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Abstract
With contrastive pre-training, sentence en-001
coders are generally optimized to locate seman-002
tically similar samples closer to each other in003
their embedding spaces. In this study, we em-004
pirically investigate the adaptability of these005
embedding spaces for zero-shot text classifica-006
tion, given that semantically distinct samples007
are already well-separated. Remarkably, the008
simple approach utilizing a sentence encoder009
to assign labels based on the highest similar-010
ity between the prompt embedding and the in-011
put text embedding showcases impressive zero-012
shot performance. Nonetheless, the approach013
is hindered by inadequately informative label014
prompts in their initial form. Therefore, we015
harness the same sentence encoder to extract016
semantically similar label prompts from exter-017
nal corpora and employ them as supplemen-018
tary pseudo-label prompts. Altogether, the ap-019
proach demonstrates stronger performance than020
state-of-the-art baselines on various closed-set021
classification and multiple-choice QA datasets022
under zero-shot settings. We analyze that the023
retrieval component plays a pivotal role in suc-024
cess and its results are robustly attained regard-025
less of verbalizer variations.026

1 Introduction027

Sentence encoders have been widely applied to028

a comprehensive range of natural language pro-029

cessing tasks, including classification, semantic re-030

trieval, and semantic similarity tasks (Reimers and031

Gurevych, 2019; Du et al., 2021; Gao et al., 2021b;032

Ni et al., 2022). They are usually pre-trained with033

a contrastive objective on datasets that focus on034

sentence semantics (e.g. NLI), so semantically sim-035

ilar texts are located close to each other in their036

embedding spaces. We note that embedding spaces037

with such traits could be particularly friendly to038

classification tasks under limited supervision, as039

semantically distinct samples are well-separated040

in advance of any refinement made during down-041

stream training. Recent work has demonstrated the042
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Figure 1: In the visualization of embedding space,
diamond-shaped label prompts ("Topic: Science & Tech-
nology" and "Topic: Business") serve as anchors for the
classification. By utilizing retrieved samples from ex-
ternal corpora in proximity to each label prompt, the
decision boundary can be adjusted accordingly.

competitiveness of rich text embeddings from sen- 043

tence encoders for few-shot classification (Tunstall 044

et al., 2022), being on par or outperforming much 045

larger prompt-based generative language models on 046

the RAFT benchmark (Alex et al., 2021). However, 047

it essentially involves training a logistic classifica- 048

tion head, which introduces additional parameters 049

to be tuned and is thus inapplicable to zero-shot 050

inference. 051

In this work, we continue to explore the power 052

of sentence encoders, but this time to solve zero- 053

shot classification by combining with prompt- 054

ing (Brown et al., 2020) and dense retrieval tech- 055

niques. We transform closed or open-set classifica- 056

tion tasks into finding the label texts (i.e. prompts) 057

with maximal textual similarity with the sentences 058

under inference in a sentence encoder’s embedding 059

space. Meanwhile, we note that label prompts in 060

their original format are potentially ambiguous or 061

poorly descriptive; for example, "Topic: Science & 062

Technology." in the AGNews dataset is an overly 063

compressive and abstract label, being less adequate 064

to embrace a large range of belonging texts. We 065

handle this issue by using additional support from 066

multiple pseudo-label prompts retrieved from an 067

external corpus, as illustrated in Figure 1. 068
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Our approach distinguishes itself from previ-069

ous works in zero-shot classification by compar-070

ing the similarities of textual embeddings between071

label prompts and input samples. Previous works072

using prompting with generative language mod-073

els (Brown et al., 2020; Gao et al., 2021a) have074

exhibited high variance across different verbalizers075

(i.e., text expressions for labels), even being close076

to chance-level performance (Perez et al., 2021; Lu077

et al., 2022). In contrast to generative models that078

intertwine label prompts and query texts through079

concatenation at the input level, our approach iso-080

lates the two during encoding. Through empirical081

evidence, we demonstrate that such post-hoc inter-082

actions can withstand variations in label prompts,083

and this robustness is further enhanced when we084

expand the support prompt set via retrieval.085

We conduct extensive experiments on six closed-086

set classification datasets and six open-set multiple-087

choice datasets. The best setup which uses a sen-088

tence encoder Sentence-T5 (Ni et al., 2022) with089

retrieval augmented label prompts achieves compa-090

rable or stronger performance compared to state-of-091

the-art baselines for both tasks. Furthermore, the092

approach is consistently strong across verbalizer093

variations and scales to different model sizes. Our094

contributions are three-fold:095

• We empirically investigate how sentence en-096

coders perform in a zero-shot classification097

setup, which surpasses strong baselines098

• We suggest a retrieval module to address the099

problem of vague label prompts, a crucial as-100

pect in a zero-shot setup101

• We analyze the approach’s utility in terms of102

retrieving pseudo-label prompts and resilience103

to verbalizer variations104

2 Background105

We explain the concept of sentence encoders and106

prompting that we use in this work.107

2.1 Sentence Encoders108

Given a sentence Xi ∈ X , a sentence encoder109

E encodes the sentence into a fixed size embed-110

ding vector hi = E(Xi) ∈ Rd, where X is the111

set of all natural language texts and d is the pre-112

set embedding dimension. Sentence encoders are113

commonly trained with the contrastive learning114

objective (Chen et al., 2020) with in-batch nega-115

tives (Chen et al., 2017; Henderson et al., 2017).116

The loss function pulls the positive pair representa- 117

tion closer to the input representation while pushing 118

away the negatives in embedding space: 119

ℓ = −
N∑
i=1

log
esim(hi,h

+
i )∑N

j=1,j ̸=i e
sim(hi,hj)

