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Abstract

Large Language Models (LLMs) possess vast
amounts of knowledge within their parame-
ters, prompting research into methods for lo-
cating and editing this knowledge. Previous
investigations have primarily focused on fill-
in-the-blank tasks and locating entity-related
(usually single-token facts) information in rela-
tively small-scale language models. However,
several key questions remain unanswered: (1)
How can we effectively locate query-relevant
neurons in contemporary autoregressive LLMs,
such as LLaMA and Mistral? (2) How can
we address the challenge of long-form text gen-
eration? (3) Are there localized knowledge
regions in LLMs? In this study, we introduce
Neuron Attribution-Inverse Cluster Attribution
(NA-ICA), a novel architecture-agnostic frame-
work capable of identifying key neurons in
LLMs. NA-ICA allows for the examination
of long-form answers beyond single tokens by
employing the proxy task of multi-choice ques-
tion answering. To evaluate the effectiveness
of our detected key neurons, we construct two
multi-choice QA datasets spanning diverse do-
mains and languages. Empirical evaluations
demonstrate that NA-ICA outperforms base-
line methods significantly. Moreover, analysis
of neuron distributions reveals the presence of
visible localized regions, particularly within
different domains. Finally, we demonstrate the
potential applications of our detected key neu-
rons in knowledge editing and neuron-based
prediction.

1 Introduction

Large Language Models (LLMs) contain substan-
tial amounts of knowledge within their parameters.
Existing research endeavors to locate and edit this
knowledge through gradient-based methods (Dai
et al., 2022) or causality-based methods (Meng
et al., 2022a). These methods typically employ
fill-in-the-blank tasks, such as “Paris is the
capital of ”_ to ascertain the correlation

between the query and neurons or layers in the
Feed-forward Networks (FFNs) of BERT (Kenton
and Toutanova, 2019) and GPT (Radford et al.).
Another branch of pioneering research attempts to
locate functional regions in small-size language
models such as BERT and GPT-small, including
linguistic regions (Zhang et al., 2024b), factual sub-
networks (Ren and Zhu, 2022; Bayazit et al., 2023),
and modular structures (Zhang et al., 2023; Conmy
et al., 2023).

While these studies successfully analyze the in-
ternal reasoning behaviors of LLMs, three signif-
icant questions remain underexplored: (1) How
can we effectively locate query-relevant neurons
in contemporary autoregressive LLMs, such as
LLaMA (Touvron et al., 2023) and Mistral (Jiang
et al., 2023), given that their FFNs architectures dif-
fer from those of BERT and GPT? (2) How can we
address the challenge of long-form text generation,
as previous methods have been limited to single-
token entity facts? (3) Are there localized knowl-
edge regions in LLMs analogous to the localized
functional regions observed in human brains (Brett
et al., 2002)?

To address the first two questions, we introduce
a novel framework named Neuron Attribution-
Inverse Cluster Attribution (NA-ICA) designed
to identify key neurons in LLMs. The principal
advantages of NA-ICA are its architecture-agnostic
nature and its capability of handling long-form text
generation effectively. The overall structure of the
framework is depicted in Figure 1. NA-ICA draws
inspiration from the TF-IDF keyword extraction
method (Salton, 1983), aiming to extract signifi-
cant neurons for each input query. The process be-
gins by transforming an open-ended generation task
into a multiple-choice question-answering format.
By employing prompt engineering, we constrain
LLMs to generate only the option letter rather than
the complete answer. This approach allows for the
examination of long-form generation beyond sin-
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Figure 1: The overall framework of our Attribution-Inverse Cluster Attribution (NA-ICA) which aims to detect
query-related key neurons. Neurons with solid lines mean key neurons while dashed ones mean common neurons

that are shared across different queries.

gle tokens and extends previous methodologies to
autoregressive LLMs. Subsequently, we adapt the
Knowledge Attribution method (Dai et al., 2022) to
compute Neuron Attribution, which elucidates the
relationship between neurons and the input query.
We then gather clusters for a series of queries and
calculate the Inverse Cluster Attribution. This step
mitigates the influence of neurons that recur across
clusters (or queries). The final step involves mul-
tiplying the neuron attribution and inverse cluster
attribution values to pinpoint key neurons. Addi-
tionally, we identify certain Common Neurons that
are associated with common words, punctuation
marks, and option letters. Excluding these common
neurons enhances the detection of key neurons. Em-
pirical evaluations demonstrate that our proposed
method outperforms baseline approaches.

To investigate the existence of localised knowl-
edge regions, we construct two multi-choice QA
datasets encompassing various domains and lan-
guages. Then, we visualize the geographical lo-
cations of the detected key neurons in LLaMA.
Our findings indicate that distinct localized re-
gions emerge in the middle layers, particularly
for domain-specific neurons. Language neurons
are more sparse but show a certain degree of re-
gionality. Additionally, we observed that common
neurons are concentrated in the top layer, predomi-
nantly expressing frequently used tokens.

In summary, our main contributions are four-
fold: (1) A scalable method: we propose NA-ICA
to detect key neurons in LLMs; NA-ICA method is
architecture-agnostic and can deal with long-form
generations. (2) Two new datasets: we curate
two multi-choice QA datasets that contain different
types of knowledge, namely Domain Knowledge

and Language knowledge. (3) In-depth studies:
we are the first to show that there are visible lo-
calized regions in LLaMA. (4) Potential applica-
tions: we show that NA-ICA might be useful for
knowledge editing and neuron-based prediction.

