contributions of this work are thus to demonstrate and highlight that: 53

• That algorithms that succeed in supernet training do so by specializing to maximize performance 54

estimation on (only) the top architectures in the search space (Sec. 2) 55

• This specialization of the supernet is enabled by the structure of the search space (Sec. 3) 56

2 Evaluating supernets 57

Prior work on issues with NAS evaluation has produced a set of best practices to support fair 58

and reliable comparison between NAS methods, including evaluating in the same search space 59

as comparable methods, using the same routine to train the final selected architecture, reporting 60

results of multiple random seeds, and performing ablation studies (Yu et al., 2020) Even following 61

all of these practices and, even better, evaluating your algorithm using a NAS benchmark data 62

set, we argue that reporting the final train-from-scratch test accuracy of your model as the sole 63

metric of evaluation will still fail to reveal key information about the results. For example, final 64

test accuracy measurements reveal little about the dependence of the result on the search space 65

used, such as DARTS’ notable failure on NAS-Bench-201 (Dong and Yang, 2020). Evaluating the 66

supernet directly has the potential to provide more generalizable insights into the performance of 67

NAS algorithms. By understanding the mechanisms which a NAS algorithm is able to obtain its 68

result, we are better equipped to anticipate how it’ll perform in other search spaces and training 69

contexts. 70

Our main approach to analyzing the shared weights of the supernet is based on model ranking. 71

This approach, ranking candidate architectures based on validation accuracy obtained with the 72

shared weights, is used for architecture selection in supernet NAS methods that don’t train arch 73

weights, such as one-shot NAS Bender et al. (2018). We apply this method across a broader set of 74

supernet NAS algorithms, arguing that while DARTS may never use its shared weights in training 75

to evaluate an actual candidate architecture, examining how suitable the shared weights are for 76

varying architectures allows us to utilize the search space to analyze how learning the architecture 77

weights has trained the shared weights. 78

Supernet NAS methods have been previously shown to produce model rankings with low 79

correlation White et al. (2021). We argue that correlation is a poor indicator of the efficacy of a 80

supernet’s shared weights. Making a relative distinction between poor performing architectures 81

is of little value to supernet NAS methods while distinguishing top architectures from the rest is 82

key. Correlation metrics do not account for how the significance of correct ranking varies over 83

the architecture space. Instead, we report the “top architecture ID rate”, which we define as the 84

proportion of the top k architectures, ranked by benchmark test accuracy, which are correctly 85

ranked in the top k by validation accuracy via the shared weights. Note that this metric was 86

proposed prior by Ning et al. (2021) as “precision@topk”, a name which we do not adopt as this 87

metric corresponds to both precision and recall in this case. We expand on this work by applying 88

this metric to a broader range of supernet NAS methods, providing novel insights into the process 89

of supernet training. 90

2

101 2 × 101 3 × 101

Test error thresh

0.0

0.2

0.4

0.6

0.8

1.0
To

p
ar

ch
 ID

 ra
te

DARTS
DARTS-
SNAS
GDAS
DIRICHLET
random baseline

101 2 × 101 3 × 101

Test error thresh

0.0

0.2

0.4

0.6

0.8

1.0

Sa
m

pl
in

g
pr

ob
ab

ilit
y

m
as

s

DARTS
DARTS-
SNAS
GDAS
DIRICHLET
random baseline

6 × 101 7 × 101 8 × 101

Test error thresh

0.0

0.2

0.4

0.6

0.8

1.0

To
p

ar
ch

 ID
 ra

te

DARTS
DARTS-
SNAS
GDAS
DIRICHLET
random baseline

6 × 101 7 × 101 8 × 101

Test error thresh

0.0

0.2

0.4

0.6

0.8

1.0

Sa
m

pl
in

g
pr

ob
ab

ilit
y

m
as

s

DARTS
DARTS-
SNAS
GDAS
DIRICHLET
random baseline

Figure 1: (Left) The ability of an algorithm to identify the top architectures in a search space as a
function of the threshold for “top” architecture. (Right) Cumulative sampling probability
across test error threshold groups of the search space, showing these two algorithms as most
likely to sample the highest performing architectures. (Top) plots show results on CIFAR10
and (Bottom) plots show results on ImageNet16-120, all in the NAS-Bench-201 search space.

