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Abstract

In the instruction fine-tuning of large language001
models (LLMs), it is widely recognized that a002
few high-quality instructions are superior to a003
large number of low-quality instructions. At004
present, many instruction selection methods005
have been proposed, but most of these meth-006
ods select instruction based on heuristic qual-007
ity metrics, and only consider data selection008
before training. These designs lead to insuf-009
ficient optimization of instruction fine-tuning,010
and fixed heuristic indicators are often difficult011
to optimize for specific tasks. Therefore, we012
design a dynamic, task-objective-driven instruc-013
tion selection framework RAISE(Reinforced014
Adaptive Instruction SElection), which incor-015
porates the entire instruction fine-tuning pro-016
cess into optimization, selecting instructions017
at each step based on the expected impact of018
each instruction on model performance im-019
provement. Our approach is well interpretable020
and has strong task-specific optimization ca-021
pabilities. By modeling dynamic instruction022
selection as a sequential decision-making pro-023
cess, we use RL to train our selection strat-024
egy. Extensive experiments and result analysis025
prove the superiority of our method compared026
with other instruction selection methods. No-027
tably, RAISE achieves superior performance028
by updating only 1% of the training steps com-029
pared to full-data training, demonstrating its030
efficiency and effectiveness.031

1 Introduction032

Large Language Models (LLMs) have achieved re-033

markable progress in recent years, demonstrating034

exceptional capabilities in general language under-035

standing (Liu et al., 2023; Chen et al., 2024b) and036

generation (OpenAI, 2023; Achiam et al., 2023;037

Liu et al., 2024b; Sun et al., 2024). A critical factor038

enabling these advancements is instruction fine-039

tuning (Wei et al., 2021; Chung et al., 2024; Long-040

pre et al., 2023), a process that aligns pretrained041

models with human intentions by training them on042

task-specific instructions. While existing efforts 043

predominantly focus on scaling instruction datasets 044

(Khashabi et al., 2020; Ye et al., 2021; Wang et al., 045

2022) to improve model performance, recent stud- 046

ies highlight that data quality often outweighs sheer 047

quantity (Zhou et al., 2024). This underscores the 048

need for principled methods to identify instruction 049

subsets that maximally enhance model capabilities. 050

Current instruction selection approaches typi- 051

cally rely on heuristic quality metrics (eg. grammat- 052

ical correctness, clarity, lexical diversity, etc.) to 053

filter low-quality instructions before training (Cao 054

et al., 2023; Li et al., 2023; Chen et al., 2023; Xia 055

et al., 2024; Pan et al., 2024). These methods face 056

three main issues: (i) They use a one-time static 057

selection before training , which does not adapt 058

to a model’s evolving data needs during training; 059

(ii) Their heuristic metrics are prone to cognitive 060

bias and oversimplify the continuous nature of data 061

quality; (iii) They are task-agnostic, failing to align 062

instruction selection with specific task objectives. 063

Considering a dynamic, task-aware approach to 064

instruction selection, we introduce the concept of 065

an instruction’s dynamic value—its impact on the 066

final model performance when used for gradient 067

updates at time step t (we put detailed descriptions 068

of dynamic value and example in Appendix C). 069

This dynamic value, which depends on both the 070

training step and the task objective, serves as a 071

quality measure that replaces fixed heuristic met- 072

rics and provides strong interpretability. Dynamic 073

instruction selection can be modeled as a sequen- 074

tial decision-making process aiming to maximize 075

the model’s performance after T steps. Obviously, 076

the optimal selection strategy is to select those in- 077

structions that have the most dynamic value at each 078

step. 079

Based on this idea, we propose RAISE 080

(Reinforced Adaptive Instruction SElection), a dy- 081

namic, non-heuristic, task-driven instruction selec- 082

tion framework. At its core is an acquisition func- 083
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Figure 1: Overview of the RAISE framework, illustrating the training process of LLM at step t: (1) The source
instruction dataset and current training state are fused to construct st, which encodes both data features and
training progress. (2) The Selector, guided by the acquisition function (a trainable scorer), takes st as input
and selects a batch of instruction data. (3) This selected batch is used to update LLM, resulting in performance
improvement rt. (4) Finally, the updated training state forms st+1, serving as input for the next step.

