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Abstract

Decoding language from non-invasive brain signals is crucial in building widely
applicable brain-computer interfaces (BCIs). However, most of the existing studies
have focused on discriminating which one in two stimuli corresponds to the given
brain image, which is far from directly generating text from neural activities. To
move towards this, we first propose two neural decoding tasks with incremental
difficulty. The first and simpler task is to predict a word given a brain image
and a context, which is the first step towards text generation. And the second
and more difficult one is to directly generate text from a given brain image and
a prefix. Furthermore, to address the two tasks, we propose a general approach
that leverages the powerful pre-trained encoder-decoder model to predict a word or
generate a text fragment. Our model achieves 18.20% and 7.95% top-1 accuracy in
a vocabulary of more than 2,000 words on average across all participants on the
two tasks respectively, significantly outperforming their strong baselines. These
results demonstrate the feasibility to directly generate text from neural activities in
a non-invasive way. Hopefully, our work can promote practical non-invasive neural
language decoders a step further.

1 Introduction

Decoding language from human brain activities is crucial in building BCIs that translate brain signals
into a coherent text. This technology is considered transformative for helping those who are unable
to communicate due to some severe neuromuscular disorders [1]. Meanwhile, it also offers a tool for
neuroscientists to study brain mechanisms. Two lines of neural decoding research have dominated
this field: invasive decoding, based on invasive brain recording methods such as electrocorticography
(ECoG); and non-invasive decoding, depending on atraumatic neuroimaging technologies such as
functional magnetic resonance imaging (fMRI). In recent years, several breakthroughs have been
made in invasive decoding and demonstrated the feasibility to decode speech [2–4] or handwriting
[5] from neural activities at high accuracy and speed. Nevertheless, invasive decoding is unlikely to
be used except in rare medical situations since it needs invasive surgery on the brain.

In contrast, non-invasive decoding is applicable to normal people without doing any harm. There
have been some successful attempts in decoding words [6–8] and sentences [9–11] from fMRI data
in the form of pairwise classification. The pairwise classification is a binary classification task that
discriminates which one in two stimuli corresponds to the given fMRI image. The major limitations
of this setting are: 1) to predict a word or a sentence, it has to enumerate all pairwise combinations in
the test set and thus is inefficient; and 2) for sentence decoding, it can only select a fixed sentence
from two options and thus can not produce flexible sentences.
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Figure 1: The two proposed neural decoding tasks are shown in (a) and (b) respectively. The mask
token in the table is a placeholder indicating the lack of some words. The approach to address each
task is shown in (c) and (d) respectively. The blue lines denote cross-attention.

Until now, little work has been done to directly generate text from fMRI images. Early work has
attempted to generate natural language descriptions for brain activities evoked by motion pictures [12].
They formulate the neural decoding problem as an image-captioning task and employ a pre-trained
image-captioning system to perform this task. Despite the novel method, they adopt perplexity as the
evaluation metric, which can not reflect the relevance of the generated text to the given fMRI image.
Recently, Affolter et al. [13] have tried to generate text conditioned on fMRI images using GPT-2
[14]. They first train a classifier that takes an fMRI image as input and outputs a probability vector
over a vocabulary of 180 words. Then to generate the next word for the history, they directly adjust
the output probability vector produced by GPT-2 by using the top-5 words predicted by the classifier.
However, in their experiment, they use ground-truth information in prediction by limiting the top-5
words to always contain the target word.

To understand to what extent can we currently decode text from fMRI data, we take advantage of the
useful and easily accessible context and design two neural decoding tasks with incremental difficulty.
The first task, as shown in Figure 1(a), is to predict a word given an fMRI image and a masked
sentence related to that word. The second task, as shown in Figure 1(b), is to generate a text fragment
containing the target word given an fMRI image and a prefix. In general, the first task is an easier one
while the second task is more closer to practical neural decoders.