2 Related Work

2.1 Locating Knowledge in LLMs

LLMs contain extensive knowledge within their
parameters, encompassing factual (Petroni et al.,
2019; Zhou et al., 2020; Jiang et al., 2020; Roberts
et al., 2020; Pezeshkpour, 2023), linguistic (Liu
et al., 2019; Jawahar et al., 2019; Chen et al., 2023)
and domain-specific knowledge (Sung et al., 2021;
Frieder et al., 2024). Despite this, the mechanisms
and locations of knowledge storage within these
models remain unclear. Recent mechanistic studies
suggest that knowledge is primarily stored in the
FFNs (Feed-forward Networks) layers of Trans-
formers (Geva et al., 2021, 2022). Ongoing re-
search is focused on developing methods to pre-
cisely identify and locate this knowledge within the
FFNs layers. Given an input, gradient-based meth-
ods (Ancona et al., 2019; Dai et al., 2022) quantify
the sensitivity of model outputs to internal model
components, identifying relevant neurons. How-
ever, these studies focus exclusively on traditional
neural architectures and encoder-only models like
BERT, leaving decoder-only models such as GPT
and LLaMA underexplored. Causality-based meth-
ods employ causal mediation analysis to discern
the particular layers associated with a given factual
input (Meng et al., 2022a). Subsequent research
adopts the locate-and-edit paradigm to refine the
knowledge within LLMs (Meng et al., 2022b; Ju
and Zhang, 2023; Zhang et al., 2024a).



While previous approaches have effectively iden-
tified specific information in LLMs, they com-
monly rely on the fill-in-the-blank cloze task to
evaluate the factual capabilities of language mod-
els. For instance, they use a prompt query like
“Paris is the capital of ___” to locate
weights associated with the France entity. How-
ever, this methodology has limited applicability,
as language models exhibit the capacity to gen-
erate long-form and open-ended responses to di-
verse queries. In contrast to prior methodologies,
our approach leverages the proxy task of multiple-
choice QA for knowledge localization. This al-
ternative strategy renders the localization process
architecture-agnostic and facilitates the handling
of long-form content generation.

2.2 Analyzing Knowledge Distribution in
LLMs

Given the human-like reasoning capabilities ob-
served in LLMs across various tasks (Zhao et al.,
2023), and since our brain contains functional
locations associated with distinct cognitive pro-
cesses (Brett et al., 2002; Bjaalie, 2002; Gholipour
et al., 2007), we ask whether there are similar
regions in LLMs. Previous investigations have
explored the behaviors of individual neurons in-
dicating that a neuron can encode multiple con-
cepts (Bolukbasi et al., 2021) while a concept can
also be distributed across multiple neurons (Dalvi
et al., 2019; Durrani et al., 2020; Chen et al., 2024).
Subsequent endeavors have sought to identify func-
tional regions in LLMs, encompassing linguis-
tic regions (Zhang et al., 2024b), factual subnet-
works (Ren and Zhu, 2022; Bayazit et al., 2023),
and modular structures (Zhang et al., 2023; Conmy
et al., 2023). These studies have systematically
investigated localized behaviors in smaller-scale
language models, such as BERT and GPT-small.
Building upon these foundations, our research em-
barks on the examination of knowledge locations
in larger-size LLMs, specifically those with 7B pa-
rameters, spanning multiple knowledge domains.

3 Background

Feed-forward Networks in LLMs Feed-
forward networks (FFNs) are widely used by
transformer-based language models. Geva et al.
(2021) reveal that FFNs emulate key-value
memories and their outputs are responsible for
refining the final output distribution over the

vocabulary. Although traditional two-layer FFNs
in BERT (Kenton and Toutanova, 2019) and
GPT-2 (Radford et al.) have been studied well,
the behaviors of FFNs in modern LLMs such as
LLaMA (Touvron et al., 2023), Mistral (Jiang
et al., 2023), and Gemma (Team et al., 2024)
are not well-explored. These LLMs adopt Gated
Linear Units (GLUs) (Dauphin et al., 2017) in their
FFNs, which can be formulated as follows:

FFN(X) = (XWY o SILU(XW) WP (1)
Here, X € R™ 9 is the input sequence, n is
the number of tokens and d is the dimension of
input vectors; WU ¢ R¥*m WG ¢ Réxm
WP € R™*4 are parameter matrices and © is the
Hadamard product; finally SiLU (Elfwing et al.,
2018) is the activation function.

Knowledge Neurons Dai et al. (2022) propose a
gradient-based Knowledge Attribution to identify
the knowledge neurons in BERT by using the fill-
in-the-blank cloze task. Their method evaluates
the contribution of each neuron in FFNs to the
knowledge predictions. Given a prompt g “Paris
”_ the probability of the
correct answer predicted by a language model can
be formulated as:

Py ()

()

= p(y*|z, wl = @) )

where y* is the correct answer (France); wé de-
notes the i-th intermediate neuron in the /-th layer
in FENSs; wﬁ is a constant we assign to wﬁ.