tion—a trainable MLP (sample-wise scorer) that084

estimates the dynamic value of each instruction085

and is optimized to maximize the final model per-086

formance. By leveraging a fully trained acquisition087

function to guide instruction selection, RAISE con-088

sistently produces high-performing models. More-089

over, its task-driven design allows the acquisition090

function to be flexibly adapted to various tasks091

through adjustments in the validation set and per-092

formance metrics. Due to the sequential decision-093

making nature of RAISE, we employ reinforcement094

learning (RL) (Bellman, 1966; Mnih et al., 2015)095

to optimize the acquisition function, treating each096

training process of LLM as an episode in the RL097

setting.098

To promote diversity , RAISE groups instruc-099

tions into multiple classes via K-means (MacQueen100

et al., 1967) and ensures balanced sampling from101

each group in every training batch. These classes102

constitute diversity constraint. Figure 1 shows the103

framework for RAISE, which considers both the104

score of the acquisition function and the diversity105

constraint when selecting instructions.106

In summary, our contributions are as follows:107

• We design a task-objective-driven acquisi-108

tion function to estimate the dynamic value of109

each instruction based on its expected impact110

on the final model performance, eliminating111

the need for heuristic quality metrics.112

• We propose RAISE, a dynamic instruction 113

selection framework that adaptively selects 114

instructions during training based on their 115

dynamic value, enabling the model to meet 116

changing data requirements during training. 117

• Through extensive experiments, we demon- 118

strate the effectiveness of our approach and 119

provide analysis highlighting the potential of 120

dynamic instruction selection for future ad- 121

vancements in instruction fine-tuning. 122

2 Related Work 123

2.1 Instruction Selection 124

Instruction selection focuses on identifying a sub- 125

set of instructions from a fine-tuning dataset that 126

maximize model performance, rather than train- 127

ing on the entire dataset. Recent studies empha- 128

size that carefully selected subsets can often out- 129

perform full-dataset training (Cao et al., 2023; Li 130

et al., 2023; Xia et al., 2024), underscoring the 131

importance of effective selection strategies. The 132

shift from dataset scaling to quality-focused selec- 133

tion highlights the need for principled methods to 134

prioritize high-utility instructions. 135

Many methods have been proposed for instruc- 136

tion selection. IFD (Li et al., 2024) introduces an 137

Instruction Following Difficulty metric to assess 138

instruction complexity and select appropriate sam- 139
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ples. AlpaGasus (Chen et al., 2024a) uses GPT-4140