To address the two tasks, we propose a general approach that leverages the powerful pre-trained
transformer-based encoder-decoder model BART [15] by formulating them into a mask-filling task
and a text generation task respectively. In summary, our contributions are: 1) we propose two neural
decoding tasks to explore the feasibility of decoding text from fMRI data, paving the road to build
practical neural decoders that translate neural activities into a coherent text; 2) we propose a general
approach that leverages the powerful pre-trained encoder-decoder model to address the two neural
decoding tasks; 3) we validate the effectiveness of our method and demonstrate the feasibility to
generate text from fMRI data.

2 Neural decoding method

To address the two neural decoding tasks – the mask-filling task and the text generation task, we
propose a general approach as illustrated in Figure 1(c)-(d). Our method contains two steps: 1)
extracting semantic features from the fMRI image, and 2) fusing the extracted features into BART to
predict a word or generate a text fragment. We choose BART as the backbone of our model for two
reasons. One is that BART is a conditional language model. And the other is that BART is pre-trained
using an in-filling scheme, where spans of text are replaced with a single mask token. Hence, BART
is applicable and effective to both mask-filling and text generation tasks.
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Feature Extraction Assume we have N fMRI images corresponding to N word stimuli, we first
represent the word stimuli using word vectors derived from the last hidden layer of BART’s encoder1.
The word embedding matrix is denoted as E ∈ RN∗d, where d refers to the dimension of the word
vectors. Following the conventions in the pairwise classification [6–10], we train ridge regression
models to map fMRI samples to their corresponding word vectors under cross-validation setting. For
each fMRI sample in the hold-out test data, its predicted word vector ê is used as a query to retrieve k
nearest neighbor word vectors in the ground-truth semantic space E using the cross-domain similarity
local scaling (CSLS) method [16]. The feature vector for each fMRI sample is obtained using the
following equation:

fi =
1

k

k∑
t=1

eit (1)

where i = 1, ..., N and ei1 , ..., eik are the k retrieved word vectors. Intuitively, the feature vector
can be viewed as a new representation of the fMRI sample in the semantic space where we perform
feature fusion.

Feature Fusion As shown in Figure 1(c)-(d), feature fusion is performed at the last hidden layer of
BART’s encoder. The information from the neural activity and the information from the context are
fused together in that layer and then propagated forward to the decoder. Operating at this particular
layer allows the decoder to decide to what extent is the added information used in generating the
next word since they interact by cross-attention. To be specific, assume we have an fMRI image
corresponding to a word and a masked sentence / text fragment, the text is fed into BART as before.
And then the hidden states of the mask token hmask in the last hidden layer of the encoder is updated
using the following equation:

hmask := fi (2)

where fi is the feature vector corresponding to the fMRI image. Then the hidden states from the
encoder are propagated forward to the decoder as it originally does.

In general, our decoding method is quite straightforward. For simplicity, we do not fine-tune BART
in our experiment but use it to derive word vectors as well as to predict a word / words. The feature
extraction step and the feature fusion step are decoupled and can be optimized independently.

3 Experiments

Datasets The brain imaging data is from [9], which contains 180 fMRI images corresponding to
180 content words collected from 15 human participants2. We select the most informative 5,000
voxels following the voxel selection method proposed by [9] to reduce the dimension of fMRI data.
To prepare the context for our two decoding tasks, we use the sentences in the presentation scripts
in the fMRI experiment and mask the target word in each sentence as illustrated in the upper part
of Figure 2. Two samples of the dataset for each task are shown in the lower part of Figure 2. As a
whole, we create a neural decoding dataset of 1,080 samples per task per participant.

𝑆1: a dog is a great companion.   

𝑆2: the vet didn't want a dog of her own.

𝑓𝑀𝑅𝐼𝑑𝑜𝑔:

𝑆1
′: a <mask> is a great companion.   

𝑆2
′ : the vet didn't want a <mask> of her own.

𝑆1
′′ : a <mask>

𝑆2
′′ :the vet didn't want a <mask>

(< 𝑓𝑀𝑅𝐼𝑑𝑜𝑔, 𝑆1
′>, dog)

(< 𝑓𝑀𝑅𝐼𝑑𝑜𝑔, 𝑆2
′>, dog)

(< 𝑓𝑀𝑅𝐼𝑑𝑜𝑔, 𝑆1
′′>, dog is a great companion)

(< 𝑓𝑀𝑅𝐼𝑑𝑜𝑔, 𝑆2
′′>, dog of her own)

Dataset for mask-filling Dataset for text  generationfMRI data and presentation scripts

Figure 2: Illustrations of datasets. Two samples for each task are shown. The left side of the
parentheses denotes Input while the right side represents Target.