Our method of evaluating learned architecture weights is simply to compute a sampling proba- 91

bility for each architecture from these weights and view how NAS algorithms assign probability 92

mass over the architecture space. For search spaces, like that of DARTS/NAS-Bench-301, which 93

apply further constraints to the architecture space than NAS-Bench-201 does, this will require 94

defining a sampling process based on the discretization steps used to derive a final architecture. 95

Both of these measurements, for the shared-weights and the architecture-weights, were imple- 96

mented as a variant Trainer class for the NASLib library in order to make them widely accessible 97

for use as a general evaluatory tool (Ruchte et al., 2020; Mehta et al., 2022). Between the range of 98

search spaces and data sets already provided through NASLib and these metrics, future researchers 99

who implement their proposed NAS algorithms on NASLib will have a full suite of methods for 100

understanding how and why their algorithms performance varies across contexts. 101

Most methods for supernet training do not outperform the naive random baseline for most 102

top-architecture thresholds, which aligns with previous work reporting supernet methods to be 103

ineffective at predicting performance in this way (Yu et al., 2020; White et al., 2021). However, 104

some algorithms (e.g. DirichletNAS (Chen et al., 2021) and SNAS (Xie et al., 2019)) are able to 105

identify more accurately the very top architectures in the search space (left side of the subfigure) 106

but show no additional ability in distinguishing between fairly low-performing architectures (right 107

side of the subfigure). This highlights that shared-weight models need not be (and likely cannot be) 108

trained to be well suited for all architectures within a search space. Rather, they will likely be most 109

3

Figure 2: (Left) Supernet validation accuracy vs benchmark test accuracy averaged over architecture
clusters for a sample SNAS run. (Right) Supernet validation accuracy vs benchmark test
accuracy averaged over architecture clusters for a sample DrNAS run.

informative for helping us to identify top architectures if those shared weights are specialized to 110

maximize performance estimation of the highest performing architectures. This capability is missed 111

in previous studies by the ranking correlation metrics used to assess performance predictions, and 112

in Ning et al. (2021) as a result of only evaluating a less effective supernet training algorithm than 113

SNAS and DirichletNAS. 114

A second metric for accessing quality of trained supernet models is how likely it is to sample a 115

top architecture (if sampled at the end of training). Again using the ranking of architectures by the 116

benchmarked test accuracy, we parameterize a probability distribution over the search space using 117

the supernet’s architecture weights to assess the likelihood of sampling architectures of a given 118

rank or better. Fig 1 (right) shows the cumulative sampling probability as the top-architecture 119

threshold is relaxed, relative to a baseline of randomly selecting architectures from the search 120

space. Algorithms above the cumulative baseline curve (e.g. DirichletNAS and SNAS again, and 121

– to a lesser extent – GDAS (Dong and Yang, 2019) and DARTS- (Chu et al., 2021)) oversample 122

higher performing architectures, while curves below the baseline (e.g. DARTS (Liu et al., 2019)) 123

oversample lower performing discrete architectures. 124

3 Understanding supernet specialization 125

The dirichlet sampling technique used by DrNAS clearly proves more effective at guiding the 126

search process than the Gumbel-Softmax approach to differentiable categorical sampling used by 127

SNAS. Both of these algorithms, do however, display some capacity to estimate performance and, 128

as shown in their performance prediction results over the search space, specifically are able to 129

estimate performance for better performing architectures. These results underscore the utility of 130

the top architecture ID rate measure, as the ineffectiveness of these methods for predicting the 131

performance of the lowest ranking architectures would lead to a low ranking correlation across the 132

entire architecture space. These results indicate that these algorithms are able to make successful 133

use of the supernet structure by specializing the shared weights to work for a set of structurally 134

similar high performing architectures. 135

We can explore this supernet specialization hypothesis by clustering the architectures by their 136

structural similarity. To do so, we define the pairwise similarity between architectures as the 137

number of overlapping operations in their encodings. Then, performing hierarchical clustering on 138

the encodings, for a given threshold we can obtain a set of clusters and examine the relationship 139