(1) 120

where sim(·) is the similarity function, h+
i denotes 121

the positive pair for hi, and hj refers to all other 122

instances except hi in the batch of size N . 123

2.2 Prompting 124

Given a text input Xi ∈ X and a set of la- 125

bels Y = {y1, . . . , ym}, a predefined verbalizer1 126

v : Y → X generates a label prompt in natural 127

language for each label index. Generally, language 128

models compute the distribution of label prompts 129

given the input, PLM (v (ym) | Xi) (Brown et al., 130

2020). Other lines of works utilize channel mod- 131

eling PLM (Xi | v (ym)) (Min et al., 2022a,b) or 132

masked language modeling objective (Gao et al., 133

2021a). 134

3 Method 135

We explore solving zero-shot classification tasks 136

using text representations from sentence encoders. 137

Figure 2 provides an overview of our approach. 138

The gist is to exploit the representational similar- 139

ity between the input text and retrieval-augmented 140

label prompts. 141

3.1 Representational Similarity with Sentence 142

Encoders 143

Taking the example in Figure 2 (a), for a binary 144

sentiment classification task with Y = {y+, y−} 145

where y+ stands for "positive" and y− stands for 146

"negative", we first use a verbalizer to change each 147

label into prompts: say, “It was great.”(v(y+)) 148

and “It was terrible.”(v(y−)). Afterward, the la- 149

bel prompts are transformed into encoded vectors 150

that act as prototypes for representing each class 151

cluster: zm = E(v(ym)). Then, we use the fol- 152

lowing scoring function for each candidate label, 153

defined as its similarity with the text under infer- 154

ence Xi “Not worth a red cent.”: 155

argmax
ym∈Y

PTS(ym|Xi) 156

PTS(ym|Xi) ∝ sim(hi, zm) (2) 157

where we use cosine similarity in a sentence en- 158

coder’s embedding space for sim(·). 159

1Consists of templates and label names.
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Not worth a red cent. It was great. It was terrible.
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Figure 2: An overview of our approach to a text classification task (or input-label matching). Among a set of label
candidates, we find the label whose prompt has the highest representational similarity with the input text in the
embedding space of a sentence encoder (Figure (a)). The similarity scores are computed across multiple retrievals
augmented label prompts which are collected with original label prompts as queries (Figure (b)).

Note that using Eq. 2 at inference time aligns160

the downstream task objective with the contrastive161

pre-training objective (Eq. 1), which may benefit162

sentence encoders in a limited label regime. Plus,163

separately encoding label prompts from the test in-164

put makes the results more robust under verbalizer165

variations, which we show in Section 6.1.166

3.2 Retrieval Augmented Label Prompts167

It is crucial for the label prompts to reliably express168

the necessary class information if each of them is169

to act as the single similarity anchor for its class.170

Unfortunately, this precondition often does not hold171

as many label names are being compressive rather172

than fully descriptive; e.g. “Topic: World” in the173

AGNews dataset.174

To make amends for the potential issue of frag-175

mented semantics in the labels in their original176

format, we augment the label prompts with seman-177

tically similar sentences retrieved from external178

knowledge sources. Texts collected from the wild179

are expectedly more descriptive. Therefore, by180

serving as alternative formats or augmentations to181

the original label prompts, they may add useful182

class-related information, such as synonyms or re-183

lated expressions. We would like to highlight that184

the retrieval augmentation technique employed in185

our approach is specifically designed to address the186

problem of inadequate descriptive class informa-187

tion, setting it apart from other existing methods. 188

We retrieve top-K sentences from an external 189

corpus according to the representational similarity 190

with the given label prompt. Then, we compute the 191

aggregated score for the retrieved set of sentences 192

as 193

PES(ym|Xi) ∝
1

K

K∑
k=1

sim(hi, topk(zm)k) (3) 194

where K refers to preset retrieval size, topk is an 195

operator which returns top-k nearest embeddings 196

from encoded external sources, and k denotes the 197

k-th element from the retrieval results. The sum of 198

Eq. 2 and Eq. 3 now becomes our new inference 199

scoring function. 200

argmax
ym∈Y

PTS(ym|Xi) + PES(ym|Xi) 201

For further augmentation during retrieval, we ex- 202

periment with using synonyms of the original label 203

names (e.g. “good”, “remarkable” for “great”) 204

as in Shi et al. (2022). Given a label prompt, we 205

first generate a size-N list of synonymous label 206

prompts by replacing the label name with its syn- 207

onyms. Then, we do the retrieval for N times, 208

each time with a formerly generated synonymous 209

prompt as the query and K/N retrieved sentences. 210
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4 Experimental Settings211

