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Abstract

Large Language Models (LLMs) possess vast001
amounts of knowledge within their parame-002
ters, prompting research into methods for lo-003
cating and editing this knowledge. Previous004
investigations have primarily focused on fill-005
in-the-blank tasks and locating entity-related006
(usually single-token facts) information in rela-007
tively small-scale language models. However,008
several key questions remain unanswered: (1)009
How can we effectively locate query-relevant010
neurons in contemporary autoregressive LLMs,011
such as LLaMA and Mistral? (2) How can012
we address the challenge of long-form text gen-013
eration? (3) Are there localized knowledge014
regions in LLMs? In this study, we introduce015
Neuron Attribution-Inverse Cluster Attribution016
(NA-ICA), a novel architecture-agnostic frame-017
work capable of identifying key neurons in018
LLMs. NA-ICA allows for the examination019
of long-form answers beyond single tokens by020
employing the proxy task of multi-choice ques-021
tion answering. To evaluate the effectiveness022
of our detected key neurons, we construct two023
multi-choice QA datasets spanning diverse do-024
mains and languages. Empirical evaluations025
demonstrate that NA-ICA outperforms base-026
line methods significantly. Moreover, analysis027
of neuron distributions reveals the presence of028
visible localized regions, particularly within029
different domains. Finally, we demonstrate the030
potential applications of our detected key neu-031
rons in knowledge editing and neuron-based032
prediction.033

1 Introduction034

Large Language Models (LLMs) contain substan-035

tial amounts of knowledge within their parameters.036

Existing research endeavors to locate and edit this037

knowledge through gradient-based methods (Dai038

et al., 2022) or causality-based methods (Meng039

et al., 2022a). These methods typically employ040

fill-in-the-blank tasks, such as “Paris is the041

capital of ”, to ascertain the correlation042

between the query and neurons or layers in the 043

Feed-forward Networks (FFNs) of BERT (Kenton 044

and Toutanova, 2019) and GPT (Radford et al.). 045

Another branch of pioneering research attempts to 046

locate functional regions in small-size language 047

models such as BERT and GPT-small, including 048

linguistic regions (Zhang et al., 2024b), factual sub- 049

networks (Ren and Zhu, 2022; Bayazit et al., 2023), 050

and modular structures (Zhang et al., 2023; Conmy 051

et al., 2023). 052

While these studies successfully analyze the in- 053

ternal reasoning behaviors of LLMs, three signif- 054

icant questions remain underexplored: (1) How 055

can we effectively locate query-relevant neurons 056

in contemporary autoregressive LLMs, such as 057

LLaMA (Touvron et al., 2023) and Mistral (Jiang 058

et al., 2023), given that their FFNs architectures dif- 059

fer from those of BERT and GPT? (2) How can we 060

address the challenge of long-form text generation, 061

as previous methods have been limited to single- 062

token entity facts? (3) Are there localized knowl- 063

edge regions in LLMs analogous to the localized 064

functional regions observed in human brains (Brett 065

et al., 2002)? 066

To address the first two questions, we introduce 067

a novel framework named Neuron Attribution- 068

Inverse Cluster Attribution (NA-ICA) designed 069

to identify key neurons in LLMs. The principal 070

advantages of NA-ICA are its architecture-agnostic 071

nature and its capability of handling long-form text 072

generation effectively. The overall structure of the 073

framework is depicted in Figure 1. NA-ICA draws 074

inspiration from the TF-IDF keyword extraction 075

method (Salton, 1983), aiming to extract signifi- 076

cant neurons for each input query. The process be- 077

gins by transforming an open-ended generation task 078

into a multiple-choice question-answering format. 079

By employing prompt engineering, we constrain 080

LLMs to generate only the option letter rather than 081

the complete answer. This approach allows for the 082

examination of long-form generation beyond sin- 083
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The energy given up by electrons as they move through the 

electron transport chain is used to?

A. make glucose

B. make NADH

C. produce ATP

D. break down glucose

Biology

Physics

Chemistry

Multi-Choice QA FFNs in LLMs Coarse Neurons Key Neurons

Query LLMs
Knowledge 
Attribution

NA-ICA

Figure 1: The overall framework of our Attribution-Inverse Cluster Attribution (NA-ICA) which aims to detect
query-related key neurons. Neurons with solid lines mean key neurons while dashed ones mean common neurons
that are shared across different queries.