(Achiam et al., 2023) to score instruction-response141

pairs, filtering low-quality samples and improving142

training efficiency. DEITA (Liu et al., 2024a) com-143

bines complexity and quality scores to optimize144

instruction selection, balancing diversity and data145

quality.146

However, these approaches share a common lim-147

itation: static selection. Once the subset is chosen,148

it remains fixed throughout training, failing to adapt149

to the model’s evolving data preferences. In con-150

trast, our proposed RAISE framework dynamically151

selects instructions at each training step based on152

their dynamic value, enabling adaptive learning153

that aligns with the model’s changing needs.154

2.2 Self-Paced Learning155

Self-Paced Learning (SPL) (Kumar et al., 2010)156

represents a prominent curriculum learning157

paradigm (Bengio et al., 2009) that dynamically se-158

lects training samples based on their difficulty lev-159

els. Unlike static curriculum approaches, SPL em-160

ploys an adaptive weighting mechanism where eas-161

ier samples are prioritized in early training stages162

while harder ones are progressively incorporated.163

This dynamic selection is governed by a self-paced164

regularizer that balances sample inclusion with a165

pacing parameter λ controlling curriculum progres-166

sion.167

The core mechanism involves jointly optimizing168

model parameters and sample selection through a169

bi-level objective: while the model learns to mini-170

mize task loss, the sample selector determines op-171

timal inclusion thresholds based on current loss172

values. This loss-driven thresholding strategy has173

proven effective in improving convergence robust-174

ness across various domains (Wang et al., 2021).175

However, this loss-driven approach introduces176

critical limitations for instruction tuning: (i) Loss177

values often poorly reflect task-specific metrics178

(e.g., accuracy, BLEU); (ii) The rigid easy-to-hard179

progression may discard valuable hard samples;180

(iii) Its single optimization objective cannot adapt181

to diverse task requirements. RAISE addresses182

these issues by replacing loss with task-aware dy-183

namic value estimation and introducing diversity184

constraint through clustered sampling, enabling185

both task-aware selection and adaptive learning.186

3 Method 187

In this section, we describe our method for dynamic 188

instruction selection. A learnable acquisition func- 189

tion is trained to estimate the dynamic value of each 190

instruction, ensuring adaptive and diversity-aware 191

selection throughout the training process. 192

We formally define the problem of dynamic in- 193

struction selection (§ 3.1), introduce the training 194

framework of our selection policy (§ 3.2), and de- 195

scribe the state fusion mechanism that combines 196

training state and data features (§ 3.3). We then 197

present the instruction selection algorithm (§ 3.4) 198

and the policy optimization algorithm for improv- 199

ing the selection policy (§ 3.5). 200

3.1 Problem Statements 201

Given an instruction dataset D = {di}Ni=1, our goal 202

is to dynamically select a subset Dt at each train- 203

ing step t to maximize the performance P of the 204

model updated at final step T . P is defined as a 205

performance metric related to downstream tasks, 206

which includes a validation set Dval visible dur- 207

ing the training process and an evaluation metric 208

(e.g., -loss/accuracy/rouge on Dval). The optimal 209

selection policy π∗ can be formulated as: 210

π∗ = argmax
π

P(MT [D, π],Dval), (1) 211

where, MT [D, π] represents the model updated at 212

step T . For simplicity, in the following content, we 213

denote P( · ,Dval) as P( · ) and Mt[D, π] as Mt. 214

3.2 Training Framework of Selection Policy 215

Dynamic instruction selection can be formulated as 216

a sequential decision-making process. Specifically, 217

at each training step t, the selection policy π deter- 218

mines a subset Dt from the dataset D to update the 219

model Mt−1. This process can be modeled as a 220

Markov Decision Process (MDP) (Bellman, 1966; 221

Puterman, 2014) consisting of: 222

• State (St): The state at step t, represents all 223

available information, building from the cur- 224

rent training state and D by State Fusion. 225

• Action (At): The action is the selected batch 226

data Dt from D according to the policy π, i.e., 227

At = Dt = π(St). 228

• Reward (Rt): The reward is based on the 229

performance improvement after using Dt to 230

update the model, i.e., Rt = P(Mt) − 231

P(Mt−1). 232
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Once the subset Dt is selected, it is used to up-233

date the model Mt−1, resulting in the new model234

Mt and an updated state St+1. The goal of train-235

ing is to maximize the cumulative reward, which236

reflects the final model performance P(MT ).237

In this framework, the selection policy π consists238

of a learnable acquisition function F and a diversity239

constraint C. Only F is trainable, so optimizing π240

is equivalent to optimizing F .241

3.3 State Fusion242

In dynamic instruction selection, State Fusion243

combines the current training state with original244

instruction features to form a comprehensive repre-245

sentation for the acquisition function. Specifically,246

we denote the fused state as d′ = H(d,Mt−1, t),247

where d is the instruction sample and H is the248

fusion function. The fusion of state involves 4249

components:250

• Stage State (Hstage): This component cap-251

tures the model’s current training progress,252

including Mt−1 and t. Formally:253

Hstage(Mt−1, t) =

[
Pt−1,

t

T

]
(2)254

• Instruction-Difficulty State (Hdiff): To rep-255

resent the complexity of each instruction, we256

collect logP (y|x), logP (y), and the lengths257

of the prompt and its response. To ensure effi-258

ciency, they are precomputed using the auxil-259

iary model1. Formally:260

Hdiff(d) = [len(x), len(y),

logP (y|x), logP (y)]
(3)261

• Instruction-Semantic State (Hsem): This262

component encodes the semantic information263

of the instruction. We compute the embed-264

ding vector E(d) with the auxiliary model,265

followed by a pooling layer:266

Hsem(d) = [Pool(E(d))] (4)267

• Instruction-Availability State (Havail): We268

record the number of times ν(d) an instruc-269

tion has already been selected during training,270

helping the acquisition function avoid exces-271

sive repetition of the same instruction:272

Havail(d) = [ν(d)] (5)273
1We use Llama-3.1-8B-Instruct as the auxiliary model to

preprocess instruction-difficulty state and instruction embed-
dings.