In order to measure the attribution score (or con-
tribution) of a neuron, they gradually change the
w! from 0 to its original value computed during the
forward pass through the LLM and integrate the
gradients (Sundararajan et al., 2017):

L op,(aw!
Attr(w!) = @ / Mda 3)
a=0 8211
0Py (aw )
where ol is the gradient with regard to w .

Attr(-) accumulates the output probability change
as « gradually varies from O to 1. The attribution
measures the contribution of the neuron wé to the
correct answer. In practice, the score is estimated
by using Riemann Approximation:
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where m is the number of the estimation steps.
Finally, they identify a coarse set of knowledge
neurons whose attribution scores are greater than a
threshold ¢.

4 Locating Key Neurons in
Autoregressive LLMs

While Knowledge Attribution (Dai et al., 2022)
effectively identifies neurons linked to factual
queries, its applicability is limited to Encoder-only
architectures, and it mandates the output to be
a single-token word. In response to these con-
straints, we propose a simple yet effective pipeline
named Attribution-Inverse Cluster Attribution
(NA-ICA), which is architecture-agnostic and capa-
ble of handling long-form generation. The overall
framework is shown in Figure 1. NA-IQA first re-
sorts to the proxy task of multi-choice QA to deal
with long-form answers. Subsequently, the frame-
work extracts key neurons for each query using our
designed NA-ICA score.

4.1 Multi-Choice QA Transformation

Given the biological question “The energy given
up by electrons as they move through the electron
transport chain is used to?”, the correct answer can
be the long-form text “produce ATP”. To deal with
long-form answers, we advocate for the transforma-
tion of questions and their corresponding answers
into a multiple-choice framework, as illustrated
in Figure 1. This approach involves the genera-
tion of incorrect options by randomly sampling an-
swers within the same domain. Following this, the
LLM is prompted to produce only the option letter.
Subsequently, we investigate the key knowledge
neurons correlated with the input query. To miti-
gate the impact of randomness, we devise multiple
prompt templates and systematically shuffle the or-
der of options to prevent the model from learning
spurious correlations based on option letters. These
prompt templates are detailed in Table Al.

4.2 Neuron Attribution-Inverse Cluster
Attribution

In our pursuit of locating neurons associated with
specific queries, we compute the score of NA-
ICA for each neuron, drawing inspiration from
the principles of TF-IDF (Salton, 1983) for key-
word extraction. Beginning with a given query,
NA-ICA employs neuron attribution to derive a
coarse group key neurons, termed as clusters. Each

neuron within this cluster is assigned an attribu-
tion score indicative of its relevance to the query,
akin to the computation of term frequency. Given
our objective of identifying critical neurons closely
correlated with their respective queries, we use in-
verse cluster attribution to filter out neurons shared
across different clusters (or queries). Finally, we
find some neurons appear across multiple clusters,
embodying common knowledge or sense, which
we denote as Common Neurons. Further refinement
of key neuron extraction involves the exclusion of
these common neurons, which can enhance the
precision of identifying critical neural correlates.

Neuron Attribution To extend our methodol-
ogy to Gated Linear Units (GLUs), which com-
prise two linear transformations followed by a gat-
ing mechanism, we adapt the Knowledge Attribu-
tion approach (Eq 5). In GLUs, the linear trans-
formations involve computing a linear combina-
tion of input features, denoted by f = XWVU.
Additionally, the gating mechanism, represented
by g = SILU(XWY), determines the extent to
which each input component should be forwarded,
thereby enabling the model to emphasize important
features while suppressing irrelevant ones. To com-

pute the relevant attribution, we can use either %—}jf

or %—Zq and we choose to use the former since our
empirical study shows it can obtain better key neu-
rons (see details in the Table A3). Given a query g,
instantiation using our templates yields a query set
Q = {q1, 9, -, g} and the attribution score of
the neuron ni can be denoted as:

l Q| ff OPq; (5 1)
na(m) = )2 BL A O)

Here, we sum up the scores of different instantiated
templates together as the final attribution score.

Inverse Cluster Attribution With the attribution
score, we can obtain a list of coarse clusters for
each query C = {c1,c¢,...,¢p|)}, where c is a
cluster that consists of neurons whose attribution
score is higher than some threshold ¢. The fre-
quent appearance of some neurons across queries
of different fields reveals that they are not criti-
cal neurons to the input query. To decrease their
impact, we calculate the inverse cluster attribution:

€]
[{c:ceCandnl €} +1

(6)

ica(nl) = log



Common Neurons We observe that some neu-
rons with a relatively high NA-ICA score are still
shared across clusters. Through case studies (as
shown in Table 4), we demonstrate that they ex-
press commonly used concepts such as option
letters (“A” and “B”) or stop words (“and” and
“the”). Therefore, we count the frequency of each
neuron across clusters. If the frequency is higher
than the u% of total clusters, we assign the given
neuron into the common neuron set.

Key Neurons Given a query, the NA-ICA of a
neuron can be computed as :

l

by =na(nl) x ica(n!) (7)

naica(n i i
We select top-v neurons with the highest score from
the detected cluster and further remove common
neurons to refine the key neuron set.

5 Analyzing Detected Key Neurons

5.1 Dataset Construction

We construct two datasets to locate knowledge neu-
rons that cover two different categories: subject
domains and languages.