gle tokens and extends previous methodologies to084

autoregressive LLMs. Subsequently, we adapt the085

Knowledge Attribution method (Dai et al., 2022) to086

compute Neuron Attribution, which elucidates the087

relationship between neurons and the input query.088

We then gather clusters for a series of queries and089

calculate the Inverse Cluster Attribution. This step090

mitigates the influence of neurons that recur across091

clusters (or queries). The final step involves mul-092

tiplying the neuron attribution and inverse cluster093

attribution values to pinpoint key neurons. Addi-094

tionally, we identify certain Common Neurons that095

are associated with common words, punctuation096

marks, and option letters. Excluding these common097

neurons enhances the detection of key neurons. Em-098

pirical evaluations demonstrate that our proposed099

method outperforms baseline approaches.100

To investigate the existence of localised knowl-101

edge regions, we construct two multi-choice QA102

datasets encompassing various domains and lan-103

guages. Then, we visualize the geographical lo-104

cations of the detected key neurons in LLaMA.105

Our findings indicate that distinct localized re-106

gions emerge in the middle layers, particularly107

for domain-specific neurons. Language neurons108

are more sparse but show a certain degree of re-109

gionality. Additionally, we observed that common110

neurons are concentrated in the top layer, predomi-111

nantly expressing frequently used tokens.112

In summary, our main contributions are four-113

fold: (1) A scalable method: we propose NA-ICA114

to detect key neurons in LLMs; NA-ICA method is115

architecture-agnostic and can deal with long-form116

generations. (2) Two new datasets: we curate117

two multi-choice QA datasets that contain different118

types of knowledge, namely Domain Knowledge119

and Language knowledge. (3) In-depth studies: 120

we are the first to show that there are visible lo- 121

calized regions in LLaMA. (4) Potential applica- 122

tions: we show that NA-ICA might be useful for 123

knowledge editing and neuron-based prediction. 124

2 Related Work 125

2.1 Locating Knowledge in LLMs 126

LLMs contain extensive knowledge within their 127

parameters, encompassing factual (Petroni et al., 128

2019; Zhou et al., 2020; Jiang et al., 2020; Roberts 129

et al., 2020; Pezeshkpour, 2023), linguistic (Liu 130

et al., 2019; Jawahar et al., 2019; Chen et al., 2023) 131

and domain-specific knowledge (Sung et al., 2021; 132

Frieder et al., 2024). Despite this, the mechanisms 133

and locations of knowledge storage within these 134

models remain unclear. Recent mechanistic studies 135

suggest that knowledge is primarily stored in the 136

FFNs (Feed-forward Networks) layers of Trans- 137

formers (Geva et al., 2021, 2022). Ongoing re- 138

search is focused on developing methods to pre- 139

cisely identify and locate this knowledge within the 140

FFNs layers. Given an input, gradient-based meth- 141

ods (Ancona et al., 2019; Dai et al., 2022) quantify 142

the sensitivity of model outputs to internal model 143

components, identifying relevant neurons. How- 144

ever, these studies focus exclusively on traditional 145

neural architectures and encoder-only models like 146

BERT, leaving decoder-only models such as GPT 147

and LLaMA underexplored. Causality-based meth- 148

ods employ causal mediation analysis to discern 149

the particular layers associated with a given factual 150

input (Meng et al., 2022a). Subsequent research 151

adopts the locate-and-edit paradigm to refine the 152

knowledge within LLMs (Meng et al., 2022b; Ju 153

and Zhang, 2023; Zhang et al., 2024a). 154
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While previous approaches have effectively iden-155

