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Abstract
Grouped-query attention (GQA) has been widely
adopted in LLMs to mitigate the complexity of
multi-head attention (MHA). To transform an
MHA to a GQA, neighbour queries in MHA are
evenly split into groups where each group shares
the value and key layers. In this work, we propose
AsymGQA, an activation-informed approach to
asymmetrically grouping an MHA to a GQA for
better model performance. Our AsymGQA out-
performs the GQA within the same model size
budget. For example, AsymGQA LLaMA-2-7B
has an accuracy increase of 7.5% on MMLU
compared to neighbour grouping. Our approach
addresses the GQA’s trade-off problem between
model performance and hardware efficiency.

1. Introduction
Transformer-based models have achieved remarkable suc-
cess on large-scale language tasks (Devlin et al., 2019;
Vaswani et al., 2023; Brown et al., 2020). Multi-head
attention (MHA), the core operation of the Transformer,
allows the model to attend to information from different
representation subspaces at different positions. However,
computational and memory complexity increases quadrat-
ically with the sequence length in MHA. To mitigate this
problem, researchers have introduced grouped-query atten-
tion (GQA) (Ainslie et al., 2023), which evenly splits query
heads into groups, and each group shares a single key and
value layer (see GQA in Figure 1).

GQA trades model quality for hardware efficiency. By oper-
ating on groups rather than individual queries, GQA reduces
the computation cost in Transformer and consumes less
memory. Typically, GQA models are created by design –
they are originally designed and trained explicitly as GQA
models. In this study, we investigate the challenges of con-
verting MHA into a GQA, essentially treating GQA as an
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Activation-informed merging for better model performance

Evenly merge neighbour layers

Pretrained MHA GQA AsymGQA

Queries

Keys

Values

Figure 1. Comparison of GQA and AsymGQA. AsymGQA lever-
ages activation-induced layer similarity to determine the attention
head grouping for better model performance.

post-training optimization for the efficient deployment of
LLMs. The naive merging is then take the average of all key
and value layers in a group. Such a simple merging views
every head in MHA equally, but our experiments show that
this can cause a significant quality degradation even after
fine-tuning. To mitigate the quality degradation, we pro-
pose asymmetric GQA (AsymGQA), an activation-informed
merging approach that considers similarity between layers.
Specifically, our contributions are as follows:

• We introduce AsymGQA, an activation-informed fu-
sion approach for converting MHA into GQA models,
which delivers superior model performance within the
same computational constraints.

• Through extensive experiments, we answer two un-
explored GQA questions. We first verify that our
activation-induced method improves the performance
for evenly grouped GQA models. Furthermore, we
find that more performance gain could be achieved if
asymmetric grouping (varying group size) is allowed.

AsymGQA models significantly outperform the GQA base-
line. For example, LLaMA-2-7B with an average group
size of 4 has an increase in accuracy of 7.2% on MMLU
compared to naive MHA to GQA conversion.

2. Method
Section 2.1 introduces our search-based grouping methods.
Section 2.2 elaborates how we calculate the similarity of
key (value) layers to guide the search.
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(a) Neighbour grouping (baseline).
Similar?

Swap 0 into 3's group. Swap 0 and 2.

(b) Activation-informed symmetric grouping.
Similar?

Swap 0 into 3's group.

(c) Activation-informed asymmetric grouping.

Figure 2. Naive neighbour grouping vs AsymGQA.

2.1. Grouping Strategies

Neighbour grouping We propose a naive scheme called
neighbour grouping. Neighbour grouping clusters adjacent
attention heads (key layers and value layers) together, while
keeping all the groups equally-sized. Figure 2a provides
a visualization of neighbour grouping. This serves as the
baseline in this work.

Activation-informed symmetric grouping We apply the
grouping sequentially from the initial MHA layer to the
final one. In each MHA layer, the key and value layers are
grouped independently. Our proposed method employs a
search strategy to determine the optimal grouping of key
(and value) layers based on the similarity among them within
MHA, as detailed in Section 2.2.

As illustrated in Figure 2b, before the search starts, a key
layer grouping g of size m is generated randomly. In each
search iteration, g may be updated so that similar heads are
swapped into the same group. Specifically, in one iteration,
a key layer a is randomly sampled (a’s group is noted as A),
then the similarity between a and all the other key layers is
calculated. Among the top-k most similar layers not belong-
ing to group A, a key layer b is selected (b’s group noted as
B). Another head b′ in group B is sampled to exchange with
a, to maintain the group size. If the swapped model has a
higher accuracy, the best accuracy and grouping are updated.
We also introduce random noise to the search to explore
more grouping possibilities. An acceptance probability is
set to update g even if swapped model has a lower accuracy.
Furthermore, another probability is specified that resets g at
the start of each iteration to prevent the search from being
trapped in a local minima. The detailed algorithm is defined
in Algorithm 1 in Appendix A.