By concatenating these 4 components, we obtain 274

the fused state: 275

H(d,Mt−1, t) =
[
Hstage(Mt−1, t),

Hdif(d),Hsem(d),Havail(d)]
(6) 276

3.4 Instruction Selection Algorithm 277

Algorithm 1 Dynamic Instruction Selection with
Diversity Constraint
1: Input: Training dataset D, LLMMt−1, Batch size B,

Acquisition function F , Diversity constraint (classes) C
and Fusion functionH

2: Output: Selected subset of B samples
3: C ← |C|, b← B

C
4: Initialize St ← ∅, s← ∅
5: for dj ∈ D do
6: d′j ← H(dj ,Mt−1, t)
7: St ← St ∪ {d′j}
8: sj ← F(d′j) ▷ Dynamic value of dj
9: end for

10: for Ci ∈ C do ▷ Divide St into C classes
11: St,i ← ∅
12: for dj ∈ Ci do
13: St,i ← St,i ∪ d′j
14: end for
15: end for
16: for i = 1, 2, . . . , C do
17: π(St,i)← arg topb{sj | d′j ∈ St,i}
18: end for
19: π(St)←

⋃C
i=1 π(St,i)

20: return π(St)

Algorithm 1 presents the instruction selection 278

process with diversity constraint at training step t. 279

We first apply the fusion function H to incorporate 280

training state into each instruction dj . The acquisi- 281

tion function F then scores the fused instructions, 282

and a diversity constraint C = {C1, . . . , CC} (each 283

Ci represents a class) ensures balanced coverage 284

of heterogeneous instruction types. Specifically, 285

we select the top-b instructions (based on F) from 286

each class, and their union forms the final train- 287

ing subset Dt. This selected batch is then used to 288

update LLM, and the process repeats at the next 289

training step. 290

3.5 Policy Optimization Algorithm 291

To train the selection policy π, we adopt PPO 292

(Schulman et al., 2017), where the acquisition func- 293

tion Fθ acts as Actor, and Vϕ serves as Critic. 294

Advantage Estimation. To stabilize training and 295

improve generalization, we employ Generalized 296

Advantage Estimator (GAE) (Schulman et al., 297

2015) for advantage computation: 298

δt = Rt + γ Vϕ(St+1) − Vϕ(St), (7) 299
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300

Advt =
T−t−1∑
l=0

(γ λ)l δt+l, (8)301

302
Gt = Vϕ(St) + Advt, (9)303

where γ is the discount factor and λ is the GAE304

parameter, Advt and Gt is advantage and return305

respectively.306

Importance Sampling with Diversity Constraint.307

Under the diversity-constrained selection, the im-308

portance sampling ratio is computed on a per-class309

basis. Let {C1, . . . , CC} be the class used in in-310

struction selection, and define:311

pnew,i(d
′
j) =

exp
(
Fθ(d

′
j)
)∑

d′k∈Ci
exp

(
Fθ(d

′
k)
) ,

pold,i(d
′
j) =

exp
(
Fθold(d

′
j)
)∑

d′k∈Ci
exp

(
Fθold(d

′
k)
) , (10)312

Then, the overall ratio for a selected batch is:313

r̂t =
C∏
i=1

∏
d′j∈π(St,i)

pnew,i(d
′
j)