tified specific information in LLMs, they com-156

monly rely on the fill-in-the-blank cloze task to157

evaluate the factual capabilities of language mod-158

els. For instance, they use a prompt query like159

“Paris is the capital of ” to locate160

weights associated with the France entity. How-161

ever, this methodology has limited applicability,162

as language models exhibit the capacity to gen-163

erate long-form and open-ended responses to di-164

verse queries. In contrast to prior methodologies,165

our approach leverages the proxy task of multiple-166

choice QA for knowledge localization. This al-167

ternative strategy renders the localization process168

architecture-agnostic and facilitates the handling169

of long-form content generation.170

2.2 Analyzing Knowledge Distribution in171

LLMs172

Given the human-like reasoning capabilities ob-173

served in LLMs across various tasks (Zhao et al.,174

2023), and since our brain contains functional175

locations associated with distinct cognitive pro-176

cesses (Brett et al., 2002; Bjaalie, 2002; Gholipour177

et al., 2007), we ask whether there are similar178

regions in LLMs. Previous investigations have179

explored the behaviors of individual neurons in-180

dicating that a neuron can encode multiple con-181

cepts (Bolukbasi et al., 2021) while a concept can182

also be distributed across multiple neurons (Dalvi183

et al., 2019; Durrani et al., 2020; Chen et al., 2024).184

Subsequent endeavors have sought to identify func-185

tional regions in LLMs, encompassing linguis-186

tic regions (Zhang et al., 2024b), factual subnet-187

works (Ren and Zhu, 2022; Bayazit et al., 2023),188

and modular structures (Zhang et al., 2023; Conmy189

et al., 2023). These studies have systematically190

investigated localized behaviors in smaller-scale191

language models, such as BERT and GPT-small.192

Building upon these foundations, our research em-193

barks on the examination of knowledge locations194

in larger-size LLMs, specifically those with 7B pa-195

rameters, spanning multiple knowledge domains.196

3 Background197

Feed-forward Networks in LLMs Feed-198

forward networks (FFNs) are widely used by199

transformer-based language models. Geva et al.200

(2021) reveal that FFNs emulate key-value201

memories and their outputs are responsible for202

refining the final output distribution over the203

vocabulary. Although traditional two-layer FFNs 204

in BERT (Kenton and Toutanova, 2019) and 205

GPT-2 (Radford et al.) have been studied well, 206

the behaviors of FFNs in modern LLMs such as 207

LLaMA (Touvron et al., 2023), Mistral (Jiang 208

et al., 2023), and Gemma (Team et al., 2024) 209

are not well-explored. These LLMs adopt Gated 210

Linear Units (GLUs) (Dauphin et al., 2017) in their 211

FFNs, which can be formulated as follows: 212

FFN(X) = (XWU ⊙ SiLU(XWG))WD (1) 213

Here, X ∈ Rn×d is the input sequence, n is 214

the number of tokens and d is the dimension of 215

input vectors; WU ∈ Rd×m, WG ∈ Rd×m, 216

WD ∈ Rm×d are parameter matrices and ⊙ is the 217

Hadamard product; finally SiLU (Elfwing et al., 218

2018) is the activation function. 219

Knowledge Neurons Dai et al. (2022) propose a 220

gradient-based Knowledge Attribution to identify 221

the knowledge neurons in BERT by using the fill- 222

in-the-blank cloze task. Their method evaluates 223

the contribution of each neuron in FFNs to the 224

knowledge predictions. Given a prompt q “Paris 225

is the capital of ”, the probability of the 226

correct answer predicted by a language model can 227

be formulated as: 228

Pq(ŵ
l
i) = p(y∗|x,wl

i = ŵl
i) (2) 229

where y∗ is the correct answer (France); wl
i de- 230

notes the i-th intermediate neuron in the l-th layer 231

in FFNs; ŵl
i is a constant we assign to wl

i. 232

In order to measure the attribution score (or con- 233

tribution) of a neuron, they gradually change the 234

wl
i from 0 to its original value computed during the 235

forward pass through the LLM and integrate the 236

gradients (Sundararajan et al., 2017): 237

Attr(wl
i) = w̄l

i

∫ 1

α=0

∂Pq(αw̄
l
i)

∂wl
i

dα (3) 238

where ∂Pq(αw̄l
i)

∂wl
i

is the gradient with regard to wl
i. 239

Attr(·) accumulates the output probability change 240

as α gradually varies from 0 to 1. The attribution 241

measures the contribution of the neuron wl
i to the 242

correct answer. In practice, the score is estimated 243

by using Riemann Approximation: 244

Âttr(wl
i) =

w̄l
i

m

∑m
k=1

∂Pq(
k
m w̄l

i)

∂wl
i

(4) 245
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where m is the number of the estimation steps.246

