
ZPI 2024

Point Clouds to Primitives
Tool for reconstructing geometric
primitives from point clouds and

semantic labelling
2024

Autors: Michał Klemens • Jakub Mikłasz • Aleksander Musz • Maja Placek
Supervisor: Marcin Jodłowiec

Abstract

The project concentrates on the reconstruction of 3D primitive shapes from a point cloud. The tool is an
application that identifies basic shapes such as spheres, cones, cylinders, or planes, and then visualises them
in a 3D space. It also enables the user to semantically label generated results by providing classes, properties,
and hierarchising them. Object semantics created in the process of labelling are visualised on diagrams. The
solution is of significant technical relevance, supporting the automation of geometric analysis and the creation
of high-quality training datasets for applications such as optimising 3D models in manufacturing or training
methods to detect objects in point clouds.

1 INTRODUCTION
The project addresses the problem of automatic analysis and simplified reconstruction of objects from
spatial data in the form of a point cloud. Using advanced 3D model estimation algorithms, the tool
identifies basic shapes such as spheres, cones, cylinders or planes, and then visualises them in a 3D
space.

The user has the option of assigning semantic labels (names, classes, properties) to the detected
shapes, which enables accurate labelling of model elements. For example, in a rabbit model, the appli-
cation can detect two cylinders representing ears, and the user will assign them the label ‘rabbit ears’.
This kind of process makes it possible to create structures that describe the semantics of the modelled
objects, which can be used to train artificial intelligence systems.

The aim of the project is to simplify the process of preparing geometric data for applications such
as optimising 3D models in manufacturing or training algorithms to detect objects in point clouds. The
solution is of significant technical relevance, supporting the automation of geometric analysis and the
creation of high-quality training data.

2 RELATED WORK

2.1 Random Sample Consensus
The Random Sample Consensus algorithm (RANSAC) [1] originally developed for image analysis and
automated mapping is commonly used for shape detection in 3D point clouds both as a stand-alone
method and as a component of the [4, 7, 11] detection process. It involves iterative random selection
of minimal sets of points that define a particular geometric primitive. Once the primitives are created,
they are tested against all points in the data to determine how many of them represent the shape score.
The shape with the best score in a given iteration is added to the result.

The main advantages of the RANSAC algorithm include:

• Simple implementation and easy extensibility of the algorithm

• High noise resistance

• Versatility of applications in various fields

https://orcid.org/0009-0002-1168-8368
https://orcid.org/0000-0001-6957-6137
https://orcid.org/0009-0005-3700-8975
https://orcid.org/0009-0009-6408-2600


ZPI 2024

2.2 Point Cloud Library
Point Cloud Library (PCL) described in detail in the paper [6], played a crucial role in the implementation
of the project. It is an open-source library designed for point cloud processing and analysis. It offers
a wide range of tools, including filtering, segmentation, registration and simplification functions for 3D
data. The library supports multiple data formats and integrates with visualisation systems such as VTK.
PCL also includes an implementation of model estimation algorithms, such as RANSAC, which enables
easy detection of basic geometric shapes in point clouds. Applications of PCL include robotics, spatial
mapping, 3D object analysis and data visualisation.

2.3 Similiar product – Cloud Compare
CloudCompare is a popular tool for point cloud visualisation and analysis. RANSAC Shape Detection
plug-in CloudCompareRANSAC [8] enables the detection of basic 3D shape primitives, such as planes,
spheres, cylinders or cones, in point clouds. The operation of the plug-in is based on the RANSAC
algorithm.

Point Cloud to Primitives application is distinguished by the functionality of semantic labelling of
found models. Given the ability to assign semantics to the detected shapes, the user can give context
to the analysed objects. Not only does this facilitate data interpretation and presentation, but it also
enables the preparation of high-quality training datasets for artificial intelligence systems.

3 TECHNOLOGY STACK

3.1 C++
C++ [10] was chosen as the main programming language for the application because of its effectiveness,
low-level memory control, and broad support for 3D data processing libraries, such as Point Cloud
Library (PCL).

3.2 Qt i QML
Qt Framework in combination with QML [9] language enabled the creation of modern, interactive user
interface. In particular Qt Quick 3D was used to visualise point clouds and detected shapes in the 3D
scene.

3.3 Point Cloud Library (PCL)
PCL offers a wide range of tools for processing and analysis of point clouds, among others, RANSAC
algorithm implementation. The library provides solutions for the modification of detection parameters
(e.g. error tolerance, model distance threshold) and integration of additional, user-provided analysis
methods. PCL is able to efficiently manage the memory and parallel processing of data, reducing the
processing time of the algorithm.

3.4 MinGW
At the beginning MSVC compiler was chosen because of its compatibility with precompiled libraries for
Windows operating system (mainly PCL which is available as compiled binary files). However, later it
was found out that MSVC compiler lacks full support for parallel processing with OpenMP (which PCL
uses) which lead to the lack of the ability to fully parallelise the detection process. Due to the fact that
it is advisable to use parallelism (especially for large point clouds), the decision was made to switch to
MinGW compiler [5]. This change required compiling PCL and its dependencies from source.

