Under review as a conference paper at ICLR 2024

EFFECTIVE AND PARAMETER-EFFICIENT REUSING
FINE-TUNED MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Many pre-trained large-scale models provided online have become highly effective
in transferring to downstream tasks. At the same time, various task-specific models
fine-tuned on these pre-trained models are available online for public use. In
practice, as collecting task-specific data is labor-intensive and fine-tuning the large
pre-trained models is computationally expensive, one can reuse task-specific fine-
tuned models to deal with downstream tasks. However, using a model per task
causes a heavy burden on storage and serving. Recently, many training-free and
parameter-efficient methods have been proposed for reusing multiple fine-tuned
task-specific models into a single multi-task model. However, these methods exhibit
a large accuracy gap compared with using a fine-tuned model per task. In this
paper, we propose Parameter-Efficient methods for ReUsing (PERU) fine-tuned
models. For reusing Fully Fine-Tuned (FFT) models, we propose PERU-FFT
by injecting sparse task vectors into a merged model by magnitude pruning. For
reusing LoRA fine-tuned models, we propose PERU-LoRA use a lower-rank matrix
to approximate the LoRA matrix by singular value decomposition. Both PERU-
FFT and PERU-LoRA are training-free. Extensive experiments conducted on
computer vision and natural language process tasks demonstrate the effectiveness
and parameter-efficiency of the proposed methods. The proposed PERU-FFT and
PERU-LoRA outperform existing merging models method by a large margin and
achieve comparable performance to using a fine-tuned model per task.

1 INTRODUCTION

In recent years, large-scale models pre-trained on massive data have proven effective in transferring
to downstream tasks (Chen et al., 2022; Min et al., 2022; Yuan et al., 2023; Ruiz et al., 2023). Various
pre-trained models are available on Hugging Face (Wolf et al., 2020), e.g., ResNet (He et al., 2016),
ViT (Dosovitskiy et al., 2021), CLIP (Radford et al., 2021), and diffusion models (Ho et al., 2020;
Rombach et al., 2022) for computer vision; 75 (Raffel et al., 2020), GPT-2 (Radford et al., 2019), and
LLaMA (Touvron et al., 2023a;b) models for natural language processing. Practitioners specialize a
pre-trained model to a task-specific model by either fully or parameter-efficient fine-tuning (Houlsby
etal., 2019; Hu et al., 2022; Lester et al., 2021; Jiang et al., 2023; Yu et al., 2023) on the task data,
e.g., a CLIP-L/14 model (Radford et al., 2021) fine-tuned on the SUN397 benchmark (Xiao et al.,
2016) can be used for scene recognition tasks. Many fine-tuned models are published online for
public use. By 2023, more than 120, 000 models are available on Hugging Face Hub.

For a downstream task, as collecting task-specific data is labor-intensive and fine-tuning the large
pre-trained models is computationally expensive, one can download and reuse the fine-tuned models
from Hugging Face. In real-world applications, we usually need to deal with a number of tasks
simultaneously (Dong et al., 2015; Siam et al., 2018; Raffel et al., 2020). Using a task-specific fine-
tuned model for each task is effective but costly in storing and serving. Fine-tuning the pre-trained
model on all task data can address this issue but requires expensive re-training and the availability of
all task data, which is infeasible.

Recently, many training-free and parameter-efficient methods have been proposed for merging
multiple fine-tuned task-specific models into a single multi-task model. For example, Task-Arithmetic
(Ilharco et al., 2023) performs a uniformly merging by adding the average of all task vectors (i.e.,



Under review as a conference paper at ICLR 2024

the difference between the task model and the pre-trained model) to the pre-trained model, while
Fisher-Merging (Matena & Raffel, 2022) improves uniform merging to weighted merging, where the
weight for each task model is determined by Fisher information matrix estimated on the validation
loss. RegMean (Jin et al., 2023) further proposes to merge linear layers by solving a local linear
regression problem. TIES-Merging (Yadav et al., 2023) trims low-magnitude elements in the task
vectors and attempts to resolve sign disagreements across task models before merging models. For
complex tasks, merging task models into a shared model may cause parameter inference (Yadav
et al., 2023). Figure 1 shows the average testing accuracy on eight tasks when reusing fine-tuned
ViT models (Dosovitskiy et al., 2021; Radford et al., 2021), demonstrating a large gap between the
accuracy of existing merging methods (Task-Arithmetic, Fisher-Merging, RegMean, TIES-Merging)
and using single-task fine-tuned models (denoted Single-Task).

©
=}
1

95 95
| PERU-FFT
PERU-FFT (ours) . o4 -~ fpure) .
4 $ e

PERU-FFT (ours) Single-Task 92+ Singte=Task]

©
o
I

a Single-Task

S g5 S S
5 5 85 Ep
8 8 888
@ @ @
280 2 286 @TIES-Merging
= = 80| = A Task-Arithmetic
Q O B 84
= = @TIES-Merging =
75+
o]
75 @Task-Arithmetic 8
®TIES-Merging 80
70+ el herlierang ®Fisher-Merging @+ isher-erging
T T T T 70 T T T T 78 T 7 T T T
0 200 400 600 800 1000 0 200 400 600 800 1000 0 500 1000 1500 2000 2500 3000
#parameters (x10°) #parameters (x10°) #parameters (x10°)
(a) IiT-B/32. (b) ViT-B/16. (c) IiT-L/14.

Figure 1: Average testing accuracy on eight tasks by reusing fully fine-tuned models. Post-Pruning
and PERU-FFT keeps top-10% values.

In this paper, we propose PERU, a Parameter-Efficient method for ReUsing fine-tuned models. We
first introduce post-tuning technique (Zhu & Gupta, 2017; Liu et al., 2018; Wang et al., 2020; Zhang
et al., 2022; Xia et al., 2022) to extract a sparse task vector. This method is simple and effective
(Figure 1, Post-Pruning keeps top-10% values). We further propose PERU-FFT to extract task-shared
knowledge by merging task-specific models, and prune the difference between the task-specific model
and the merged model to extract a sparse vector containing task-specific knowledge. As shown in
Figure 1, With only top-10% values of task vectors, PERU-FFT achieves comparable performance
with Single-Task and moreover, performs better than existing merging algorithms by a large margin.

For LoRA Fine-tuned models, the sparsifying task vectors method is not suitable as pruning the
LoRA matrices leads to worse performance while pruning their product cannot reduce the number of
parameters compared with the LoRA matrices. To address this problem, we propose PERU-LoRA to
approximate LoRA matrices by lower rank-g matrices by singular value decomposition. We only
need to keep the top-q singular values and their corresponding singular vectors. Empirically, the
approximate error decreases exponentially fast w.r.t. ¢, while the accuracy increases exponentially
fast. Particularly, PERU-LoRA methods with ¢ = 16 achieve comparable performance compared
with Single-Task (Figure 2).