Finally, they identify a coarse set of knowledge247

neurons whose attribution scores are greater than a248

threshold t.249

4 Locating Key Neurons in250

Autoregressive LLMs251

While Knowledge Attribution (Dai et al., 2022)252

effectively identifies neurons linked to factual253

queries, its applicability is limited to Encoder-only254

architectures, and it mandates the output to be255

a single-token word. In response to these con-256

straints, we propose a simple yet effective pipeline257

named Attribution-Inverse Cluster Attribution258

(NA-ICA), which is architecture-agnostic and capa-259

ble of handling long-form generation. The overall260

framework is shown in Figure 1. NA-IQA first re-261

sorts to the proxy task of multi-choice QA to deal262

with long-form answers. Subsequently, the frame-263

work extracts key neurons for each query using our264

designed NA-ICA score.265

4.1 Multi-Choice QA Transformation266

Given the biological question “The energy given267

up by electrons as they move through the electron268

transport chain is used to?”, the correct answer can269

be the long-form text “produce ATP”. To deal with270

long-form answers, we advocate for the transforma-271

tion of questions and their corresponding answers272

into a multiple-choice framework, as illustrated273

in Figure 1. This approach involves the genera-274

tion of incorrect options by randomly sampling an-275

swers within the same domain. Following this, the276

LLM is prompted to produce only the option letter.277

Subsequently, we investigate the key knowledge278

neurons correlated with the input query. To miti-279

gate the impact of randomness, we devise multiple280

prompt templates and systematically shuffle the or-281

der of options to prevent the model from learning282

spurious correlations based on option letters. These283

prompt templates are detailed in Table A1.284

4.2 Neuron Attribution-Inverse Cluster285

Attribution286

In our pursuit of locating neurons associated with287

specific queries, we compute the score of NA-288

ICA for each neuron, drawing inspiration from289

the principles of TF-IDF (Salton, 1983) for key-290

word extraction. Beginning with a given query,291

NA-ICA employs neuron attribution to derive a292

coarse group key neurons, termed as clusters. Each293

neuron within this cluster is assigned an attribu- 294

tion score indicative of its relevance to the query, 295

akin to the computation of term frequency. Given 296

our objective of identifying critical neurons closely 297

correlated with their respective queries, we use in- 298

verse cluster attribution to filter out neurons shared 299

across different clusters (or queries). Finally, we 300

find some neurons appear across multiple clusters, 301

embodying common knowledge or sense, which 302

we denote as Common Neurons. Further refinement 303

of key neuron extraction involves the exclusion of 304

these common neurons, which can enhance the 305

precision of identifying critical neural correlates. 306

Neuron Attribution To extend our methodol- 307

ogy to Gated Linear Units (GLUs), which com- 308

prise two linear transformations followed by a gat- 309

ing mechanism, we adapt the Knowledge Attribu- 310

tion approach (Eq 5). In GLUs, the linear trans- 311

formations involve computing a linear combina- 312

tion of input features, denoted by f = XWU . 313

Additionally, the gating mechanism, represented 314

by g = SiLU(XWG), determines the extent to 315

which each input component should be forwarded, 316

thereby enabling the model to emphasize important 317

features while suppressing irrelevant ones. To com- 318

pute the relevant attribution, we can use either ∂Pq

∂f 319

or ∂Pq

∂g and we choose to use the former since our 320

empirical study shows it can obtain better key neu- 321

rons (see details in the Table A3). Given a query q, 322

instantiation using our templates yields a query set 323

Q = {q1, q2, ..., q|Q|}, and the attribution score of 324

the neuron nl
i can be denoted as: 325

na(nl
i) =

∑|Q|
j=1

f̄ l
i
m

∑m
k=1

∂Pqj (
k
m
f̄ l
i )

∂f l
i

(5) 326

Here, we sum up the scores of different instantiated 327

templates together as the final attribution score. 328

Inverse Cluster Attribution With the attribution 329

score, we can obtain a list of coarse clusters for 330

each query C = {c1, c2, . . . , c|C|)}, where c is a 331

cluster that consists of neurons whose attribution 332

score is higher than some threshold t. The fre- 333

quent appearance of some neurons across queries 334

of different fields reveals that they are not criti- 335

cal neurons to the input query. To decrease their 336

impact, we calculate the inverse cluster attribution: 337

ica(nl
i) = log

|C|
|{c : c ∈ C and nl

i ∈ c}|+ 1
(6) 338
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Common Neurons We observe that some neu-339

rons with a relatively high NA-ICA score are still340

shared across clusters. Through case studies (as341

shown in Table 4), we demonstrate that they ex-342

press commonly used concepts such as option343

letters (“A” and “B”) or stop words (“and” and344

“the”). Therefore, we count the frequency of each345

neuron across clusters. If the frequency is higher346

than the u% of total clusters, we assign the given347

neuron into the common neuron set.348

Key Neurons Given a query, the NA-ICA of a349

neuron can be computed as :350

naica(nl
i) = na(nl

i)× ica(nl
i) (7)351

We select top-v neurons with the highest score from352

the detected cluster and further remove common353

neurons to refine the key neuron set.354

5 Analyzing Detected Key Neurons355

5.1 Dataset Construction356

We construct two datasets to locate knowledge neu-357

rons that cover two different categories: subject358

domains and languages.359

Domain Dataset is derived from360

MMLU (Hendrycks et al., 2020), a multiple-choice361

QA benchmark designed to evaluate models across362

a wide array of subjects with varying difficulty363

levels. The subjects encompass traditional364

disciplines such as mathematics and history, as365

well as specialized fields like law and ethics. In366

our study, we select six high school exam subjects367

from the test set: Biology, Physics, Chemistry,368

Mathematics, Computer Science, and Geography.369

Language Dataset is adapted from Multilingual370

LAMA (Kassner et al., 2021), which is a dataset371

to investigate knowledge in language models in a372

multilingual setting covering 53 languages. We373

select six languages for the birth_place relation:374

Arabic, English, French, Japanese, Russian and375

Chinese.376

To mitigate sensitivity to prompts and option377

orders, each query is instantiated with multiple378

distinct templates (as shown in Table A1), and the379

option orders are shuffled each time. The statistics380

of our datasets are shown in Table 1 and examples381

can be found in Table A2.382

Domain Bio Phy Chem Math CS Geo Total

Num 100 100 100 100 52 100 552

Language Ar En Fr Ja Ru Zh Total

Num 100 100 100 100 100 100 600

Table 1: Statistics of our constructed datasets.

