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Abstract
Fine-tuning a pre-trained model on a downstream
task often degrades its original capabilities, a
phenomenon known as “catastrophic forgetting”.
This is especially an issue when one does not have
access to the data and recipe used to develop the
pre-trained model. Under this constraint, most ex-
isting methods for mitigating forgetting are inap-
plicable. To address this challenge, we propose a
sample weighting scheme for the fine-tuning data
solely based on the pre-trained model’s losses.
Specifically, we upweight the easy samples on
which the pre-trained model’s loss is low and vice
versa to limit the drift from the pre-trained model.
Our approach is orthogonal and yet complemen-
tary to existing methods; while such methods
mostly operate on parameter or gradient space, we
concentrate on the sample space. We theoretically
analyze the impact of fine-tuning with our method
in a linear setting, showing that it stalls learning
in a certain subspace, which inhibits overfitting
to the target task. We empirically demonstrate
the efficacy of our method on both language and
vision tasks. As an example, when fine-tuning
Gemma 2 2B on MetaMathQA, our method re-
sults in only a 0.8% drop in accuracy on GSM8K
(another math dataset) compared to standard fine-
tuning, while preserving 5.4% more accuracy on
the pre-training datasets.

1. Introduction
In the modern era of large-scale machine learning, one of
the central goals is to design models capable of performing
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multiple tasks. Traditionally, this is achieved by training an
appropriately large model over datasets of multiple tasks,
ensuring that the model jointly learns multiple tasks at once.
Unfortunately, it is not viable to repeat this process with
every new additional task due to the scale of contemporary
models, necessitating effective strategies that can essentially
learn without full retraining. A resource-efficient convention
in machine learning is to take a pre-trained model which is
trained on some vast and diverse dataset, and fine-tune it on
a new dataset/task. Such pre-trained models are typically
large and expensive to train from scratch but perform well
on a variety of tasks while offering a versatile basis for
learning a new task.

Fine-tuning is a delicate process that should ideally serve
multiple objectives simultaneously; we would like to use
the base model and its capabilities to facilitate learning a
strong model on the downstream task, and in the meantime,
preserve the existing abilities of the pre-trained model. On
this particular front, the major challenge in standard, unregu-
lated fine-tuning is the catastrophic forgetting phenomenon.
In broad terms, it describes the performance decline of the
pre-trained model on previously observed data/tasks after
fine-tuning on a new one. When the learning process for
the downstream task interferes with the previously-learned
representations beyond tolerable margins, the pre-trained
model loses its prior capabilities and significantly under-
performs on previously-learned tasks.

Mitigating catastrophic forgetting is an active area of re-
search with many fundamental questions awaiting solutions.
The key idea is to constrain the fine-tuning process to pre-
vent the degeneration of the learned representations while
guiding the learning of the new task to augment existing
capabilities. The literature on the topic offers various ap-
proaches based on the available knowledge pertaining to
the pre-training process. In fact, pre-training-specific data
availability and how it is treated predominantly dictates the
success of mitigating forgetting. In many real-life scenarios,
however, the data and the training recipe used for generat-
ing the pre-trained model are not available (Radford et al.,
2021; Touvron et al., 2023a;b; Grattafiori et al., 2024; Jiang
et al., 2023). Naturally, one needs to approach the forgetting
phenomenon accordingly to design realistic methods.

Therefore, we focus on the case in which we have no ac-
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cess to the pre-training-specific information during the fine-
tuning process; we call it the data-oblivious setting. The
only piece of information available during fine-tuning is in-
deed the pre-trained model. Therefore, one needs to devise
a strategy to regulate and guide the fine-tuning process to
preserve the pre-trained model capabilities while learning
the new task in the absence of prior knowledge. Under this
challenging setting, we present an answer to the question:

Can we design a principled method that mitigates
forgetting during fine-tuning in the data-oblivious setting?

In this paper, we propose Fine-tuning with Pre-trained Loss-
Oriented Weighting (FLOW) to mitigate catastrophic for-
getting in the data-oblivious setting. Our key insight is
upweighting the “easy” samples on which the pre-trained
model’s loss is low and vice versa. We believe that boosting
the samples on which the pre-trained model performs well
(i.e., has low loss) will introduce supervised bias to the gra-
dient updates in favor of the pre-trained model. Intuitively,
this will prevent the parameters from deviating too much
from the initial pre-trained state, thus mitigating forgetting.

Some prior papers assign more importance to samples with
larger losses to accelerate the training process (Loshchilov
& Hutter, 2015; Shrivastava et al., 2016; Katharopoulos &
Fleuret, 2017; Kawaguchi & Lu, 2020; Das et al., 2024). We
follow the reciprocal reasoning; we tweak the fine-tuning
process in favor of the pre-trained model by assigning larger
weights to samples with smaller pre-trained loss values. We
elaborate on this while stating our contributions next.

1. To mitigate forgetting, we propose FLOW, which
fine-tunes the pre-trained model using a sample-wise
weighted loss. Inspired by robust optimization ideas,
we derive the ith sample’s weight to be exp(−ℓi/τ),
where ℓi is the ith sample’s pre-trained loss and τ is
a parameter which we set as median(ℓi) in practice.
Thus, our method is essentially parameter-free.

2. We demonstrate the superiority of FLOW over relevant
baselines (model averaging, ℓ2 regularization, LoRA,
etc.) in both vision and language model experiments.
For instance, ResNet-50 fine-tuned with FLOW on six
image classification datasets achieves ∼ 17% higher
average accuracy (over pre-training and fine-tuning
data) than standard fine-tuning, while also surpass-
ing other relevant baselines (see Table 1). When fine-
tuning Gemma 2 2B on math datasets, the correspond-
ing improvement of FLOW over standard fine-tuning
is ∼ 4% (see Table 2).

3. We also empirically show that combining FLOW with
existing methods for mitigating forgetting improves the
performance of the base methods (see Tables 3 and 4).

4. We theoretically analyze the effect of fine-tuning with
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Figure 1. FLOW versus standard fine-tuning (FT) and relevant
baselines for a ResNet-50 model pre-trained on ImageNet-1K
(from Table 1). FLOW achieves the best average accuracy
(between pre-training and target fine-tuning accuracies).

FLOW for linear models. In particular, the covariance
matrix of the fine-tuning data weighted by FLOW has
a small eigenvalue and training is stalled along the
corresponding eigenvector, impeding overfitting to the
fine-tuning task (see Remark 7.4).

We end this section with a preview of the comparison of
our method FLOW with some relevant baselines (in the
data-oblivious setting) in Figure 1.

2. Related Work
2.1. Mitigating Catastrophic Forgetting

We begin by summarizing the vast literature on catastrophic
forgetting with a focus on prior works most relevant to our
proposed setting. For a streamlined presentation, we survey
prior work in two settings – data-aware and data-oblivious.
Due to space limitations, we refer the readers to Appendix A
for a more detailed and explanatory review of the literature.

2.1.1. DATA-AWARE APPROACHES

The majority of the approaches for mitigating forgetting
assume task-specific knowledge access to different extents;
either (a subset of) the pre-training dataset itself or some in-
formation/statistic computed from pre-training data. Below,
we describe the data-aware approaches based on how they
make use of task-specific knowledge.

Regularization-based methods. This line of work aims
to preserve existing capabilities by keeping the parameters
close to the pre-trained model. The key idea is to introduce
task-specific regularization to penalize modifications along
the “important” directions for the old tasks (Ahn et al., 2019).
Kirkpatrick et al. (2016) introduces the elastic weight con-
solidation (EWC) algorithm, which estimates the important
directions by approximating the Fisher information matrix.
Several variants of EWC have been proposed (Schwarz et al.,
2018; Ritter et al., 2018; Lee et al., 2020; Liu et al., 2018).
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Zenke et al. (2017); Aljundi et al. (2018) infer the impor-
tance of each parameter by their variational effect on the
outputs. In a similar spirit, Lee et al. (2017) aims to match
the posteriors of the pre-trained and fine-tuned models.

Optimization-driven methods. Another perspective to
mitigating forgetting is guiding the optimization process by
constraining the algorithms directly as opposed to manip-
ulating the loss function. The core idea is to keep track of
“important directions” for the old tasks, and train on the new
task “orthogonally.” This could be done by storing prior
data samples or gradients in a buffer (Lopez-Paz & Ranzato,
2017; Farajtabar et al., 2020; Chaudhry et al., 2019a) or by
incrementally expanding the subspace of important direc-
tions without storing task-specific information (Zeng et al.,
2019; Wang et al., 2021; 2023b).

Replay-based methods. A more direct approach is to
store old task samples in buffers and introduce them into
the training process for the new task to refresh task-specific
representations periodically. There are several components
to such methods. Some prior work focus on data selection
based on the nature of old data access (Rebuffi et al., 2017;
Aljundi et al., 2019; Bang et al., 2021; Chaudhry et al.,
2019b; Isele & Cosgun, 2018; De Lange & Tuytelaars, 2021;
Borsos et al., 2020; Tiwari et al., 2021) (e.g., streaming
versus on-demand). Another important perspective is the
re-introduction strategy of the stored information into the
fine-tuning process (Silver & Mercer, 2002; Li & Hoiem,
2016; Triki et al., 2017; Lee et al., 2019b; Dhar et al., 2019;
Rebuffi et al., 2017; Riemer et al., 2019; Chaudhry et al.,
2019b; De Lange & Tuytelaars, 2021; Tiwari et al., 2021).

Architecture-driven methods. Another technique to limit
interference between tasks is to allocate a separate trainable
set of parameters per task. This could be done by initializing
a sub-networks per new task (Rusu et al., 2016; Aljundi
et al., 2017; Collier et al., 2020; Rajasegaran et al., 2019;
Ramesh & Chaudhari, 2021; Wang et al., 2023a; 2022a),
gradually expanding the parameters of a base network (Yoon
et al., 2018; Ostapenko et al., 2019; Hung et al., 2019), or
segregating a fixed model into task-specific subsets (Mallya
et al., 2018; Kang et al., 2022; Serra et al., 2018; Wortsman
et al., 2020; Mallya & Lazebnik, 2017; Mustafa B Gurbuz,
2022; Jung et al., 2020). The main downside with this line
of work is that task identities must be known for inference
to (de)activate relevant sub-networks (Aljundi et al., 2017).

2.1.2. DATA-OBLIVIOUS APPROACHES

In the less-explored data-oblivious setting, it is particularly
challenging to devise a principled approach, as there is
no access to any data-specific information, except for the
pre-trained model. One line of work explores the simple
idea of “model averaging” (MA) which essentially does
a convex combination of the parameters of the pre-trained

model and that of the fully fine-tuned model for the new task.
MA and more sophisticated model merging variants have
been studied in relevant context to forgetting (Lubana et al.,
2021; Wortsman et al., 2021; Ilharco et al., 2023; Lin et al.,
2023; Kleiman et al., 2025). Some recent works Chen et al.
(2024b); Panda et al. (2024) introduce different strategies to
selectively update a subset of parameters in a pre-training
data-agnostic manner. Finally, Biderman et al. (2024) has
shown that LoRA (Hu et al., 2022) could be effective for
mitigating catastrophic forgetting in transformers. Unlike
the methods discussed above which focus on the parameter
or gradient space, ours focuses on the sample space.

2.2. Sample Selection and Weighting

Sample-wise importance selection/weighting has been stud-
ied in optimization papers (Needell et al., 2014; Zhao &
Zhang, 2015; Alain et al., 2015; Stich et al., 2017) and ML
papers (Loshchilov & Hutter, 2015; Shrivastava et al., 2016;
Katharopoulos & Fleuret, 2017; 2018; Kawaguchi & Lu,
2020; Das et al., 2024) to speed up the optimization/training
process by reducing the variance of the gradient updates.
Such papers advocate focusing on “hard” samples with high-
gradient norms or losses. In contrast, we focus on “easy”
samples to mitigate forgetting. Another line of work focuses
on robust learning under uncertain data distributions. Distri-
butionally robust optimization (DRO) proposes to minimize
the worst-case weighted loss, where the sample weights are
constrained or regularized (Ben-Tal et al., 2013; Levy et al.,
2020; Duchi & Namkoong, 2021; Qi et al., 2021). Some
recent works (Xie et al., 2024; Chen et al., 2024a; Anony-
mous, 2025) propose dynamic sample-weighting strategies
for LLM training based on the previously discussed ideas.