Activation-informed asymmetric grouping (AsymGQA)
Compared to symmetric grouping, asymmetric grouping

allows for varied group sizes. Asymmetric grouping is
particularly promising in scenarios where the relevance of
information is not uniformly distributed across the input
space. Asymmetric grouping also extends the search space
from only containing equal-sized groups to any groupings,
providing opportunities to find even better grouping config-
uration than symmetric grouping (Figure 2c).

Support for asymmetric grouping requires only minor
changes to the search algorithm. In symmetric grouping,
to maintain the idenitical group sizes, whenever an key or
value layer is moved to a new group, an element in the new
group must be swapped back. To allow for groups with
varying sizes, another parameter ppreserve is introduced,
representing the probability of preserving the group sizes af-
ter swap. A larger ppreserve encourages a more unbalanced
grouping. A detailed description is included in Algorithm 2
in the Appendix Appendix A.

2.2. Activation-Informed Head Similarity

As stated in Section 2.1, our search calculates the similarity
between key (value) layers at the beginning of each iteration
to guide the search. We cluster similar layers into the same
group, which is advantageous for two reasons:

• It leads to better optimization and generalization. As
similar layers contribute to a focused gradient update
that is consistent across the group, the error signal prop-
agated back through the network can more effectively
tune the shared parameters, enhancing the stability and
efficiency of learning.

• When attention heads share similar and value layers,
they are likely to encode and focus on comparable as-
pects of the input data. This similarity in processing en-
ables more coherent feature extraction, as these heads
reinforce each other’s understanding and interpretation
of specific data patterns, leading to a more nuanced and
detailed representation within that particular subspace
of the feature space.

We measure the similarity between pairs of key (or value)
layers using two potential approaches:

1. Define the similarity using the difference between the
weights of two layers.

2. Define the similarity using the difference between the
output activations of two layers.

Based on our experiments (See Appendix B), we find that
activation-informed similarity is a better reference to guide
the search. We use consine similarity between vectors to
define activation-informed similarity between two layers.
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Table 1. Comparison between AsymGQA and GQA of LLaMA-2-7B. The column “GQA” means the standard GQA which uses neighbour
grouping to merge heads. Results of full fine-tuning (“Full FT”) and parameter-efficient LoRA fine-tuning (“LoRA”) after grouping are
both included. The highest accuracy is highlighted in bold. Ech cell has two values, Acc (∆), wehre Acc is accuracy, and ∆ denotes the
accuracy difference from fine-tuned MHA, i.e., group size equals 1. We observe that AsymGQA consistently achieves higher accuracy
than GQA by a clear margin and close to fine-tuned MHA.

Task Group size Full FT LoRA

GQA AsymGQA GQA AsymGQA

SST2

2 90.9±0.5 (-2.4) 92.9±0.2 (-0.4) 90.6±0.5 (-2.6) 92.6±0.1 (-0.6)
3 88.4±0.3 (-4.9) 92.0±0.4 (-1.3) 88.0±0.6 (-5.2) 91.8±0.3 (-1.4)
4 87.3±0.6 (-5.8) 90.4±0.2 (-2.9) 87.1±0.3 (-6.1) 90.1±0.1 (-3.1)
6 86.8±0.6 (-6.5) 89.6±0.5 (-3.7) 86.2±0.3 (-7.0) 89.5±0.1 (-3.7)

QNLI

2 83.7±0.2 (-6.4) 89.5±0.6 (-0.6) 82.9±0.2 (-6.7) 89.0±0.3 (-0.6)
3 80.5±0.6 (-9.6) 88.6±0.4 (-1.5) 80.3±0.5 (-9.3) 88.3±0.5 (-1.3)
4 74.6±0.2 (-15.5) 86.5±0.7 (-3.6) 73.2±0.2 (-16.3) 84.9±0.7 (-3.7)
6 73.2±0.6 (-16.9) 85.0±0.3 (-5.1) 72.0±0.2 (-17.6) 84.5±0.6 (-5.1)