4

between the average benchmark test accuracy of each cluster and the average validation accuracy 140

for the architectures of the cluster obtained using the shared weights. Shown above for sample 141

runs from SNAS and DrNAS in Fig 2, it is apparent that it is indeed the case that, while the shared 142

weights are far from optimal for every architecture, for many architectures they do not support 143

inference better than selection at random but for a subset of top architectures they do. The existence 144

of clusters of structurally similar, high-performing architectures which are able to be distinguished 145

from lower-performing architectures through obtaining validation accuracy measurements from 146

the supernet indicates that it is the structure of the search space, specifically, the presence of these 147

families of similarly effective designs, which enables this effective specialization of the supernet. 148

4 Conclusion 149

Although SNAS and DrNAS both attain final test accuracy scores near the optimal score for CIFAR10 150

on NAS-Bench-201, deeper analysis of the supernet algorithms trained by each method reveals 151

a more significant underlying disparity: DrNAS is considerably more successful at identify top 152

architectures, both through its shared weights and its architecture weights. This suggests that the 153

extent of the performance boost attained by DrNAS’s switch to dirichlet architecture sampling is 154

obfuscated when viewing final test accuracy results alone by the limited size of the benchmark 155

search space. Together, these measures provide a set of tools supporting more robust evaluation of 156

NAS methods, made accessible for broad use through their implementation on top of the NASLib 157

library. 158

5 Limitations 159

This work only examines the proposed evaluation measures on a single NAS benchmark data set, 160

NAS-Bench-201. Therefore, the generalizability of the insights obtained from these measures across 161

search spaces cannot be confirmed. Additionally, these measures are computed over the entirety 162

of the search space, which is only possible for tabular benchmarks, so further work is needed to 163

extend these measures to surrogate NAS benchmarks, such as NAS-Bench-301 (Siems et al., 2022). 164

Additionally, while the specific set of supernet NAS methods evaluated are able to provide general 165

insights into the performance of supernet NAS algorithm through analysis based in the specfic 166

differences between algorithm, the use of a wider set of supernet NAS algorithms could provide 167

even broader and more generalizable insights. 168

6 Broader Impact 169

Our work demonstrates a method for evaluating supernet-based NAS algorithms using benchmark 170

data sets, made easily accessible to researchers through implementation in the NASLib library. 171

Through this contribution to open-source NAS research we hope to encourage deeper NAS bench- 172

mark use and more thorough evaluation in future supernet NAS research. A stronger scientific 173

understanding of supernet NAS techniques will aid in both the development and proliferation of 174

efficient architecture search methods. Ultimately, the widespread availability of highly effective 175

efficient architecture search methods has the potential to make the development of deep learning 176

models more widely accessible. While this does have the potential to make easier the development 177

of potentially harmful models, we believe that architecture search techniques also offers the poten- 178

tial for a widely accessible method of auditing and guaranteeing properties of the architecture of 179

neural networks, therefore leading to more socially beneficial deep learning. 180

References 181

Bender, G., Kindermans, P.-J., Zoph, B., Vasudevan, V., and Le, Q. (2018). Understanding and 182

simplifying one-shot architecture search. In Dy, J. and Krause, A., editors, Proceedings of the 183

5

35th International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning 184

Research, pages 550–559, Stockholmsmässan, Stockholm Sweden. PMLR. 185

Chen, X., Wang, R., Cheng, M., Tang, X., and Hsieh, C.-J. (2021). Dr{nas}: Dirichlet neural architec- 186

ture search. In International Conference on Learning Representations. 187

Chu, X., Wang, X., Zhang, B., Lu, S., Wei, X., and Yan, J. (2021). Darts-: Robustly stepping out of 188

performance collapse without indicators. In International Conference on Learning Representations 189

(ICLR). 190

Dong, X. and Yang, Y. (2019). Searching for a robust neural architecture in four gpu hours. In The 191