Our contributions are summarized as follows: (i) We propose PERU-FFT for reusing fully fine-tuned
models, where task vectors are computed from the merged model and the task-specific models.
(ii) We propose PERU-LoRA for reusing LoRA fine-tuned models, where the lower-rank matrices
are added to 6. (iii) Extensive experimental results on computer vision and natural language
processing tasks, show that PERU-FFT and PERU-LoRA perform much better than existing merging
methods. Furthermore, PERU-FFT and PERU-LoRA achieve comparable performance compared to
Single-Task fine-tuned models, but are much more parameter-efficient.  (iv)

Ilharco et al.
2023 Matena & Raffel, 2022 Jin et al., 2023 Yadav
etal., 2023

2 RELATED WORKS

We consider a neural network f(x; #) with input x and parameters 8 € RY. Let 6, be a pre-trained
model provided on torchvision (Marcel & Rodriguez, 2010), HuggingFace (Wolf et al., 2020),



Under review as a conference paper at ICLR 2024

or timm (Wightman, 2019), e.g., ViT-B/32 (Dosovitskiy et al., 2021). Besides, many task-specific
models fine-tuned from @y are also publicly available online.

Given T tasks, where each task has a fine-tuned model. We aim to reuse existing fine-tuned models
{6; : t = 1,...,T} to construct a model that can be used for solving T tasks simultaneously.
Different from multi-task learning (Kendall et al., 2018; Liu et al., 2021; 2019; Ye et al., 2021; Lin
et al., 2022; 2023), training data for all tasks are unavailable. Hence, we cannot learn a multi-task
model by jointly re-training on data. Existing methods focus on merging all task-specific models
into a model and expect the merged model to have promising performance on all tasks. For example,

Task-Arithmetic (Ilharco et al., 2023) merges all model weights as 8* = 6y + A Z?Zl(et —6y),
where X is a hyperparameter chosen on a small validation set, and v, = 6; — 6 is a task vector
represents the element-wise difference between 6; and 8,. When \ = %, 0* becomes uniform
averaging all model weights, i.e., the Model soups method in Wortsman et al. (2022a). Wortsman
et al. (2022b) ensemble the pre-trained model 8, and fine-tuned model 6, to improve the robustness
of 0;. Fisher-Merging (Matena & Raffel, 2022) improves uniform merging to weighted merging,
where the weights are determined by the Fisher information matrix estimated on the validation
set. RegMean (Jin et al., 2023) proposes to merge linear layers by solving a local linear regression
problem while merging other layers by uniform averaging. TIES-Merging (Yadav et al., 2023) trims
low-magnitude elements in the task vector v; and resolves sign disagreements across task models
before performing merging models. Ortiz-Jimenez et al. (2023) study how to fine-tune 8y on D, such
that Task-Arithmetic can perform well.

Pruning, which aims to reduce the model size and maintain the model performance, is a popular
technique for compressing and sparsifying neural networks. Many pruning methods (Zhu & Gupta,
2017; Liu et al., 2018; Wang et al., 2020; Zhang et al., 2022; Xia et al., 2022) sparse model weights
in an optimization or evolutionary manner and need enough training data, gradient information, and
even re-training, which is unsuitable for the reusing model problem. For example, Zhang et al. (2022)
formulate pruning as a bi-level optimization problem and iteratively optimize to find a binary mask to
select model weights. Magnitude-based pruning (Han et al., 2015; Narang et al., 2016; Zhu & Gupta,
2017), which selects weights for a trained model based on the weight magnitudes, is data-free and
training-free pruning.

3 PARAMETER-EFFICIENT REUSING FINE-TUNED MODELS

3.1 REUSING FULLY FINE-TUNED MODELS

For reusing task-specific fine-tuned models, existing methods (e.g., Task-Arithmetic (Ilharco et al.,
2023), Fisher-Merging (Matena & Raffel, 2022), RegMean (Jin et al., 2023), TIES-Merging (Yadav
et al., 2023)) focus on merging all task models into a shared model without any task-specific
parameters. As can be seen from Figure 1, their accuracies (averaged over eight tasks) are much
lower than that of Single-Task. To deal with this issue, we propose to inject sparse task-specific
vectors into the merged model.

In reusing fine-tuned models, training-based pruning methods (Zhu & Gupta, 2017; Liu et al., 2018;
Wang et al., 2020; Zhang et al., 2022; Xia et al., 2022) based on weights importance are infeasible for
sparsifying the task vectors, since the training data are unavailable. We introduce post-pruning (Han
et al., 2015; Narang et al., 2016; Zhu & Gupta, 2017) extracts sparse task-specific vectors from
task vectors based on their magnitudes. Compared with training-based pruning, Post-Pruning is
training-free. For each task, we keep the top-m% (e.g., 1%, 10%) values of the task vectors and
prune the rests:

Vi(m) = keep top-m% of v; based on magnitude. (1

In inference, By + v+(m) is used as a pruned task model. The procedure of Post-Pruning is shown in
Algorithm 1.

As 6y + v¢(m) only depends on the tth task model, it does not use shared knowledge from other
tasks. We propose to merge task-specific models before pruning. Specifically, let u; = 6; — 6*,
t=1,...,T, where 8* is a merged model. We prune u, to &;(m) by keeping the top-m% values of
u; as in (1). In inference, 0* + i(m) is used as a pruned task model. As the method for obtaining
0* is flexible, any merging algorithms (e.g., Task-Arithmetic, Fisher-Merging, RegMean, TIES-



Under review as a conference paper at ICLR 2024

Merging) can be adopted. The procedure, called PERU-FFT, is shown in Algorithm 1. Compared
with Post-Pruning, PERU-FFT has the same number of parameters for a specific ratio m%.

Algorithm 1 Post-Pruning (resp. PERU-FFT).

Require: m%; 60; 0+, . ..,0r; amerging algorithm Aperging;
if PERU-FFT: obtain 8* by Amerging;
cfort=1,....,Tdo
vy = 0y — O (resp. u; = 0, — 0™);
obtain v;(m) (resp. t;(m)) by keeping top-m% values;
evaluate Oy + v (m) (resp. 0* + 0, (m)) on task t’s testing set;
end for

A A

3.2 REUSING LORA FINE-TUNED MODELS

As pre-trained models are usually huge (e.g., ViT-L/14 (Dosovitskiy et al., 2021) has 343M parameters,
T5-base (Raffel et al., 2020) has 220M parameters, LLaMA-2 (Touvron et al., 2023b) series have 7B,
13B, 70B parameters), LoRA Fine-Tuning (Hu et al., 2022) is a parameter-efficient method to obtain
task-specific models. The fine-tuned task model ; € R%«*%n is decomposed as

6, = 6y + A,B/, 2)

where A; € Reax" B, € R%*" and r < {d;y, doy }. The number of parameters required in LORA
fine-tuning is 7 X (doy + din), much smaller than that fully fine-tuning (dow X din) as r is usually
small, e.g., » = 128. Due to its efficiency, many task-specific LORA fine-tuned models are available
online for public use.

Existing methods for merging fully fine-tuned models can be applied directly to merging LoRA
fine-tuned models {6; : t = 1,...,T}. As shown in Figure 2!, existing methods perform much
worse than the Single-Task (LoRA fine-tuned) method. Hence, using a merged model for all tasks
without task-specific parameters is undesirable. Different from reusing fully fine-tuned models,
sparsifying A;B, is not parameter-efficient compared with storing A; and B; separately. In the
following, we use singular value decomposition (SVD) to extract a small fraction of parameters from
the task-specific LORA matrix, which is then injected into the shared model.