5.2 Baselines 383

We compare our NA-ICA to three other neuron- 384

level baselines1: Random Neurons are randomly 385

selected from FFNs and we make sure they have the 386

same number of neurons of NA-ICA; Kowledge 387

Neurons∗ is adapted from knowledge attribu- 388

tion (Dai et al., 2022) by using multi-choice QA 389

task; NA-ICA w/ Common Neurons is a variant 390

without removing common neurons. 391

5.3 Experimental Settings 392

We mainly study the knowledge neurons in 393

LLaMA-7B (Touvron et al., 2023) and we use the 394

instruction-tuned version so that the model is more 395

responsive to our prompts. LLaMA-7B consists 396

of 32 layers with the FFN hidden dimension of 397

11008. Besides, we also conduct experiments for 398

Mistral-7B (Jiang et al., 2023) to validate whether 399

that our method can obtain consistent findings over 400

different models. Note that our framework can be 401

easily extended to larger-size LLMs. 402

As for the used hyper-parameters, the number 403

of estimation steps was set to m = 16 and the 404

attribution threshold t to 0.2 times the maximum 405

attribution score. The template number was |Q| = 406

3, the frequency u for obtaining common neurons 407

was 30%, and the top-v for select key neurons was 408

20. We ran all experiments on three NVIDIA-V100. 409

It took 120 seconds on average to locate neurons 410

for a query with three prompt templates. 411

5.4 Statistics of Detected Key Neurons 412

Table 3 presents the number of detected key neu- 413

rons for each domain and language, averaging be- 414

tween 12 and 17 neurons. Figure 2a illustrates 415

the overlap rates among different domains and lan- 416

guages. It is evident that domains exhibit higher 417

overlap rates compared to languages, reflecting 418

interconnected and interdisciplinary nature. For 419

instance, the overlap rate between biology and ge- 420

ography is 0.49, attributable to fields like biogeog- 421

raphy, which examines the distribution of species 422

1We do not compare to ROME (Meng et al., 2022a) since
it locates layers instead of neurons
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biology
physics

chemistry

mathematics

computer_sc
ience

geography

biology

physics

chemistry

mathematics

computer_science

geography

1.00 0.41 0.47 0.37 0.37 0.49

0.41 1.00 0.45 0.40 0.38 0.38

0.47 0.45 1.00 0.42 0.39 0.43

0.37 0.40 0.42 1.00 0.35 0.34

0.37 0.38 0.39 0.35 1.00 0.37

0.49 0.38 0.43 0.34 0.37 1.00

Domain

en fr zh ja ar ru

en

fr

zh

ja

ar

ru

1.00 0.06 0.05 0.02 0.03 0.03

0.06 1.00 0.06 0.03 0.06 0.10

0.05 0.06 1.00 0.09 0.03 0.04

0.02 0.03 0.09 1.00 0.01 0.02

0.03 0.06 0.03 0.01 1.00 0.05

0.03 0.10 0.04 0.02 0.05 1.00

Language
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Figure 2: Overlap rates and distributions of found key neurons.
Domain Language

Boost Suppress Boost Suppress

Model ⇑ Related ⇑ Unrelated Ratio ⇓ Related ⇓ Unrelated Ratio ⇑ Related ⇑ Unrelated Ratio ⇓ Related ⇓ Unrelated Ratio

Random Neurons -0.03 -0.03 1.0 +0.06 +0.11 0.55 +0.08 +0.04 2.0 -0.01 -0.01 1.0
Knowledge Neurons∗ (2022) +932.05 +921.84 1.0 -85.70 -85.34 1.0 +1081.33 +161.98 6.7 -86.74 -48.18 1.8

NA-ICA w/ Common Neurons +919.03 +328.49 2.8 -59.34 -33.59 1.8 +606.54 +54.84 10.4 -71.45 -8.40 8.5
NA-ICA +77.23 +17.55 4.4 -27.65 -4.95 5.6 +218.03 +5.20 41.9 -54.64 +3.71 15.2

Table 2: Average probability percentage changes of the correct answers by boosting (⇑) or suppressing (⇓)
the key neurons. The Ratio metric is calculated by |Related|

|Unrelated| , and a bigger value shows a higher impact of the
detected neurons. The LLM here is LLaMA-7B (Touvron et al., 2023)

Domain Bio Phy Chem Math CS Geo Avg

Num 13.1 13.3 12.8 11.1 14.3 12.7 12.9

Language Ar En Fr Ja Ru Zh Avg

Num 12.4 14.4 12.7 16.6 15.8 15.0 14.5

Table 3: Average number of key neurons.