Domain Dataset is derived from
MMLU (Hendrycks et al., 2020), a multiple-choice
QA benchmark designed to evaluate models across
a wide array of subjects with varying difficulty
levels.  The subjects encompass traditional
disciplines such as mathematics and history, as
well as specialized fields like law and ethics. In
our study, we select six high school exam subjects
from the test set: Biology, Physics, Chemistry,
Mathematics, Computer Science, and Geography.

Language Dataset is adapted from Multilingual
LAMA (Kassner et al., 2021), which is a dataset
to investigate knowledge in language models in a
multilingual setting covering 53 languages. We
select six languages for the birth_place relation:
Arabic, English, French, Japanese, Russian and
Chinese.

To mitigate sensitivity to prompts and option
orders, each query is instantiated with multiple
distinct templates (as shown in Table A1), and the
option orders are shuffled each time. The statistics
of our datasets are shown in Table 1 and examples
can be found in Table A2.

Domain | Bio | Phy | Chem | Math | CS | Geo | Total
1100|100 | 100 | 100 | 52 | 100 | 552
Language | Ar | En | Fr | Ja | Ru | Zh | Total
100|100 | 100 | 100 | 100 | 100 | 600

Num

Num

Table 1: Statistics of our constructed datasets.

5.2 Baselines

We compare our NA-ICA to three other neuron-
level baselines': Random Neurons are randomly
selected from FFNs and we make sure they have the
same number of neurons of NA-ICA; Kowledge
Neurons® is adapted from knowledge attribu-
tion (Dai et al., 2022) by using multi-choice QA
task; NA-ICA w/ Common Neurons is a variant
without removing common neurons.

5.3 Experimental Settings

We mainly study the knowledge neurons in
LLaMA-7B (Touvron et al., 2023) and we use the
instruction-tuned version so that the model is more
responsive to our prompts. LLaMA-7B consists
of 32 layers with the FFN hidden dimension of
11008. Besides, we also conduct experiments for
Mistral-7B (Jiang et al., 2023) to validate whether
that our method can obtain consistent findings over
different models. Note that our framework can be
easily extended to larger-size LLMs.

As for the used hyper-parameters, the number
of estimation steps was set to m = 16 and the
attribution threshold ¢ to 0.2 times the maximum
attribution score. The template number was |Q| =
3, the frequency u for obtaining common neurons
was 30%, and the top-v for select key neurons was
20. We ran all experiments on three NVIDIA-V100.
It took 120 seconds on average to locate neurons
for a query with three prompt templates.

5.4 Statistics of Detected Key Neurons

Table 3 presents the number of detected key neu-
rons for each domain and language, averaging be-
tween 12 and 17 neurons. Figure 2a illustrates
the overlap rates among different domains and lan-
guages. It is evident that domains exhibit higher
overlap rates compared to languages, reflecting
interconnected and interdisciplinary nature. For
instance, the overlap rate between biology and ge-
ography is 0.49, attributable to fields like biogeog-
raphy, which examines the distribution of species

'We do not compare to ROME (Meng et al., 2022a) since
it locates layers instead of neurons
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Figure 2: Overlap rates and distributions of found key neurons.

| Domain

| Language

| Boost |

Suppress |

Boost | Suppress

Model

| frRelated At Unrelated  Ratio | | Related | Unrelated

Ratio | 1t Related 1 Unrelated Ratio | { Related | Unrelated ~Ratio

Random Neurons -0.03 -0.03 1.0 +0.06 +0.11 0.55 +0.08 +0.04 2.0 -0.01 -0.01 1.0
Knowledge Neurons™* (2022) +932.05 +921.84 1.0 -85.70 -85.34 1.0 +1081.33 +161.98 6.7 -86.74 -48.18 1.8
NA-ICA w/ Common Neurons +919.03 +328.49 2.8 -59.34 -33.59 1.8 +606.54 +54.84 10.4 -71.45 -8.40 8.5

NA-ICA +77.23 +17.55 4.4 -27.65 -4.95 5.6 +218.03 +5.20 41.9 -54.64 +3.71 15.2

Table 2: Average probability percentage changes of the correct answers by boosting (f}) or suppressing ({})

the key neurons. The Ratio metric is calculated by i

|Related|
Unrelated| ’

and a bigger value shows a higher impact of the

detected neurons. The LLM here is LLaMA-7B (Touvron et al., 2023)

Domain | Bio | Phy | Chem | Math | CS | Geo | Avg
|13.1[13.3 | 128 | 111 | 143]12.7 ] 12.9
Language | Ar | En | Fr | Ja | Ru | Zh | Avg
| 124144 127 | 166 | 158 15.0] 14.5

Num

Num

Table 3: Average number of key neurons.

and ecosystems in geographic space. Regarding
layer distribution, the key neurons are predomi-
nantly located in the middle layers (15-18) and the
top layers (around 30), as depicted in Figure 2b.

5.5 Key Neurons Can Impact the Prediction

To validate the impact of our identified key neu-
rons, we replicate the experiments by Dai et al.
(2022), updating the values of key neurons using
two methods: given a query and the value of ff we
either (1) boost the key neurons by doubling the
value fil =2 X ff or (2) suppress the key neuron
by making fil = 0. For each query, we record the
percentage change in the probability of the correct
answer, thereby assessing the extent to which the
key neurons influence the predictions of LLMs. We
compare our NA-ICA approach to other baseline
methods and include a control group to determine
whether the same key neurons affect the predictions
of randomly selected queries from unrelated fields
(Unrelated).