3. Notation and Definitions
1(.) denotes the indicator variable. For any n ∈ N, the set
{1, . . . , n} is denoted by [n]. Vectors and matrices are in
lowercase and uppercase bold font, respectively. The ℓp
norm of a vector v is denoted by ∥v∥p. The inner product
between two vectors v and v′ is denoted as ⟨v,v′⟩. A set of
n linearly independent n-dimensional vectors {u1, . . . ,un}
is said to be an orthonormal basis for Rn if ⟨ui,uj⟩ =
1(i = j). A vector v = [v1, . . . , vn]⊤ is said to belong to
the n-dimensional probability simplex ∆n if

∑n
i=1 vi = 1

and vi ≥ 0 ∀ i ∈ [n]. For any n ∈ N, In denotes the identity
matrix of dimension n.

4. Proposed Algorithm
Our proposed algorithm consists of two main steps: (i ) com-
puting weights for the samples based on their respective
pre-trained loss values; and (ii ) fine-tuning with a weighted
loss wherein the per-sample losses are scaled by their respec-
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tive weights. The sample-wise weights are computed once
and used throughout the entire fine-tuning process. We for-
mally state our proposed fine-tuning protocol in Algorithm 1
and delve into its design details in the sequel.

Algorithm 1 Fine-tuning with Pre-trained Loss-Oriented
Weighting (FLOW)

Input: Pre-trained model θ∗, dataset {(xi, yi)}ni=1 for
the new task, and temperature parameter τ .

fi(θ) → ith sample’s loss at θ, with a non-negative loss
function (e.g., cross-entropy loss).

1. Compute sample weights: wi = exp
(
− fi(θ

∗)
τ

)
.

2. Weighted loss: L(θ) =
∑n

i=1 wifi(θ).

3. Fine-tune with weighted loss: θ̂∗ := argmin
θ

L(θ).

Output: Fine-tuned model θ̂∗.

Remark 4.1. Depending on the setting, our model might
have task-specific components, such as per-task prediction
heads (e.g., in vision). Algorithm 1 can be slightly modi-
fied in the presence of task-specific components to enhance
performance. Refer to Appendix B for these modifications.

Remark 4.2. As a heuristic prescription, we set τ =
median (fi(θ∗)) in all our experiments (unless otherwise
stated), which leads to consistently good performance. Thus,
our algorithm is essentially parameter-free in practice.

Algorithm design. Our main intuition is that we can con-
trol forgetting by not drifting away too much from the pre-
trained model (i.e., θ∗) during fine-tuning. In the pres-
ence of pre-training data, this is done by introducing data-
dependent constraints on the parameter space or gradient
space. Since we have no access to pre-training data, we
redirect our focus towards strategies on the sample space
depending only on the pre-trained model.

To that end, we propose to infer the easiness of each sample
of the fine-tuning dataset with respect to the pre-trained
model, based on the per-sample losses fi(θ∗)’s (see Alg. 1).
We say that the ith sample is “easy” if fi(θ∗) is “small”.1 In-
tuitively, prioritizing the “easy” samples during fine-tuning
would limit the drift from θ∗. On the other hand, over-
focusing on the “easy” samples would probably lead to poor
performance on the fine-tuning task. Thus, it is important to
strike a balance.

Let us formalize these ideas mathematically. For fine-tuning
on the new task, let us consider the objective function
Lπ(θ) =

∑n
i=1 πifi(θ), where π = [π1, . . . , πn]

⊤ is a
static design-choice ∈ ∆n (i.e.,

∑n
i=1 πi = 1 and πi ≥ 0

∀ i ∈ [n]) which we allow to only depend on the pre-trained

1This is not a formal definition and so “small” is not quantified.

model’s losses {fi(θ∗)}ni=1 (and not the current model’s
losses {fi(θ)}ni=1). We would like to design π so that:

1. for all i ̸= j such that fi(θ∗) ≤ fj(θ
∗), πi ≥ πj ,

2. π does not concentrate around one or a few samples
but rather spreads uniformly over the samples.

These two requirements can be enforced by minimizing the
following function (w.r.t. π) involving negative entropic
regularization:

g(π) =

n∑
i=1

πifi(θ
∗) + τ

n∑
i=1

πi log πi. (1)

Here τ > 0 is a parameter controlling the extent of the sec-
ond requirement which is facilitated by the entropy term. We
now state the minimizer of g(π) (proof is in Appendix C).

Proposition 4.3. Let π∗ = [π∗
1 , . . . , π

∗
n]

⊤ = argmin
π∈∆n

g(π).

Then we have π∗
i = 1

Z exp
(
− fi(θ

∗)
τ

)
, where Z is the nor-

malizing factor.

Modulo the normalizing factor Z (it does not matter when
optimizing w.r.t. θ), note that wi and L(θ) in Algorithm 1
are equivalent to π∗

i and Lπ∗(θ), respectively.

Distributionally robust optimization (DRO) perspective.
Our formulation above is motivated by prior work on DRO
(Qi et al., 2021), but it is exactly the opposite of DRO in
spirit. Specifically, in our setting, Qi et al. (2021) consider
the following min-max problem:

min
θ

max
π∈∆n

n∑
i=1

πifi(θ)− τ

n∑
i=1

πi log πi. (2)

The first term in Eq. (2) is the worst-case weighted loss at
θ, while the second term (i.e., entropic regularization) pro-
motes uniform weights. The optimal solution to the inner
max function w.r.t. π turns out to be π∗

i ∝ exp
(

fi(θ)
τ

)
.

Note that this is essentially the inverse of our weighting
function (modulo the normalizing factor) because it as-
signs a higher weight to samples with larger losses (i.e.,
the “hard” samples). The weighting function of DRO would
be very conducive to forgetting because it focuses more on
the “hard” samples. Further, our weighting function is static
(or one-shot) as it depends only on the losses at θ∗. On the
other hand, the weighting function of DRO is dynamic (i.e.,
it depends on the current point θ). In fact, after plugging
in the optimal value of π into Eq. (2) and simplifying, the
DRO objective reduces to minθ

∑n
i=1 exp

(
fi(θ)
τ

)
; this is

noticeably different from our objective L(θ) in Algorithm 1.
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5. Experimental Setup
We empirically evaluate the performance of FLOW (Algo-
rithm 1) on vision and language tasks, showcasing its ef-
fectiveness across different model architectures and modali-
ties.2 Here, we explain details of our experiments: baselines,
model architectures, datasets, and evaluation metrics.

Baselines. In our language and vision experiments, we
compare FLOW against relevant baselines in the data-
oblivious setting, namely, standard fine-tuning (fine-tuning
with vanilla unweighted loss), ℓ2-regularization [following
Kirkpatrick et al. (2016)], and WiSE-FT (Wortsman et al.,
2021) (model averaging of pre-trained and standard fine-
tuned models). Additionally, we compare against linear
probing (fine-tuning only the classification head, keeping
the body frozen) and low-rank adaptation (LoRA) (Hu et al.,
2022) in language experiments. More details on the base-
lines can be found in Appendix G.1.

5.1. Vision Experiments

We compare the performance of FLOW and associated base-
lines in a transfer learning setup.

Models. We experimented with ResNet-18 and ResNet-50
(Wightman et al., workshop) pre-trained on Imagenet-1K
(IN-1K).

Datasets. We used seven widely-used image classifica-
tion datasets: CIFAR-10 (Krizhevsky, 2009), CIFAR-100
(Krizhevsky, 2009), Flowers102 (Nilsback & Zisserman,
2008), Caltech101 (Li et al., 2022), Cars (Krause et al.,
2013), and Dogs (Parkhi et al., 2012).

Evaluation metrics. Vision models are trained with task-
specific parts, such as classification head (head) and batch-
norm (BN); see Appendix B for how FLOW works with
with task-specific parts. Forgetting is measured by how
much the model’s top-1 validation accuracy on ImageNet-
1K (subsequently referred to as IN-1K accuracy) reduces
after fine-tuning. We report the fine-tuning performance
in terms of average fine-tuning accuracy over all the re-
lated datasets following (Goyal et al., 2023; Ilharco et al.,
2023). For IN-1K evaluation after fine-tuning, we replace
the task-specific components of the fine-tuned model with
their pre-trained counterparts. An extended discussion on
experimental details, evaluation, and hyper-parameters are
in Appendix G.4. We also report the average of IN-1K accu-
racy and averaged fine-tuning accuracy for each method; this
is a reasonable unified metric to evaluate the performance
of a method jointly on the pre-training and fine-tuning data.

2Our code is publicly available here.

5.2. Language Model Experiments

We follow a similar setup to Biderman et al. (2024); Chen
et al. (2024b), where a language model’s general capabilities
are evaluated before and after fine-tuning on a mathematical
reasoning dataset. All training for language experiments is
done with HuggingFace peft (Mangrulkar et al., 2022),
transformers (Wolf et al., 2020), datasets (Lhoest
et al., 2021), and accelerate (Gugger et al., 2022).

Models. We use Gemma 2 2B (Team et al., 2024) and
Llama 3.2 3B (Grattafiori et al., 2024) as our base language
models. Further details on training hyper-parameters can be
found in Appendix G.2.

Datasets. Following previous work (Biderman et al., 2024;
Chen et al., 2024b), we fine-tune on MetaMathQA (Yu et al.,
2023), a mathematical reasoning dataset that is bootstrapped
from the training set of GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021b) using a LLM. We train
with all 395K samples in MetaMathQA.

Evaluation metrics. To evaluate the validity of FLOW, we
break down our metrics into general capability and target
fine-tuning evaluations. To evaluate general capabilities, we
again follow a similar setup to Chen et al. (2024b), where
we use commonsense reasoning, 5-shot MMLU (Hendrycks
et al., 2021a), and 3-shot MBPP (Austin et al., 2021) met-
rics. To evaluate the target domain, we use 5-shot GSM8K
(Cobbe et al., 2021). All evaluations are performed with
lm-evaluation-harness (Gao et al., 2024). More
details on evaluation and the commonsense metric can be
found in Appendix G.3. Similar to vision, we also report the
average of general capabilities and the target fine-tuning
accuracies as a unified metric.

6. Experimental Results
6.1. Comparing FLOW and Related Baselines

For our vision experiments on ResNets, Table 1 lists the
accuracies of all the baselines and FLOW. We observe
similar trends for both ResNet models, so we discuss the
results for the larger ResNet-50 model here. The pre-trained
ResNet-50 model achieves a top-1 accuracy of 79.02% on
ImageNet-1K’s validation set. Standard fine-tuning experi-
ences a significant 42.11% drop in IN-1K accuracy, while
achieving an average fine-tuning accuracy of 91.78% across
the target datasets. In contrast, FLOW suffers only a 2.93%
drop in IN-1K accuracy and exhibits a reasonable 86.25%
average accuracy on target fine-tuning datasets, demonstrat-
ing a significant improvement over standard fine-tuning.
Overall, FLOW’s average on IN-1K and target domain ac-
curacy is 16.83% higher than standard fine-tuning.

Going beyond standard fine-tuning, our results in Table 1
show that FLOW comprehensively outperforms other base-
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Table 1. Performance of FLOW with ResNet vision models.
Bolded and underlined values indicate the best and second-best
accuracies within each column (and for each model). Deltas (in
color) for IN-1K and target performance are computed w.r.t. the
pre-trained and standard fine-tuned models. FLOW attains the
best average accuracy and is better than the second-best method
(linear probing) by 2.94% and 3.44% for ResNet-18 and ResNet-
50, respectively.

Method IN-1K Acc. Target Acc. Average

R
es

N
et

-1
8

Pre-trained 69.76 (+0.00) – –
Standard FT 19.58 (-50.18) 89.07 (+0.00) 54.60
Linear Probe 69.76 (+0.00) 73.57 (-15.50) 71.63
ℓ2-Reg. 34.78 (-34.98) 88.12 (-0.95) 61.45
WiSE-FT 54.15 (-15.61) 80.23 (-8.84) 67.19
FLOW (Ours) 65.21 (-4.55) 83.93 (-5.14) 74.57

R
es

N
et

-5
0

Pre-trained 79.02 (+0.00) – –
Standard FT 36.91 (-42.11) 91.78 (+0.00) 64.34
Linear Probe 79.02 (+0.00) 76.45 (-15.33) 77.73
ℓ2-Reg. 44.78 (-34.24) 91.58 (-0.20) 68.18
WiSE-FT 61.65 (-17.37) 81.38 (-10.40) 71.52
FLOW (Ours) 76.09 (-2.93) 86.25 (-5.53) 81.17

lines. Interestingly, despite its simplicity, linear probing is
the second-best method. Overall, FLOW outperforms other
baselines, when averaging IN-1K and target fine-tuning
accuracies, by a 3.44% advantage over the closest com-
petitor, linear probing. Although linear probing completely
prevents forgetting, it learns significantly less during fine-
tuning compared to FLOW. The accuracies on individual
fine-tuning datasets and corresponding accuracies for IN-1K
can be found in Appendix H.