3.5 D2
D2 (Declarative Diagramming) [3] is a scripting, diagram language that produces diagrams from text.
D2 provides an API in Golang language which enables creating and editing diagrams programmatically.
This project uses it to automatically generate diagrams from semantic descriptions created by the user.



ZPI 2024

4 RESULTS

4.1 Architecture
The application consists of several specified components, which are responsible for: loading the point
cloud (PointCloudHandler), detection of 3D primitives (ShapeDetecion), management of user-defined
classes (ClassSystem) and objects (ObjectSystem) as well as the user interface (User interface). The
user interface has been implemented in the QML language, using Qt Quick visual components along
with models and 3D scene from Qt Quick 3D. Other components have been implemented using C++
and Qt Framework. Point cloud loading and shape detection use normal estimation and segmentation
algorithms from PCL, respectively. The application is an executable file with dependencies (Qt, PCL)
included in the form of dynamically linked libraries.

Diagram generator (DiagramGenerator) is a separate executable file, written in the Golang program-
ming language, and run by the program as a separate process.

The application architecture is illustrated in a component diagram (Fig. 1).

Figure 1: Component diagram showing the application architecture

4.2 Functionality
• The user can create a new project based on a point cloud file.

• The loaded point cloud is processed (point normals are estimated) and displayed inside the 3D
scene.

Figure 2: Example configuration of shape detection parameters.



ZPI 2024

• Movement inside the 3D scene is done using the mouse and keyboard, with the option of switching
to rotation around the object.

• The user can configure detection parameters, such as: distance threshold, the types of shape
being detected, the algorithm used, minimum number of points making up each shape, as well as
the option to run detection in multiple threads, and other advanced settings. (Fig. 2)

• Detected shapes are visualized within the 3D scene, with the option of toggling the visibility of the
point cloud and the 3D models.

• In the tree view users can edit the shape hierarchy, group objects, edit names, and add semantic
meaning to elements.

• Users can define new objects’ classes, relationships between objects and assign various properties
to them.

Figure 3: Example of a generated class diagram

Figure 4: Example of a generated object diagram



ZPI 2024

• Class diagrams (Fig. 3) and object diagrams can be generated (Fig. 4) from a semantically described
model.

4.3 Shape detection
In the performed tests, the tool based on the PCL library correctly identified primitive geometric shapes
such as spheres, cylinders, cones and planes, in the analysed point cloud. Model estimation algorithms,
in particular RANSAC have shown high accuracy when processing point clouds of simpler 3D models,
in which individual elements can be easily represented using basic shapes, as shown in the example
(Fig. 5). However, for complex objects that do not contain elements which can be easily mapped using
the indicated three-dimensional primitives, the results have been less satisfactory. In these situations,
the algorithm proved to be less accurate in fitting the models to the point cloud, indicating the need to
modify or extend the processing methods available in the PCL library, to better meet the needs of the
project in future iterations.

Figure 5: Example of a processed point cloud [2]

4.4 Semantic description
Semantic description is based on user-defined classes (which can be assigned to objects) and properties
(including object name) along with objects’ hierarchy. Classes are named containers with properties,
enriched with an inheritance and subtyping mechanism, while each property consists of a name and
value type. Supported types are: character string (text), real number (numerical) and reference to an
object (reference). The class inherits properties from all its base classes in the hierarchy. Moreover,



ZPI 2024

the subtyping mechanism upgrades the resulting model by providing additional information – class-
instance relationships between all base classes for the class assigned to an object and that object.
When assigning a class to an object, a user is required to provide values for all properties this class
contains. To simplify the resulting model, every class is constrained to have at most one base class, and
every object to have at most one class assigned. However, the user can assign additional properties
and their values to individual objects. Every object also has a special text property – name.

The second component of the semantic description is defining a hierarchy of objects in the form of
a tree using grouping and drag and drop mechanism. The class and properties can be assigned to every
detected object and to every group.

These components altogether enable the description of any object in a systematic and easy-to-
process way, which is ideal for labelling data for use in training of artificial intelligence methods. More-
over, properties and class hierarchy, along with objects’ properties (with values) and their hierarchy, are
visualised in the form of diagrams (exemplary diagrams in Fig. 3 and Fig. 4, respectively). For better
readability, visualisation of reference type properties’ values as connections on the diagram was not
included in the project.

5 CONCLUSIONS
The project’s primary contribution is a comprehensive platform that seamlessly integrates geometric
processing and semantic modelling capabilities. This integration enables full control over the complete
3D data pipeline, encompassing detection, visualisation, semantic organisation, and analysis. The ap-
plication combines advanced functionality with intuitiveness, making it a versatile solution for a wide
range of applications.