Table 2 presents the overall performance of

various methods. Our NA-ICA method consis-
tently outperforms other baselines, evidenced by
its higher impact ratio. This indicates that our iden-
tified key neurons significantly affect the probabil-
ity of correct answers while exerting a relatively
low impact on unrelated queries. For instance, our
method achieves a boosting ratio of 41.9 on the
language dataset, the highest among the baselines.
Additionally, common neurons affect both related
and unrelated queries, and their removal results in
clear performance improvements.

Furthermore, Figure 3 illustrates the percentage
change in probability for each domain and lan-
guage. Again, we can clearly observe the effec-
tiveness of our detected key neurons. Addition-
ally, we performed supplementary experiments on
Mistral-7B. The results, presented in Figure A2,
consistently support our conclusions.

5.6 Are There Localized Regions in LLMs?

Given our ability to identify key neurons for each
query, it is intriguing to explore whether LLMs ex-
hibit localized regions for each domain or language,
analogous to the functional localizations in the hu-
man brain (Brett et al., 2002). To investigate this,
we visualize domain- or language-specific neurons
on a 2D geographical heatmap. The width of the
heatmap corresponds to the dimension of FFNs
in LLaMA-7B (11008), and the length represents
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Figure 4: Geographical heatmap of detected key neurons for different domains and languages. The value is
calculated by our naica(n'). The LLM here is LLaMA-7B (11008 x 32) (Touvron et al., 2023)

the layer depth (32). We accumulate the value of  these values likely represent intermediate states in a
naica(né) to populate the heatmap. Figure 4 dis-  subspace distinct from the one used for final token
plays the geographical locations of key neurons  prediction. Future work should consider new ways
in LLaMA-7B across various academic domains  to map neurons to more discriminative semantic
and languages. The distribution of key neurons ap-  spaces. The details are provided in Appendix A.
pears sparse but with distinct regions, particularly

for different domains. Notably, certain regions are 5.7 The Function of Common Neurons

visible in the middle layers (10-15), suggesting spe- T, gain insights into the function of common
cific neuron patterns. In contrast, language neurons  peyrons, we also visualize their locations within
are more sparsely distributed with smaller regions, | [ aMA-7B. Figure 5 shows the common neurons
and languages like Arabic and Russian exhibit less  for the domain and language dataset. We can ob-
localized properties. Apart from visualizing the ge-  ¢erve that they tend to appear at the top layer. To
ographical location of key neurons, we also analyze  fyrther understand their meanings, we project the
the semantic location using their associated vector  matrix W2 in Equation 1 to the vocabulary space
. D . . .
values in W= Our findings spggest that th§re arc  and select the top-k tokens with the highest prob-
no apparent clusters across different domains, as ability. Table 4 lists the predicted tokens, which
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Figure 5: The distribution of common neurons.

Neuron | Top-k tokens

nates | _in, _and, _to, _for, _today, _at, _as
n3de76 | _July, _June, _March, _April, _November
nfoo7s A R D O

n5202 | _respectively, _while, _and, _initially
nitog _C, C, _c, c, ’_ced’

nie70 _B, B, _Bill, _Bh, ’_Bureau’

Table 4: Tokens predicted by the common neurons.

include common words, punctuation marks, and
option letters. These findings reinforce the notion
that common neurons are not critical for specific
queries.

6 Potential Applications

We provide two usage examples to showcase the
potential applications of our detected key neurons:
Knowledge Editing and Neuron-Based Prediction.

6.1 Knowledge Editing

We adjust the values of key neurons by either boost-
ing or suppressing them to determine if we can
change the prediction of a query from incorrect
to correct or vice versa. Table 5 presents the
success rates of knowledge editing on our con-
structed language datasets. Our observations indi-
cate that NA-ICA achieves higher success rates on
related queries and lower rates on unrelated queries,
demonstrating that our method outperforms other
baselines. In contrast, the baseline of knowledge
neurons cannot significantly differentiate related
and unrelated queries.

6.2 Neuron-Based Prediction

In our second case study, we test whether the cor-
rect answers to domain-specific questions can be
predicted solely based on the activity of the as-
sociated domain-specific neurons. To this end,
we make predictions on multiple-choice questions
by selecting the option with the overall highest
gradient to the key neurons for the given do-
main. We experiment on a specifically constructed

| Boost | Suppress

Model | 1+ Related 1t Unrelated | |} Related |} Unrelated
Random Neurons 0.37 0.10 0.54 0.27
Knowledge Neurons (2022) 14.73 11.76 16.19 14.78
Ours 10.06 1.78 20.14 1.60

Table 5: Successful rates of knowledge editing.

ode iolo cc. emistry (Acc. eogray cc.
Model Biology (Acc.) | Chemistry (Acc.) | Geography (Acc.)

Random guess
Prompt-based model pred.
Neuron-based pred.

0.96 0.71 0.89
0.96 0.67 0.89

0.25 ‘ 0.25 ‘ 0.25

Table 6: Accuracy of neuron-based prediction on
selected domains in comparison with the standard
prompt-based model prediction. The LLM here is
LLaMA-7B.