Additionally, in Appendix H.1, we compare FLOW with a
distillation-based approach for mitigating forgetting called
“learning without forgetting” (LwF) (Li & Hoiem, 2016) on
ViT-B/16, which is a larger model than ResNets and on the
Food101 (Bossard et al., 2014) dataset, which is relatively
larger than each of the six datasets here. In summary, FLOW
outperforms LwF in terms of average accuracy; while LwF
has the edge on fine-tuning performance, FLOW does better
on the forgetting front.

Our language model results are in Table 2. Results for
Gemma 2 2B show that FLOW helps preserve (and even
somewhat enhance) the general capabilities of the pre-
trained model. Specifically, compared to standard fine-
tuning, FLOW improves general capability accuracy by
2.52% in commonsense reasoning, 3.73% in MMLU, and
10.00% in MBPP, with a minor degradation of 0.83% in
GSM8K. We see a similar trend in our Llama 3.2 3B ex-
periments. Furthermore, while alternative baselines show
specific strengths (such as WiSE-FT’s general capability per-
formance and ℓ2-regularization’s target fine-tuning perfor-
mance), FLOW outperforms all baselines, on average, for
both models, striking the best balance between preserving

general capabilities and achieving good target fine-tuning
performance. Additional details on commonsense reasoning
results are in Appendix I.1 and an ablation for our choice of
sample weighting in LLMs is in Appendix I.2.

In summary, FLOW strikes a good balance between learn-
ing a new task and retaining knowledge from pre-training.

6.2. Combining FLOW with Baselines

To complement our results in Tables 1 and 2, we investigate
the performance of baselines when combined with FLOW.
In the vision setting, we consider uniform model averaging
with WiSE-FT (with α = 0.5) and report its performance
with and without FLOW in Table 3. Interestingly, averaging
the pre-trained IN-1K model and the fine-tuned model ob-
tained with FLOW improves over standard WiSE-FT (i.e.,
averaging the pre-trained IN-1K model and the standard
fine-tuned model) by 4.18% and 4.52% for ResNet-18 and
ResNet-50, respectively, in average performance.

Further, as seen in Table 4, FLOW boosts the performance
of other baselines in language modeling. When combined
with ℓ2-regularization, we observe improvements in gen-
eral capability between 0.5% and 1.80%, with only a 0.83%
reduction in GSM8K performance. Furthermore, the integra-
tion of FLOW with LoRA yields even stronger results, en-
hancing general capability performance by 1.07% to 3.40%,
while simultaneously improving GSM8K performance by
1.06%. Further details and discussion combining FLOW
with ℓ2-regularization and LoRA are in Appendix I.1.

7. Theoretical Analysis
Here we consider linear pre-training and fine-tuning tasks3

and theoretically analyze the effect of fine-tuning with our
proposed method FLOW (Alg. 1). Specifically, we compare
the non-asymptotic trajectories of FLOW and vanilla fine-
tuning. A key insight of our analysis is that FLOW stalls
training in a certain direction, impeding overfitting to the
fine-tuning task (see Remark 7.4). We also demonstrate that
FLOW goes beyond the simple idea of model averaging (see
Remark 7.5).

We begin by describing the problem setting.

Pre-training task: The label y ∈ R for a d-dimensional
data point x ∼ P is given by y = ⟨θ∗,x⟩, where θ∗ ∈ Rd is
the ground-truth model. Let D denote the joint distribution
of (x, y), where x ∼ P . Let Σ = Ex∼P

[
xx⊤] be the data

covariance matrix. Without loss of generality, let Σ ⪰ Id.

Fine-tuning task: The label ỹ ∈ R for a d-dimensional data
point x̃ ∼ P̃ is given by ỹ =

〈
θ̃∗, x̃

〉
, where θ̃∗ ∈ Rd is the

3Our insights carry over to neural networks following the dy-
namics of linear models under gradient descent (Lee et al., 2019a).
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Table 2. Performance of FLOW with LLMs. After fine-tuning Gemma 2 2B and Llama 3.2 3B on MetaMathQA, we compare the target
fine-tuning performance (GSM8K) with general capability performance. Bolded and underlined values indicate the best and second-best
results within each column (and for each model). Deltas (in color) for general capability metrics and fine-tuning metrics are computed
w.r.t. the pre-trained and standard fine-tuned model’s accuracy, respectively. We see that FLOW, on average, has the best performance
on general capabilities and target domain, achieving within ∼ 0.8% (Gemma 2 2B) and ∼ 1.4% (Llama 3.2 3B) of standard fine-tuning’s
target performance, while significantly mitigating the degradation of general pre-training capabilities in comparison to other baselines.

General Capability Acc. Target Acc.

Method Commonsense MMLU MBPP GSM8K Average

G
em

m
a

2
2B

Pre-trained 57.23 (+0.00) 49.59 (+0.00) 28.40 (+0.00) 24.49 (-38.89) 40.79
Standard Fine-tuning 55.07 (-2.16) 45.59 (-4.00) 16.80 (-11.60) 63.38 (+0.00) 46.31
WiSE-FT (α = 0.5) 57.28 (+0.05) 50.13 (+0.54) 25.60 (-2.80) 53.30 (-10.08) 47.60
LoRA (r = 64) 55.67 (-1.56) 44.28 (-5.31) 25.80 (-2.60) 60.43 (-2.95) 47.05
ℓ2-Regularization 57.01 (-0.22) 48.43 (-1.16) 24.80 (-3.60) 62.85 (-0.53) 49.19
FLOW (Ours) 57.59 (+0.36) 49.31 (-0.28) 26.80 (-1.60) 62.55 (-0.83) 49.98

L
la

m
a

3.
2

3B

Pre-trained 54.48 (+0.00) 54.34 (+0.00) 38.00 (+0.00) 26.01 (-40.94) 44.28
Standard Fine-tuning 50.68 (-3.80) 45.29 (-9.05) 17.80 (-20.20) 66.95 (+0.00) 46.10
WiSE-FT (α = 0.5) 54.54 (+0.04) 53.33 (-1.01) 34.60 (-3.40) 57.01 (-9.94) 50.75
LoRA (r = 64) 53.10 (-1.38) 50.95 (-3.39) 34.00 (-4.00) 63.84 (-3.15) 51.66
ℓ2-Regularization 53.60 (-0.88) 51.28 (-3.06) 33.60 (-4.40) 66.87 (-0.08) 52.30
FLOW (Ours) 54.30 (-0.18) 51.86 (-2.48) 36.00 (-2.00) 65.58 (-1.37) 52.87

Table 3. WiSE-FT with FLOW vs. WiSE-FT in vision. “WiSE-
FT+” denotes WiSE-FT with FLOW in the table. Comparison
here is in the same setting as Table 1. Note that WiSE-FT+ is
significantly better than WiSE-FT.

Method IN-1K Target Average

ResNet-18 WiSE-FT 54.15 80.23 67.19
WiSE-FT+ 68.71 74.03 71.37

ResNet-50 WiSE-FT 61.65 81.38 71.52
WiSE-FT+ 78.29 73.80 76.04

ground-truth model. Let D̃ denote the joint distribution of
(x̃, ỹ), where x̃ ∼ P̃ . Also, let

e := θ∗ − θ̃∗, e := e/∥e∥2,

and e⊥ be a unit vector orthogonal to e. We consider the
case of P̃ = N (0⃗d, Σ̃), where

Σ̃ = Id + ρ
(
ee⊤⊥ + e⊥e

⊤), (3)

where ρ ∈ [0, 1) is a constant. Note that Σ̃ is the data
covariance matrix here.

Remark 7.1 (Regarding Σ̃). We study the case of Σ̃ as
given in Eq. (3) because it is the minimal analytically
tractable case where we can show that FLOW goes be-
yond model averaging (MA) (see Remark 7.5). Specifically,
if ρ = 0 and Σ̃ = Id, then FLOW reduces to MA. Moreover,
for an arbitrary Σ̃, characterizing the eigen-spectrum of
the matrix dictating the trajectory of FLOW becomes in-
tractable. For the analysis to be tractable, we need some

Table 4. ℓ2-Reg./LoRA + FLOW vs. ℓ2-Reg./LoRA in language.
“ℓ2+” and “LoRA+” denote ℓ2-Reg. with FLOW and LoRA with
FLOW, respectively. The results below are for Gemma 2 2B in
the same setup as Table 2. We let A1, A2, A3, and B1 represent
Commonsense, MMLU, MBPP, and GSM8K, respectively. We see
that ℓ2+ and LoRA+ are better than ℓ2 and LoRA, respectively.

Method A1 A2 A3 B1 Avg.

ℓ2 57.01 48.43 24.80 62.85 49.19
ℓ2+ 57.53 49.38 26.60 62.02 49.79

LoRA 55.67 44.28 25.80 60.43 47.05
LoRA+ 56.74 47.68 28.80 61.49 49.31

relationship between Σ̃ and e (i.e., the difference between
the optima of the pre-training and fine-tuning tasks).4

For a model parameterized by θ ∈ Rd, let

err1(θ) := ED

[(
y − ⟨θ,x⟩

)2]
=
(
θ − θ∗

)⊤
Σ
(
θ − θ∗

)
,

err2(θ) := ED̃

[(
ỹ−⟨θ, x̃⟩

)2]
=
(
θ−θ̃∗

)⊤
Σ̃
(
θ−θ̃∗

)
(4)

be the population errors on the pre-training and fine-tuning
tasks, respectively. Also, the total error with θ on the two
tasks is denoted by errtot(θ) = err1(θ) + err2(θ).

We assume that initially, we learn θ∗ with the pre-training
data; so θ∗ is our pre-trained model. Note that

errtot(θ∗) = err2(θ∗) = e⊤Σ̃e = ∥e∥22, (5)

where the last step follows by using Σ̃ from Equation (3).

4See Appendix E for more details.
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We start fine-tuning starting from θ∗. Specifically, we as-
sume access to the population(x̃, ỹ) ∼ D̃ of the fine-tuning
task, but we lose access to the pre-training data.

Vanilla fine-tuning (FT): We minimize err2(θ) (Eq. (4))
with gradient descent (GD) starting from θ∗ using a constant
learning rate η. Our iterate θK at the K th iteration is given
by (using the value of Σ̃ from Eq. (3) and θ∗ − θ̃∗ = e):

θK = θ̃∗ +
(
Id − 2η

(
Id + ρ

(
ee⊤⊥ + e⊥e

⊤))Ke. (6)

FLOW: For some temperature τ , the weight of (x̃, ỹ) ∼ D̃
is w(x̃, ỹ) = exp

(
− (̃y−⟨θ∗,x̃⟩)2

τ

)
. We minimize

êrr2(θ̂) := ED̃

[
w(x̃, ỹ)

(
ỹ − ⟨θ̂, x̃⟩

)2]
, (7)

with GD starting from θ∗ using a constant learning rate η̂.
Suppose our iterate at the K th iteration is θ̂K .

Theorem 7.2 (FLOW). Let µ =
(

τ
τ+2∥e∥2

2

)1/2
. Then:

θ̂K = θ̃∗ +
(
Id − 2η̂Σ̃′

)K
e, (8)

where Σ̃′ = µ
(
Id −Q

)
with

Q = (1− µ2)ee⊤ + ρ2(1− µ2)e⊥e
⊤
⊥

− ρµ2
(
ee⊤⊥ + e⊥e

⊤). (9)

We prove Thm. 7.2 in Appendix D. The main technical
challenge is the evaluation of Σ̃′, viz., the covariance matrix
of the weighted fine-tuning data; see Lemma F.1 for this.

Now, we are going to compare vanilla FT (6) with η = 1
2

and FLOW (8) with η̂ = 1
2µ . We believe these are com-

parable learning rates for vanilla FT and FLOW because
the resultant matrices (Eqs. (10) and (11)) dictating the
convergence of both methods have exactly two non-zero
eigenvalues and the corresponding eigenvectors lie in the
span of e and e⊥. Plugging in η = 1

2 into Eq. (6), we get:

θK = θ̃∗ +PKe, with P = −ρ
(
ee⊤⊥ + e⊥e

⊤) (10)

for vanilla FT. Plugging in η̂ = 1
2µ into Eq. (8), we get:

θ̂K = θ̃∗ +QKe, with Q given by Eq. (9) (11)

for FLOW. The non-zero eigenvalues of P are ∓ρ and the
corresponding eigenvectors are 1√

2

(
e± e⊥

)
. Using this in

(10) and simplifying, we get for vanilla FT:

θK = θ̃∗ + ρK
(
1
(
K is even

)
e−1

(
K is odd

)
∥e∥2e⊥

)
. (12)

Remark 7.3 (Vanilla FT). Since ρ < 1, θK converges to
θ̃∗ rapidly, and we cannot impede this convergence.