We experiment with two types of tasks: closed-set212

classification and multiple choice QA. Both involve213

choosing the corresponding label given a finite la-214

bel set for each test sample; what tells them apart is215

whether all test instances share the same label set216

(closed-set classification) or each test instance is217

presented with a different each label set (multiple218

choice QA).219

4.1 Closed-set Classification Datasets220

Sentiment Analysis SST-2 (Socher et al., 2013),221

MR (Pang and Lee, 2004), CR (Hu and Liu, 2004),222

and Rotten Tomatoes (RT) (Socher et al., 2013).223

Topic Classification AGNews (news domain)224

and Yahoo Answers (Yahoo; web domain) (Zhang225

et al., 2015).226

Details We experiment on the modified test set227

used in Shi et al. (2022); Min et al. (2022c).2 We228

report the scores averaged over four templates (Gao229

et al., 2021a; Min et al., 2022a). See Table 5 for230

the list of verbalizers used.231

4.2 Multiple Choice QA Datasets232

We evaluate on RACE-M (R-M), RACE-H (R-233

H) (Lai et al., 2017), ARC-E, ARC-C (Clark234

et al., 2018), Open Book Question Answering235

(OBQA) (Mihaylov et al., 2018), and Common-236

senseQA (CoQA) (Talmor et al., 2019). For CoQA,237

we report the validation results as the official test238

set is not publicly available. We use a single tem-239

plate from Holtzman et al. (2021). See Table 6 for240

details on templates and verbalizers.241

4.3 Baseline Models242

Standalone decoder language models (LM) select243

the label whose word sequence has with the high-244

est probability. We use gpt-2-large (Radford et al.,245

2019) and variants of gpt-3 (Brown et al., 2020).246

PMI (Holtzman et al., 2021) calibrates the decoder247

models with a domain-conditioned premise. We248

also include an encoder-based cloze-style zero-shot249

classification model with RoBERTa (Liu et al.,250

2019) as the encoder. For retrieval-augmented base-251

lines, we use kNN-LM (Khandelwal et al., 2019)252

and kNN-prompt (Shi et al., 2022), which ad-253

just the output token probabilities with external re-254

sources. We also include NPM (Min et al., 2022c)255

2They made a random subset of 3,000 samples for datasets
with larger original test sets.

as our baselines which uses a non-parametric 256

masked language model for phrase-level retrieval. 257

Another approach, proposed by Yin et al. (2019), 258

treats label candidates as hypotheses and selects 259

the label with the highest entailment logit score 260

(Entailment). We implement the method by fine- 261

tuning pre-trained roberta-large (Liu et al., 2019) 262

on NLI (SNLI + MNLI) datasets (Bowman et al., 263

2015; Williams et al., 2018).3 264

Although the baseline approaches are not op- 265

timized with sentence encoding, they exhibit im- 266

pressive performance by achieving state-of-the-art 267

results in zero-shot classification tasks, as demon- 268

strated in Shi et al. (2022); Min et al. (2022c). Fur- 269

thermore, it is worth noting that the zero-shot per- 270

formance of RoBERTa (Gao et al., 2021a) is out- 271

standing, surpassing that of large-scale language 272

models (Gao et al., 2021a; Min et al., 2022c), 273

even though the original work primarily focuses 274

on showcasing the few-shot performance. Addi- 275

tionally, due to the non-trivial nature of adapting 276

kNN-based methods for multiple-choice QA tasks, 277

we decided not to include these two approaches. 278

One such example is kNN-Prompt, which incor- 279

porates Glove embeddings and ConceptNet-based 280

synonyms to enhance verbal descriptions for each 281

class. However, integrating such techniques into 282

solving multiple-choice QA tasks is not a straight- 283

forward process. 284

Moreover, in the context of using sentence en- 285

coders, our study includes conducting experiments 286

with the application of SimPTC (Fei et al., 2022). 287

These experiments necessitate the use of unlabeled 288

train and test dataset. To ensure a fair comparison, 289

we employ a selection of instances from external 290

corpus. We replicate the SimPTC approach in two 291

distinct manners: 1) by randomly choosing a sub- 292

set from the external corpus and training the model 293

on these samples, and 2) by training on retrieved 294

augmented label prompts (RaLP). 295

4.4 Implementation Details 296

Sentence Encoder For the main experiments, 297

We use two off-the-shelf sentence encoder models: 298

sup-simcse-roberta-large (SimCSE) (Gao et al., 299

2021b) trained on NLI, and sentence-t5-large 300

(ST5) (Ni et al., 2022) trained on CommunityQA 301

and NLI. Among the ST5 variations, we use an 302

encoder-only mean version. We also experiment 303

3We use the script provided by sentence-
transformers (Reimers and Gurevych, 2019).
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Method # Params SST-2 MR CR RT Yahoo AGNews Avg
Baselines (Language Modeling)
GPT-2† 774M 55.3 54.6 66.2 53.0 49.7 67.4 57.7
+ PMI† (Holtzman et al., 2021) 774M 76.5 74.6 82.8 74.1 48.8 65.1 70.3
GPT-3† 175B 63.6 57.4 53.8 57.0 53.1 75.4 60.1
+ PMI† (Holtzman et al., 2021) 175B 71.4 76.3 70.0 75.5 54.7 74.7 70.4
RoBERTa (Gao et al., 2021a) 355M 83.2 80.8 79.6 82.6 44.9 68.3 73.2
Baselines (Retrieval-Augmented LM)
GPT-2 + kNN† (Khandelwal et al., 2019) 774M 55.4 56.4 67.2 54.5 49.5 67.0 58.3
GPT-2 + kNN-Prompt† (Shi et al., 2022) 774M 84.2 78.2 84.3 80.6 51.0 78.8 76.2
NPM† 355M 87.2 83.7 81.2 86.0 53.9 74.5 77.8
Baselines (NLI format)
Entailment (Yin et al., 2019) 355M 83.7 79.6 83.8 78.2 46.0 75.1 74.4
Baseline (Sentence Encoder)
SimPTCrandom

ST5 335M 76.7 75.7 75.0 69.4 32.3 60.2 64.9
SimPTCRaLP

ST5 335M 85.2 80.9 87.3 78.3 52.9 68.9 75.6
Ours
RaLPSimCSE 355M 82.3 78.0 87.1 76.7 57.0 72.6 75.6
RaLPST5 335M 87.8 81.7 87.4 82.4 57.4 76.6 78.9
RaLPST5-XL 1.24B 88.6 82.8 86.1 83.3 56.2 75.1 78.7
RaLPST5-XXL 4.8B 90.5 84.7 87.7 85.1 54.9 75.4 79.8