pold,i(d′j)
, (11)314

where π(St,i) denotes the top-b samples chosen315

from the i-th class at step t.316

Loss Functions. Following PPO, we optimize317

both the actor and critic losses. The actor loss is318

given by:319

Lactor = −Et

[
min

(
r̂t Advt,

clip
(
r̂t, 1− ϵ, 1 + ϵ

)
Advt

)]
,

(12)320

where ϵ is the clipping parameter (ϵ = 0.2). The321

critic loss is simply a mean-squared error:322

Lcritic = Et

[(
Vϕ(St) − Gt

)2]
. (13)323

Training Framework. We run K rounds of PPO324

training. In each round, the LLM is trained for325

T steps following the current policy π, with data326

(i.e., states, actions, rewards) being collected. We327

then use these collected samples to update the actor328

Fθ and the critic Vϕ via the aforementioned PPO329

objective. Iterating this process over K rounds330

gradually refines the acquisition function Fθ, ul-331

timately yielding a strong policy for dynamic in-332

struction selection. Detailed training process is in333

Appendix D.334

4 Experiments 335

4.1 Experimental Setup 336

Training Dataset. We use Alpaca-52K (Taori 337

et al., 2023) as our instruction fine-tuning dataset, 338

which contains 52,000 multi-domain instruction- 339

response pairs spanning tasks such as question an- 340

swering, text generation, translation and so on2. 341

Evaluation Datasets. We evaluate on four bench- 342

marks: MMLU, ARC (Challenge) (ARC-C), 343

CommonsenseQA (ComQA), and GSM8K. See 344

Appendix A.1 for detailed settings of them. 345

4.2 Baselines 346

We employ multiple baselines to compare with 347

RAISE. The simplest one is RAND, which ran- 348

domly samples a subset of instructions from the full 349

training set. We report the average performance 350

over 5 independent random samplings. We also 351

compare against other established methods, such 352

as IFD, DEITA and AlpaGasus. In addition, we 353

design a dynamic selection variant for SPL, termed 354

SSPL (see Appendix A.3). 355

To ensure a fair comparison between static and 356

dynamic selection methods, we match the total 357

number of update steps across all approaches. Con- 358

cretely, for static methods, we first pick 1% of the 359

full training set as a fixed subset and then train the 360

model for 3 epochs. For dynamic methods, we 361

set max_steps to match the total number of up- 362

date steps in the static setting, thereby enforcing an 363

equivalent amount of training. 364

4.3 Main Results 365

We present the results of RAISE versus various 366

baselines using different models in Tables 1, and 367

we showcase RAISE’s capability for task-specific 368

optimization in Figure 2. Our key findings are as 369

follows: 370

Only 1% of gradient-update steps suffices to 371

surpass full-data training. In Table 1, RAISE 372

requires only 1% of the total number of update 373

steps, yet outperforms models trained on the entire 374

dataset on all models. Notably, RAISE achieves a 375

significantly better result than this full-data base- 376

line. We conjecture that only a small fraction of 377

data truly benefits the task objective, while most 378

of the dataset provides minimal gains. By explic- 379

itly optimizing toward the task objective, RAISE 380

2We use the Alpaca version from https://huggingface.
co/datasets/yahma/alpaca-cleaned.
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effectively captures these valuable data. In Qwen’s381