MMLU (Hendrycks et al., 2020) validation set with
a different set of questions than those used to de-
termine the key domain neurons (see Appendix
B for details on our experimental strategy). The
results are summarised in Table 6. We observe
that the accuracy of the neuron-based predictions
is very close to the accuracy of the prompt-based
method of using the entire model (the used tem-
plates are shown in Table A1). This suggests that
the activity of identified neurons can be indicative
of the model’s performance on a given task. In-
vestigating how this finding could be leveraged in
applications like fact-checking and hallucination
detection presents a promising line of future work.

7 Conclusion

In this study, we introduce a novel framework, NA-
ICA, for identifying key neurons in contemporary
autoregressive language models, such as LLaMA
and Mistral. NA-ICA leverages a multi-choice QA
proxy task to address the complexity of long-form
answers, extending beyond simple factual entities.
Meanwhile, it adopts strategies of inverse cluster
attribution and common neuron removal to refine
key neurons. To validate our approach, we curated
two datasets encompassing diverse domains and
languages. Our experimental results show that NA-
ICA outperforms existing baselines in identifying
query-relevant neurons. Additionally, this study
pioneers the exploration of localized knowledge
regions in LL.LMs and demonstrates the potential
usages of identified key neurons in applications
such as knowledge editing and neuron-based pre-
diction. We hope that our findings are beneficial for
further research in understanding the knowledge
mechanisms underlying LLMs.



Limitations

In our study, we employ a multi-choice QA proxy
task to investigate the long-form knowledge stored
in LLMs. Although our framework can effectively
detect key neurons, future research needs to address
the challenge of authentic open-ended generation,
which remains a significant area for development.
Additionally, despite our efforts to eliminate com-
mon neurons, some neurons within the identified
key neuron set still correspond to option letters.
This indicates that our current method requires fur-
ther refinement to remove these spurious key neu-
rons. Moreover, the language dataset used in our
study is limited to the Birth_place relation. To
gain a more comprehensive understanding of mul-
tilingual knowledge in LLMs, future work should
include a broader range of relations. This expan-
sion will enable a more thorough investigation into
the diverse types of knowledge encoded in these
models across different languages.

References

Marco Ancona, Enea Ceolini, Cengiz Oztireli, and
Markus Gross. 2019. Gradient-based attribution
methods. Explainable Al: Interpreting, explaining
and visualizing deep learning, pages 169-191.

Deniz Bayazit, Negar Foroutan, Zeming Chen, Gail
Weiss, and Antoine Bosselut. 2023. Discovering
knowledge-critical subnetworks in pretrained lan-
guage models. arXiv preprint arXiv:2310.03084.

Jan G Bjaalie. 2002. Localization in the brain: new
solutions emerging. Nature reviews neuroscience,
3(4):322-325.

Tolga Bolukbasi, Adam Pearce, Ann Yuan, Andy Co-
enen, Emily Reif, Fernanda Viégas, and Martin Wat-
tenberg. 2021. An interpretability illusion for bert.
arXiv preprint arXiv:2104.07143.

Matthew Brett, Ingrid S Johnsrude, and Adrian M Owen.
2002. The problem of functional localization in the
human brain. Nature reviews neuroscience, 3(3):243—

249.

Lihu Chen, Gael Varoquaux, and Fabian Suchanek.
2023. The locality and symmetry of positional en-
codings. In Findings of the Association for Com-
putational Linguistics: EMNLP 2023, pages 14313—
14331.

Yuheng Chen, Pengfei Cao, Yubo Chen, Kang Liu, and
Jun Zhao. 2024. Journey to the center of the knowl-
edge neurons: Discoveries of language-independent
knowledge neurons and degenerate knowledge neu-
rons. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 38, pages 17817-17825.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch,
Stefan Heimersheim, and Adria Garriga-Alonso.
2023. Towards automated circuit discovery for mech-
anistic interpretability. Advances in Neural Informa-
tion Processing Systems, 36:16318-16352.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons in
pretrained transformers. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8493—
8502.

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan Be-
linkov, Anthony Bau, and James Glass. 2019. What
is one grain of sand in the desert? analyzing indi-
vidual neurons in deep nlp models. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 33, pages 6309-6317.

Yann N Dauphin, Angela Fan, Michael Auli, and David
Grangier. 2017. Language modeling with gated con-
volutional networks. In International conference on
machine learning, pages 933-941. PMLR.

Nadir Durrani, Hassan Sajjad, Fahim Dalvi, and
Yonatan Belinkov. 2020. Analyzing individual neu-
rons in pre-trained language models. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 4865—
4880.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. 2018.
Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning.
Neural networks, 107:3-11.

Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths,
Tommaso Salvatori, Thomas Lukasiewicz, Philipp
Petersen, and Julius Berner. 2024. Mathematical ca-
pabilities of chatgpt. Advances in Neural Information
Processing Systems, 36.

Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Gold-
berg. 2022. Transformer feed-forward layers build
predictions by promoting concepts in the vocabulary
space. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,

pages 30-45.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are
key-value memories. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 5484-5495.

Ali Gholipour, Nasser Kehtarnavaz, Richard Briggs,
Michael Devous, and Kaundinya Gopinath. 2007.
Brain functional localization: a survey of image reg-
istration techniques. IEEE transactions on medical
imaging, 26(4):427-451.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.