One of the most important strengths of this tool is its ability to optimise and compress 3D data.
The algorithms used achieve a significant reduction in geometric complexity while maintaining key
geometric features and semantic properties. This efficient data management is particularly valuable for
resource-demanding applications, such as real-time 3D simulations and VR/AR environments, where
rendering performance directly impacts user experience.

The resulting semantic networks can be used to build a knowledge base for use in machine learning.
This makes it possible not only to classify objects but also to develop more advanced analysis and
prediction systems that can be used in fields such as robotics, intelligent manufacturing systems, and
autonomous vehicles.

By integrating all of these functions into a single tool, the project provides an all-encompassing
solution that simplifies, optimises, and enhances the process of working with 3D data while opening up
new possibilities in modelling, analysis, and machine learning.

6 FUTURE DIRECTIONS

6.1 Optimization of reconstruction algorithms
A potential direction for the project could be to expand the functions offered by PCL library or to cre-
ate a stand-alone library, better suited to the needs of the platform. In the course of the work, many
problems were encountered due to the limitations of existing algorithms, such as the difficulty in accu-
rately reconstructing complex shapes. PCL offers a very limited set of primitive shapes, adding shapes
such as a cuboid, a torus, etc. could prove valuable to the detection process. Furthermore, a desirable
functionality could be a model constructed with the CSG (Constructive Solid Geometry) method. In this
way, it would be possible to recognise a cylinder with a hollow sphere, etc. Current solutions in PCL
often require additional optimisation or manual adjustment of parameters, significantly prolonging the
process. The development of dedicated algorithms could improve reconstruction accuracy, increase ef-
ficiency, and facilitate integration with data analysis tools. Further development in this direction could
also contribute to a more versatile tool for other users involved in point cloud processing.

6.2 Training artificial intelligence models on the basis of semantic networks
A way forward for the project could also be to use semantic networks as a basis for training artificial
intelligence models. The data generated in the labelling process could serve to create a knowledge base
to facilitate automatic recognition and classification of objects in point clouds. This approach could
contribute to the development of more advanced AI models capable of analysing complex scenes and
understanding the relations between objects. Furthermore, the knowledge base could support other
projects that require a semantic understanding of a 3D space, enabling their development without the



ZPI 2024

need for manual data preparation. As a result, this solution could improve the automation and precision
of geometry reconstruction and analysis processes in various applications.

REFERENCES
[1] Martin A. Fischler and Robert C. Bolles. Random sample consensus: a paradigm for model fitting

with applications to image analysis and automated cartography. Commun. ACM, 24(6):381–395, June
1981.

[2] Enea Le Fons. Point cloud "uxrzone neonclassic tuscan se02", license creative commons attribution.
https://sketchfab.com/enealefons, 2021.

[3] Terrastruct Inc. D2 - declarative diagraming. https://d2lang.com/tour/intro, 2024. Accessed:
2024-11-30.

[4] S Kyriakaki-Grammatikaki, EK Stathopoulou, E Grilli, F Remondino, and A Georgopoulos. Geometric
primitive extraction from semantically enriched point clouds. The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, 46:291–298, 2022.

[5] MinGW Project. Mingw - minimalist gnu for windows. https://www.mingw-w64.org/, 2024. Ac-
cessed: 2024-11-29.

[6] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library (PCL). In IEEE International
Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13 2011.

[7] R. Schnabel, R. Wahl, and R. Klein. Efficient RANSAC for point-cloud shape detection. Computer
Graphics Forum, 26(2):214–226, 2007.

[8] CloudCompare Development Team. Ransac shape detection plugin. https://www.cloudcompare.
org/doc/wiki/index.php/RANSAC_Shape_Detection_(plugin), 2024. Accessed: 2024-11-22.

[9] Qt Development Team. Qt qml documentation. https://doc.qt.io/qt-6/qtqml-index.html,
2024. Accessed: 2024-11-22.

[10] The ISO C++ Committee. C++ Standard Library Documentation, 2024. Accessed: 2024-11-24.

[11] Shaobo Xia, Dong Chen, Ruisheng Wang, Jonathan Li, and Xinchang Zhang. Geometric primitives
in lidar point clouds: A review. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 13:685–707, 2020.

https://sketchfab.com/enealefons
https://d2lang.com/tour/intro
https://www.mingw-w64.org/
https://www.cloudcompare.org/doc/wiki/index.php/RANSAC_Shape_Detection_(plugin)
https://www.cloudcompare.org/doc/wiki/index.php/RANSAC_Shape_Detection_(plugin)
https://doc.qt.io/qt-6/qtqml-index.html

	Introduction
	Related work
	Random Sample Consensus
	Point Cloud Library 
	Similiar product – Cloud Compare

	Technology stack
	C++
	Qt i QML
	Point Cloud Library (PCL)
	MinGW
	D2

	Results
	Architecture
	Functionality
	Shape detection
	Semantic description

	Conclusions
	Future Directions
	Optimization of reconstruction algorithms
	Training artificial intelligence models on the basis of semantic networks