Table 1: Results for closed-set classification tasks under the zero-shot setting. The Boldface indicates the best
performances in each column except the models with over 1B parameters. The Underline shows the best scores in
each column regardless of model size. Values with † are taken from Min et al. (2022c).

with larger versions of ST5 (sentence-t5-xl (ST5-304

XL) and sentence-t5-xxl (ST5-XXL)) to see the305

effect of model size.306

External Corpus We collect the external corpus307

used in Shi et al. (2022) which consists of Wiki103,308

IMDB, subsets of CC-News, and Amazon Review.309

Retrieval We use the same sentence encoders310

as Section 4.4 for building the embedding index,311

and use FAISS (Johnson et al., 2019) for the top-k312

computation and retrieval. For each original label313

prompt, we use 5 synonymous prompts and retrieve314

5 sentences per query (so that K=25) in closed-set315

classification. See Table 8 and Table 9 for a list of316

retrieved examples. For multiple choice tasks, we317

use 25 retrieved sentences for a single query. We318

do not use synonymous label prompts as making319

small changes in the wordings may deviate from320

the originally intended semantics, thus making the321

option less of a viable answer. We observe no322

further gain beyond 25 retrieved samples.323

5 Results324

Our method shows solid performance on both task325

types under zero-shot setting.326

5.1 Closed-set Classification327

Table 1 shows the results for closed-set classifica-328

tion tasks.329

Baselines On average, NPM shows the strongest 330

results among all baselines. This indicates the 331

importance of extracting and exploiting relevant 332

information from external knowledge sources in 333

zero-shot inference. Among the baselines that do 334

not make use of external resources, RoBERTa out- 335

performs the standalone decoder models with or 336

without PMI calibration, presumably due to utiliz- 337

ing bi-directional information with an encoder. 338

Among the approaches using the sentence en- 339

coder, our observations reveal a noteworthy decline 340

in performance when SimPTC is applied to unla- 341

beled examples. This highlights that SimPTC’s ef- 342

fectiveness relies on access to an in-domain labeled 343

dataset, a setup that proves difficult and impracti- 344

cal. However, we found that employing SimPTC 345

with RaLP can effectively mitigate the performance 346

decline. 347

RaLP Our method shows strong performance 348

when coupled with a well-built sentence encoder. 349

With the ST5 backbones, we outperform all the 350

baselines despite fewer parameters.4 Changing the 351

sentence encoder to SimCSE results in a lower 352

performance, but still comparable to RoBERTa. 353

RaLP serves as a cost-effective method of lever- 354

aging retrieval from external sources. Although 355

KNN-Prompt (Shi et al., 2022) and NPM (Min 356

4We attribute ST5’s strong zero-shot classification abilities
to its architecture rather than the pretraining dataset composi-
tion. See appendix A for details.
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Sentence Encoder ST5 SimCSE

RaLP ✗ ✓ ✗ ✓

SST-2 87.7 87.8 80.8 82.3
MR 81.7 81.7 76.5 78.0
CR 87.3 87.4 87.5 87.1
RT 81.9 82.4 75.7 76.7
Yahoo 55.3 57.4 53.4 57.0
AGNews 70.4 76.6 67.6 72.6
Avg 77.4 78.9 73.6 75.6

Table 2: Ablation study on utilizing RaLP for closed-set
classification tasks.

et al., 2022c) depend on the same external corpus357

as ours, RaLP outperforms KNN-Prompt not only358

in terms of task accuracy5, but also in terms of359

computational efficiency.360

Specifically, whereas KNN-Prompt requires361

token-level encoding of the leftward context and362

the next token, we employ a much lighter instance-363

level encoding. Such difference in the encoding364

strategy allows RaLP to operate on merely 2M365

items while KNN-Prompt and NPM need to store366

284M, and 188M items taking external corpus men-367

tioned in Section 4.4.368

Ablation on Retrieval Augmentation We eval-369

uate the effects of using retrieval augmented label370

prompts. From Table 2, we observe that using371

supplementary label information results in a solid372

performance increase. The degree of performance373

improvement by retrieval indeed varies depending374

on the nature of each task. These observations sug-375

gest that tasks with topic-associated aspects like376

Yahoo and AGNews show more prominent perfor-377

mance enhancement through retrieval compared to378

sentiment-related tasks, namely SST-2, MR, CR,379

and RT. In topic-related tasks where labels (e.g.,380

"world") may not encapsulate all relevant context,381

retrieval tends to provide a substantial advantage in382

bridging this information discrepancy. Conversely,383

in sentiment tasks where labels tend to have direct384

semantic alignment, the incremental gains from385

retrieval might be less noticeable.386

5.2 Multiple Choice QA387

Table 3 shows the results for multiple choice QA388

tasks.389

Baselines In sharp contrast to the results in Sec-390

tion 5.1, the decoder approaches show strong per-391

5RaLPST5 (335M) reaches a higher performance than KNN-
Prompt which has twice as more parameters (774M)).