Ganesh Jawahar, Benoit Sagot, and Djamé Seddah.
2019. What does bert learn about the structure of
language? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,

pages 3651-3657.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Zhengbao Jiang, Antonios Anastasopoulos, Jun Araki,
Haibo Ding, and Graham Neubig. 2020. X-factr:
Multilingual factual knowledge retrieval from pre-
trained language models. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 5943-5959.

Yiming Ju and Zheng Zhang. 2023. Klob: a bench-
mark for assessing knowledge locating methods in
language models. arXiv preprint arXiv:2309.16535.

Nora Kassner, Philipp Dufter, and Hinrich Schiitze.
2021. Multilingual lama: Investigating knowledge in
multilingual pretrained language models. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 3250-3258.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of NAACL-HLT, pages 4171-4186.

Nelson F Liu, Matt Gardner, Yonatan Belinkov,
Matthew E Peters, and Noah A Smith. 2019. Linguis-
tic knowledge and transferability of contextual repre-
sentations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
1073-1094.

Leland Mclnnes, John Healy, Nathaniel Saul, and Lukas
Grof3berger. 2018. UMAP: uniform manifold ap-
proximation and projection. J. Open Source Softw.,
3(29):861.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022a. Locating and editing factual as-
sociations in gpt. Advances in Neural Information
Processing Systems, 35:17359—-17372.

Kevin Meng, Arnab Sen Sharma, Alex J Andonian,
Yonatan Belinkov, and David Bau. 2022b. Mass-
editing memory in a transformer. In The Eleventh
International Conference on Learning Representa-
tions.

Fabio Petroni, Tim Rocktischel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference

10

on Natural Language Processing (EMNLP-1JCNLP),
pages 2463-2473.

Pouya Pezeshkpour. 2023. Measuring and modifying
factual knowledge in large language models. arXiv
preprint arXiv:2306.06264.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language mod-
els are unsupervised multitask learners.

Siyu Ren and Kenny Zhu. 2022. Specializing pre-
trained language models for better relational reason-
ing via network pruning. In Findings of the Associ-
ation for Computational Linguistics: NAACL 2022,
pages 2195-2207.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the param-
eters of a language model? In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 5418-5426.

Gerard Salton. 1983. Introduction to modern informa-
tion retrieval. McGraw-Hill.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Interna-
tional conference on machine learning, pages 3319—
3328. PMLR.

Mujeen Sung, Jinhyuk Lee, Sean Yi, Minji Jeon, Sung-
dong Kim, and Jaewoo Kang. 2021. Can language
models be biomedical knowledge bases? In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 4723-4734.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale,
Juliette Love, et al. 2024. Gemma: Open models
based on gemini research and technology. arXiv
preprint arXiv:2403.08295.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang,
Shumin Deng, Mengru Wang, Zekun Xi, Shengyu
Mao, Jintian Zhang, Yuansheng Ni, et al. 2024a. A
comprehensive study of knowledge editing for large
language models. arXiv preprint arXiv:2401.01286.

Zhengyan Zhang, Zhiyuan Zeng, Yankai Lin, Chaojun
Xiao, Xiaozhi Wang, Xu Han, Zhiyuan Liu, Ruob-
ing Xie, Maosong Sun, and Jie Zhou. 2023. Emer-
gent modularity in pre-trained transformers. In Find-
ings of the Association for Computational Linguistics:
ACL 2023, pages 4066—4083.


https://doi.org/10.21105/JOSS.00861
https://doi.org/10.21105/JOSS.00861
https://doi.org/10.21105/JOSS.00861

Zhihao Zhang, Jun Zhao, Qi Zhang, Tao Gui, and
Xuanjing Huang. 2024b. Unveiling linguistic re-
gions in large language models. arXiv preprint
arXiv:2402.14700.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqgian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Xuhui Zhou, Yue Zhang, Leyang Cui, and Dandan
Huang. 2020. Evaluating commonsense in pre-
trained language models. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 9733-9740.

A Latent Value Analysis

As previously found by (Geva et al., 2021), trans-
former feed-forward layers can be viewed as key-
value memory units, with hidden activations acting
as coefficients for the individual memories stored
in WP Thus, a natural question to explore is what
are the properties of the memory cells associated
with the key neurons for the different domains and
if they are clustered in the corresponding semantic
space.

As a first step in our analysis, we visualise
the WP vectors associated with the knowledge
neurons from the different domains using UMAP
(Mclnnes et al., 2018) for dimensionality reduction
(with cosine similarity used as the distance metric).
For comparison, we additionally include the vec-
tors from the unembedding matrix. The results are
shown in Figure Al. As can be seen from the fig-
ure, the distribution of the vectors associated with
key knowledge neurons appears to be significantly
different from that of vector unembeddings. Thus,
it appears that the contents of the internal memory
cells used by LLaMA 2 are not directly aligned
with the candidate output tokens.