Note that (we use Σ ⪰ Id below):

errtot(θ̃∗) = err1(θ̃∗) = e⊤Σe ≥ ∥e∥22. (13)

On the other hand, the non-zero eigenvalues and corre-
sponding eigenvectors of Q are not as straightforward to
compute. We do this computation in Lemma F.3 with

the re-parameterization of µ =
√

β(1−ρ2)
(1+β)(1−βρ2) for some

β ∈ (0, 1].5 Using this in Eq. (11) and simplifying, we get
for FLOW:

θ̂K = θ̃∗+

(
λ̂K
1 + λ̂K

2 β2ρ2

1 + β2ρ2

)
e−βρ

(
λ̂K
1 − λ̂K

2

1 + β2ρ2

)
∥e∥e⊥,

(14)
where λ̂1 = 1+βρ2

1+β and λ̂2 = ρ2
(

1−β
1−βρ2

)
.

Remark 7.4 (FLOW’s trajectory). Note that we can con-
trol λ̂1 by varying β. Specifically, we can make λ̂1 arbitrar-
ily close to 1 by choosing a small enough β. On the other
hand, 1−β

1−βρ2 < 1+βρ2

1+β = λ̂1 and so, λ̂2 < ρ2λ̂1. Hence,
beyond a certain number of iterations K, Eq. (14) becomes:

θ̂K ≈ θK := θ̃∗ + γ(K,β)
(
e− βρ∥e∥2e⊥

)
, (15)

with γ(K,β) :=
(

λ̂K
1

1+β2ρ2

)
. Because we can control λ̂1

by varying β, we can control γ(K,β). Thus, we can stall
convergence along

(
e− βρ∥e∥2e⊥

)
,6 impeding the con-

vergence of θ̂K to θ̃∗.

Remark 7.5 (FLOW goes beyond model averaging). If
we perform model averaging between θ∗ and θ̃∗ with pa-
rameter ω ∈ [0, 1], then our averaged model is:

θavg(ω) = ωθ∗ + (1− ω)θ̃∗ = θ̃∗ + ωe. (16)

Comparing the above with Eq. (15), we see that FLOW goes
beyond model averaging because of the component along
e⊥. But we can make θK (Eq. (15)) → θavg(ω) by choosing
β → 0 and K such that γ(K,β) → ω. So, we expect
FLOW to be at least as powerful as model averaging.

As per Lemma F.4, the minimum total error on both tasks
with optimally tuned model averaging is given by:

min
ω∈[0,1]

errtot
(
θavg(ω)

)
=

(
e⊤Σe

e⊤Σe+ 1

)
∥e∥22 < ∥e∥22,

(17)
where recall that Σ is the covariance matrix of the pre-
training data. On the other hand, using Eqs. (5) and (13)

min
(

errtot(θ∗), errtot(θ̃∗)
)
= ∥e∥22. (18)

5The corresponding temperature is τ =
2β(1−ρ2)∥e∥22

(1−β2ρ2)
.

6This direction is the top eigenvector of Q. Since Σ̃′ = µ
(
Id−

Q
)
, this is also the eigenvector of Σ̃′ with the smallest eigenvalue.
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Remark 7.6 (Error comparison). By comparing Eqs. (17)
and (18), we see that optimally tuned model averaging at-
tains a smaller total error than both θ∗ (i.e., the pre-trained
model) and θ̃∗ to which vanilla FT converges rapidly (Re-
mark 7.3). More importantly, following our discussion in
Remark 7.5, we conclude that optimally tuned FLOW’s
total error is at least as good as the one in Eq. (17).

8. Conclusion
In this paper, we studied the problem of catastrophic for-
getting in pre-trained models during fine-tuning when we
do not have access to the pre-training data. To mitigate this
issue, we proposed FLOW, a method which upweights easy
samples based on the pre-trained loss values. Empirically,
we showed that FLOW, on average, outperforms relevant
baselines and is also complementary to these baselines in
both vision and language settings. We also theoretically
analyzed FLOW for linear models.

Discussion and limitations. We would like to conclude
with an overview of our work’s limitations and potential
future directions. In lay terms, mitigating forgetting of pre-
training capabilities comes at the cost of relatively lower
fine-tuning performance. FLOW maintains this balance
by sacrificing performance on hard samples from the fine-
tuning data. Table 5 indicates that FLOW has lower accu-
racy on samples with high pre-training loss (“hard samples”)
compared to standard FT. Our method selectively down-
weighs samples with high pre-training losses for preserving
pre-training performance. An interesting future direction is
improving performance on such samples while maintaining
or improving overall performance. On the theoretical side,
we hope to extend our analysis to generalized linear models
(GLMs) and even non-linear models.

Table 5. Comparison of FLOW and Standard-FT on hard sam-
ples across three vision datasets. We evaluate performance on
the top 10% hardest samples (those with the highest pre-trained
losses). Indeed, the samples with high pre-training losses have
lower accuracy when using FLOW compared to standard fine-
tuning (FT). This is an unsurprising outcome of our approach; we
sacrifice performance on hard examples of the fine-tuning data to
maintain performance on the pre-training data.

Dataset # of Hard Samples Standard FT FLOW

CIFAR-10 1000 86.60 30.70
CIFAR-100 1000 56.40 21.30
Stanford Cars 805 71.30 13.18
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A. Extended Related Work
The majority of the approaches for mitigating forgetting assume task-specific knowledge access to different extents; either (a
subset of) the pre-training dataset itself or some information/statistic computed from pre-training data. Below, we describe
the data-aware approaches based on how they make use of task-specific knowledge.

Regularization-based methods. This line of work aims to preserve performance on previously learned tasks by keeping
the (fine-tuned) model parameters close to the pre-trained model. The key idea is to introduce task-specific regularization
in the fine-tuning phase which will penalize updates along the “important” directions for the old tasks (Ahn et al., 2019).
Kirkpatrick et al. (2016) introduces the elastic weight consolidation (EWC) algorithm, which estimates the important
direction per-task by calculating a diagonal approximation to the Fisher information matrix (FIM), which acts as the weight
matrix for the regularization term. Several variants of EWC have been subsequently proposed (Schwarz et al., 2018; Ritter
et al., 2018; Lee et al., 2020; Liu et al., 2018). Zenke et al. (2017); Aljundi et al. (2018) adopt online strategies to infer the
importance of each parameter by their variational effect on the model outputs. In a spirit similar to EWC, Lee et al. (2017)
incrementally matches the posterior of the pre-trained model and the new task by assuming Gaussian posteriors.

Optimization-driven methods. Another perspective to mitigating forgetting is guiding the optimization process by
constraining the algorithms directly as opposed to manipulating the loss function. The core idea is to keep track of
“important directions” for the old tasks, and train on the new task “orthogonally.” This could be done by storing prior
data samples or gradients in a buffer (Lopez-Paz & Ranzato, 2017; Farajtabar et al., 2020; Chaudhry et al., 2019a) or by
incrementally expanding the subspace of important directions without storing task-specific information (Zeng et al., 2019;
Wang et al., 2021; 2023b).

Replay-based methods. Drawing inspiration from the complementary learning systems theory (Mcclelland et al., 1995), a
more direct approach is to introduce samples from old tasks into the training process for the new task. Samples are selected
in a streaming fashion or by manually crafting a subset on demand, stored in dedicated buffers and replayed during the
fine-tuning. The intuition is that the task-specific representations are refreshed periodically through historical data.

Replay-based methods consist of two fundamental components: data selection and data reiteration mechanisms. When the
data is received in a streaming fashion, information has to be buffered online (Riemer et al., 2019; Chaudhry et al., 2019b;
Isele & Cosgun, 2018; De Lange & Tuytelaars, 2021). In the case when datasets are available on demand, Rebuffi et al.
(2017) selects samples which are “representative” of their respective class, while others focus on inducing diversity (Aljundi
et al., 2019; Bang et al., 2021) and balance (Borsos et al., 2020; Tiwari et al., 2021) across buffered data. For the scenarios
in which storage is limited, Caccia et al. (2020); Wang et al. (2022b) develop compression methods for buffered data. As a
complimentary component to the data selection process, how the buffered data is replayed plays a significant role in the
success of such methods. A fundamental idea, which has several interpretations across the board, is knowledge distillation
(Hinton et al., 2015). Prior work argues that augmenting fine-tuning with knowledge distillation shows great performance
on the forgetting front (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019a; Rebuffi et al., 2017; Jung et al., 2017; Triki
et al., 2017; Li & Hoiem, 2016; Lee et al., 2019b; Dhar et al., 2019).

An orthogonal research direction focuses on maintaining a generative model that could reliably output pseudo-samples that
are representative of the dataset of the old tasks (Kemker & Kanan, 2018; Wu et al., 2018). Note that generative approaches
are prone to scalability issues and distribution shifts.

Architecture-driven methods. Another technique to limit the interference between tasks is allocating a separate trainable
set of parameters per task. This could be done by initializing a sub-networks per new task (Rusu et al., 2016; Aljundi et al.,
2017; Collier et al., 2020; Rajasegaran et al., 2019; Ramesh & Chaudhari, 2021; Wang et al., 2023a; 2022a), gradually
expanding the parameters of a base network (Yoon et al., 2018; Ostapenko et al., 2019; Hung et al., 2019), or segregating a
fixed model into task-specific subset of parameters (Mallya et al., 2018; Kang et al., 2022; Serra et al., 2018; Wortsman et al.,
2020; Mallya & Lazebnik, 2017; Mustafa B Gurbuz, 2022; Jung et al., 2020). While some parameters are task-specific, parts
of the overall model could be shared to enable knowledge transfer. The main downside associated is that the task identity
must be available during inference to (de)activate relevant sub-networks, hindering versatility. Aljundi et al. (2017) develop
dedicated strategies to overcome the need for task identification by automatizing task-specific parameter activation.

FLOW and its connection to other ML applications. Our approach has connections to factuality in LLM training (Ghosal
et al., 2024; Gekhman et al., 2024). For a fine-tuning task on a factual knowledge-based dataset, samples that are not
properly represented in the pre-training distribution could be considered hard. In the data-oblivious setting, one principled
way would be to rank hardness based on pre-training loss values; therefore, FLOW would identify such samples and guide
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the fine-tuning process such that those samples will not unexpectedly deteriorate the performance.

Although fundamentally different in its objective, machine unlearning is another avenue of application for our sample
weighting approach which could be interpreted as a means of soft unlearning. While unlearning and forgetting sound similar,
they are not the same in spirit; in unlearning we deliberately induce “forgetting” on some samples, whereas in our context,
forgetting is an undesirable side effect that we want to avoid. Hence, it might not be straightforward extend techniques of
one into another, one could extend our sample-wise weighting scheme with appropriate modifications to help selectively
unlearn specific samples.

B. Our Algorithm in the Presence of Task-Specific Model Components
Suppose our model is parameterized by θ = U∪V, where U is the common/shared part of the model for all tasks (i.e., this
part remains the same for all tasks), and V is the task-specific part of the model. In particular, in our vision experiments, the
models have task-specific prediction heads (i.e., softmax layers) and batch-norm (BN). The modified version of Algorithm 1
in the presence of task-specific components is stated in Algorithm 2. The main differences from Algorithm 1 are steps (i)
and (iv) – these steps optimize the task-specific part for the new task with uniform weighting. It is worth mentioning that if
our model consists of task-specific prediction heads – which is the case in our vision experiments – then steps (i) and (iv) are
just vanilla linear probing with the pre-trained body and the body learned after fine-tuning, respectively.

Algorithm 2 Fine-tuning with Pre-trained Loss-Oriented Weighting (FLOW)

Input: Pre-trained model θ(1)
∗ = U

(1)
∗ ∪V

(1)
∗ , dataset {(xi, yi)}ni=1 for the new task, and temperature parameter τ .

fi(U,V) → ith sample’s loss at θ = U ∪V, with a non-negative loss function (e.g., cross-entropy loss).

Step (i) Fine-tune task-specific part for new task with vanilla unweighted loss: V(2)
∗ := argmin V

∑n
i=1 fi(U

(1)
∗ ,V).

Step (ii) Compute sample weights: wi = exp
(
−fi(U

(1)
∗ ,V

(2)
∗ )
/
τ
)

.

Step (iii) Fine-tune full model with weighted loss: U
(2)

∗ ,V
(2)

∗ := argmin U,V

∑n
i=1 wifi(U,V).