MNLI

2 79.7±0.4 (-1.5) 81.0±0.1 (-0.2) 78.7±0.6 (-2.7) 80.8±0.6 (-0.6)
3 77.7±0.6 (-3.5) 80.3±0.6 (-0.9) 77.0±0.6 (-4.4) 80.2±0.2 (-1.2)
4 75.1±0.5 (-6.2) 78.4±0.5 (-2.8) 74.4±0.3 (-7.0) 78.0±0.4 (-3.3)
6 72.7±0.3 (-8.6) 77.3±0.1 (-3.9) 72.0±0.4 (-9.3) 77.2±0.2 (-4.1)

MMLU

2 34.5±0.5 (-5.3) 39.3±0.7 (-0.5) 33.7±0.3 (-6.7) 39.6±0.5 (-0.8)
3 33.0±0.1 (-6.7) 38.3±0.7 (-1.5) 32.7±0.2 (-7.7) 39.0±0.3 (-1.4)
4 29.0±0.4 (-10.8) 36.5±0.2 (-3.3) 28.5±0.6 (-11.9) 36.8±0.3 (-3.6)
6 26.4±0.2 (-13.4) 33.8±0.2 (-6.0) 26.3±0.1 (-14.1) 34.7±0.3 (-5.7)

The similarity sim(A,B) between two activation matrices
A ∈ Rn×m and B ∈ Rn×m using row vectors is as follows.

sim(A,B) =
1

2
(

n−1∑
i=0

n−1
max
j=0

cosim(Ai,∗, Bj,∗)

+

n−1∑
i=0

n−1
max
j=0

cosim(Bi,∗, Aj,∗))

(1)

where cosim(·) calculates the cosine similarity between two
vectors u and v:

cosim(u,v) =
u · v
∥u∥∥v∥

(2)

3. Evaluation
Section 3.1 introduces our basic experiment setup. Sec-
tion 3.2 presents our main results on activation-informed
asymmetric grouping, which is the best grouping strategy
out of the three introduced in Section 2.1. Section 3.3
includes two ablation studies to verify the efficacy of
activation-informed grouping and varied group sizes.

3.1. Experiment Setup

Models and datasets We apply our methods to popular
decoder-only models including OPT (Zhang et al., 2022),

LLaMA (Touvron et al., 2023a) and LLaMA-2 (Touvron
et al., 2023b) with the number of parameters ranging from
125 million to 7 billion. We evaluated these models on
QNLI (Wang et al., 2018), MNLI (Williams et al., 2017),
SST2(Socher et al., 2013), and MMLU (Hendrycks et al.,
2020). The entire MMLU is evaluated under a zero-shot
setting. Each experiment has three independent runs with
different random seeds. The mean and standard deviation
of three runs are calculated.

Grouping For each layer, 10 search iterations are exe-
cuted with different groupings, with an acceptance proba-
bility of 0.1, a reset probability of 0.1 and a preservation
probability of 0.2. In each iteration, we randomly choose
one of the top 3 closest heads to group.

Fine-tuning We fine-tune the grouped model for three
more epochs to recover the model performance. We include
both full fine-tuning and LoRA (Hu et al., 2021) fine-tuning
in results. Besides, we use a beam search to find optimal
fine-tuning hyperparameters, including batch size, learning
rate and weight decay of AdamW optimizer (Loshchilov &
Hutter, 2017). Detailed hyperparameters for each dataset
can be found in Appendix C.

3.2. Remarkable Performance Gain of AsymGQA

Table 1 presents the accuracy of the grouped LLaMA-2-7B
with various average group sizes. We compare AsymGQA

3
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to neighbor grouping (“NG”), which evenly groups neighbor
key and value layers. Both full fine-tuning results, noted as
“FT”, and LoRA fine-tuning results, noted as “LoRA”, are
included in the table. Another result table of OPT-1.3B can
be found in Table 4 in Appendix D. We have the following
observations.

• AsymGQA achieves consistently higher accuracy than
the baseline by a clear margin, across group sizes
and fine-tuning methods. Among these reulsts, the
maximum enhancement of accuracy is up to 12.5%.

• This margin (accuracy enhancement) is more obvious
on more challenging tasks such as MMLU. For exam-
ple, full fine-tuned AsymGQA has an average accuracy
increase of 6.3% compared to GQA on MMLU, while
on the less challenging SST2, this margin is 2.8%.