95 95

95

90 92+ Single-Task

Single-Task
Single-Task

® <)
S a
| 1
®  ©
® o
I |

~
o
1

testing accuracy
=]
o
L
o]
i

testing accuracy
testing accuracy
o<}
T

~
=)
|

@ Task-Arithmetic

)
a
1

@
S

Fisher-Merging
® Task-Arithmetic
TIES-Merging

© Task-Arith

®
=]
1

784

Fisher-Merging

TIES-Merging

o
S

T T
120 140 160

#parameters (x10°)

(a) ViT-B/32.

180

T
200

65
100

T T
140 160
#parameters (x10°)

(b) ViT-B/I16.

T
120

T
180

T
200

75

300

T T T T T
350 400 450 500 550

#parameters (x10°)

(c) ViT-L/14.

Figure 2: Testing accuracy (averaged over eight tasks) by reusing LoRA fine-tuned models (PERU-
LoRA with ¢ = 16).

We propose to approximate A;B, by a lower-rank matrix to save more parameters. Specifically,
we first perform SVD for A;B] = U;X, V], where U; € R&ux" V, € R%*" and 3, € R™*"
is a diagonal matrix with diagonal entries sorted from high to low. Let U;(q) € R%«*9 be the
submatrix of first ¢ columns of Uy, V;(q) € R% >4 be the submatrix of first ¢ columns of V,
¥:(q) € R7%4 be the submatrix of first ¢ rows and columns of 3; (corresponding to the ¢ largest
singular values). The LoRA matrix A;B; is then approximated as U;(q)X;(q)V(q) ", where the
number of parameters is reduced from 7 X (doy + din) t0 ¢ X (dout + din + 1). ¢ can be much smaller
than r, e.g., ¢ = 16 compared with r» = 128, saving 8 x additional parameters in LoORA matrices. In
inference, 8y + U;(q)X:(q)Vi(q) " is used as the task model. The procedure, called PERU-LoRA,
is shown in Algorithm 2.

"Experimental setup is in Section 4.1.



Under review as a conference paper at ICLR 2024

Discussion. Unlike reusing fully fine-tuned models, merging models before extracting a task-specific
lower-rank matrix is infeasible to reuse LoRA fine-tuned models. Specifically, let 8* be a merged
model, then 8; — 8* = 6, + AtB;r — 0~ is not always a rank-r matrix. For example, when using
Task-Arithmetic (Ilharco et al., 2023) as a merging algorithm, 8, — 0* = 23:1 A,BT, whose rank
can be ¢T'.

Algorithm 2 PERU-LoRA.

Require: 6); LoRA matrices {(A;, B;)}7_;; rank ¢;
1: fort=1,...,Tdo
2: compute Uy(q), V(q), X¢(q) from A;B/ by SVD;
3: evaluate 8y + U;(q)2;(q)V:(¢) T on task ’s testing set;
4: end for

4 EXPERIMENTS

4.1 EXPERIMENTS ON COMPUTER VISION TASKS

Datasets and models. Experiments are conducted on eight image classification tasks: MNIST
(denoted MNI) (LeCun et al., 2010), GTSRB (denoted GTS) (Stallkamp et al., 2011), SVHN (denoted
SVH) (Netzer et al., 2011), RESISC45 (denoted RES) (Cheng et al., 2017), SUN397 (denoted
SUN) (Xiao et al., 2016), EuroSAT (denoted EUR) (Helber et al., 2019), DTD (Cimpoi et al., 2014),
and Cars (denoted CAR) (Krause et al., 2013). Following Ilharco et al. (2023), we adopt three variants
of the CLIP model (Radford et al., 2021) with ViT models (Dosovitskiy et al., 2021) including ViT-
B/32, ViT-B/16, and ViT-L/14 as image encoders. For PERU-FFT, we use the Task-Arithmetic (Ilharco
et al., 2023) as the merging algorithm Amerging.

Baselines. We compare with (i) Pre-Trained Model 6y; (ii) Single-Task fully fine-tuned models
(Single-Task);  (iii) Zhang & Yang, 2021

Table 1: Testing accuracy on eight tasks reusing fully/LoRA fine-tuned models using ViT-B/32.
#params M) MNI GTS SVH RES SUN EUR DTD CAR Avg

Pre-Trained 113 48.25 32.56 31.61 60.65 63.18 45.11 43.99 59.74 48.14
Single-Task 908 99.72 99.23 97.42 95.56 75.03 99.00 79.47 78.73 90.52

Task-Arithmetic 113 93.27 6599 71.62 71.57 63.63 78.41 51.76 61.50 69.72
Fisher-Merging 113 80.71 75.15 74.08 70.24 65.25 81.48 49.84 62.90 69.96

= RegMean 113 92.55 65.12 7548 75.56 65.72 84.33 56.01 64.54 72.41
iTIES—Merging 113 97.79 7530 84.10 70.71 59.24 75.89 53.51 58.72 71.91
EPost-Pruning 1%) 123 58.41 40.61 39.38 67.08 66.63 56.26 48.83 63.95 55.14

Post-Pruning (5%) 159 95.82 78.61 7435 83.67 71.60 85.81 6239 72.73 78.12
Post-Pruning (10%) 204 99.17 95.30 93.85 92.13 74.39 96.37 71.97 77.09 87.53

PERU-FFT (1%) 123 96.17 76.33 79.27 78.03 66.88 84.89 58.03 65.99 75.70
PERU-FFT (5%) 159 99.12 92.66 91.86 88.48 71.35 94.85 67.77 73.08 84.90
PERU-FFT (10%) 204 99.49 97.57 95.92 93.00 73.52 97.63 72.98 76.92 88.38

Single-Task 194 99.61 98.71 97.34 95.57 73.42 98.63 7691 77.25 89.68

Task-Arithmetic 113 86.90 51.44 66.50 68.16 62.32 76.19 48.62 56.85 64.62
£ Fisher-Merging 113 86.71 53.85 62.44 71.19 65.16 72.67 50.37 62.88 65.66
< RegMean 113 94.45 60.10 81.11 74.57 65.10 88.15 53.72 63.97 72.65
S TIES-Merging 113 82.48 45.89 5895 70.67 65.20 71.11 49.15 62.44 63.24

PERU-LoRA (4) 116 99.16 92.04 93.98 86.48 68.61 95.37 6537 62.74 82.97
PERU-LoRA (8) 118 99.54 96.23 96.45 92.16 70.33 98.26 72.55 67.35 86.61
PERU-LoRA (16) 123 99.62 97.99 97.08 94.56 72.29 98.37 76.44 71.31 88.46




Under review as a conference paper at ICLR 2024

; and the state-of-the-art merging methods include (iv) Task-Arithmetic (Ilharco
et al., 2023) merges model parameters by uniform averaging; (v) Fisher-Merging (Matena & Raffel,
2022) takes weighted averaging based on Fisher information matrix computed on the validation loss;
(vi) RegMean (Jin et al., 2023) merges linear layers by solving a local linear regression problem on
the validation data; (vii) TIES-Merging (Yadav et al., 2023) trims the task vectors and resolves the
sign disagreements before aggregating parameters.