1For each word, 6 sentences containing that word are fed into BART. Then we select the corresponding
hidden states of the word in the last hidden layer of the encoder and average them into a word vector.

2For details about the dataset and the experiment paradigms, please refer to https://osf.io/crwz7/.
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Models We adopt BART without any extra information fusion and fine-tuning as our baseline3. For
neural decoding, we build our model on the same BART without fine-tuning. The hyperparameter k
is tuned to 5. In the text generation task, we use greedy decoding, which is to select the most probable
word on each step of generation. All the experiments are done under an 18-fold cross-validation
setting, repeatedly using 16 folds for training, 1 fold for validation, and 1 fold for testing.

Evaluation metrics For the mask-filling task, we adopt top-1 accuracy as an evaluation metric
following [13]. In the text generation task, if the generated text contains the target word, then it is
deemed correct, so the evaluation metric is also top-1 accuracy.

Results of the mask-filling task For the mask-filling task, as shown in Table 1, the strong baseline
achieves 17.13% accuracy, demonstrating the effectiveness of BART in predicting words. Based on
BART, our method achieves 18.20% accuracy on average across 15 participants, outperforming the
baseline by 1.07% absolute improvement. The minimum and maximum accuracy are 17.87% and
18.52% respectively, both surpassing the baseline. Furthermore, the improvements on 14 participants
are statistically significant under paired t-test with p-value < 0.05 while the p-value for the worst
subject is 0.051. These results demonstrate the feasibility to directly predict a word in a large
vocabulary from an fMRI image, which is a departure from the traditional pairwise classification task.

Results of the text generation task As shown in Table 2, the strong baseline for the text generation
task obtains 6.48% accuracy, which is much lower than the performance in the mask-filling task.
This result shows that the text generation task is much harder than the mask-filling one. Despite
the difficulty of the task, our model is able to achieve 7.95% accuracy on average across all partici-
pants, significantly outperforming the baseline by 1.47% absolute improvement. The minimum and
maximum accuracy are 7.41% and 8.24% respectively, both surpassing the baseline. Moreover, the
performances of our model on 14 participants are significantly better than the baseline. These results,
for the first time, demonstrate that it is feasible to generate text related to the stimuli from fMRI
images without using the ground-truth information. The experiment results show the effectiveness to
use the pre-trained encoder-decoder model in neural decoding.

Table 1: Mask-filling results.

(%) Baseline Min Max Mean

Acc 17.13 17.87 18.52 18.20
∆Acc +0.74 +1.39 +1.07

Table 2: Text generation results.

(%) Baseline Min Max Mean

Acc 6.48 7.41 8.24 7.95
∆Acc +0.93 +1.76 +1.47

4 Conclusions and future work

In this paper, we have proposed two neural decoding tasks to understand to what extent can we
currently decode text from brain images. From the perspective of engineering, these two tasks are
departures from the traditional pairwise classification task. They can help to promote the development
of practical non-invasive neural decoders that translate brain activities into a coherent text. From the
perspective of neuroscience, a good neural decoder can serve as a useful adjunct to basic research in
cognitive neuroscience. Future work will be move on to explore how voxels selected from different
brain regions affect the accuracy of neural decoders. In this way, we can infer where in the brain
semantics are represented.

In the field of natural language processing (NLP), pre-training has become a dominant paradigm.
Language models pre-trained on text from a wide variety of sources have achieved remarkable results
on language understanding and language generation tasks. In this paper, we have experimented
with a pre-trained transformer-based conditional language model. In the future, we are going to
experiment on more pre-trained models to investigate how different model architectures and pre-
training objectives affect the performance of neural decoders. Intuitively, models that better correlate
with brain activation data may better explain brain mechanisms. Through contrastive analysis of
different pre-trained models in neural decoding, hopefully, we can provide some insights into how
humans learn a language.

3https://huggingface.co/facebook/bart-base
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