formance with dramatic gains from upscaling. The 392

highest scores come from a giant decoder model 393

(175B GPT-3+PMI), presumably due to massive 394

memorization of specific knowledge. 395

RaLP Still, our method based on sentence en- 396

coders still achieves better performance than the 397

baselines with an equivalent (or larger) number of 398

parameters. RaLPST5 (with 335M parameters) out- 399

performs GPT-2+PMI (which has the best perfor- 400

mance with ≤ 774M parameters) by 2.5 points in 401

average. Our best model RaLPST5-XXL (with 4.8B 402

parameters) outperforms much larger GPT-3+PMI 403

baselines (with 6.7B and 13B parameters) by 7.9 404

and 3.3 points in average; even on par with a 175B 405

GPT-3 despite having 36.5x fewer parameters. 406

6 Analysis 407

6.1 Verbalizer Sensitivity Test 408

Existing works based on prompting are vulnera- 409

ble to verbalizer changes, with worst-case perfor- 410

mances often down to chance-level (Lu et al., 2022). 411

We suggest that using sentence encoders may be 412

a remedy, as they are trained to distribute seman- 413

tically similar samples nearby during contrastive 414

pre-training and thus could be less sensitive to sur- 415

face form variations. In this section, we empirically 416

verify that our method based on sentence encoders 417

is reliably strong. 418

Settings We measure the variance in perfor- 419

mance across a range of paraphrased label tem- 420

plates while keeping the label words intact: say, 421

changing “It was great.” for sentiment analy- 422

sis to “It’s a great thing.” or “That’s great.”. 423

For paraphrasing, we leverage templates from 424

existing works (Gao et al., 2021a; Min et al., 425

2022a) and augmentation techniques (Ma, 2019) 426

including back-translation (Sennrich et al., 2016) 427

and contextual word embedding-based augmen- 428

tation (Kobayashi, 2018). Among the generated 429

candidates, we manually filter out the ones with 430

semantic distortions (e.g. added negations).6 We 431

use roberta-large for the baselines (Yin et al., 2019; 432

Gao et al., 2021a). For fair comparison, we share 433

the same backbone with the baselines and use sup- 434

simcse-roberta-large (SimCSE) (Gao et al., 2021b) 435

as our sentence encoder. 436

Results Figure 3 shows the accuracy distribu- 437

tions over verbalizer variations. As previously re- 438

6See Table 7 for a full list.

6



Method # Params R-M R-H ARC-E ARC-C OBQA CoQA Avg
Baselines (Language Modeling)
GPT-2 774M 39.3 31.8 52.7 23.1 19.4 33.3 33.3

GPT-3†
6.7B 43.3 34.8 58.2 26.8 22.4 40.0 37.6
13B 49.6 38.2 66.2 32.1 28.2 48.8 43.9

175B 55.7 42.4 73.5 40.2 33.2 61.0 51.0

GPT-2 + PMI (Holtzman et al., 2021) 774M 43.9 38.3 47.0 31.6 43.2 44.5 41.4

GPT-3 + PMI† (Holtzman et al., 2021)
6.7B 48.5 39.8 51.5 33.0 48.0 50.3 45.2
13B 51.3 42.1 57.7 38.5 50.4 58.5 49.8

175B 55.7 43.7 63.3 45.5 58.0 66.7 55.5
Baselines (NLI format)
Entailment (Yin et al., 2019) 355M 39.1 29.9 45.9 31.1 42.8 35.1 37.3
Ours (Sentence Encoder)
RaLPSimCSE 355M 39.4 35.1 48.3 26.5 38.2 47.3 39.1
RaLPST5 335M 40.5 38.3 56.2 28.7 44.4 55.5 43.9
RaLPST5-XL 1.24B 43.7 40.3 63.8 37.0 48.4 59.0 48.7
RaLPST5-XXL 4.8B 45.9 42.3 69.3 44.5 52.8 63.9 53.1

Table 3: Results for multiple choice tasks under zero-shot setting. The Boldface indicates the best performances
in each column except the models with 175B parameters. The Underline shows the best scores in each column
regardless of model size. We reproduce GPT-2 and GPT-2 + PMI with the code provided by Holtzman et al. (2021).
The symbol † indicates the performance reported by Holtzman et al. (2021).

RoBERTa Entailment RaLP

Figure 3: Results with varying verbalizers (6.1) in closed-set classification datasets. The middle line in each plot
marks the mean score across all templates. Our approach has a smaller variance to template variations than Gao
et al. (2021a); Yin et al. (2019).

ported (Jiang et al., 2021), cloze-style inference439

(RoBERTa) (Gao et al., 2021a) is overly sensi-440

tive to subtle contextual modifications. The En-441

tailment (Yin et al., 2019) approach is less volatile,442

but it still suffers from sporadic performance drops443

with certain templates as shown in long lower444

whiskers in the plots. On the other hand, RaLP has445

more stable performance distribution under tem-446

plate variations, and this holds for all datasets.447

6.2 Comparison with Few-shot Setup448

If we allow some supervision (i.e. few-shot), there449

exist alternative strategies that can be used in com-450

bination with sentence encoder representations: lin-451

ear probing and prototypical networks (Snell et al.,452

2017; Dopierre et al., 2021). Therefore, we figure453

out whether our zero-shot approach is still attrac-454

tive as compared to the two few-shot options.455

Baselines We constrain few-shot baselines to en- 456

sure minimal computational cost by keeping the 457

backbone model unchanged. Linear probing re- 458

quires training the classification head (i.e. logis- 459

tic classification). The prototypical network treats 460

the average embeddings of support examples as 461

class prototypes and measures the distance of in- 462

stance from these prototypes. For both methods, 463

we randomly choose K={2, 4, 8, 12, 16} samples 464

per class from training examples with 50 different 465

seeds and report the averaged score. 466

Results Figure 4 illustrates that both few-shot 467

learning baselines are volatile on sample selec- 468

tion variations. Specifically, linear probing exhibits 469

more variability when given a small number of la- 470

beled samples. This may be because linear probing 471

requires training parameters from scratch. Com- 472

pared to few-shot training methods, RaLP shows 473

robust performance when the supervision is ex- 474
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Figure 4: Performances of two few-shot approaches (mean and standard deviation across 50 runs) compared to
RaLP. The x-axis represents the number of training examples per class. All use embeddings from sentence-t5-large.