Results. Tables 1, 2, and 3 shows the testing accuracy on eight data sets using ViT-B/32, ViT-
B/16, and ViT-L/14, respectively. As can be seen, for reusing fully fine-tuned models, by keeping
top-10% values, both PERU-FFT and Post-Pruning achieve comparable performance with Single-
Task, but are more parameter-efficient (4.5x fewer parameters). PERU-FFT (with addition 1%
parameters per task) consistently performs better than the existing merging models method by a
large margin, demonstrating the effectiveness of injecting sparse task-specific vectors into the shared
model. Compared with Post-Pruning, PERU-FFT achieves higher accuracy (averaged over eight
tasks), showing that merging the task-specific models before pruning the task vectors is effective.
PERU-FFT, which keeps top-1% values of task vectors, performs largely better than existing merging
models.

Table 2: Testing accuracy on eight tasks reusing fully/LoRA fine-tuned models using ViT-B/16.
#params (M) MNI GTS SVH RES SUN EUR DTD CAR Avg

Pre-Trained 112 51.79 43.34 51.98 65.76 65.50 55.22 45.11 64.57 55.41
Single-Task 894 99.72 99.15 97.86 96.57 78.71 99.33 82.29 87.20 92.60

Task-Arithmetic 112 97.35 71.39 80.50 75.71 67.88 82.63 52.34 70.74 74.82
Fisher-Merging 112 94.52 61.21 73.24 75.25 68.54 80.41 50.74 69.94 71.73

RegMean 112 96.93 70.26 83.79 77.60 69.10 88.85 54.63 71.67 76.60
£ TIES-Merging 112 98.75 74.43 88.84 78.48 66.21 85.93 57.13 73.15 77.86
::‘ Post-Pruning (1%) 121 60.94 47.66 60.54 73.97 68.52 66.15 49.63 69.29 62.09
B~ Post-Pruning (5%) 157 96.06 77.36 82.08 88.70 74.42 94.22 64.89 79.28 82.13

Post-Pruning (10%) 201 99.32 94.83 94.43 94.62 77.00 98.44 76.01 84.62 89.91

PERU-FFT (1%) 121 98.32 79.85 85.12 82.89 71.22 89.30 59.79 75.33 80.23
PERU-FFT (5%) 157 99.38 9291 93.90 92.60 74.99 97.11 71.12 81.72 87.97
PERU-FFT (10%) 201 99.56 97.34 96.91 95.30 77.11 98.67 77.77 85.04 90.96

Single-Task 192 99.77 99.11 97.72 96.21 76.63 98.89 79.95 86.27 91.82
Task-Arithmetic 112 95.59 63.06 77.30 72.92 66.05 82.67 49.04 64.46 71.38

£ Fisher-Merging 112 94.51 61.19 73.22 75.24 68.57 80.41 50.74 69.93 71.73
é RegMean 112 97.89 68.73 85.26 76.30 68.17 91.96 52.66 70.54 76.44
< TIES-Merging 112 90.69 54.52 71.18 74.41 68.02 77.59 48.56 67.98 69.12

PERU-LoRA (4) 114 99.35 93.96 95.52 88.65 72.21 96.81 69.73 71.05 85.91
PERU-LoRA (8) 117 99.64 97.51 97.16 93.40 73.55 98.52 76.12 76.72 89.08
PERU-LoRA (16) 122 99.66 98.54 97.61 95.25 75.54 98.78 78.72 81.88 90.75

As for reusing LoRA fine-tuned models, we can see that PERU-LoRA (16) achieves comparable
performance with Single-Task, but is more parameter-efficient (1.6 x fewer parameters). Furthermore,
compared with existing merging models methods, both PERU-LoRA (8) and PERU-LoRA (16) by
a large margin, while PERU-LoRA (2) also has a higher accuracy, demonstrating that extracting a
lower task-specific matrix from the LoRA matrix is effective. Compared with PERU-FFT (10%) and
Post-Pruning (10%), PERU-LoRA (16) performs better but has 1.7x fewer parameters. Moreover,
PERU-LoRA (16) achieves comparable performance with Single-Task (Fully FT) but has 7.4x
fewer parameters, showing that reusing the LoRA fine-tuned models is very effective and parameter-
efficient. Furthermore, compared with the Pre-Trained model, PERU-LoRA (16) uses only 10M
more parameters but almost double the accuracy for Vi7T-B/32 and ViT-B/16 models. As for ViT-1/14,
PERU-LoRA (16) uses only 26M parameters but achieves 1.4 x higher accuracy than the Pre-Trained
model.



Under review as a conference paper at ICLR 2024

Table 3: Testing accuracy on eight tasks reusing fully/LoRA fine-tuned models using ViT-L/14.
#params (M) MNI GTS SVH RES SUN EUR DID CAR Avg

Pre-Trained 343 76.36 50.55 58.45 71.05 68.28 62.41 5532 77.73 65.02
Single-Task 2,740 99.77 99.33 98.12 97.30 82.13 99.26 84.68 92.36 94.12

Task-Arithmetic 343 98.95 85.80 87.20 86.60 73.84 94.48 65.69 83.68 84.53
Fisher-Merging 343 96.98 69.43 78.20 82.33 72.18 91.04 62.07 82.43 79.33

= RegMean 343 98.42 81.37 88.03 85.27 72.77 95.37 65.74 84.09 83.88
tTIES—Merging 343 99.01 81.34 89.42 89.49 76.18 9596 68.24 86.83 85.81
EPost—Pruning 1%) 370 88.11 57.55 67.26 78.27 71.40 75.78 59.89 82.04 72.54

Post-Pruning (5%) 480 99.07 84.66 87.85 92.75 77.40 97.48 72.02 88.96 87.52
Post-Pruning (10%) 617 99.67 96.95 96.86 96.25 80.56 99.04 79.31 91.54 92.52

PERU-FFT (1%) 370 99.17 90.67 90.99 89.62 75.55 96.30 69.36 86.06 87.21
PERU-FFT (5%) 480 99.62 96.46 95.87 94.41 78.90 98.41 76.76 89.14 91.20
PERU-FFT (10%) 617 99.74 98.43 97.43 96.37 80.79 98.93 80.53 90.72 92.87

Single-Task 553 99.78 99.28 98.02 97.13 81.79 99.04 84.52 92.08 93.95

Task-Arithmetic 343 97.59 72.35 81.47 83.03 72.40 91.59 62.45 82.42 80.41
f- Fisher-Merging 343 96.98 69.40 78.18 82.32 72.18 91.00 62.07 82.43 79.32

< RegMean 343 98.53 80.39 84.83 85.70 72.90 95.41 65.05 83.93 83.34
S TIES-Merging 343 94.72 61.36 74.20 79.43 71.22 84.00 60.05 81.36 75.79

PERU-LoRA (4) 349 99.53 97.47 96.98 93.32 76.61 98.63 76.33 84.07 90.37
PERU-LoRA (8) 356 99.76 98.48 97.80 95.75 78.23 98.81 80.85 87.53 92.15
PERU-LoRA (16) 369 99.78 98.92 98.02 96.56 79.91 99.04 82.93 89.55 93.09

(a) TaskArith. (b) FisherMerg. (c) RegMean. (d) TiesMerg. (e) Post-Pruning. (f) PERU-FFT.
Figure 3: t-SNE of samples from EuroSAT for methods reusing fully fine-tuned Vi7T-B/32 Models.