We also inspect the trade-off tuned by group size, i.e., trad-
ing model quality for hardware efficiency. Figure 3 illus-
trates how the number of parameters and inference FLOPs
decreases as the group size increases. The hardware effi-
ciency has diminishing returns as we increase the group size.
Therefore, for the grouping problem in Table 1, a group size
of 2 or 3 may be ideal for real-world applications.

1 2 3 4 6
Group Size
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#Parameters vs Group Size

1 2 3 4 6
Group Size
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1.0
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1e11

FLOPs vs Group Size

Figure 3. #Parameters and floating-point operations (FLOPs) vs
group size of attention layer. We see a diminishing hardware
efficiency return as the group size increases.

3.3. Ablation Study

The first ablation study, SG vs NG, shows that even with a
uniform group size, our activation-informed grouping (sym-
metric grouping, noted as “SG”) still improves the model
performance compared to neighbour grouping (NG). The
second ablation study shows the performance gain of asym-
metric grouping (AG) compared to symmetric grouping.

SG vs NG Figure 4 compares activation-informed sym-
metric grouping (SG) to neighbour grouping (NG), indicat-
ing that the activation-induced grouping search contributes
to performance gain.

AG vs SG Figure 5 compares asymmetric grouping (AG)
to symmetric grouping (SG), highlighting that varied group
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Figure 4. Neighbour grouping vs activation-informed symmetric
grouping. Activation-induced similarty between key (value) layers
improves model performance even without varied group sizes.
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Figure 5. Symmetric vs Asymmetric grouping. Asymmetric fur-
ther improves model performance by allowing varied group sizes.

size further improves model performance.

4. Conclusion
We introduce AsymGQA, an activation-guided asymmetric
grouping strategy for transforming a pretrained MHA model
into a GQA model. AsymGQA significantly outperforms
otherweight-merging baseline, and it effectively manages
the trade-off between model performance and hardware
efficiency in GQA.
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Algorithm 1 Activation-Informed Symmetric Grouping Search

Input:
model = pretrained MHA model
n = number of search iterations
m = group size
k = number of similar attention heads to consider when altering groupings
pacc = probability of accepting a worse-performing group
preset = probability of resetting the current grouping at each iteration

function SYMMETRIC GROUPING (model, n, m, k, pacc, preset):
S ← {h|h is an attention head in model}
g ← {P [i : i+m]|i = 0,m, 2m, . . . },where P ∼ Uniform(permutation(S)) // A random grouping of size m.
best acc← 0 // Keep track of best accuracy.
best grouping← None // Keep track of best grouping.
for i = 1 to n− 1 do
x← X ∼ Uniform(0, 1)
if x < preset then

g ← {P [i : i+m]|i = 0,m, 2m, . . . },where P ∼ Uniform(permutation(S)) // Reset g with probability preset.
end if
a← A ∼ Uniform(S) // A randomly chosen attention head.
H ← top-k(S, a) // Top k closest heads in a different group from the group of a.
b← B ∼ Uniform(H) // A randomly chosen attention head from H .
g′ ← swap a with an element from the group of b in g // Move head a to be grouped with a head similar to a, while
keeping the equal sizes of all groups.
y ← Y ∼ Uniform(0, 1)
if acc(GQA(g′)) > best acc or y < pacc then

g′ ← g
if acc(GQA(g′)) > best acc then

best acc← acc(GQA(g′)) // Update best accuracy.
best grouping← g′ // Update best grouping.

end if
end if

end for
return best acc, best grouping

end function

A. Activation-Informed Grouping Search
Algorithm 1 and Algorithm 2 describe activation-informed symmetric grouping and activation-informed asymmetric
grouping respectively.
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Algorithm 2 Activation-Informed Asymmetric Grouping Search

Input:
model = pretrained MHA model
n = number of search iterations
m = group size
k = number of similar attention heads to consider when altering groupings
pacc = probability of accepting a worse-performing group
preset = probability of resetting the current grouping at each iteration
ppreserve = probability of preserving the difference of group sizes when moving a head from one group to another

function SYMMETRIC GROUPING (model, n, m, k, pacc, preset, ppreserve):
S ← {h|h is an attention head in model}
g ← {P [i : i+m]|i = 0,m, 2m, . . . },where P ∼ Uniform(permutation(S)) // A random grouping of size m.
best acc← 0 // Best accuracy.
best grouping← None // Keep track of the best-performing grouping during search.
for i = 0, . . . , n− 1 do
x← X ∼ Uniform(0, 1) // A random real number from [0,1].
if x < preset then

g ← {P [i : i+m]|i = 0,m, 2m, . . . },where P ∼ Uniform(permutation(S)) // Reset g with probability preset.
end if
a← A ∼ Uniform(S) // A randomly chosen attention head.
H ← top-k(S, a) // Top k closest heads in a different group from the group of a.
b← B ∼ Uniform(H) // A randomly chosen attention head from H .
y ← Y ∼ Uniform(0, 1)
if y < ppreserve then
g′ ← move a head from the group of b back to the group of a in g // Preserve the difference of sizes of two groups.