tremely limited (i.e., K ∈ [2, 4, 8]).475

7 Related Work476

Prompting Brown et al. (2020) reformulate477

downstream tasks as language modeling with478

prompting, where the approach performs re-479

markably in few or zero-shot setup and even480

shows competitive performance to supervised meth-481

ods (Schick and Schütze, 2021; Jiang et al., 2021).482

However, the performance of prompting meth-483

ods varies greatly depending on which prompt is484

used (Perez et al., 2021; Lu et al., 2022). To ad-485

dress this issue, a line of works explore calibrating486

the predictions of language models for the few-shot487

inference (Holtzman et al., 2021; Zhao et al., 2021).488

Unlike previous prompting methods relying on lan-489

guage modeling (i.e. token prediction), our frame-490

work, which separately encodes label prompts and491

text input, is particularly robust to surface form492

variations.493

Zero-shot Classification Prompting methods for494

zero-shot inference have been actively studied.495

These works use the likelihood of verbalizer given496

input text (Brown et al., 2020; Holtzman et al.,497

2021; Zhao et al., 2021), the conditional probability498

of the input text given verbalizer (Min et al., 2022a),499

and masked language model objective (Gao et al.,500

2021a) for solving NLU tasks. To facilitate zero-501

shot inference, Shi et al. (2022) incorporates in-502

formation from an external corpus using a fuzzy503

verbalizer to adjust the decoding logits. NPM (Min504

et al., 2022c), on the other hand, removes the soft-505

max function and only utilizes an external corpus506

to retrieve the answer.507

Another line of research formulates the classi-508

fication as a NLI task. Yin et al. (2019) solves509

the classification task by comparing the entailment510

logit scores where they concatenate the text input511

and label prompt as text pairs. Gera et al. (2022) 512

further improves the framework by finetuning the 513

model using self-training on unlabeled train data. 514

SimPTC (Fei et al., 2022) proposes solving clas- 515

sification using sentence encoder and clustering 516

method, which is similar to our approach without 517

a retrieval component but differs in that it requires 518

an in-domain unlabeled set. 519

Sentence Encoder Sentence encoders project the 520

sentences to embedding space which can be applied 521

to various language understanding tasks. (Reimers 522

and Gurevych, 2019; Du et al., 2021; Gao et al., 523

2021b; Ni et al., 2022). Representations obtained 524

by sentence encoders are well-suited features for 525

classification in limited supervision setup (Tunstall 526

et al., 2022). Existing methods based on sentence 527

encoders train an additional classification head to 528

solve downstream tasks, hindering them from using 529

fine-grained representation and being unsuitable for 530

zero-shot inference. In contrast, our approach does 531

not incur additional parameters and fully exploits 532

fine-grained representations. 533

8 Conclusion 534

This work empirically studies sentence encoders in 535

a zero-shot text classification setup. The approach 536

uses the label prompts as class anchors in an embed- 537

ding space of a sentence encoder. To compensate 538

for underspecified label names, we introduce RaLP, 539

which retrieves the pseudo-label prompts from ex- 540

ternal knowledge sources and refines the prediction 541

scores. We verify that RaLP is a powerful zero- 542

shot classification strategy through an extensive 543

evaluation of six closed-set text classification tasks 544

and six open-set multiple-choice QA tasks. Fur- 545

ther performance boost by retrieval demonstrates 546

that class anchor selection is important and can be 547

stably achieved by label prompt augmentation. 548
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9 Limitations549

Though RaLP demonstrates its strong performance550

in zero-shot classification tasks, the approach has551

several limitations. First, it is non-trivial to apply552

our method to non-classification tasks such as gen-553

eration. Hence, future works can explore adapting554

the sentence encoders or their training methods in555

developing language models which have been ex-556

plored in the context of the retrieval-augmented557

language models (Zhong et al., 2021). Addition-558

ally, RaLP relies on sentence encoders trained with559

the contrastive learning objective, which may intro-560

duce a certain level of dependency. Nonetheless, it561

is worth noting that publicly available NLI datasets562

can be used to obtain suitable sentence encoders563

as described in Appendix A. Moreover, while our564

work demonstrates its robust performance com-565

pared to some of the few-shot learning methods566

such as linear probing or prototypical network, we567

did not cover finetuning methods for our approach.568

Future works can explore tuning the parameters of569

the sentence encoders when given limited labeled570

data (Tunstall et al., 2022).571
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Appendix790