Figure 3 visualize the t-SNE (Van der Maaten & Hinton, 2008) of embeddings extracted from 200
images (20 images per class) randomly sampled from EuroSAT for methods reusing fully fine-tuned
ViT-B/32 models. As can be seen, both PERU-FFT (10%) and Post-Pruning (10%) have more compact
and separable structures than existing merging models methods, demonstrating that injecting sparse
task-specific vectors into the shared model is effective in extracting more discriminative features.
Furthermore, clusters of PERU-FFT are denser than Post-Pruning.

Figure 4 visualize the t-SNE of embeddings extracted from 200 images (20 images per class) randomly
sampled from EuroSAT for methods reusing LoRA fine-tuned ViT-B/32 models. As can be seen,
PERU-LoRA (16) has a more compact and separable structure than existing merging models methods,
showing that using a lower rank to approximate the trained LoRA matrix (whose rank is 128) is
effective in extracting discriminative features for classification.

4.2 EXPERIMENTS ON NATURAL LANGUAGE PROCESS TASKS

We conduct experiments on four standard text classification data sets: MRPC (Dolan et al., 2004),
RTE (Wang et al., 2018), SST-2 (Socher et al., 2013), and QNLI (Wang et al., 2018). We adopt
Flan-T5-base (Chung et al., 2022) as the model for text classification.



Under review as a conference paper at ICLR 2024

(a) TaskArithmetic. (b) FisherMerging. (c) RegMean. (d) TiesMerging. (e) PERU-LoRA.
Figure 4: t-SNE of samples from EuroSAT for methods reusing LoRA fine-tuned ViT-B/32 Models.

Table 4 shows the testing accuracy. As can be seen, for reusing fully fine-tuned models, by keeping
top-10% values, both PERU-FFT and Post-Pruning achieve comparable performance with Single-
Task, but are much more parameter-efficient (2.8x few parameters). Furthermore, PERU-FFT
outperforms Task-Arithmetic, showing that introducing sparse task-specific vectors to the merged
model is better. Compared with Post-Pruning, PERU-FFT is better, demonstrating that merging
models is effective in extracting shared knowledge before pruning task vectors. In particular, PERU-
FFT with top-5% is better than Post-Pruning with top-10%. Hence, performing merging models is
useful before extracting sparse task-specific vectors.

As for reusing LoRA fine-tuned models, PERU-LoRA with ¢ = 8 or 16 achieves almost the same
performance as Single-Task (LoRA FT) but has fewer parameters. Furthermore, PERU-LoRA
outperforms existing merging methods by a large margin. Moreover, the performance of PERU-LoRA
with ¢ = 8 is close to that of Single-Task (Full FT) but is much more parameter-efficient (3.9 x fewer
parameters).

Table 4: Testing accuracy on four tasks reusing fully/LoRA fine-tuned models using Flan-T5-base.

#params (M) MRPC RTE  SST-2 (QNLI Avg

Pre-Trained 225 7533 57.04 52.64 66.59 62.90
Single-Task 894 89.30 79.06 94.72 93.00 89.02
Task-Arithmetic 225 8229 7329 9323 88.16 84.24
Fisher-Merging 225 80.61 70.04 92.66 85.63 8223
. RegMean 225 84.52 7653 9255 091.16 86.19
i TIES-Merging 225 86.70 7473 93.23 84.13 84.70
E Post-Pruning (1%) 234 75.52 6245 69.72 81.90 72.40
Post-Pruning (5%) 270 81.23 6823 92.66 90.28 83.10
Post-Pruning (10%) 314 86.26 77.62 94.04 91.69 87.40
PERU-FFT (1%) 234 83.62 7581 93.81 89.86 85.77
PERU-FFT (5%) 270 86.63 7834 94.04 9143 87.61
PERU-FFT (10%) 314 87.58 7870 94.27 91.84 88.10
Single-Task 239 87.47 79.06 94.04 9270 88.32
Task-Arithmetic 225 81.52 7292 9243 86.78 83.42
E Fisher-Merging 225 80.92 7292 92.09 8528 82.80
é RegMean 225 82.00 75.09 9220 90.68 84.99
S TIES-Merging 225 83.47 6534 9232 8292 81.01
PERU-LoRA (4) 227 8724 7726 93.81 9251 87.70
PERU-LoRA (8) 229 87.64 7870 93.92 9253 88.20
PERU-LoRA (16) 232 86.82 7942 94.04 92.55 88.21
4.1 1
5 5
B.1



Under review as a conference paper at ICLR 2024

90
Q —
e X
380 s
3 o
3
§ 70 S
()] (o))
£ £
= »
8 60+ = w/o PERU-FFT(10%) £
== w/ PERU-FFT(10%)
| 1 |

Task-Arithmetic Fisher-Merging RegMean TIES-Merging

Figure 5: Effects of integrating PERU-FFT into existing  Figure 6: Curves of average accu-
merging models method. racy w.r.t. rank (q) in PERU-LoRA.

4.4 EFFECTS OF ¢ ON PERU-LORA

We perform experiments to study the effects of rank ¢ on the testing accuracy of PERU-LoRA using
the settings in Section 4.1. Figure 6 shows the testing accuracy (averaged over eight tasks) w.r.t. g.
As can be seen, increasing ¢ leads to a better performance. Furthermore, PERU-LoRA with rank-40
achieves almost the same performance as Single-Task (LoRA Fine-Tuned). Hence, using a lower-rank
matrix to approximate the trained LoRA matrix is effective and more parameter-efficient.

4.5 EFFECTS OF m% ON POST-PRUNING AND PERU-FFT

In this section, we conduct experiments to study the effects of m % on the performance of Post-Pruning
and PERU-FFT using the settings in Section 4.1. Figure 7 shows the testing accuracy (averaged
over eight tasks) w.r.t. m% € [0%,40%] using ViT-B/32, ViT-B/16, and ViT-L/14. As can be seen,
the accuracy of Post-Pruning and PERU-FFT increase when m% increases. When m% is larger
than 20%, their accuracies reach the Single-Task performance and saturates. As for m% < 10%,
PERU-FFT always performs better than Post-Pruning, suggesting that merging models before pruning
is important when pruning most parameters.

ingle-Task Single-Task Single-Task
90- 90|
2 2 g0
2801 3'80-| &
o o o 80
2D 3 3D N
Q 70 Q Q
5 g 701 8
()] [*)] ()]
£ 607 £ £70
E —— Post-Pruning EGO* —— Post-Pruning 5 —— Post-Pruning
50-| —— PERU-FFT —— PERU-FFT —— PERU-FFT
50 60
0% 10% 20% 30% 40% 0% 10% 20% 30% 40% 0% 10% 20% 30% 40%
top-m% top-m% top-m%
(a) ViT-B/32. (b) ViT-B/16. (c) VIT-L/14.