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 192

Dong, X. and Yang, Y. (2020). Nas-bench-201: Extending the scope of reproducible neural architec- 193

ture search. In International Conference on Learning Representations. 194

Elsken, T., Metzen, J. H., and Hutter, F. (2019). Neural architecture search: A survey. Journal of 195

Machine Learning Research, 20(55):1–21. 196

Liu, H., Simonyan, K., and Yang, Y. (2019). DARTS: Differentiable architecture search. In International 197

Conference on Learning Representations. 198

Mehta, Y., White, C., Zela, A., Krishnakumar, A., Zabergja, G., Moradian, S., Safari, M., Yu, K., and 199

Hutter, F. (2022). Nas-bench-suite: Nas evaluation is (now) surprisingly easy. In International 200

Conference on Learning Representations. 201

Ning, X., Li, W., Zhou, Z., Zhao, T., Zheng, Y., Liang, S., Yang, H., and Wang, Y. (2021). Evaluating 202

efficient performance estimators of neural architectures. 203

Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J. (2018). Efficient neural architecture search 204

via parameter sharing. In ICML. 205

Ruchte, M., Zela, A., Siems, J., Grabocka, J., and Hutter, F. (2020). Naslib: A modular and flexible 206

neural architecture search library. https://github.com/automl/NASLib. 207

Siems, J. N., Zimmer, L., Zela, A., Lukasik, J., Keuper, M., and Hutter, F. (2022). Surrogate {nas} 208

benchmarks: Going beyond the limited search spaces of tabular {nas} benchmarks. In International 209

Conference on Learning Representations. 210

White, C., Zela, A., Ru, B., Liu, Y., and Hutter, F. (2021). How powerful are performance predictors 211

in neural architecture search? arXiv preprint arXiv:2104.01177. 212

Xie, S., Zheng, H., Liu, C., and Lin, L. (2019). SNAS: stochastic neural architecture search. In 213

International Conference on Learning Representations. 214

Yu, K., Sciuto, C., Jaggi, M., Musat, C., and Salzmann, M. (2020). Evaluating the search phase of 215

neural architecture search. In International Conference on Learning Representations. 216

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018). Learning transferable architectures 217

for scalable image recognition. In 2018 IEEE/CVF Conference on Computer Vision and Pattern 218

Recognition, pages 8697–8710. 219

6

https://github.com/automl/NASLib

Appendices 220

A Submission Checklist 221

1. For all authors. . . 222

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s 223

contributions and scope? [Yes] 224

(b) Did you describe the limitations of your work? [Yes] 225

(c) Did you discuss any potential negative societal impacts of your work? [Yes] 226

(d) Have you read the ethics author’s and review guidelines and ensured that your paper 227

conforms to them? https://automl.cc/ethics-accessibility/ [Yes] 228

2. If you are including theoretical results. . . 229

(a) Did you state the full set of assumptions of all theoretical results? [N/A] 230

(b) Did you include complete proofs of all theoretical results? [N/A] 231

3. If you ran experiments. . . 232

(a) Did you include the code, data, and instructions needed to reproduce the main ex- 233

perimental results, including all requirements (e.g., requirements.txt with explicit 234

version), an instructive README with installation, and execution commands (either in 235

the supplemental material or as a url)? [Yes] Code for experiments is available at 236

https://anonymous.4open.science/r/NASLib-F26E/ 237

(b) Did you include the raw results of running the given instructions on the given code and data? 238

[No] Data is excluded from code due to significant size without extensive computational 239

requirements. 240

(c) Did you include scripts and commands that can be used to generate the figures and tables in 241

your paper based on the raw results of the code, data, and instructions given? [No] Plotting 242

code is not included at the time of submission, however more general visualization code to 243

pair with the measures is in development. 244

(d) Did you ensure sufficient code quality such that your code can be safely executed and the 245

code is properly documented? [Yes] 246

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed 247

hyperparameter settings, and how they were chosen)? [Yes] See Implementation details in 248

Appendix B 249

(f) Did you ensure that you compared different methods (including your own) exactly on 250

the same benchmarks, including the same datasets, search space, code for training and 251

hyperparameters for that code? [Yes] 252

(g) Did you run ablation studies to assess the impact of different components of your approach? 253