Step (iv) Fine-tune task-specific part for new task using the learned common part with vanilla unweighted loss: V̂(2)
∗ :=

argmin V

∑n
i=1 fi(U

(2)

∗ ,V).

Output: New model for

• Original/pre-training task is θ̂(1)
∗ = U

(2)

∗ ∪V
(1)
∗ .

• New/fine-tuning task is θ̂(2)
∗ = U

(2)

∗ ∪ V̂
(2)
∗ .

Remark B.1. In all our vision experiments (with task-specific parts), we set τ = median(fi(U
(1)
∗ ,V

(2)
∗ )) (similar to

Remark 4.2).

C. Proof of Proposition 4.3
Proof. We wish to minimize g(π) =

∑n
i=1 πifi(θ

∗) + τ
∑n

i=1 πi log πi subject to
∑n

i=1 πi = 1 and πi ≥ 0 for all i ∈ [n].
The proof is a straightforward application of Lagrangian multipliers. It is enough to enforce

∑n
i=1 πi = 1 only (πi ≥ 0 for

all i ∈ [n] will also follow). For that, the Lagrangian function is:

J(π, λ) =

n∑
i=1

πifi(θ
∗) + τ

n∑
i=1

πi log πi + λ
( n∑

i=1

πi − 1
)
, (19)

where λ is the Lagrangian multiplier. Now, at the optimal point π∗ = [π∗
1 , . . . , π

∗
n]

⊤, we must have:

∂J

∂πi

∣∣∣∣∣
π∗
i

= fi(θ
∗) + τ (1 + log π∗

i ) + λ = 0, (20)
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for all i ∈ [n]. Simplifying, we get:

π∗
i =

1

Z
exp

(
−fi(θ

∗)

τ

)
, (21)

where Z = exp
((
1 + λ

τ

))
is the normalizing constant. To have

∑n
i=1 πi = 1, we get Z =

∑n
j=1 exp

(
− fj(W

∗)
τ

)
. Also,

note that we are good with the non-negativity constraints.

D. Proof of Theorem 7.2
Proof. Note that:

êrr2(θ̂) =
(
θ̂ − θ̃∗

)⊤ED̃

[
w(x̃, ỹ)x̃x̃⊤

](
θ̂ − θ̃∗

)
. (22)

Also, after plugging in ỹ =
〈
θ̃∗, x̃

〉
, we get:

w(x̃, ỹ) = exp

(
−
(
⟨θ∗ − θ̃∗, x̃⟩

)2
τ

)
.

Recall e := θ∗ − θ̃∗ and e := e
∥e∥2

. Suppose τ = α∥e∥22, for some α > 0. Then w(x̃, ỹ) = exp
(
− (⟨e,x̃⟩)2

α

)
, and we can

focus on

Σ̃′ := Ex̃∼P̃

[
exp

(
−
(
⟨e, x̃⟩

)2
α

)
x̃x̃⊤

]
. (23)

Let µ =
(

α
α+2

)1/2
=
(

τ
τ+2∥e∥2

2

)1/2
. As per Lemma F.1, we have:

Σ̃′ = µ
(
Id −Q

)
, (24)

where
Q = (1− µ2)ee⊤ + ρ2(1− µ2)e⊥e

⊤
⊥ − ρµ2

(
ee⊤⊥ + e⊥e

⊤). (25)

So if we minimize êrr2(θ̂) with GD starting from θ̂0 = θ∗ and using a constant learning rate η̂, our iterate θ̂K at the K th

iteration satisfies:

θ̂K − θ̃∗ =
(
Id − 2η̂Σ̃′

)K(
θ∗ − θ̃∗

)
=
(
Id − 2η̂Σ̃′

)K
e, (26)

where the last step follows by recalling that θ∗ − θ̃∗ = e, and Σ̃′ is given by Equation (24).

E. Difficulty in the Analysis with a General Covariance Matrix Σ̃

We will first derive the weighted (fine-tuning) data covariance matrix Σ̃′ in the context of Theorem 7.2 for a general
(fine-tuning) data covariance matrix Σ̃. Specifically, following the proof of Theorem 7.2, we have:

Σ̃′ := Ex̃∼N (0⃗d,Σ̃)

[
exp

(
−
(
⟨e, x̃⟩

)2
τ

)
x̃x̃⊤

]
. (27)

Note that x̃ = Σ̃1/2z, where z ∼ N (⃗0d, Id). Using this above, we get:

Σ̃′ = Σ̃1/2E

[
exp

(
−
(
⟨e, Σ̃1/2z⟩

)2
τ

)
zz⊤

]
Σ̃1/2 = Σ̃1/2E

[
exp

(
−
(
⟨Σ̃1/2e, z⟩

)2
τ

)
zz⊤

]
Σ̃1/2, (28)

where the last step follows by using the symmetry of Σ̃. Let τ = α
∥∥Σ̃1/2e

∥∥2
2

for some α > 0. Also, let r :=

(Σ̃1/2e)/∥Σ̃1/2e∥2. In that case, we have:

Σ̃′ = Σ̃1/2MΣ̃1/2, where M := E

[
exp

(
−
(
⟨r, z⟩

)2
α

)
zz⊤

]
. (29)
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Suppose {r⊥,j}d−1
j=1 is an orthonormal basis for the subspace of Rd orthogonal to r; so ⟨r⊥,j , r⟩ = 0 ∀ j ∈ [d − 1] and

⟨r⊥,j , r⊥,k⟩ = 1(j = k) ∀ j, k ∈ [d− 1]. Note that {r, r⊥,1, . . . , r⊥,d−1} forms an orthonormal basis for Rd. Then, as per

Lemma F.5, we have that r is an eigenvector of M with eigenvalue
(

α
α+2

)3/2
, and each r⊥,j is an eigenvector of M with

eigenvalue
(

α
α+2

)1/2
. For brevity, let µ =

(
α

α+2

)1/2
. Then, we can write:

M = µ3rr⊤ + µ

d−1∑
j=1

r⊥,jr
⊤
⊥,j = µ3rr⊤ + µ

(
Id − rr⊤

)
, (30)

where the last step follows because {r, r⊥,1, . . . , r⊥,d−1} forms an orthonormal basis for Rd, due to which rr⊤ +∑d−1
j=1 r⊥,jr

⊤
⊥,j = Id. Simplifying Equation (30) a bit, we get:

M = µ
(
Id − (1− µ2)rr⊤

)
. (31)

Plugging this into Equation (29) and recalling that r := (Σ̃1/2e)/∥Σ̃1/2e∥2, we get:

Σ̃′ = µB, where B :=

(
Σ̃− (1− µ2)

Σ̃ee⊤Σ̃

e⊤Σ̃e

)
. (32)

Equation (32) is the weighted covariance matrix for a general Σ̃.

Remark E.1 (Difficulty with general Σ̃). It is hard to proceed with the analysis after this point because it is difficult to
characterize the eigen-spectrum of B in general, without assuming any relation between Σ̃ and e. This is what we meant in
Remark 7.1.

F. Lemmas Used and Their Proofs
Lemma F.1. In the proof of Theorem 7.2, recall that τ = α∥e∥22. Then, we have:

Σ̃′ := Ex̃∼P̃

[
exp

(
−
(
⟨e, x̃⟩

)2
α

)
x̃x̃⊤

]
= µ

(
Id − (1− µ2)ee⊤ − ρ2(1− µ2)e⊥e

⊤
⊥ + ρµ2

(
ee⊤⊥ + e⊥e

⊤)),
where µ =

(
α

α+2

)1/2
=
(

τ
τ+2∥e∥2

2

)1/2
.

Proof. Recall that e and e⊥ are orthogonal to each other and both are unit-norm. Suppose {e⊥,3, e⊥,4, . . . , e⊥,d} is an
orthonormal basis for the (d− 2)-dimensional subspace of Rd orthogonal to e and e⊥. Thus, {e, e⊥, e⊥,3, e⊥,4, . . . , e⊥,d}
is an orthonormal basis for Rd. Then using Lemma F.2, we can write:

x̃ = z1e+
(
ρz1 +

√
1− ρ2z2

)
e⊥ +

d∑
j=3

zje⊥,j , (33)

where {zj}dj=1 ∼
iid

N (0, 1).

Using independence and zero-mean nature of {zj}dj=1, we get:

Σ̃′ = E
[
exp

(
− z21

α

)
z21
]

︸ ︷︷ ︸
:=T1

ee⊤ + E
[
exp

(
− z21

α

)
z1
(
ρz1 +

√
1− ρ2z2

)]
︸ ︷︷ ︸

:=T2

(
ee⊤⊥ + e⊥e

⊤)

+ E
[
exp

(
− z21

α

)(
ρz1 +

√
1− ρ2z2

)2]
︸ ︷︷ ︸

:=T3

e⊥e
⊤
⊥ +

d∑
j=3

E
[
exp

(
− z21

α

)]
︸ ︷︷ ︸

:=T4

E
[
z2j
]︸ ︷︷ ︸

=1

e⊥,je
⊤
⊥,j . (34)
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Note that (we use the independence of z1 and z2):

T2 = ρT1 +
√
1− ρ2E

[
exp

(
− z21

α

)
z1
]
E
[
z2
]︸ ︷︷ ︸

=0

= ρT1, (35)

and

T3 = ρ2T1 + 2ρ
√
1− ρ2

[
exp

(
− z21

α

)
z1
]
E
[
z2
]︸ ︷︷ ︸

=0

+(1− ρ2)T4 E
[
z22
]︸ ︷︷ ︸

=1

= ρ2T1 + (1− ρ2)T4. (36)

In the above two equations, we have again used the independence of z1 and z2. Now we will compute T1 and T4. We have:

T1 =

(
1√
2π

∫ ∞

−∞
z21 exp

(
− z21

( 1
α
+

1

2

))
dz1

)
=
( α

α+ 2

)3/2
, (37)

and

T4 =

(
1√
2π

∫ ∞

−∞
exp

(
− z21

( 1
α
+

1

2

))
dz1

)
=
( α

α+ 2

)1/2
. (38)

Recall that µ =
(

α
α+2

)1/2
. Plugging this into Equations (35) to (38) gives us:

T1 = µ3,T2 = ρµ3,T3 = ρ2µ3 + (1− ρ2)µ, and T4 = µ. (39)

Plugging this into Equation (34) gives us:

Σ̃′ = µ3ee⊤ + ρµ3
(
ee⊤⊥ + e⊥e

⊤)+ (ρ2µ3 + (1− ρ2)µ
)
e⊥e

⊤
⊥ + µ

d∑
j=3

e⊥,je
⊤
⊥,j . (40)

Recall that {e, e⊥, e⊥,3, e⊥,4, . . . , e⊥,d} is an orthonormal basis for Rd. Thus,
∑d

j=3 e⊥,je
⊤
⊥,j = Id−ee⊤−e⊥e

⊤
⊥. Using

this above, we get:
Σ̃′ = µ

(
Id − (1− µ2)ee⊤ − ρ2(1− µ2)e⊥e

⊤
⊥ + ρµ2

(
ee⊤⊥ + e⊥e

⊤)). (41)

This finishes the proof.

Lemma F.2. Suppose {e, e⊥, e⊥,3, e⊥,4, . . . , e⊥,d} is an orthonormal basis for Rd. If x̃ ∼ N (0⃗d, Σ̃), then we can write:

x̃ = z1e+
(
ρz1 +

√
1− ρ2z2

)
e⊥ +

d∑
j=3

zje⊥,j , (42)

where {zj}dj=1 ∼
iid

N (0, 1).

Proof. If x̃ is as per Equation (42), then clearly x̃ is a zero-mean Gaussian. All that remains to show is that

E
[
x̃x̃⊤

]
= Σ̃ = Id + ρ

(
ee⊤⊥ + e⊥e

⊤).
Using independence and zero-mean nature of {zj}dj=1, we get:

E
[
x̃x̃⊤

]
= E

[
z21
]︸ ︷︷ ︸

=1

ee⊤ + E
[
z1
(
ρz1 +

√
1− ρ2z2

)]
︸ ︷︷ ︸

:=(A)

(
ee⊤⊥ + e⊥e

⊤)+ E
[(

ρz1 +
√
1− ρ2z2

)2]
︸ ︷︷ ︸

:=(B)

e⊥e
⊤
⊥

+

d∑
j=3

E
[
z2j
]︸ ︷︷ ︸

=1

e⊥,je
⊤
⊥,j . (43)
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Note that (we use the independence of z1 and z2):

(A) = ρE[z21]︸ ︷︷ ︸
=1

+
√

1− ρ2 E[z1]︸ ︷︷ ︸
=0

E
[
z2
]︸ ︷︷ ︸

=0

= ρ, (44)

and
(B) = ρ2 E

[
z21
]︸ ︷︷ ︸

=1

+2ρ
√

1− ρ2 E
[
z1
]︸ ︷︷ ︸

=0

E
[
z2
]︸ ︷︷ ︸

=0

+(1− ρ2)E
[
z22
]︸ ︷︷ ︸

=1

= 1. (45)

Plugging this into Equation (43), we get:

E
[
x̃x̃⊤

]
= ee⊤ + ρ

(
ee⊤⊥ + e⊥e

⊤)+ e⊥e
⊤
⊥ +

d∑
j=3

e⊥,je
⊤
⊥,j . (46)

Recall that {e, e⊥, e⊥,3, e⊥,4, . . . , e⊥,d} is an orthonormal basis for Rd. Thus,
∑d

j=3 e⊥,je
⊤
⊥,j = Id−ee⊤−e⊥e

⊤
⊥. Using

this above, we get:

E
[
x̃x̃⊤

]
= Id + ρ

(
ee⊤⊥ + e⊥e

⊤) = Σ̃. (47)

This finishes the proof.