Figure 7: Curves of accuracy (averaged over eight tasks) w.r.t. top-m% values of task vectors.

5 CONCLUSION

In this paper, we studied the problem of reusing fine-tuned models. We proposed two parameter-
efficient methods: (i) PERU-FFT for reusing fully fine-tuned models by injecting sparse task-specific
vectors into the merged model; and (i) PERU-LoRA for reusing LoRA fine-tuned models by using a
lower rank matrix to approximate the LoORA matrix. Extensive experiments on computer vision and
natural language processing tasks demonstrate that PERU-FFT and PERU-LoRA outperform existing
merging methods significantly. Additionally, the proposed methods achieve comparable performance
to Single-Task fine-tuned models but are much more parameter-efficient. Morcover, PERU-FFT is
general and can be combined with any existing merging algorithms to boost performance.



Under review as a conference paper at ICLR 2024

REFERENCES

Yanda Chen, Ruiqi Zhong, Sheng Zha, George Karypis, and He He. Meta-learning via language
model in-context tuning. In Annual Meeting of the Association for Computational Linguistics,
2022.

Gong Cheng, Junwei Han, and Xiaogiang Lu. Remote sensing image scene classification: Benchmark
and state of the art. In Proceedings of the Institute of Electrical and Electronics Engineers, 2017.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models.
Preprint arXiv:2210.11416, 2022.

Mircea Cimpoi, Subhransu Maji, lasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In IEEE Conference on Computer Vision and Pattern Recognition,
2014.

Bill Dolan, Chris Quirk, and Chris Brockett. Unsupervised construction of large paraphrase cor-
pora: exploiting massively parallel news sources. In International Conference on Computational
Linguistics, 2004.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and Haifeng Wang. Multi-task learning for multiple
language translation. In Annual Meeting of the Association for Computational Linguistics, 2015.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Neural Information Processing Systems, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition, 2016.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. EuroSAT: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Neural
Information Processing Systems, 2020.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In International Conference on Machine Learning, 2019.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. LoRA: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In International Conference on Learning
Representations, 2023.

Weisen Jiang, Yu Zhang, and James Kwok. Effective structured-prompting by meta-learning and
representitive verbalizer. In International Conference on Machine Learning, 2023.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion by
merging weights of language models. In International Conference on Learning Representations,
2023.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics. In IEEE Conference on Computer Vision and Pattern
Recognition, 2018.

10



Under review as a conference paper at ICLR 2024

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3D object representations for fine-grained
categorization. In IEEE International Conference on Computer Vision Workshops, 2013.

Yann LeCun, Corinna Cortes, and CJ Burges. The MNIST handwritten digit database. ATT Labs,
2010.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Empirical Methods in Natural Language Processing, 2021.

Baijiong Lin, YE Feiyang, Yu Zhang, and Ivor Tsang. Reasonable effectiveness of random weighting:
A litmus test for multi-task learning. Transactions on Machine Learning Research, 2022.

Baijiong Lin, Weisen Jiang, Feiyang Ye, Yu Zhang, Pengguang Chen, Ying-Cong Chen, Shu Liu, and
James T. Kwok. Dual-balancing for multi-task learning. Preprint arXiv:2308.12029, 2023.

Liyang Liu, Yi Li, Zhanghui Kuang, Jing-Hao Xue, Yimin Chen, Wenming Yang, Qingmin Liao, and
Wayne Zhang. Towards impartial multi-task learning. In International Conference on Learning
Representations, 2021.

Shikun Liu, Edward Johns, and Andrew J. Davison. End-to-end multi-task learning with attention. In
IEEE Conference on Computer Vision and Pattern Recognition, 2019.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. In International Conference on Learning Representations, 2018.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A ConvNet for the 2020s. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022.

Sébastien Marcel and Yann Rodriguez. Torchvision the machine-vision package of Torch. In ACM
International Conference on Multimedia, 2010.

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. In Neural
Information Processing Systems, 2022.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. MetalCL: Learning to learn
in context. In North American Chapter of the Association for Computational Linguistics, 2022.

Sharan Narang, Greg Diamos, Shubho Sengupta, and Erich Elsen. Exploring sparsity in recurrent
neural networks. In International Conference on Learning Representations, 2016.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
digits in natural images with unsupervised feature learning. In Neural Information Processing
Systems Workshop, 2011.

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
space: Improved editing of pre-trained models. Preprint arXiv:2305.12827, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. Technical Report, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In International Conference
on Machine Learning, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 2020.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022.

11



Under review as a conference paper at ICLR 2024

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
DreamBooth: Fine tuning text-to-image diffusion models for subject-driven generation. In /IEEE
Conference on Computer Vision and Pattern Recognition, 2023.

Mennatullah Siam, Heba Mahgoub, Mohamed Zahran, Senthil Yogamani, Martin Jagersand, and
Ahmad El-Sallab. MODNet: Motion and appearance based moving object detection network for
autonomous driving. In International Conference on Intelligent Transportation Systems, 2018.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Conference on Empirical Methods in Natural Language Processing, 2013.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The German traffic sign
recognition benchmark: a multi-class classification competition. In International Joint Conference
on Neural Networks, 2011.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. LLAMA: Open and efficient foundation language
models. Preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. LLaMA 2: Open foundation and fine-tuned chat models.
Preprint arXiv:2307.09288, 2023b.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine
Learning Research, 2008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
International Conference on Learning Representations, 2018.

Yulong Wang, Xiaolu Zhang, Lingxi Xie, Jun Zhou, Hang Su, Bo Zhang, and Xiaolin Hu. Pruning
from scratch. In AAAI Conference on Artificial Intelligence, 2020.

Ross Wightman. PyTorch image models. Technical report, 2019.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
language processing. In Conference on Empirical Methods in Natural Language Processing, 2020.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, and Simon Kornblith. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International Conference on Machine Learning, 2022a.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, et al. Robust
fine-tuning of zero-shot models. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022b.

12



Under review as a conference paper at ICLR 2024

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Structured pruning learns compact and accurate
models. In Annual Meeting of the Association for Computational Linguistics, 2022.

Jianxiong Xiao, Krista A Ehinger, James Hays, Antonio Torralba, and Aude Oliva. SUN database:
Exploring a large collection of scene categories. International Journal of Computer Vision, 2016.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Resolving interference
when merging models. Preprint arXiv:2306.01708, 2023.

Feiyang Ye, Baijiong Lin, Zhixiong Yue, Pengxin Guo, Qiao Xiao, and Yu Zhang. Multi-objective
meta learning. In Neural Information Processing Systems, 2021.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. MetaMath: Bootstrap your own mathematical
questions for large language models. Preprint arXiv:2309.12284, 2023.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Chuangi Tan, and Chang Zhou. Scal-
ing relationship on learning mathematical reasoning with large language models. Preprint
arXiv:2308.01825, 2023.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, Lucas Beyer,
Olivier Bachem, Michael Tschannen, Marcin Michalski, Olivier Bousquet, Sylvain Gelly, and Neil
Houlsby. A large-scale study of representation learning with the visual task adaptation benchmark.
Preprint arXiv:1910.04867, 2019.