end if
g′ ← move a into the group of b in g
z ← Z ∼ Uniform(0, 1)
if acc(GQA(g′)) > best acc or z < pacc then

g′ ← g // Update g with g′.
if acc(GQA(g′)) > best acc then

best acc← acc(GQA(g′)) // Update the best accuracy.
best grouping← g′ // Update the best-performing grouping.

end if
end if

end for
return best acc, best grouping

end function

B. Weight-Informed Similarity vs Activation-Informed Similarity
Before diving into Asymmetric search, we perform an experiment to compare the weight-informed layer similarity and the
activation-informed similarity. As shown in Table 2, activation-informed search usually has the best performance.
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Table 2. The model performance of brute force search, weight-informed symmetric search, and activation-informed simmetric search. The
best is highlighted in bold. Model here is OPT-125M. We find that activation-informed layer similarity usually has the best performance.

ACC (∆) on SST2
Group Size Brute Force Search Weight-Informed Activation-Informed

1 92.1±0.1 (0.0) 92.1±0.1 (0.0) 92.1±0.1 (0.0)
2 91.6±0.3 (-0.5) 91.2±0.6 (-0.9) 91.8±0.5 (-0.3)
3 90.1±0.5 (-2.0) 90.0±0.1 (-2.1) 90.3±0.2 (-1.8)
4 88.9±0.1 (-3.2) 89.1±0.4 (-3.0) 89.0±0.5 (-3.1)
6 87.5±0.1 (-4.6) 87.8±0.4 (-4.3) 87.6±0.1 (-4.5)

ACC (∆) on QNLI
Group Size Brute Force Search Weight-Informed Activation-Informed

1 88.1±0.4 (0.0) 88.1±0.3 (0.0) 88.1±0.3 (0.0)
2 87.4±0.6 (-0.7) 87.7±0.1 (-0.4) 87.8±0.4 (-0.3)
3 86.6±0.4 (-1.5) 85.6±0.1 (-2.5) 86.7±0.1 (-1.4)
4 84.0±0.1 (-4.1) 84.8±0.4 (-3.3) 84.4±0.2 (-3.7)
6 82.5±0.2 (-5.6) 83.4±0.1 (-4.7) 83.9±0.6 (-4.2)

ACC (∆) on MNLI
Group Size Brute Force Search Weight-Informed Activation-Informed

1 82.1±0.2 (0.0) 82.1±0.1 (0.0) 82.1±0.1 (0.0)
2 81.4±0.2 (-0.7) 81.4±0.1 (-0.7) 81.5±0.7 (-0.6)
3 80.3±0.1 (-1.8) 80.4±0.3 (-1.7) 80.8±0.3 (-1.3)
4 78.5±0.5 (-3.6) 78.4±0.2 (-3.7) 79.0±0.4 (-3.1)
6 77.6±0.6 (-4.5) 77.8±0.5 (-4.4) 77.6±0.1 (-4.5)

ACC (∆) on MMLU
Group Size Brute Force Search Weight-Informed Activation-Informed

1 23.1±0.3 (0.0) 23.1±0.1 (0.0) 23.1±0.1 (0.0)
2 22.5±0.1 (-0.6) 22.8±0.6 (-0.3) 22.8±0.3 (-0.3)
3 21.6±0.4 (-1.5) 21.7±0.4 (-1.4) 22.0±0.1 (-1.1)
4 19.7±0.5 (-3.4) 20.0±0.5 (-3.1) 19.9±0.4 (-3.2)
6 18.5±0.4 (-4.6) 18.2±0.6 (-4.9) 18.8±0.2 (-4.3)

C. Hyperparameters

Table 3. Details of the selected hyper-parameters, including batch size, learning rate η and weight decay wd for each set of experiments
with the same dataset and fine-tuning method.