Lemma F.3. Recall that
Q = (1− µ2)ee⊤ + ρ2(1− µ2)e⊥e

⊤
⊥ − ρµ2

(
ee⊤⊥ + e⊥e

⊤).
Let

µ =

√
β(1− ρ2)

(1 + β)(1− βρ2)

for some β ∈ (0, 1]. In that case, the eigenvalues of Q are:

λ̂1 =
1 + βρ2

1 + β
and λ̂2 = ρ2

(
1− β

1− βρ2

)
,

and the corresponding eigenvectors are:

v̂1 =
1√

1 + β2ρ2
e− βρ√

1 + β2ρ2
e⊥ and v̂2 = − βρ√

1 + β2ρ2
e− 1√

1 + β2ρ2
e⊥.

Proof. Q is a rank-2 matrix and its two eigenvectors will be in the span of e and e⊥. In particular, an eigenvector of Q is of
the form [e, e⊥]b, where b ∈ R2×1 is an eigenvector of the 2× 2 matrix:

A :=

[
(1− µ2) −ρµ2

−ρµ2 ρ2(1− µ2)

]
. (48)

Also, the corresponding eigenvalues of Q are the corresponding eigenvalues of A. It can be verified that the eigenvalues of
A are:

λ̂1 =
(1 + ρ2)(1− µ2)

2
+

√
(1− ρ2)2(1− µ2)2

4
+ ρ2µ4. (49)

and

λ̂2 =
(1 + ρ2)(1− µ2)

2
−
√

(1− ρ2)2(1− µ2)2

4
+ ρ2µ4. (50)

The corresponding eigenvectors of A are:

b̂1 =
1√

b21,1 + b21,2

[
b1,1
b1,2

]
(51)
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where b1,1 = (1−ρ2)(1−µ2)
2 +

√
(1−ρ2)2(1−µ2)2

4 + ρ2µ4 and b1,2 = −ρµ2, and

b̂2 =
1√

b22,1 + b22,2

[
b2,1
b2,2

]
, (52)

where b2,1 = (1−ρ2)(1−µ2)
2 −

√
(1−ρ2)2(1−µ2)2

4 + ρ2µ4 and b2,2 = −ρµ2. Thus, the eigenvalues of Q are λ̂1 and λ̂2; the

corresponding eigenvectors are v̂1 = [e, e⊥]b̂1 and v̂2 = [e, e⊥]b̂2. Note that:

(1− ρ2)(1− µ2)

2
≤
√

(1− ρ2)2(1− µ2)2

4
+ ρ2µ4 ≤ (1− ρ2)(1− µ2)

2
+ ρµ2.

Let us set
√

(1−ρ2)2(1−µ2)2

4 + ρ2µ4 = (1−ρ2)(1−µ2)
2 + βρ2µ2, for some β ∈ (0, 1]. That gives us:

µ =

√
β(1− ρ2)

(1 + β)(1− βρ2)
. (53)

In that case, we have:

λ̂1 =
1 + βρ2

1 + β
and λ̂2 = ρ2

(
1− β

1− βρ2

)
. (54)

Also,

b1,1 =
1− ρ2

(1 + β)(1− βρ2)
, b1,2 = b2,2 = − βρ(1− ρ2)

(1 + β)(1− βρ2)
, and b2,1 = − β2ρ2(1− ρ2)

(1 + β)(1− βρ2)
. (55)

Therefore,

b̂1 =
1√

1 + β2ρ2

[
1

−βρ

]
and b̂2 =

1√
1 + β2ρ2

[
−βρ
−1

]
. (56)

Recall that the eigenvalues of Q are λ̂1 and λ̂2, and the corresponding eigenvectors are

v̂1 = [e, e⊥]b̂1 =
1√

1 + β2ρ2
e− βρ√

1 + β2ρ2
e⊥ and v̂2 = [e, e⊥]b̂2 = − βρ√

1 + β2ρ2
e− 1√

1 + β2ρ2
e⊥.

Finally, recall that µ =
√

β(1−ρ2)
(1+β)(1−βρ2) .

Lemma F.4. Recall that the averaged model with parameter ω as defined in Equation (16) was

θavg(ω) = ωθ∗ + (1− ω)θ̃∗ = θ̃∗ + ωe.

We have:

min
ω∈[0,1]

errtot
(
θavg(ω)

)
=

(
e⊤Σe

e⊤Σe+ 1

)
∥e∥22, (57)

where recall that Σ is the covariance matrix of the pre-training data.

Proof. We have:

errtot
(
θavg(ω)

)
= err1

(
θavg(ω)

)
+err2

(
θavg(ω)

)
=
(
θavg(ω)−θ∗

)⊤
Σ
(
θavg(ω)−θ∗

)
+
(
θavg(ω)− θ̃∗

)⊤
Σ̃
(
θavg(ω)− θ̃∗

)
.

(58)
Plugging in the value of θavg(ω) and using the value of Σ̃ from Equation (3) above, we get:

errtot(θavg(ω)) = (1− ω)2e⊤Σe+ ω2∥e∥22. (59)

It can be verified (with elementary calculus) that the optimal value of ω that minimizes the RHS in Equation (59) is
ω∗ = e⊤Σe

e⊤Σe+∥e∥2
2

. Plugging this into Equation (59) and simplifying a bit yields the desired result.
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Lemma F.5. Suppose α > 0 and r ∈ Rd is a unit-norm vector, i.e., ∥r∥2 = 1. Let

M := E

[
exp

(
−
(
⟨r, z⟩

)2
α

)
zz⊤

]
,

where z ∼ N (⃗0d, Id). r is an eigenvector of M with eigenvalue
(

α
α+2

)3/2
. Further, the eigenvectors of M in the subspace

of Rd orthogonal to r all have eigenvalues
(

α
α+2

)1/2
.

Proof. We have:

E
[
Mr
]
= E

[
exp

(
−
(
⟨r, z⟩

)2
α

)
⟨r, z⟩z

]
. (60)

Suppose {r⊥,j}d−1
j=1 is an orthonormal basis for the subspace orthogonal to r; so ⟨r⊥,j , r⟩ = 0 ∀ j ∈ [d − 1] and

⟨r⊥,j , r⊥,k⟩ = 1(j = k) ∀ j, k ∈ [d− 1]. Then, note that:

z = ⟨r, z⟩r+
d−1∑
j=1

⟨r⊥,j , z⟩r⊥,j . (61)

Since z ∼ N (⃗0d, Id), ⟨r, z⟩ and {⟨r⊥,j , z⟩}d−1
j=1 are i.i.d. N (0, 1). Using all of this in Equation (60), we get:

E
[
Mr
]
= E

[
exp

(
−
(
⟨r, z⟩

)2
α

)(
⟨r, z⟩

)2]
r+

d−1∑
j=1

E

[
exp

(
−
(
⟨r, z⟩

)2
α

)
⟨r, z⟩⟨r⊥,j , z⟩

]
︸ ︷︷ ︸

=0 (⟨r, z⟩ and ⟨r⊥,j , z⟩ are independent)

r⊥,j (62)

= EZ∼N (0,1)

[
exp

(
− Z2

α

)
Z2

]
r (because ⟨r, z⟩ ∼ N (0, 1)) (63)

=

(
1√
2π

∫ ∞

−∞
z2 exp

(
− z2

( 1
α
+

1

2

))
dz

)
r (64)

=
( α

α+ 2

)3/2
r. (65)

So r is an eigenvector of M with eigenvalue
(

α
α+2

)3/2
.

Next, note that:

E
[
Mr⊥,1

]
= E

[
exp

(
−
(
⟨r, z⟩

)2
α

)
⟨r⊥,1, z⟩⟨r, z⟩

]
︸ ︷︷ ︸

=0

r+ E

[
exp

(
−
(
⟨r, z⟩

)2
α

)(
⟨r⊥,1, z⟩

)2]
r⊥,1

d−1∑
j=2

E

[
exp

(
−
(
⟨r, z⟩

)2
α

)
⟨r⊥,1, z⟩⟨r⊥,j , z⟩

]
︸ ︷︷ ︸

=0

r⊥,j . (66)

In the above equation, the first and last terms are 0 because ⟨r, z⟩ and {⟨r⊥,j , z⟩}d−1
j=1 are i.i.d. N (0, 1); using this fact again,
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we get:

E
[
Mr⊥,1

]
= EZ∼N (0,1)

[
exp

(
− Z2

α

)]
EZ̄∼N (0,1)

[
Z̄2
]︸ ︷︷ ︸

=1

r⊥,1 (67)

=

(
1√
2π

∫ ∞

−∞
exp

(
− z2

( 1
α
+

1

2

))
dz

)
r⊥,1 (68)

=
( α

α+ 2

)1/2
r⊥,1. (69)

Similarly, we can show that for j = {2, . . . , d− 1}, we have:

E
[
Mr⊥,j

]
=
( α

α+ 2

)1/2
r⊥,j . (70)

So for all j ∈ [d− 1], r⊥,j is an eigenvector of M with eigenvalue
(

α
α+2

)1/2
. Thus, the eigenvectors of M in the subspace

orthogonal to r all have eigenvalues
(

α
α+2

)1/2
.

G. Experimental Details
In this section, we further discuss the experimental setup of FLOW’s usage in both language and vision settings, specifically
covering the following:

• Appendix G.1: Baseline Details.

• Appendix G.2: Language Model Hyper-Parameters.

• Appendix G.3: Language Model Evaluation Details.

• Appendix G.4: Vision Model Implementation Details.

G.1. Baseline Details

In this section, we further discuss the baselines mentioned in Section 5.

Linear Probing: In our vision experiments, we define linear probing as freezing the body of the pre-trained model,
initializing a new (task-specific) head and batch normalization layers, and training only the new head and batch normalization
layers.

ℓ2 regularization: Based on Kirkpatrick et al. (2016), we perform ℓ2 regularization as a baseline in the data-oblivious
setting. Specifically, the ℓ2-regularized loss is:

L(θ) =
n∑

i=1

fi(θ) + λ∥θ − θ∗∥22 (71)

where fi is the ith sample’s loss, θ∗ is the pre-trained model, and λ is the regularization parameter. Intuitively, as λ increases,
our model stays closer to the pre-trained model, mitigating forgetting at the expense of target domain performance.

LoRA (Hu et al., 2022): Recently, Biderman et al. (2024) showed that fine-tuning language models with LoRA (Hu et al.,
2022) effectively mitigates forgetting. Following a similar setup as us, Biderman et al. (2024) fine-tuned language models on
MetaMathQA (Yu et al., 2023) and then evaluated the fine-tuned model on several general capability tasks, viz., HellaSwag
(Zellers et al., 2019), ARC-c (Clark et al., 2018), and WinoGrande (Sakaguchi et al., 2019), and one target domain task, viz.,
GSM8K (Cobbe et al., 2021). Further details about experimental hyper-parameters can be found in Appendix G.2.
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WiSE-FT (Wortsman et al., 2021): We also consider model averaging as a baseline, specifically focusing on WiSE-FT
(Wortsman et al., 2021). WiSE-FT is simply the convex combination of the model parameters shared between the two tasks,
while the task-specific parts are not averaged. Specifically, we perform model averaging between the pre-trained model
and the fine-tuned model. The convex combination parameter α of WiSE-FT is set to 0.5 in our experiments, as we cannot
optimize α in the data-oblivious setting.