[N/A] 254

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] 255

(i) Did you compare performance over time? [No] This is a key component of this project in 256

development for future work. 257

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] 258

7

https://automl.cc/ethics-accessibility/

(k) Did you report error bars (e.g., with respect to the random seed after running experiments 259

multiple times)? [Yes] 260

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] 261

(m) Did you include the total amount of compute and the type of resources used (e.g., type of 262

gpus, internal cluster, or cloud provider)? [Yes] 263

(n) Did you report how you tuned hyperparameters, and what time and resources this required 264

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and 265

also hyperparameters of your own method)? [N/A] 266

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . . 267

(a) If your work uses existing assets, did you cite the creators? [Yes] 268

(b) Did you mention the license of the assets? [No] Licensing was not mentioned in the main 269

text, however, the only asset used, NASLib, is licensed via Apache 2.0. 270

(c) Did you include any new assets either in the supplemental material or as a url? [Yes] 271

(d) Did you discuss whether and how consent was obtained from people whose data you’re 272

using/curating? [N/A] 273

(e) Did you discuss whether the data you are using/curating contains personally identifiable 274

information or offensive content? [N/A] 275

5. If you used crowdsourcing or conducted research with human subjects. . . 276

(a) Did you include the full text of instructions given to participants and screenshots, if appli- 277

cable? [N/A] 278

(b) Did you describe any potential participant risks, with links to Institutional Review Board 279

(irb) approvals, if applicable? [N/A] 280

(c) Did you include the estimated hourly wage paid to participants and the total amount spent 281

on participant compensation? [N/A] 282

B Implementation details 283

Source code is available at https://anonymous.4open.science/r/NASLib-F26E/. The runs presented 284

used random seed [1001, 1002, 1003], run hyperparameters were the default hyperparameters used 285

in NASLib for DARTs-like methods and are available in the source code in 286

scripts/exp_hyperparam 287

All tests were run on AMD Radeon Instinct MI50 Accelerators, requiring roughly 925 GPU 288

hours for all experiments. 289

C Further Supernet Evaluation Results and Details 290

Our independent evaluation of Stage-1 algorithms utilizes two statistics we developed, explained 291

in further detail below, which show two algorithms, SNAS and DrNAS, to be dominant. These 292

algorithms are the only two to display a top arch ID rate above the baseline. This indicates that the 293

shared-weights of their supernets have been trained such that they are capable of distinguishing the 294

best architectures from the rest by computing validation accuracies. They also display the highest 295

probability of sampling the best architectures in the search space. We hypothesize that these results 296

are interrelated. As these are sampling based algorithms, sampling top architectures during training 297

8

allows the shared weights to be updated to be more suitable for these top architectures, which in 298

turn improves the quality of gradient updates guiding the architecture weights toward top models. 299

The significant improvement in the cumulative sampling probability shown from the addition of 300

an auxiliary skip connection to DARTS, represented by the DARTS- results supports the hypothesis 301

that overvaluing skip connections is a key issue for DARTS. As correcting for this overweighting 302

seems to close the gap between DARTS and the baseline, it seems the cumulative sampling proba- 303

bility results for DARTS simply reflect a high probability of sampling an architecture which is low 304

performing due to excessive skip connections. 305

Fig. 3 shows the plot of Stage-1 search algorithm performance estimation and architecture 306

sampling metrics on CIFAR-100 in the NASBench-201 search space, corresponding to the plots on 307

CIFAR-10 and ImageNet16-120 shown in Sec. 2. These results are consistent with those shown for 308

CIFAR-10. 309

3 × 101 4 × 101 5 × 101 6 × 101

Test error thresh

0.0

0.2

0.4

0.6

0.8

1.0

To
p

ar
ch

 ID
 ra

te

DARTS
DARTS-
SNAS
GDAS
DIRICHLET
random baseline

3 × 101 4 × 101 5 × 101 6 × 101

Test error thresh

0.0

0.2

0.4

0.6

0.8

1.0

Sa
m

pl
in

g
pr

ob
ab

ilit
y

m
as

s
DARTS
DARTS-
SNAS
GDAS
DIRICHLET
random baseline

Figure 3: Left: Top arch ID rate across test regret threshold groups of the architecture space. Right:
Sampling probability mass across test regret threshold groups of the probability space.