Dataset LoRA Batch Size η wd Dataset LoRA Batch Size η wd

SST2 No
Yes

256
128

1e-5
2e-5

0.01
0.01

QNLI No
Yes

128
128

2e-5
2e-5

0.1
0.1

MNLI No
Yes

128
128

2e-5
1e-5

0.01
0.01

Alpaca No
Yes

128
128

2e-5
2e-5

0.01
0.01

D. More Experiment Results
We also run the experiment to compare neighbour grouping and AsymGQA on OPT-1.3B. As shown in Table 4, AsymGQA
still outperforms GQA by a clear margin.
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Table 4. The performance of OPT-1.3B with experimentally best GQA architecture (i.e. asymmetric grouping + random-search-based
approach + vector-wise cosine similarity on activations) compared with neighbour grouping. Column NG means neighbour grouping.
Columns noted with LoRA are results of models fine-tuned by LoRA while other columns are from models fully fine-tuned. Grouping
methods with the highest accuracies are highlighted in bold.

ACC (∆) on SST2
Group Size GQA (FT) AsymGQA (FT) GQA (LoRA) AsymGQA (LoRA)

1 93.0±0.5 (0.0) 93.0±0.5 (0.0) 92.8±0.6 (0.0) 92.8±0.6 (0.0)
2 91.3±0.5 (-1.7) 92.8±0.7 (-0.2) 89.6±0.1 (-3.1) 91.9±0.5 (-0.8)
3 89.2±0.5 (-3.8) 91.9±0.3 (-1.1) 88.1±0.2 (-4.7) 91.2±0.2 (-1.5)
4 88.5±0.6 (-4.5) 90.6±0.2 (-2.4) 86.6±0.4 (-5.2) 90.2±0.1 (-2.5)
6 87.7±0.2 (-5.3) 90.5±0.5 (-2.5) 84.6±0.1 (-8.2) 89.1±0.6 (-3.7)

ACC (∆) on QNLI
Group Size GQA (FT) AsymGQA (FT) GQA (LoRA) AsymGQA (LoRA)

1 89.1±0.3 (0.0) 89.1±0.3 (0.0) 89.0±0.7 (0.0) 89.0±0.7 (0.0)
2 84.7±0.2 (-4.4) 88.7±0.1 (-0.4) 84.3±0.1 (-4.7) 88.2±0.4 (-0.8)
3 84.2±0.4 (-4.9) 87.3±0.1 (-1.8) 82.8±0.6 (-6.2) 87.2±0.4 (-1.8)
4 79.1±0.5 (-10.0) 85.7±0.5 (-3.4) 80.3±0.4 (-8.7) 85.1±0.6 (-3.9)
6 78.0±0.1 (-11.1) 85.0±0.4 (-4.1) 77.9±0.6 (-11.1) 84.2±0.2 (-4.8)

ACC (∆) on MNLI
Group Size GQA (FT) AsymGQA (FT) GQA (LoRA) AsymGQA (LoRA)

1 84.2±0.6 (0.0) 84.2±0.6 (0.0) 83.8±0.5 (0.0) 83.8±0.5 (0.0)
2 81.3±0.2 (-2.9) 83.7±0.3 (-0.5) 80.1±0.5 (-3.7) 81.8±0.3 (-1.0)
3 79.4±0.5 (-4.8) 82.8±0.2 (-1.4) 78.9±0.3 (-4.9) 82.5±0.6 (-1.3)
4 79.0±0.2 (-5.2) 81.2±0.4 (-3.0) 77.9±0.5 (-5.9) 81.1±0.2 (-2.7)
6 76.7±0.3 (-7.5) 80.0±0.1 (-4.2) 75.3±0.5 (-8.5) 79.2±0.6 (-4.6)

ACC (∆) on MMLU
Group Size GQA (FT) AsymGQA (FT) GQA (LoRA) AsymGQA (LoRA)

1 22.9±0.3 (0.0) 22.9±0.3 (0.0) 23.0±0.2 (0.0) 23.0±0.2 (0.0)
2 21.6±0.5 (-1.3) 23.2±0.1 (0.3) 20.3±0.6 (-2.7) 22.6±0.7 (-0.4)
3 19.7±0.1 (-3.2) 22.3±0.7 (-0.6) 19.5±0.2 (-3.5) 21.8±0.1 (-1.2)
4 17.5±0.4 (-5.4) 20.7±0.5 (-2.2) 16.5±0.5 (-6.5) 20.9±0.6 (-2.1)
6 16.5±0.6 (-6.4) 19.2±0.5 (-3.6) 15.2±0.4 (-7.8) 19.4±0.7 (-3.6)
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