A Analyzing Performance Gap between791

SimCSE and ST5792

In Section 5.1, we evaluate the performance793

of various pre-trained sentence encoders using794

RaLP. Our results show that RaLPSimCSE (sup-795

simcse-roberta-large) has a lower performance796

than RaLPST5 (sentence-t5-large although they797

have the same parameter size. We identify two798

main differences between SimCSE and ST5: i) the799

pre-trained model utilized as the initial checkpoint,800

and ii) the utilization of solely the NLI datasets in801

SimCSE as opposed to a combination of NLI and802

CommunityQA in ST5. Since the CommunityQA803

dataset is not publicly available, analyzing the rea-804

sons for this performance gap is important for fu-805

ture research on sentence encoders for zero-shot806

text classification. To do so, we conduct experi-807

ments by comparing the two encoder models.808

For a fair comparison, we train the ST5 model809

using only the NLI datasets. Following the origi-810

nal setting in Ni et al. (2022), we employ T5-large811

(Raffel et al., 2020) as the initial pre-trained model812

and evaluate its performance through zero-shot text813

classification datasets. As shown in Table 4, the814

performance of the RaLPST5 trained with the com-815

bination of CommunityQA and NLI achieved com-816

parable performance with RaLPST5 model trained817

using only the NLI dataset. However, among mod-818

els trained using only NLI, RaLPST5 outperforms819

RaLPSimCSE by 2.6 points on average. This sug-820

gests that the performance gap observed in Ta-821

ble 1 is primarily influenced by the T5 architec-822

ture rather than the CommunityQA dataset. We823

assume that the objective of reconstructing the824

consecutive span of corrupted tokens from one825

unique mask token (i.e. span masking) used in826

the pre-training of T5 has enhanced the model’s827

general-purpose knowledge more than the objec-828

tive of BERT-style (i.e. token masking).829

B Evaluation Protocol830

We report the accuracy for all datasets. To optimize831

hyperparameters, we exploit the validation dataset832

for each task. In case of CoQA, we sub-sample833

3,000 instances from the training dataset, regarding834

them as in-house validation examples.835

C Implementation Details 836

In all experiments, we evaluate models on a sin- 837

gle A100 with 80GB, and A6000 GPU with 48GB 838

of memory. We implement all models with Py- 839

Torch using sentence-transformers library from 840

UKPLab7. We choose the best hyperparameter 841

of top-K in {5, 10, 25, 50, 100} for RaLP based on 842

validation split. 843

7https://github.com/UKPLab/
sentence-transformers

12

https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers


Method Dataset SST-2 MR CR RT Yahoo AGNews Avg
RaLPST5 CommunityQA + NLI 87.8 81.7 87.4 82.4 57.4 76.6 78.9
RaLPST5 NLI 85.7 80.2 87.8 80.0 58.8 76.8 78.2
RaLPSimCSE NLI 82.3 78.0 87.1 76.7 57.0 72.6 75.6

Table 4: Results for ablation study of pre-training dataset. We additionally trained the ST5 model using only NLI
dataset.

Dataset Verbalizers
SST-2, MR, CR, RT A MASK one.; It was MASK.; All in all MASK.; A MASK piece.

(MASK = {great, terrible})

AGNews Topic: MASK.; Subject: MASK.; This is about MASK.; It is about MASK.
(MASK = {World, Sports, Business, Technology})

Yahoo (Same as above) (MASK = {Company, Educational Institution, Artist, Athlete,
Office Holder, Mean of Transportation, Building, Natural Place, Village, Animal,
Plant, Album, Film, Written Work})

Table 5: The details of verbalizer setting in text classification task. We follow the verbalizers from Gao et al.
(2021a); Min et al. (2022a)

Dataset Premise x Hypothesis y
RACE There is not enough oil in the world now.

As time goes by, it becomes less and less, so
what are we going to do when it runs out[...].]
question: According to the passage, which
of the following statements is true?

answer: There is more petroleum than we
can use now.

ARC What carries oxygen throughout the body? the answer is: red blood cells.

OBQA Which of these would let the most heat travel
through?

the answer is: a steel spoon in a cafeteria.

CoQA Where can I stand on a river to see water
falling without getting wet?

the answer is: bridge.

Table 6: The details of verbalizer setting in multiple choice datasets. The hypothesis candidates are directly given as
label prompt in each task. The texts with blue color denote templates that we prepend following Holtzman et al.
(2021)

.
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Dataset Verbalizers
SST-2, MR, CR, RT It was MASK.; A MASK piece.; A MASK one.;

All in all MASK.; It was absolutely MASK, really.;
It was really so MASK.; It was more than just MASK.;
And that was absolutely MASK, too.; It was still pretty MASK.;
It was all MASK.; It was literally MASK.; It’s a MASK thing.;
What a MASK performance.; It is an MASK piece at the best of times.;
One MASK piece.; A MASK work.; A MASK play.;
This is a MASK one.; It is utterly MASK.; A really MASK one.;
That’s MASK.; That’s all MASK.; All told this is a truly MASK thing.;
A MASK overall.; All together MASK.
(MASK = {great, terrible})

AGNews Topic: MASK.; Subject: MASK.; This is about MASK.;
It is about MASK.; It’s about the MASK.;
It’s about MASK.; It’s all about the MASK.;
It’s just about the MASK.; It’s the whole lot with the MASK.;
Here, we are talking about the MASK.; This is the theme of the MASK.;
It is related to the MASK.; It is about what it means for the MASK.;
This involves the MASK.; Theme: MASK.;
keyword: MASK.; On a related topic: the MASK.;
It is for the MASK.; The subject: the MASK.;
Main topic: MASK.; Content: MASK.;
Theme is the MASK.; Issue: MASK.;
Executive Summary: MASK.; Material: MASK.
(MASK = World, Sports, Business, Technology)

Yahoo (Same as above) (MASK = {Company, Educational Institution, Artist, Athlete,
Office Holder, Mean of Transportation, Building, Natural Place, Village, Animal,
Plant, Album, Film, Written Work})

Table 7: We use all listed verbalizers in verbalizer variation test in Section 6.1. We evaluate on total 25 verbalizer
with or without punctuation.
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Original Label Prompt Retrieval Augmented Label Prompts
It was great. great, love it - great, love it - great, love it - great, love it really did love it and it was also great ;

It was really good! I reallly liked it! As does my father and mother and brother and sister-in-law. It was epic. ;
i loved it. it could not have been better. justin kirby ;
it was awesome, maiden is at there best, is was totally awesomeness, nobody comes close to maiden, it’s a totally fulfillment ;
it was awesome!!!!! of course it was awesome. its Harry Potter for lord’s sake!!!!