and ecosystems in geographic space. Regarding423

layer distribution, the key neurons are predomi-424

nantly located in the middle layers (15-18) and the425

top layers (around 30), as depicted in Figure 2b.426

5.5 Key Neurons Can Impact the Prediction427

To validate the impact of our identified key neu-428

rons, we replicate the experiments by Dai et al.429

(2022), updating the values of key neurons using430

two methods: given a query and the value of f̄ l
i , we431

either (1) boost the key neurons by doubling the432

value f l
i = 2× f̄ l

i ; or (2) suppress the key neuron433

by making f l
i = 0. For each query, we record the434

percentage change in the probability of the correct435

answer, thereby assessing the extent to which the436

key neurons influence the predictions of LLMs. We437

compare our NA-ICA approach to other baseline438

methods and include a control group to determine439

whether the same key neurons affect the predictions440

of randomly selected queries from unrelated fields441

(Unrelated).442

Table 2 presents the overall performance of443

various methods. Our NA-ICA method consis- 444

tently outperforms other baselines, evidenced by 445

its higher impact ratio. This indicates that our iden- 446

tified key neurons significantly affect the probabil- 447

ity of correct answers while exerting a relatively 448

low impact on unrelated queries. For instance, our 449

method achieves a boosting ratio of 41.9 on the 450

language dataset, the highest among the baselines. 451

Additionally, common neurons affect both related 452

and unrelated queries, and their removal results in 453

clear performance improvements. 454

Furthermore, Figure 3 illustrates the percentage 455

change in probability for each domain and lan- 456

guage. Again, we can clearly observe the effec- 457

tiveness of our detected key neurons. Addition- 458

ally, we performed supplementary experiments on 459

Mistral-7B. The results, presented in Figure A2, 460

consistently support our conclusions. 461

5.6 Are There Localized Regions in LLMs? 462

Given our ability to identify key neurons for each 463

query, it is intriguing to explore whether LLMs ex- 464

hibit localized regions for each domain or language, 465

analogous to the functional localizations in the hu- 466

man brain (Brett et al., 2002). To investigate this, 467

we visualize domain- or language-specific neurons 468

on a 2D geographical heatmap. The width of the 469

heatmap corresponds to the dimension of FFNs 470

in LLaMA-7B (11008), and the length represents 471
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Figure 3: The correct probability percentage change across different domains and languages. The LLM here is
LLaMA-7B (Touvron et al., 2023)
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Figure 4: Geographical heatmap of detected key neurons for different domains and languages. The value is
calculated by our naica(nl

i). The LLM here is LLaMA-7B (11008 × 32) (Touvron et al., 2023)

the layer depth (32). We accumulate the value of472

naica(nl
i) to populate the heatmap. Figure 4 dis-473

plays the geographical locations of key neurons474

in LLaMA-7B across various academic domains475

and languages. The distribution of key neurons ap-476

pears sparse but with distinct regions, particularly477

for different domains. Notably, certain regions are478

visible in the middle layers (10-15), suggesting spe-479

cific neuron patterns. In contrast, language neurons480

are more sparsely distributed with smaller regions,481

and languages like Arabic and Russian exhibit less482

localized properties. Apart from visualizing the ge-483

ographical location of key neurons, we also analyze484

the semantic location using their associated vector485

values in WD. Our findings suggest that there are486

no apparent clusters across different domains, as487

these values likely represent intermediate states in a 488

subspace distinct from the one used for final token 489

prediction. Future work should consider new ways 490

to map neurons to more discriminative semantic 491

spaces. The details are provided in Appendix A. 492

5.7 The Function of Common Neurons 493

To gain insights into the function of common 494

neurons, we also visualize their locations within 495

LLaMA-7B. Figure 5 shows the common neurons 496

for the domain and language dataset. We can ob- 497

serve that they tend to appear at the top layer. To 498

further understand their meanings, we project the 499

matrix WD in Equation 1 to the vocabulary space 500

and select the top-k tokens with the highest prob- 501

ability. Table 4 lists the predicted tokens, which 502
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Figure 5: The distribution of common neurons.

Neuron Top-k tokens

n31
2725 _in, _and, _to, _for, _today, _at, _as

n31
10676 _July, _June, _March, _April, _November

n30
10075 ., _, (, :, ), [, -
n31
5202 _respectively, _while, _and, _initially

n31
5778 _C, C, _c, c, ’_ced’

n31
7670 _B, B, _Bill, _Bh, ’_Bureau’

Table 4: Tokens predicted by the common neurons.

include common words, punctuation marks, and503

option letters. These findings reinforce the notion504

that common neurons are not critical for specific505

queries.506

6 Potential Applications507

We provide two usage examples to showcase the508

potential applications of our detected key neurons:509

Knowledge Editing and Neuron-Based Prediction.510

6.1 Knowledge Editing511

We adjust the values of key neurons by either boost-512

ing or suppressing them to determine if we can513

change the prediction of a query from incorrect514

to correct or vice versa. Table 5 presents the515

success rates of knowledge editing on our con-516

structed language datasets. Our observations indi-517

cate that NA-ICA achieves higher success rates on518

related queries and lower rates on unrelated queries,519

demonstrating that our method outperforms other520

baselines. In contrast, the baseline of knowledge521

neurons cannot significantly differentiate related522

and unrelated queries.523

6.2 Neuron-Based Prediction524

In our second case study, we test whether the cor-525

rect answers to domain-specific questions can be526

predicted solely based on the activity of the as-527

sociated domain-specific neurons. To this end,528

we make predictions on multiple-choice questions529

by selecting the option with the overall highest530

gradient to the key neurons for the given do-531

main. We experiment on a specifically constructed532

Boost Suppress

Model ⇑ Related ⇑ Unrelated ⇓ Related ⇓ Unrelated

Random Neurons 0.37 0.10 0.54 0.27
Knowledge Neurons (2022) 14.73 11.76 16.19 14.78

Ours 10.06 1.78 20.14 1.60

Table 5: Successful rates of knowledge editing.

Model Biology (Acc.) Chemistry (Acc.) Geography (Acc.)

Random guess 0.25 0.25 0.25
Prompt-based model pred. 0.96 0.71 0.89

Neuron-based pred. 0.96 0.67 0.89

Table 6: Accuracy of neuron-based prediction on
selected domains in comparison with the standard
prompt-based model prediction. The LLM here is
LLaMA-7B.