Yihua Zhang, Yuguang Yao, Parikshit Ram, Pu Zhao, Tianlong Chen, Mingyi Hong, Yanzhi Wang, and
Sijia Liu. Advancing model pruning via bi-level optimization. In Neural Information Processing
Systems, 2022.

Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE Transactions on Knowledge and
Data Engineering, 2021.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression. In Workshop on Neural Information Processing Systems, 2017.

4.1

13



Under review as a conference paper at ICLR 2024

Table 5: Accuracy on eight tasks with ViT-B/32 when combing the proposed PERU-FFT with existing
merging models methods.

Method #params (M)  MNI GTS SVH RES SUN EUR DTD CAR Avg
Task-Arithmetic 113 93.27 6599 71.62 71.57 63.63 7841 51.76 61.50 69.72
Task-Arithmetic + PERU-FFT (1%) 123 96.17 76.33 79.27 78.03 66.88 84.89 58.03 6599 75.70
Task-Arithmetic + PERU-FFT (5%) 159 99.12 92.66 91.86 88.48 71.35 94.85 67.77 73.08 84.90
Task-Arithmetic + PERU-FFT (10%) 204 9949 97.57 9592 93.00 73.52 97.63 7298 7692 88.38
Fisher-Merging 113 80.71 75.15 74.08 7024 6525 8148 4984 6290 69.96
Fisher-Merging + PERU-FFT (1%) 123 9229 69.23 7150 77.54 6827 7959 5628 67.40 7276
Fisher-Merging + PERU-FFT (5%) 159 98.81 91.39 90.31 88.73 72.38 9433 67.18 7426 84.67
Fisher-Merging + PERU-FFT (10%) 204 9946 97.26 95.73 9346 7443 9737 7372 77.81 88.66
RegMean 113 92,55 65.12 7548 7556 65.72 84.33 56.01 6454 7241
RegMean + PERU-FFT (1%) 123 93.79 7146 7877 7795 67.47 87.15 5814 6647 75.15
RegMean + PERU-FFT (5%) 159 98.59 91.83 91.74 88.65 72.01 96.19 6798 73.77 85.10
RegMean + PERU-FFT (10%) 204 99.37 97.39 9576 93.56 7437 97.89 74.04 77.09 88.68
TIES-Merging 113 97.79 7530 84.10 70.71 59.24 75.89 53.51 58.72 71091
TIES-Merging + PERU-FFT (1%) 123 98.82 86.25 87.27 7579 6129 87.15 5878 6222 77.20
TIES-Merging + PERU-FFT (5%) 159 99.44 9642 9452 86.86 67.01 9522 6745 7041 84.67
TIES-Merging + PERU-FFT (10%) 204 99.65 98.22 9640 91.86 7032 97.22 7245 7412 87.53

B.2 ABLATION STUDY ON COMPRESSING LORA MATRICES

We perform singular value decomposition to A;B; as it can obtain the best rank-k approximation
of AyB/, i.., argmingu(c)<k [|[C — A¢B/ ||r. Note that A,B/ is applied to the pre-trained
weight 0y (i.e., ; = 6y + A;B/), thus, approximating A;B, might be more effective than
approximating A, and B, separately. We conducted an ablation experiment with Vi7-B/32 using
the setting in Section 4.1. Table below shows the testing accuracy of 8y + Approx(A;B/) with
0; = 6y + Approx(A;)Approx(B;) . As can be seen, Approx(A;B, ) consistently performs
better than Approx(A;)Approx(B;)'.

Table 6: Testing accuracy on eight tasks of Approx(A;)Approx(B;)" and Approx(A;B, ) when
reusing LoRA fine-tuned models with ViT-B/32.

rank MNI ~GTS SVH RES SUN EUR DID CAR Avg
Approx(A)Approx(B;)T 4 6142 3829 39.17 6441 6435 6474 4585 60.63 54.86

Approx(A;B/) 4 99.16 92.04 9398 86.48 68.61 9537 6537 62.74 82.97
Approx(A;)Approx(B;) T 8 7939 4581 5033 70.73 6550 79.67 4835 62.09 62.73
Approx(A;B/) 8 9954 9623 9645 92.16 7033 9826 72.55 67.35 86.61
Approx(A)Approx(B;)T 16 9625 7249 81.47 81.67 6740 9356 57.18 66.22 77.03
Approx(A;B/) 16 99.62 97.99 97.08 94.56 72.29 98.37 76.44 7131 88.46

B.3 ABLATION STUDY ON NUMBER OF TASKS

We conducted an ablation experiment on four computer vision tasks with ViT-B/32. Table 7 below
shows the testing accuracy. As can be seen, for merging fully finetuned models, with a small number
of parameters, Post-Pruning (5%) and Post-Pruning (10%) outperform existing merging methods
(Task-Arithmetic, Fisher-Merging, RegMean, TIES-Merging), demonstrating the effectiveness of
introducing sparse task-specific vectors into the shared model. Compared with Post-Pruning, PERU-
FFT achieves higher accuracy (averaged over four tasks), suggesting that merging the task-specific
models before pruning the task vectors is effective. Moreover, compared with Single-Task method,
PERU-FFT (10%) is more parameter-efficient and achieves comparable performance. For merging
LoRA finetuned models, PERU-LoRA achieves higher accuracy (averaged over four tasks) than
previous merging methods. These observations are consistent with results on eight computer
vision tasks in Table 1.

14



Under review as a conference paper at ICLR 2024

Table 7: Testing accuracy on four tasks reusing fully/LoRA fine-tuned models using Vi7-B/32.

#params (M) SVH EUR DTD CAR  Avg

Pre-Trained 113 31.61 4511 4399 59.74 45.11
Single-Task 452 97.42 99.00 79.47 7873 88.66
Task-Arithmetic 113 7730 92778 6149 67.83 74.85
Fisher-Merging 113 72.02 89.89 5872 67.50 72.03
. RegMean 113 86.34 9578 6441 69.11 78091
=~ TIES-Merging 113 88.95 94.11 66.70 70.68 80.11
=
E Post-Pruning (1%) 118 39.39 5626 4878 63.95 52.05
Post-Pruning (5%) 136 7435 8581 6239 7274 7383
Post-Pruning (10%) 159 93.85 9637 7191 77.09 84.81
PERU-FFT (1%) 118 8448 95.04 6495 70.87 78.84
PERU-FFT (5%) 136 9445 9741 71.81 75.69 84.84
PERU-FFT (10%) 159 96.68 98.15 75.53 77.89 87.06
Single-Task 153 97.34 98.63 7691 7725 87.52
Task-Arithmetic 113 62.16 80.78 53.35 64.08 65.09
ff  Fisher-Merging 113 71.94 89.81 5872 67.54 72.01
é RegMean 113 89.33 9485 61.60 67.57 7834
C TIES-Merging 113 47.16 67.52 4830 6221 56.29
PERU-LoRA (4) 114 93.98 9537 6537 62.74 79.37
PERU-LoRA (8) 116 96.45 9826 72.55 67.35 83.66
PERU-LoRA (16) 118 97.08 9837 76.44 7131 85.80

B.4 EXPERIMENTS ON VTAB

We conducted an experiment on the Natural group of VTAB (Zhai et al., 2019) using ViT-B/16,
where tasks are more similar to each other. Table 8 shows the testing accuracy. The observations
are consistent with the experimental results in Section 4.1. Specifically, as we can see, by keeping
top-10% values, both PERU-FFT and Post-Pruning achieve comparable performance with Single-
Task, but are more parameter-efficient (4.5x fewer parameters). PERU-FFT (with an additional
1% of parameters per task) performs better than the existing merging models method, showing the
effectiveness of introducing sparse task-specific vectors into the merged model. Compared with
Post-Pruning, PERU-FFT achieves higher accuracy (averaged over seven tasks), showing that merging
the task-specific models before pruning the task vectors is more effective.