Since the 2D visualisation produced by UMAP
might not accurately reflect the true properties of
the data manifold, we additionally examined the
highest-likelihood tokens for the key domain neu-
ron memory cells. These were computed by di-
rectly applying the Llama 2 unembedding layer to
the vectors stored in these cells. We found the re-
sulting tokens rather uninterpretable, including to-
kens like textt, archivi, _Kontrola, _totalité
or _Einzeln. Upon closer investigation, we found
these to be closely matching the set of unembed-
ding vectors with the largest vector norms (which
we would expect to generally receive higher like-
lihoods when multiplied with vectors not aligned
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with any of the unembeddings). This seems to
further support a conjecture that the memory cell
vectors associated with the located domain-specific
neurons might capture intermediate data in a sub-
space different from the one used for the final token
prediction. Apart from the above tokens, we also
found option letters A, B, C and D to be represented
in the highest-likelihood tokens. This suggests that
some neurons within the identified key neuron set
may still correspond to option letters, as mentioned
in the Limitations section.

We leave further investigation and confirmation
of these findings for future work.

B Neuron-Based Prediction Details

In the neuron-based prediction case study, we ex-
periment on the MMLU (Hendrycks et al., 2020)
validation set to ensure there is no overlap between
the dataset used to mine the key neurons and the
test set. Thus, the considered domain neurons were
determined based on queries not used for this ex-
periment. As a further post-processing step, we
randomly select three options from other domains
to replace the incorrect options in each query. Ad-
ditionally, we manually remove questions that be-
come invalid due to this post-processing, including
queries such as “Which of the following is LEAST
valid?” and “All of the following statements are
true EXCEPT”. These operations result in ~20
test samples per domain. To perform the neuron-
based prediction, we compute the gradient of the
probability of each option token with respect to
the key neurons for the domain of the considered
query, and select the option with the highest total
gradient.
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Num Template

Domain Prompt 1 You will be asked a multiple-choice question. Respond with the letter which corresponds to the
correct answer, followed by a period. There is no need to provide an explanation, so your response
should be very short\nNow here is the question-\n{Question}w A. {A¥wn B. {B}Ww C. {C}wn D.
{D}WiResponse:

Domain Prompt 2 Prepare to answer a multiple-choice question. Provide the letter that corresponds to the correct
answer, followed by a period. Keep your response brief; no explanations are necessary.\nHere is the
question:\n{Question}\w A. {AYw B. {BY\n C. {C}W D. {D}\nResponse:

Domain Prompt 3 Below is a multiple-choice question. Respond with the letter that best answers the question. Keep
your response brief, stating only the letter corresponding to your answer, followed by a period, with
no explanation\nThe question is:\n{Question}\w A. {AYWn B. {BYWn C. {C}w D. {D}\nResponse:

Language Prompt 1  You will be asked a multiple-choice question. Respond with the letter which corresponds to the
correct answer, followed by a period. There is no need to provide an explanation, so your response
should be very short. \nlNow here is the question:\n{Question} \nHere the [Y] is most likely to be?
W A. {AYw B. {BY\n C. {C}W D. {D}\nResponse:

Language Prompt 2 Prepare to answer a multiple-choice question. Provide the letter that corresponds to the correct
answer, followed by a period. Keep your response brief; no explanations are necessary. \nNow here
is the question:\n{Question} \nHere the [Y] is most likely to be? \n A. {AYwn B. {BY\n C. {C}\wn D.
{D}WiResponse:

Language Prompt 3 Below is a multiple-choice question. Respond with the letter that best answers the question. Keep
your response brief, stating only the letter corresponding to your answer, followed by a period, with
no explanation. \nNow here is the question:\n{Question} \nHere the [Y] is most likely to be? \n A.
{AYWn B. {BY\1 C. {C}YWn D. {D}Y\nResponse:

Table Al: Prompt templates for constructing multi-choice QA datasets. We use ChatGPT to translate English
templates to other languages.

Field

Question Options

A. make glucose
B. make NADH
C. produce ATP

D. break down glucose

Biology The energy given up by electrons as they move through the electron transport chain is used to?

A.50 cm
B. 200 cm
C. 100 cm
D. 300 cm

Physics An object is placed 100 cm from a plane mirror. How far is the image from the object?

A. 12.5% of the isotope decayed
B. 25% of the isotope decayed
C. 25% of the isotope is left
D. 12.5% of the isotope is left

Chemistry Three half-lives after an isotope is prepared:

A.R<=T<=M<=L
B.L<=M<=T<=R
C.R<=M<=T<=L
D.L<=T<=M<=R

Mathematics Suppose the graph of fis both increasing and concave up on a <= x <= b. Then, using the same
number of subdivisions, and with L, R, M, and T denoting, respectively, left, right, midpoint, and
trapezoid sums, it follows that:

A. How long the program takes to run
B. How many programming statements the program contains
C. How much storage space the program requires as it runs
D. How much memory the program requires as it runs

Computer Science A programmer is writing a program that is intended to be able to process large amounts of data.
Which of the following considerations is LEAST likely to affect the ability of the program to
process larger data sets?

A. push factors.
B. migration selectivity.
C. distance decay.
D. pull factors.

Geography The tendency for migration to decrease with distance is called?

A. Montevideo
B. Bengaluru
C. Parsons
D. Moscow

English Sergey Lavrov was born in [Y]. Here the [Y] is most likely to be?

Table A2: Examples in our constructed datasets. For the language dataset, we only show one English example as
multilingual samples are obtained bu using traslator (Kassner et al., 2021)
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