Learning without Forgetting (Li & Hoiem, 2016): This work considers using a distillation-based loss to mitigate
forgetting when the data from the training of previous tasks is not available. Initially, they record the responses yo on
the new task images with the old tasks’ model parameters, then train the model using a combination of fine-tuning loss,
distillation loss, and model regularization. For new tasks, they use standard cross-entropy loss, while for old tasks they
employ distillation loss that encourages the updated model’s responses to match the recorded responses yo of the original
model. Their proposed method has a distillation loss scaling factor λ0 and a temperature parameter T in the distillation loss,
introducing extra tunable parameters. Their loss induces joint optimization of shared parameters θs, old task parameters θo,
and new task parameters θn using only new task data. Note that unlike FLOW, they also update the old task parameters θo.

G.2. Language Model Hyper-Parameters

For both Gemma 2 2B (Team et al., 2024) and Llama 3.2 3B (Grattafiori et al., 2024), we run hyper-parameter sweeps on
learning rates for each baseline. For standard fine-tuning, ℓ2 regularization, and FLOW, we do a learning rate sweep in [1e-4,
2e-5, 1e-5, 5e-6], and for LoRA (r = 64) we do a sweep in [2e-4, 2e-1], following the learning rates used in (Biderman
et al., 2024). We then select the learning rate that results in the best GSM8K (Cobbe et al., 2021) accuracy, oblivious to
general capability metrics. We report the hyper-parameters used for our Gemma 2 2B (Team et al., 2024) experiments in
Table 6 and for Llama 3.2 3B (Grattafiori et al., 2024) in Table 7.

Table 6. The hyper-parameters used to train Gemma 2 2B in our experiments. Note that the learning rate selected is based on the best
results on GSM8K after fine-tuning the method on MetaMathQA.

Hyper-parameter Standard Fine-tuning LoRA (r = 64) ℓ2-Reg. FLOW (Ours)

Learning Rate 1e-5 2e-4 5e-6 5e-6

Learning Rate Scheduler Cosine
Batch Size 128
Optimizer AdamW
Weight Decay 0.00
Warmup Ratio 0.03
Epochs 2
Max Sequence Length 1024
Seed 42

Table 7. The hyper-parameters used to train Llama 3.2 3B in our experiments. Note that the learning rate selected is based on the best
results on GSM8K after fine-tuning the method on MetaMathQA.

Hyper-parameter Standard Fine-tuning LoRA (r = 64) ℓ2-Reg. FLOW (Ours)

Learning Rate 2e-5 2e-4 1e-5 1e-5

Learning Rate Scheduler Cosine
Batch Size 128
Optimizer AdamW
Weight Decay 0.00
Warmup Ratio 0.03
Epochs 2
Max Sequence Length 1024
Seed 42
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For our WiSE-FT (Wortsman et al., 2021) model averaging experiments, we use α = 0.5. For our LoRA (Hu et al., 2022)
experiments, we use α = r = 64. For ℓ2 regularization we use λ = 1e− 3 which is taken from (Chen et al., 2024b). Most
training hyper-parameters for our language experiments are taken from Chen et al. (2024b), with the introduction of learning
rate sweeps.

G.3. Language Model Evaluation Details

As described in Section 5.2, we create a commonsense reasoning metric composed of the following six metrics: ARC-e
(Clark et al., 2018), ARC-c (Clark et al., 2018), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap et al.,
2019), and OBQA (Mihaylov et al., 2018). On top of the commonsense metric, we evaluate MMLU (Hendrycks et al.,
2021a) and MBPP (Austin et al., 2021) to estimate the general capabilities of a language model and to measure the effects of
catastrophic forgetting when fine-tuning a model on MetaMathQA (Yu et al., 2023). We additionally use GSM8K (Cobbe
et al., 2021) to evaluate the target fine-tuning performance of a given fine-tuning method. We provide a brief describe each
of these evaluation metrics:

1. HellaSwag (Zellers et al., 2019): A benchmark designed to test commonsense reasoning. HellaSwag presents a context
followed by several plausible endings, and the model must choose the most appropriate continuation.

2. ARC Easy (Clark et al., 2018): A benchmark part of the AI2 reasoning challenge designed to test basic scientific
reasoning and knowledge. ARC Easy presents 5,197 multiple-choice science questions drawn from grade 3-9
standardized tests, where each question typically includes a brief scientific scenario or statement followed by four
possible answer choices.

3. ARC Challenge (Clark et al., 2018): A benchmark part of the AI2 reasoning challenge designed to test advanced
scientific reasoning and knowledge application. ARC Challenge presents 2,590 multiple-choice science questions
drawn from grade 3-9 standardized tests, where each question typically includes a scientific scenario or phenomenon
followed by four possible answer choices. The questions in ARC Challenge are significantly more challenging than
ARC Easy.

4. PIQA (Bisk et al., 2020): A benchmark designed to evaluate physical commonsense understanding in natural language.
PIQA presents a goal and two possible solutions, requiring models to choose the most appropriate solution that
demonstrates an understanding of everyday physical interactions.

5. SIQA (Sap et al., 2019): A benchmark designed to evaluate social commonsense intelligence and emotional reasoning.
SIQA presents a social situation context followed by a question and three possible answers, requiring models to
demonstrate an understanding of social interactions, emotional responses, and behavioral implications.

6. Open Book QA (Mihaylov et al., 2018): A benchmark designed to assess understanding of elementary science concepts
in an open-book exam format. OBQA presents 5,957 multiple-choice questions paired with a small ”book” of 1,326
core science facts, requiring models to combine these facts with common knowledge to arrive at correct answers.

7. MMLU (Hendrycks et al., 2021a): A benchmark designed to evaluate massive multitask language understanding.
MMLU presents approximately 16,000 multiple-choice questions spanning 57 subjects including mathematics, philoso-
phy, law, and medicine, requiring models to demonstrate broad knowledge and reasoning capabilities.

8. MBPP (Austin et al., 2021): A benchmark designed to evaluate basic Python programming capabilities. The entire
MBPP dataset presents 974 Python programming problems, where each problem includes a natural language task
description and three test cases written as assert statements, requiring models to generate functionally correct Python
code solutions.

9. GSM8K (Cobbe et al., 2021): A benchmark designed to evaluate multi-step mathematical reasoning capabilities. The
GSM8K test set contains 1,000 grade school math word problems, where each problem requires 2-8 steps to solve
using basic arithmetic operations (addition, subtraction, multiplication, division).

We follow the standard evaluation process for each of these datasets and specifically use lm-evaluation-harness
(Gao et al., 2024) to evaluate our experiments.
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G.4. Vision Model Implementation Details

We performed an extensive hyper-parameter search over six learning rates (lrs = [0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001]),
two models, and six datasets (i.e., 72 total runs per method) for standard fine-tuning, linear probing, and FLOW. We chose
the best learning rates associated with the highest average score over all the target (fine-tuning) datasets. Since our method
is data oblivious, we do not use the validation set of ImageNet-1K other than for evaluation. For training models with
ℓ2-regularization, we adapted the same learning rates and other related hyperparameters used for standard fine-tuning. We
searched for λ using one dataset and ResNet50 model (λ = [0.002, 0.00001, 0.00002]) and chose 0.002 based on average
accuracy over target data. We chose (α = 0.05) for WiSE-FT following Wortsman et al. (2021). We present all the important
training details in Table 8 for the ResNet models.

Table 8. Hyperparameter configurations for finetuning ResNet18 and ResNet50 on the image classification datasets.

Model Hyperparameters CIFAR10 CIFAR100 Flowers102 Caltech101 Dogs Cars

# GPUs 1 A6000
Optimizer SGD
LR Schedule Cosine (except for Linear probing)
Weight Decay 0.0005
Seed 42
λ for ℓ2-Reg. 0.002
α for WiSE-FT. 0.05
τ (temperature) for FLOW median loss

Epochs 20 25 25 30 30 30

R
es

N
et

18 LR-Standard fine-tuning 5E-3 1E-2 5E-2 5E-3 1E-3 5E-2
LR-Linear probing 5E-3 5E-3 5E-2 1E-2 5E-3 5E-2
LR-FLOW 1E-3 5E-3 5E-2 1E-2 5E-3 1E-2

R
es

N
et

50 LR-Standard fine-tuning 5E-3 1E-3 1E-2 5E-3 5E-4 5E-2
LR-Linear probing 5E-2 5E-2 5E-2 5E-2 1E-2 5E-2
LR-FLOW 5E-4 1E-3 1E-2 1E-2 5E-3 1E-2

Hyperparameter Details for ViT-B/16. We fine-tuned for 8 epochs on Food-101. We used a learning rate of 5e–5 for
standard fine-tuning, ℓ2-regularization (with λ = 0.002), and our method FLOW. For linear probing, we used a higher
learning rate of 1e–3. For LwF, we used the same learning rate as standard fine-tuning (5e–5), T = 2, and λ0 = 5e–4. Here
we used a higher value of τ for FLOW and set it equal to 80th percentile of the pre-trained loss values.

Datasets

1. ImageNet-1K (Russakovsky et al., 2015) serves as the pre-training dataset for all our vision base models. It is a widely
used large-scale image classification dataset, consisting of over a million images spanning 1000 classes.

2. CIFAR-10 (Krizhevsky, 2009) is a widely used dataset for image classification tasks. It consists of 60,000 32x32 color
images divided into ten classes, with 6,000 images per class.

3. CIFAR-100 (Krizhevsky, 2009) extends CIFAR-10 by providing 100 classes containing 600 images each. This dataset
is used for fine-grained image classification tasks.

4. Caltech101 (Li et al., 2022) comprises images of a diverse range of objects across 101 categories with diverse set of
image classes.

5. Flowers102 (Nilsback & Zisserman, 2008) comprises 102 categories of flowers, with each category containing between
40 to 258 images. This dataset is commonly used for fine-grained image classification and flower recognition tasks.
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6. Cars (Krause et al., 2013) refers to the Stanford Cars dataset, which includes 16,185 images of 196 classes of cars. It
provides a rich resource for fine-grained car classification task.

7. Dogs (Parkhi et al., 2012) pertains to the Stanford Dogs dataset, containing 20,580 images of 120 breeds of dogs. This
dataset is widely used for fine-grained dog breed classification and recognition tasks.

8. Food101 (Bossard et al., 2014) is a large-scale dataset for food classification containing 101 categories with 1,000
images per class, commonly used to evaluate models on fine-grained object recognition tasks.
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H. Detailed Vision Results and Ablations
First, we present the detailed version of the results of Table 1 in Tables 9 and 10.

Table 9. ResNets: Target accuracies on each of the six datasets for the results in Table 1.

Method CIFAR-10 CIFAR-100 Flowers-102 Caltech-101 Dogs Cars Average

R
es

N
et

18

Linear probing 81.32 60.06 87.20 91.15 78.50 43.23 73.57
Standard FT 96.15 83.42 92.45 94.02 80.47 87.91 89.07
ℓ2-Regularization 95.53 81.82 92.11 94.23 80.27 84.78 88.12
WiSE-FT 91.47 65.90 87.28 91.40 82.48 62.88 80.23
FLOW (Ours) 88.25 78.95 90.01 93.05 86.20 67.17 83.93

R
es

N
et

50

Linear probing 86.62 67.80 83.64 93.45 85.76 41.97 76.45
Standard FT 97.61 86.11 91.74 96.02 89.26 89.94 91.78
ℓ2-Regularization 97.50 85.77 91.67 95.85 89.29 89.42 91.58
WiSE-FT 94.65 72.55 71.95 93.73 92.52 62.89 81.38
FLOW (Ours) 91.11 79.42 86.78 94.45 91.16 74.59 86.25

Table 10. ResNets: Top-1 ImageNet-1K accuracy after fine-tuning on each target dataset for the results in Table 1.

Method CIFAR-10 CIFAR-100 Flowers-102 Caltech-101 Dogs Cars Average

R
es

N
et

18

Linear probing 69.76 69.76 69.76 69.76 69.76 69.76 69.76
Standard FT 19.93 0.39 6.48 34.17 56.38 0.17 19.58
ℓ2-Regularization 37.86 29.86 19.34 46.67 58.34 16.64 34.78
WiSE-FT 62.24 47.65 49.98 64.70 67.34 33.03 54.15
FLOW (Ours) 69.02 52.64 67.80 68.32 67.78 65.74 65.21

R
es

N
et

50

Linear probing 79.02 79.02 79.02 79.02 79.02 79.02 79.02
Standard FT 16.89 35.95 61.01 40.51 66.93 0.21 36.91
ℓ2-Regularization 33.98 47.16 62.85 43.42 67.03 14.27 44.78
WiseFT (α = 0.5) 61.40 73.04 76.33 73.25 77.36 8.55 61.65
FLOW (Ours) 78.26 75.13 78.60 73.38 78.55 72.64 76.09

In Table 11, we present a small ablation to compare the pre-training and fine-tuning performances with different values of τ
in FLOW; recall that we prescribed selecting τ to be the median pre-training loss value. As we see, if we could tune τ , then
FLOW’s results would be even better.