Table 8: Accuracy on seven tasks from the Natural group of VTAB.
#params (M) CIF CAL DTD FLO PET SVH SUN Avg

Pre-Trained 112 6691 8276 45.11 7133 87.19 5198 6550 67.25
Single-Task 894 90.23 97.20 8229 9488 9455 97.86 7871 90.82
Task-Arithmetic 112 83.33 87.07 5287 66.87 89.10 8352 67.01 75.68
Fisher-Merging 112 80.81 86.96 51.28 73.72 89.51 6992 69.32 74.50
RegMean 112 81.32 87.07 5553 7541 90.38 8494 69.88 77.79
TIES-Merging 112 82.77 87.69 5739 70.39 89.59 8828 6742 77.65
Post-Pruning (1%) 121 7437 85.06 49.63 73.59 8823 60.53 6851 7142
Post-Pruning (5%) 157 86.55 90.60 64.89 7845 91.58 82.06 7441 81.22
Post-Pruning (10%) 201 89.61 93.68 76.01 84.34 9441 9442 77.00 87.07
PERU-FFT (1%) 121 8539 89.93 5830 70.89 91.61 87.78 69.76 79.09
PERU-FFT (5%) 157 88.50 92,56 69.73 77.62 93.59 9471 74.18 84.41
PERU-FFT (10%) 201 89.75 9390 76.22 8398 94.06 97.01 76.46 87.34

B.5 EXPERIMENTS USING CNN-BASED MODELS

We conducted an additional experiment using a CNN-based model ConvNeXt-Base (Liu et al., 2022)
on eight computer vision tasks. Table 9 shows the testing accuracy. The following observations are

15



Under review as a conference paper at ICLR 2024

Table 9: Testing accuracy on eight tasks reusing fully fine-tuned models using ConvNeXt-Base.
#params M) MNI GTS SVH RES SUN EUR DTD CAR Avg

Pre-Trained 179 64.39 46.56 5373 6594 71.61 5237 6154 9124 6342
Single-Task 1,435 99.78  99.22 98.01 96.67 80.49 99.19 8574 9491 94.25
Task-Arithmetic 179 97.73 8131 8296 76.56 72.12 78.07 68.40 92.87 81.25
Fisher-Merging 179 9547 67.67 7793 7621 7280 7422 67.82 9253 78.08
RegMean 179 9792 81.25 86.47 80.65 74.00 89.26 7255 93.82 84.49
TIES-Merging 179 99.16 8532 88.83 7297 6944 7837 6527 9193 814l
Post-Pruning (1%) 194 85.64 5460 6575 7329 73.68 6530 67.13 9254 7224
Post-Pruning (5%) 251 99.04 83.80 89.97 8743 7726 91.11 7633 9428 87.40
Post-Pruning (10%) 323 99.65 95.65 96.47 9321 79.29 97.89 80.74 94.86 9222
PERU-FFT (1%) 194 99.02 88.49 87.86 81.89 7379 86.26 72.07 93.56 8537
PERU-FFT (5%) 251 99.60 9590 95.01 90.08 76.57 95.00 78.09 94.68 90.62
PERU-FFT (10%) 323 99.72  98.02 9733 93.65 78.66 97.41 8239 95.04 92.78

consistent with results obtained from ViT-based models in Section 4.1. As we can see, (i) compared
with Single-Task method, both PERU-FFT (10%) and Post-Pruning (10%) achieve comparable
performance but have 4.5 x fewer parameters. With an additional 1% of parameters per task, PERU-
FFT performs better than the existing merging models method, showing that introducing sparse
task-specific vectors into the merged model is effective. PERU-FFT consistently achieves higher
accuracy (averaged over seven tasks) than Post-Pruning, showing that merging the task-specific
models before pruning the task vectors is more effective.

B.6 ABLATION STUDY ON PRUNING METHODS

We conducted additional experiments with ViT-B/32 to compare the performance of pruning 8; and
pruning v, or u;. Table 10 shows the testing accuracy, where Pruning 6, (m%) denotes keeping
the top-m% parameters in 8;. As can be seen, pruning 8, is not effective. For example, Pruning 6;
(50%) has very low accuracy. In contrast, keeping top-10% of v; or u; perform much better (+80%).
Compared with Pruning 8; (90%), PERU-FFT (10%) achieves comparable performance but has 4 x
fewer parameters. Hence, pruning u, is more effective and promising than pruning 6.

Table 10: Comparison between pruning 6; and pruning v, or u,.
#params (M) MNI GIS SVH RES SUN EUR DID CAR Avg

Pre-Trained 113 48.25 3256 31.61 60.65 63.18 4511 4399 59.74 48.14
Single-Task 908 99.72  99.23 97.42 9556 75.03 99.00 7947 7873 90.52
Pruning 0; (10%) 91 982 070 849 3.00 025 952 1.60  0.60  4.25
Pruning 0; (20%) 181 1028 177  6.71 2.11 028 16.11 245 046 5.02
Pruning 0; (30%) 271 9.91 372 17.62 263 044 1078 223 049 598
Pruning 6; (40%) 362 10.09 508 629 448 032 1448 271 040 548
Pruning 6; (50%) 452 1094 559 2045 673 092 17.00 723  0.53 8.67
Pruning 6; (60%) 542 84.54 4372 63.88 44.63 1523 34.67 3191 347 40.26
Pruning 0; (70%) 632 98.83 80.37 9132 7748 4849 70.11 56.22 38.75 70.20
Pruning 0; (80%) 723 99.55 95.04 9635 88.70 64.13 87.81 72.18 6524 83.63
Pruning 6; (90%) 814 99.69 99.06 9739 9524 7359 9881 79.10 77.08 89.99
Post-Pruning v; (1%) 123 5841 40.61 3938 67.08 66.63 5626 48.83 6395 55.14
Post-Pruning v, (5%) 159 95.82 78.61 7435 83.67 71.60 8581 6239 7273 78.12
Post-Pruning v; (10%) 204 99.17 9530 9385 92.13 7439 9637 7197 77.09 87.53
PERU-FFT u; (1%) 123 96.17 7633 79.27 78.03 66.88 84.89 58.03 6599 75.70
PERU-FFT u; (5%) 159 99.12  92.66 91.86 8848 7135 9485 67.77 73.08 84.90
PERU-FFT u; (10%) 204 99.49 97.57 9592 93.00 73.52 97.63 7298 7692 88.38

16