C.1 Top Architecture ID Rate 310

Previous NAS papers have utilized Spearman or Kendall-Tau ranking correlation to evaluate the 311

capacity of NAS algorithms to estimate the performance of candidate models. Although these 312

statistical are powerful tools to evaluate rankings, we argue that, when applied to the entirety of a 313

NAS search space, they do not necessarily reflect the characteristics of performance estimation 314

which are important to NAS algorithms. 315

For example, consider in the 15,625 architecture search space of NAS-Bench-201 one NAS 316

algorithm which ranks the top 625 architectures correctly and the bottom 15,000 in reverse order 317

compared to second NAS algorithm which ranks the architectures correctly except the first 625 318

models are, in reverse order, assigned the ranks of the last 625. Here the former NAS algorithm 319

would result in a Spearman correlation of -0.7695 and a Kendall Tau correlation of -0.8432 while 320

the latter would result in a Spearman correlation of 0.7695 and a Kendall Tau correlation of 0.8432. 321

But we argue that the 1st example NAS algorithm has succeeded at performance estimation: it 322

has correctly identified the global maximum and the ordering of the top 4% of the search space 323

while the 2nd example NAS algorithm has failed catastrophically, as it is maximally incorrect in its 324

estimation of the relative performance of the top 4% of the search space. 325

By utilizing a threshold-based statistic we can configure our measurement such that it reflects
an NAS algorithm’s capacity to estimate performance over specific regions of the search space, thus
ignoring the algorithms inability to distinguish between similarly poorly performing models and
capturing, in a coarser sense, the ability of the algorithm to distinguish better from worse models.

9

For a given index based threshold in the true architecture ranking 𝑘 , we compute a a pair of error
thresholds corresponding to this index using the benchmark test accuracies and the validation
accuracies obtained using the shared weights of the trained supernet. We then identify the sets of
architectures falling under each error threshold, which we denote 𝑇𝑘 and 𝑉𝑘 , respectively. Our top
architecture ID rate metric is then given by:

𝑎1,𝑘 =
|𝑇𝑘 ∩𝑉𝑘 |

|𝑇𝑘 |

C.2 Sampling probability mass 326

Due to the design of NAS-Bench-201’s search space, which allows a single operation at each edge, 327

the architecture weights, after a softmax, correspond exactly to set of categorical distributions 328

(which we model as independent) over operations at each edge. If we consider the use of these 329

distributions to sample architectures, we find that the probability of sampling any given architecture 330

from a set of architecture weights can be computed efficiently as the inner product of the one-hot 331

representation of that architecture and the architecture weights. 332

Note that, while a wide range of architecture parameterizations permit the creation of a sampler 333

based on learned architecture weights, it is often less straightforward than in NASBench-201. For 334

example, in the search space of DARTS, each node selects two incoming edges out of all operations 335

across all nodes with potential in-edges. Creating a sampler in this search space would then require 336

designing a scheme for combining and comparing the weights across different in-edges and a 337

method to sample a pair of operations rather than a single operation. 338

Following the notation given above for the top architecture ID rate based on the set of architec-
tures (𝑇𝑘) under an error benchmark test error threshold of 𝑘 , we can also denote our cumulative
sampling probability metric. Our metric for architecture sampling is:

𝑎2,𝑘 =
∑︁
𝛼∈𝑇𝑘

𝑃𝑟 (𝛼)

Note that in our toy example from the previous section, for 𝑘 ≤ 625, 𝑎1 will be 1 for the first, 339

successful, NAS algorithm and 0 for the second, failing one. 340

10

	Introduction
	Evaluating supernets
	 Understanding supernet specialization
	Conclusion
	Limitations
	Broader Impact
	Submission Checklist
	Implementation details
	Further Supernet Evaluation Results and Details
	Top Architecture ID Rate
	 Sampling probability mass