Table 11. FLOW ablation with different values of τ : Pre-training and fine-tuning accuracies as a function of τ set to different percentiles
of the pre-training losses. The model is ResNet-50, pre-training dataset is ImageNet-1K (IN-1K), and the fine-tuning dataset is Caltech101
(Target). So if we could tune τ , then FLOW’s results would further improve.

IN-1K Accuracy Target Accuracy Average τ - Percentile (%)

68.51 91.15 79.83 10
64.13 91.01 77.57 30
54.72 91.80 73.26 50
45.59 92.91 69.25 70
20.51 94.02 57.27 90

Further, in Figure 2, we present another ablation study where we compare FLOW with different values of τ , WiSE-FT
with different values of the convex combination parameter, and random selection where we train on a random subset of the
fine-tuning data to limit the drift from the pre-trained model.

H.1. Comparison with a Distillation-Based Method for Mitigating Forgetting

Here, we compare our method FLOW against a distillation-based method for mitigating forgetting called “learning without
forgetting” (LwF) (Li & Hoiem, 2016) in vision. More details about this method can be found in Appendix G.1, but
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Figure 2. Comparison of FLOW with different values of τ and some other baselines with different hyper-parameter values. This
plot is for ResNet-50 on the Stanford cars dataset. FLOW’s plot (in red) is with τ = {10, 20, 30, 40, 50} percentile of the per-sample
losses. As the name “random selection” implies, we just pick a random subset of the fine-tuning data and train on this subset to limit the
drift from the pre-trained model. To have some correspondence with our choice of τ for FLOW, we pick random {10, 20, 30, 40, 50} %
of the data in “random selection”. As we see, FLOW significantly outperforms other methods.

the important thing to note is that it updates the head corresponding to the pre-training data (which FLOW does not do)
and also comes with more tunable parameters, additional memory, and evaluation overhead compared to FLOW. We
consider the ViT-B/16 (Dosovitskiy et al., 2021) model pre-trained on Imagenet-1K (IN-1K) and a single large fine-tuning
dataset, Food101 (Bossard et al., 2014). The evaluation metric is the same as in Section 5.1. Hyper-parameter details are in
Appendix G.4.

In Table 12, we list the accuracies of the pre-trained model, standard FT, linear probing, ℓ2-regularization, LwF, and FLOW.
Note that FLOW outperforms LwF despite its simplicity. Specifically, FLOW achieves better performance on the forgetting
front, while LwF does better on the fine-tuning task.

Table 12. Comparison with the distillation-based method (LwF) of Li & Hoiem (2016). Bolded and underlined values indicate
the best and second-best accuracies within each column (and for each model). Deltas (in color) for IN-1K and target performance are
computed w.r.t. the pre-trained and standard fine-tuned models. Note that FLOW outperforms LwF despite not updating the head for the
pre-training data, unlike LwF, and being more efficient than LwF, which comes with more tunable parameters, additional memory, and
evaluation overhead.

Method IN-1K Accuracy Target Accuracy Average

V
iT

-B
/1

6

Pre-trained 81.10 (+0.00) – –
Standard FT 56.11 (-24.99) 91.60 (+0.00) 73.86
Linear Probe 81.10 (+0.00) 83.86 (-7.74) 82.48
ℓ2-Reg. 59.18 (-21.92) 91.66 (+0.06) 75.42
LwF 76.39 (-4.71) 91.23 (-0.37) 83.81
FLOW (Ours) 77.94 (-3.16) 90.57 (-1.03) 84.26

I. Additional Language Model Results and Ablations
In this section, we discuss expanded results and further ablations of FLOW within our language experiments, specifically
covering the following:

• Appendix I.1: An expanded table of results on commonsense reasoning tasks along with other baselines.

• Appendix I.2: An additional ablation on token-wise weighting scheme for fine-tuning with language data.

• Appendix I.3: An expanded set of plots and results for the combination of FLOW with weight averaging techniques
such as Wise-FT (Wortsman et al., 2021).
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I.1. Extended Commonsense Reasoning Results

As discussed in Section 5.2 and Appendix G.3, we evaluate FLOW and the other baselines on various commonsense
reasoning tasks within fine-tuning with the procedure described in Section 5.2. We include the exact results of these
evaluation metrics for various baselines and FLOW in Table 13. We also include the results of commonsense reasoning
metrics for the ablation combining FLOW with LoRA and ℓ2-regularization in Table 14.

Table 13. Extended commonsense reasoning metrics for FLOW and other baselines within language modeling. The performance on
commonsense reasoning evaluations when fine-tuning Gemma 2 2B (Team et al., 2024) and Llama 3.2 3B (Grattafiori et al., 2024) on
MetaMathQA (Yu et al., 2023). We include the target domain evaluation GSM8K (Cobbe et al., 2021) for convenience. The results show
that FLOW can effectively mitigate catastrophic forgetting while still getting strong performance on our target fine-tuning task.

Method ARC-e ARC-c HellaSwag PIQA SIQA OBQA Average GSM8K

G
em

m
a

2
2B

Pre-trained 80.18 46.84 54.95 78.67 51.33 31.40 57.23 24.49
Standard Fine-tuning 76.09 42.07 54.41 76.99 48.06 32.00 55.07 63.38

WiSE-FT 79.55 46.42 56.43 78.24 51.08 32.00 57.28 53.30
LoRA (r = 64) 77.78 44.37 54.59 76.99 50.51 29.80 55.67 60.43
ℓ2-Regularization 79.08 45.99 56.21 77.20 50.97 32.60 57.01 62.85
FLOW (Ours) 79.76 47.18 56.23 77.69 51.48 33.20 57.59 62.55

L
la

m
a

3.
2

3B

Pre-trained 74.54 42.15 55.31 76.66 47.03 31.20 54.48 26.01
Standard Fine-tuning 70.03 34.22 52.02 74.16 45.24 28.40 50.68 66.95

WiSE-FT 75.63 40.79 55.18 76.93 47.34 31.40 54.54 57.01
LoRA (r = 64) 71.38 37.88 55.01 76.55 47.39 30.40 53.10 63.84
ℓ2-Regularization 73.57 38.91 54.939 76.12 47.24 30.80 53.60 66.87
FLOW (Ours) 74.96 39.68 55.39 76.01 47.80 32.00 54.30 65.58

Table 14. Extended commonsense reasoning metrics for combining FLOW with other baselines. The performance on commonsense
reasoning evaluations when fine-tuning Gemma 2 2B (Team et al., 2024) baselines in conjunction with FLOW on MetaMathQA (Yu
et al., 2023). We include the target domain evaluation GSM8K (Cobbe et al., 2021) for convenience. The results show that FLOW can
effectively be used in conjunction with other methods that mitigate catastrophic forgetting.

Method ARC-e ARC-c HellaSwag PIQA SIQA OBQA Average GSM8K

LoRA (r = 64) 77.78 44.37 54.59 76.99 50.51 29.80 55.67 60.43
LoRA (r = 64) + FLOW 79.50 45.39 55.27 77.31 51.18 31.80 56.74 61.49

ℓ2-Regularization 79.08 45.99 56.21 77.20 50.97 32.60 57.01 62.85
ℓ2-Regularization + FLOW 79.67 47.10 56.38 77.48 51.13 33.40 57.53 62.02

Table 13 shows a clear trend that FLOW, can strongly mitigate catastrophic forgetting in comparison to standard fine-tuning.
For Gemma 2 2B (Team et al., 2024), we can see that FLOW only has ∼ 0.8% reduction in the performance of the target
fine-tuning while on average maintaining the commonsense reasoning abilities of the pre-trained model, a ∼ 2.52% increase
over standard fine-tuning. For Llama 3.2 3B (Grattafiori et al., 2024), we can see that FLOW can again maintain the
commonsense reasoning abilities of the base pre-trained model while only having a ∼1.4% drop on target fine-tuning
performance. Overall, FLOW strikes a strong balance between general capabilities and target fine-tuning performance
compared to other baselines.

For experiments with Gemma 2 2B (Team et al., 2024), FLOW can on average maintain the best scores on commonsense
reasoning tasks. Performing only ∼ 0.8% and ∼ 0.3% worse on GSM8K (Cobbe et al., 2021) in comparison to standard
fine-tuning and ℓ2 regularization, FLOW can improve on commonsense reasoning metrics by ∼ 2.42% and ∼ 0.58%
respectively. Interestingly, in our Llama 3.2 3B (Grattafiori et al., 2024) experiments, we found that WiSE-FT (Wortsman
et al., 2021) performed the strongest in preventing catastrophic forgetting of commonsense capabilities (+0.04 over the
pre-trained model); however, this came at the cost of a significant decrease in GSM8K (Cobbe et al., 2021) accuracy (−9.94
under standard fine-tuning). In comparison, FLOW effectively mitigated forgetting in commonsense reasoning metrics
(−0.18 under the pre-trained model), while achieving significantly higher accuracy in GSM8K (Cobbe et al., 2021) (−1.37
under standard fine-tuning).
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I.2. Token-wise Sample Weighting Ablations

In the language experiments, “sample” for FLOW can be defined as an entire sequence or an individual token. The
experiments in the main paper treat a sequence as a sample; in that case, the per-sample loss is the average loss over the
tokens in the sequence. We call this sequence-wise re-weighting. Instead, one could treat a token as a sample in which
case the per-sample loss is just the token’s loss. We call this token-wise re-weighting. We run a small ablation on both
sequence-wise and token-wise re-weighting by following a similar experimental setup as Section 5.2. We train a Gemma 2
2B (Team et al., 2024) on MetaMathQA (Yu et al., 2023) and evaluate it on several general capability and target domain
evaluations. The results of this experiment are in Table 15.

Table 15. The performance of Gemma 2B 2B on general capabilities metrics compared to target domain performance (GSM8K) when
training on MetaMathQA. Pre-trained is the base model performance of Gemma 2 2B, Standard is the performance after full end-to-end
fine-tuning, Sequence is our sequence sample weighting schema with FLOW, and Token is our token sample weighting schema with
FLOW. Bold and underlined values indicate the best and second-best results respectively within each evaluation metric.

Method ARC-e ARC-c HellaSwag PIQA SIQA OBQA MMLU MBPP GSM8K

Base 80.18 46.84 54.95 78.67 51.33 31.40 49.59 28.40 24.49
Standard 76.09 42.07 54.41 76.99 48.06 32.80 45.59 16.80 63.38
Sequence 79.76 47.18 56.23 77.69 51.48 33.20 49.31 26.80 62.55

Token 79.38 45.90 53.95 78.29 51.28 31.80 48.75 22.00 23.73

Figure 3. Histograms comparing the sample-wise distribution of weights in sequence-wise re-weighting schema for FLOW and token-wise
distribution of weights token-wise re-weighting schema for FLOW. The sequence-wise weight distribution is given on the left, while the
token-wise weight distribution is given on the right.

While token-wise sample re-weighting performs comparably or slightly worse than sequence-wise sample re-weighting in
terms of the catastrophic forgetting of general capabilities of Gemma 2 2B, it struggles to effectively learn the fine-tuning
target domain of GSM8K. To further understand this problem, we compare the weight distributions between sequence-wise
and token-wise re-weighting schema in Figure 3. We can see that the sequence weights appear Gaussian, while most of the
token weights are either 0 or 1. We speculate that token-wise re-weighting will force any token not commonly appearing in
the pre-training data to have a high loss or perplexity, which combined with our algorithm, will heavily down-weight them
to almost zero. We further speculate that these tokens are essential to improving the performance of our target fine-tuning
task and that using FLOW with a token-wise scheme over-regularizes, preventing any meaningful learning of the target task.
As sequence-wise re-weighting significantly outperforms token-wise re-weighting, we recommend using sequence-wise
re-weighting in FLOW for language models.
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I.3. Extended Weight Averaging Results

As discussed in Section 6, we further combine FLOW with WiSE-FT (Wortsman et al., 2021) to mitigate the effects of
catastrophic forgetting when fine-tuning. In this section, we report the full results of combining FLOW and WiSE-FT to
prevent catastrophic forgetting with Gemma 2 2B.

Figure 4. FLOW is complementary with model averaging (WiSE-FT) in language modeling. We compare WiSE-FT (Wortsman et al.,
2021) with a standard model fine-tuning and with FLOW after fine-tuning Gemma 2 2B on MetaMathQA. We use varying α ∈ [0, 1] for
WiSE-FT. The results indicate that combining Wise-FT with FLOW outperforms vanilla WiSE-FT with standard fine-tuning.
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