MMLU (Hendrycks et al., 2020) validation set with 533

a different set of questions than those used to de- 534

termine the key domain neurons (see Appendix 535

B for details on our experimental strategy). The 536

results are summarised in Table 6. We observe 537

that the accuracy of the neuron-based predictions 538

is very close to the accuracy of the prompt-based 539

method of using the entire model (the used tem- 540

plates are shown in Table A1). This suggests that 541

the activity of identified neurons can be indicative 542

of the model’s performance on a given task. In- 543

vestigating how this finding could be leveraged in 544

applications like fact-checking and hallucination 545

detection presents a promising line of future work. 546

7 Conclusion 547

In this study, we introduce a novel framework, NA- 548

ICA, for identifying key neurons in contemporary 549

autoregressive language models, such as LLaMA 550

and Mistral. NA-ICA leverages a multi-choice QA 551

proxy task to address the complexity of long-form 552

answers, extending beyond simple factual entities. 553

Meanwhile, it adopts strategies of inverse cluster 554

attribution and common neuron removal to refine 555

key neurons. To validate our approach, we curated 556

two datasets encompassing diverse domains and 557

languages. Our experimental results show that NA- 558

ICA outperforms existing baselines in identifying 559

query-relevant neurons. Additionally, this study 560

pioneers the exploration of localized knowledge 561

regions in LLMs and demonstrates the potential 562

usages of identified key neurons in applications 563

such as knowledge editing and neuron-based pre- 564

diction. We hope that our findings are beneficial for 565

further research in understanding the knowledge 566

mechanisms underlying LLMs. 567
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Limitations568

In our study, we employ a multi-choice QA proxy569

task to investigate the long-form knowledge stored570

in LLMs. Although our framework can effectively571

detect key neurons, future research needs to address572

the challenge of authentic open-ended generation,573

which remains a significant area for development.574

Additionally, despite our efforts to eliminate com-575

mon neurons, some neurons within the identified576

key neuron set still correspond to option letters.577

This indicates that our current method requires fur-578

ther refinement to remove these spurious key neu-579

rons. Moreover, the language dataset used in our580

study is limited to the Birth_place relation. To581

gain a more comprehensive understanding of mul-582

tilingual knowledge in LLMs, future work should583

include a broader range of relations. This expan-584

sion will enable a more thorough investigation into585

the diverse types of knowledge encoded in these586

models across different languages.587
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A Latent Value Analysis798

As previously found by (Geva et al., 2021), trans-799

former feed-forward layers can be viewed as key-800

value memory units, with hidden activations acting801

as coefficients for the individual memories stored802

in WD. Thus, a natural question to explore is what803

are the properties of the memory cells associated804

with the key neurons for the different domains and805

if they are clustered in the corresponding semantic806

space.807

As a first step in our analysis, we visualise808

the WD vectors associated with the knowledge809

neurons from the different domains using UMAP810

(McInnes et al., 2018) for dimensionality reduction811

(with cosine similarity used as the distance metric).812

For comparison, we additionally include the vec-813

tors from the unembedding matrix. The results are814

shown in Figure A1. As can be seen from the fig-815

ure, the distribution of the vectors associated with816

key knowledge neurons appears to be significantly817

different from that of vector unembeddings. Thus,818

it appears that the contents of the internal memory819

cells used by LLaMA 2 are not directly aligned820

with the candidate output tokens.821

Since the 2D visualisation produced by UMAP822

might not accurately reflect the true properties of823

the data manifold, we additionally examined the824

highest-likelihood tokens for the key domain neu-825

ron memory cells. These were computed by di-826

rectly applying the Llama 2 unembedding layer to827

the vectors stored in these cells. We found the re-828

sulting tokens rather uninterpretable, including to-829

kens like textt, archivi, _Kontrola, _totalité830

or _Einzeln. Upon closer investigation, we found831

these to be closely matching the set of unembed-832

ding vectors with the largest vector norms (which833

we would expect to generally receive higher like-834

lihoods when multiplied with vectors not aligned835

with any of the unembeddings). This seems to 836

further support a conjecture that the memory cell 837

vectors associated with the located domain-specific 838

neurons might capture intermediate data in a sub- 839

space different from the one used for the final token 840

prediction. Apart from the above tokens, we also 841

found option letters A, B, C and D to be represented 842

in the highest-likelihood tokens. This suggests that 843

some neurons within the identified key neuron set 844

may still correspond to option letters, as mentioned 845

in the Limitations section. 846

We leave further investigation and confirmation 847

of these findings for future work. 848

B Neuron-Based Prediction Details 849

In the neuron-based prediction case study, we ex- 850

periment on the MMLU (Hendrycks et al., 2020) 851

validation set to ensure there is no overlap between 852

the dataset used to mine the key neurons and the 853

test set. Thus, the considered domain neurons were 854

determined based on queries not used for this ex- 855

periment. As a further post-processing step, we 856

randomly select three options from other domains 857

to replace the incorrect options in each query. Ad- 858

ditionally, we manually remove questions that be- 859

come invalid due to this post-processing, including 860

queries such as “Which of the following is LEAST 861

valid?” and “All of the following statements are 862

true EXCEPT”. These operations result in ∼20 863

test samples per domain. To perform the neuron- 864

based prediction, we compute the gradient of the 865

probability of each option token with respect to 866

the key neurons for the domain of the considered 867

query, and select the option with the highest total 868

gradient. 869
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Figure A1: UMAP visualisation of WD vectors associated with the knowledge neurons and the token unembeddings
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Figure A2: The correct probability percentage change across different domains. The LLM here is Mistral-7B (Jiang
et al., 2023)
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Figure A3: A comparison study of using ∂Pq

∂g to compute NA-ICA scores. The LLM here is LLaMA-7B (Touvron
et al., 2023).