It was good. A <unk> . " A is good " , or " A was good " . ;
great, love it - great, love it - great, love it - great, love it really did love it and it was also great ;
It was ok. Wish I could give this a great review, sorry. But, it was still ok, if you’re interested. ;
It was alright having not seen it for many years i enjoyed watching it and am glad for the purchase ;
It was really good! I reallly liked it! As does my father and mother and brother and sister-in-law. It was epic.

It was famous. = = = In popular memory = = = ;
= = Famous people who witnessed it = = ;
= = = National and international fame = = = ;
This is a real classic, with a number of actors and actresses that were to become very famous later on. ;
This classic was very innovative for it’s time and is a classic.The Princess created quite a stir at the time, and a cult following.

It was terrible. terrible, terrible.It wasm’t worth the money or the time to watch it. we turned it off in the middle of it ;
It was horrible. One of the worst books ever. Thank youBelly Up ;
This book was terrible and was horrific when it came to the description. ;
It was awful. I went into it with great hopes expecting to enjoy it. I wanted to like it, I wanted to laugh. I spent more time rolling
my eyes and checking the counter to see how much time was left till it was over. I was so disappointed. ;
Just poor quality and I just didn’t like it.Really couldn’t pay attention because it was terrible, awful movie I wouldn’t recommend.

It was horrible. It was horrible. One of the worst books ever. Thank youBelly Up ;
This book was terrible and was horrific when it came to the description. ;
It was sick, depressing, annoying, and not to mention rotten! so that’s what I have to say on the subject! ;
I hated it and thought it was really bad. It was twisted and is really scary to litte children ;
truth be told, this is a horrible story of what really happened - so very awful...it was impossible to read

It was awful. It was horrible. One of the worst books ever. Thank youBelly Up ;
It was awful. I went into it with great hopes expecting to enjoy it. I wanted to like it, I wanted to laugh. I spent more time rolling
my eyes and checking the counter to see how much time was left till it was over. I was so disappointed. ;
This book was terrible and was horrific when it came to the description. ;
It was sick, depressing, annoying, and not to mention rotten! so that’s what I have to say on the subject! ;
The movie was truly a wretched experience. The six letters to describe it are S-U-C-K-E-D!

Table 8: Original label prompt in sentiment analysis task (SST-2, MR, CR, and RT) and retrieval augmented label
prompt in Section 5.1.
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Original Label Prompt Retrieval Augmented Label Prompts
Topic: world. = = = = Worldwide = = = = ; = = = = Informing the world = = = = ;

= = = On the Wisdom of this World = = = ; = State of the World ( song ) = ;
= = = = HELLO , WORLD = = = =

Topic: international. = = = = International = = = = ; = = = = International affairs = = = = ;
= = = = International services = = = = ; = = = = International relations = = = = ;
= = = International ( InLine ) = = =

Topic: global. = = = = Worldwide = = = = ; = = = Global environmental impact = = = ;
= = = From the global community = = = ; = = = Around the globe = = = ;
= = = = Terrestrial globes = = = =

Topic: sports. = = = = Sports = = = = ; = = = = Athletic history = = = = ;
= = = Effects on sports = = = ; = = = World sport context = = = ;
= = = = Sport = = = =

Topic: entertainment. = = = = Entertainment = = = = ; = = = Entertainment and culture = = = ;
Entertainment is a form of activity that holds the attention and interest of an audience ,
or gives pleasure and delight . It can be [...] and even for a global audience . ;
= = = Sports and entertainment = = = ; = = = Media and entertainment = = =

Topic: recreation. = = = = Recreations = = = = ; = = = = Recreation = = = = ;
= = = Sports and recreation = = = ; = = = Sport and recreation = = = ;
= = = = Tourism and recreation = = = =

Topic: business. = = = = Business = = = = ; = = = = On labor and business = = = = ;
= = = Lines of business = = = ; = = = DE 1 Business = = = ;
= = = Operations and business = = =

Topic: economics. = = = = Economic lecture = = = = ; = = = = Economics = = = = ;
= = = Views on economics = = = ; = = = = Economic = = = = ;
= = = Philosophy of economics = = =

Topic: financial. = = = = Finances = = = = ; = = = Financial and loan = = = ;
= = = = Fiscal issues = = = = ; = = = = Financial performance = = = = ;
= = = Economy and finance = = =

Topic: technology. = = = Influence on technology = = = ; = = = Views on the technology = = = ;
= = = = Technical aspects = = = = ; = = = Effects of technology = = = ;
= = = Technology and science = = =

Topic: science. Science – news on science @-@ related topics ( e.g. cool technology , space telescope
observations , interesting medical research ) . ;
= = = Interactions with the scientific community = = = ; = = = = Scientific uses = = = = ;
= = = History of science = = = ; = = = Science and scientism = = =

Topic: mathmatics. = = = Attention towards mathematics = = = ; = = = = Mathematics = = = = ;
= = = An Introduction to Mathematics = = = ; = = = Mathematics as an art = = = ;
= = = Philosophy of mathematics = = =

Table 9: Original label prompt for AGNews and retrieval augmented label prompt in Section 5.1.
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