experimental results, using the entire dataset actu-382

ally yielded worse results than using a subset of383

the data. To some extent, this further supports this384

point. We conducted a more detailed analysis of385

this phenomenon of "less is more" in Appendix G.386

RAISE consistently outperforms baselines on387

different models. Tables 1 shows that RAISE388

achieves superior performance across all tested389

models. Although RAISE remains robust for both390

small and large model scales, its advantage over391

baselines is especially pronounced on stronger392

Llama-3.2-3B compared to smaller Llama-3.2-1B.393

RAISE exhibits strong capability of task-specific394

optimization. In Figure 2, all baselines perform395

poorly in GSM8K due to their reliance on heuris-396

tic and general “quality” metrics, which predomi- 397

nantly capture instruction difficulty rather than the 398

actual task objective. Since only a small fraction 399

of Alpaca’s instructions involve the target reason- 400

ing tasks, these baselines are largely ineffective. 401

In contrast, RAISE explicitly identifies and pri- 402

oritizes instructions that align with the final ob- 403

jective, as evidenced by its emphasis on compu- 404

tational and reasoning-focused prompts relevant 405

to GSM8K (see Appendix I). Meanwhile, we con- 406

ducted out-of-distribution evaluations on MathQA 407

and MMLU.Math (MMLU.college_mathematics), 408

and RAISE still outperformed the baseline. 409

5 Analysis 410

In this section, we further investigate how RAISE 411

selects instructions by examining two core mod- 412

Model DATA Avg.Q Avg. MMLU ARC-C ComQA

Llama-3.2-3B

0% -100% 52.67 51.66 42.15 64.21
100% 0% 54.32 52.76 43.77 66.42
RAND -7.33% 54.20 52.86 42.32 65.11

IFD +25.06% 54.73 52.66 46.42 65.11
DEITA -16.44% 54.05 51.90 44.88 65.36

AlpaGasus -72.14% 53.13 52.30 44.11 62.98
SSPL -196.75% 51.08 50.11 41.64 61.51

RAISE(Ours) +70.35% 55.47 54.64 46.59 65.19

Llama-3.2-1B

0% -100% 38.33 35.53 33.76 45.71
100% 0% 39.36 35.94 36.86 45.29
RAND +7.01% 39.44 35.91 34.81 47.58

IFD -15.77% 39.20 37.35 34.47 45.78
DEITA -65.79% 38.69 36.58 33.45 46.03

AlpaGasus -47.39% 38.88 36.89 33.87 45.86
SSPL +69.55% 40.08 37.20 36.60 46.44

RAISE(Ours) +85.14% 40.24 38.14 35.58 47.01

Qwen-2.5-3B

0% -100% 62.16 63.19 47.13 76.15
100% 0% 63.70 65.22 49.12 76.75
RAND +15.53% 63.94 65.30 50.18 76.33

IFD +34.04% 64.22 65.25 50.43 76.99
DEITA +28.37% 64.13 65.43 49.66 77.31

AlpaGasus +32.06% 64.19 65.18 49.91 77.48
SSPL +46.59% 64.42 65.33 50.68 77.23

RAISE(Ours) +69.83% 64.77 65.32 51.28 77.72

Table 1: Performance comparison on MMLU, ARC-Challenge, and CommonsenseQA. All methods are trained
on Alpaca-52K. We report results for two versions of Llama-3.2 (3B and 1B) and Qwen-2.5-3B. “0%” denotes the
base model and “100%” denotes full Alpaca dataset, and otherwise we select 1% of the data or equivalent number
of training steps. “Avg” denotes the average metric across these three benchmarks. “Avg.Q” denotes the additional
performance gain achieved by each method, relative to the improvement obtained by using the 100% data baseline.
It is computed as: Avg.Q(·) = Avg(·)−Avg(0%)

Avg(100%)−Avg(0%) . Bold numbers denotes the best performing on its column.
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Figure 2: Performance of GSM8K-targeted train-
ing. All methods are still trained on Alpaca dataset
but use GSM8K as validation set (different from the
GSM8K evaluation set). Besides, We use MathQA and
MMLU.Math (MMLU.college_mathematics) for OOD
evaluations.

ules: state fusion and diversity-constrained selec-413

tion. Finally, we analyze the distribution of data414

selected by RAISE at different stages of training.415

5.1 Ablation on State Fusion416

A small instruction semantic dimension suffices.417

We vary the dimension of the semantic embed-418

ding ({8, 16, 32, 64}; default: 32) and report the419

results in Figure 3. Even though 32 is much smaller420

than the original embedding size (e.g., 4096), it421

consistently yields solid performance on MMLU,422

ARC-C, and ComQA. Increasing the semantic di-423

mension leads to modest gains overall, but notably,424
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Figure 3: Performance with different instruction seman-
tic dimensions dsem.

ARC-C benefits the most from higher-dimensional 425

representations, suggesting a stronger reliance on 426

richer feature spaces for reasoning. Although per- 427

formance on MMLU and ComQA slightly declines 428

at 64 dimensions, the improvement on ARC-C com- 429

pensates, keeping the overall average competitive. 430
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Figure 4: Ablation results on different components in
state fusion.