12



Num Template

Domain Prompt 1 You will be asked a multiple-choice question. Respond with the letter which corresponds to the
correct answer, followed by a period. There is no need to provide an explanation, so your response
should be very short.\nNow here is the question:\n{Question}\n A. {A}\n B. {B}\n C. {C}\n D.
{D}\nResponse:

Domain Prompt 2 Prepare to answer a multiple-choice question. Provide the letter that corresponds to the correct
answer, followed by a period. Keep your response brief; no explanations are necessary.\nHere is the
question:\n{Question}\n A. {A}\n B. {B}\n C. {C}\n D. {D}\nResponse:

Domain Prompt 3 Below is a multiple-choice question. Respond with the letter that best answers the question. Keep
your response brief, stating only the letter corresponding to your answer, followed by a period, with
no explanation.\nThe question is:\n{Question}\n A. {A}\n B. {B}\n C. {C}\n D. {D}\nResponse:

Language Prompt 1 You will be asked a multiple-choice question. Respond with the letter which corresponds to the
correct answer, followed by a period. There is no need to provide an explanation, so your response
should be very short. \nNow here is the question:\n{Question} \nHere the [Y] is most likely to be?
\n A. {A}\n B. {B}\n C. {C}\n D. {D}\nResponse:

Language Prompt 2 Prepare to answer a multiple-choice question. Provide the letter that corresponds to the correct
answer, followed by a period. Keep your response brief; no explanations are necessary. \nNow here
is the question:\n{Question} \nHere the [Y] is most likely to be? \n A. {A}\n B. {B}\n C. {C}\n D.
{D}\nResponse:

Language Prompt 3 Below is a multiple-choice question. Respond with the letter that best answers the question. Keep
your response brief, stating only the letter corresponding to your answer, followed by a period, with
no explanation. \nNow here is the question:\n{Question} \nHere the [Y] is most likely to be? \n A.
{A}\n B. {B}\n C. {C}\n D. {D}\nResponse:

Table A1: Prompt templates for constructing multi-choice QA datasets. We use ChatGPT to translate English
templates to other languages.

Field Question Options

Biology The energy given up by electrons as they move through the electron transport chain is used to?

A. make glucose
B. make NADH
C. produce ATP

D. break down glucose

Physics An object is placed 100 cm from a plane mirror. How far is the image from the object?

A. 50 cm
B. 200 cm
C. 100 cm
D. 300 cm

Chemistry Three half-lives after an isotope is prepared:

A. 12.5% of the isotope decayed
B. 25% of the isotope decayed

C. 25% of the isotope is left
D. 12.5% of the isotope is left

Mathematics Suppose the graph of f is both increasing and concave up on a <= x <= b. Then, using the same
number of subdivisions, and with L, R, M, and T denoting, respectively, left, right, midpoint, and
trapezoid sums, it follows that:

A. R <= T <= M <= L
B. L <= M <= T <= R
C. R <= M <= T <= L
D. L <= T <= M <= R

Computer Science A programmer is writing a program that is intended to be able to process large amounts of data.
Which of the following considerations is LEAST likely to affect the ability of the program to
process larger data sets?

A. How long the program takes to run
B. How many programming statements the program contains
C. How much storage space the program requires as it runs

D. How much memory the program requires as it runs

Geography The tendency for migration to decrease with distance is called?

A. push factors.
B. migration selectivity.

C. distance decay.
D. pull factors.

English Sergey Lavrov was born in [Y]. Here the [Y] is most likely to be?

A. Montevideo
B. Bengaluru

C. Parsons
D. Moscow

Table A2: Examples in our constructed datasets. For the language dataset, we only show one English example as
multilingual samples are obtained bu using traslator (Kassner et al., 2021)

13


	Introduction
	Related Work
	Locating Knowledge in LLMs
	Analyzing Knowledge Distribution in LLMs

	Background
	Locating Key Neurons in Autoregressive LLMs
	Multi-Choice QA Transformation
	Neuron Attribution-Inverse Cluster Attribution

	Analyzing Detected Key Neurons
	Dataset Construction
	Baselines
	Experimental Settings
	Statistics of Detected Key Neurons
	Key Neurons Can Impact the Prediction
	Are There Localized Regions in LLMs?
	The Function of Common Neurons

	Potential Applications
	Knowledge Editing
	Neuron-Based Prediction

	Conclusion
	Latent Value Analysis
	Neuron-Based Prediction Details