Stage State is the most critical. Ablation results 431

in Figure 4 show that removing the Stage State 432

leads to the largest performance drop, confirming 433

its role as the key temporal controller in RAISE. It 434

dynamically guides training by integrating model 435

status and progress, enabling early semantic ex- 436

ploration and late-stage sample refinement. Other 437

states (difficulty, semantic, availability) also con- 438

tribute—e.g., Difficulty State is essential for com- 439

plex tasks like ARC-C, and Semantic State helps 440

in knowledge-rich domains like MMLU—but their 441

impact is more task-specific. Availability plays a 442

minor role but ensures diversity with minimal cost. 443

We discuss in detail in Appendix B the impact of 444

each component on the performance of RAISE. 445

5.2 Ablation on Diversity-Constrained 446

Selection 447

In the diversity-constrained selection, all data are 448

first clustered into C classes via K-means, and 449

the model then selects top-scoring samples within 450

each class. We study how different values of C 451

affect performance. As shown in Figure 5, we vary 452

C ∈ {1, 2, 4, 8, 16, 32}. When C is small (1 or 2), 453

the model achieves relatively strong overall perfor- 454

mance when selecting 1% data, whereas larger C 455

leads to a downward trend. While this might seem 456

counterintuitive—given that diversity often boosts 457

performance – the key factor here is that RAISE 458

uses only 1% of the training steps compared to 459

full-data training. Under such a tight budget, the 460
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Figure 5: Performance with different class counts C
when using only 1% and 5% data. The larger the C,
the finer the class, and the fewer instructions each class
selects.

model must rapidly focus on data most aligned with461

the target objective. These valuable samples may462

all fall into a single class, and the diversity con-463

straint then limits how many can be selected from464

that cluster (B/C), thereby hurting performance.465

The experiment on 5% data proves this (achieving466

best performance at C = 4), suggesting that en-467

suring data diversity remains a beneficial measure468

for training when there is a large amount of data469

samples.470

5.3 Distribution of Selected Instructions471

In this section, we investigate the data selected by472

RAISE. We split the total T training steps into three473

stages (Stage 0, Stage 1, and Stage 2), representing474

the early, middle, and late stages of training. We475

then visualize the distribution of the selected sam-476

ples at each stage. As shown in Figure 6, the data477

chosen in the early and middle stages are widely478

scattered, whereas in the final stage they become479

tightly clustered. This indicates that the most ben-480

eficial data for the model changes over time. In481

the early and middle stages of training, various pat-482

terns of data are helpful for the training process.483

Stage 0
Stage 1
Stage 2

Figure 6: Distribution of selected instructions in differ-
ent stage.

However, in the later stage, the data that is most 484

beneficial for training is concentrated on certain 485

patterns. 486

6 Conclusion 487

In this paper, we present RAISE, a dynamic instruc- 488

tion selection method that adaptively selects ben- 489

eficial instructions for LLM fine-tuning. RAISE 490

employs a task-objective-driven acquisition func- 491

tion and a cluster-based diversity mechanism to 492

identify high-utility data. Our experiments on mul- 493

tiple benchmarks demonstrate that RAISE outper- 494

forms static selection baselines, achieving strong 495

performance while using only a small fraction of 496

training steps. We hope this work inspires further 497

research on adaptive data selection and fine-tuning 498

strategies for large language models. 499

Limitation 500

RAISE incurs linear memory overhead in the re- 501

play buffer during RL training of the acquisition 502

function. Specifically, when storing states for RL 503

optimization, each instruction’s fused state vector 504

(dimension M ) requires O(M) memory. For a 505

dataset of size N , the total buffer storage scales 506

as O(N ×M). This becomes prohibitive for com- 507

posite datasets where N ≥ 200, 000—common in 508

current instruction tuning. Furthermore, when sam- 509

pling batches from the buffer, multiple state vectors 510

must be simultaneously loaded into memory, ex- 511

acerbating peak memory pressure. Consequently, 512

8



RAISE faces scalability challenges for very large-513

scale instruction datasets, necessitating future work514

on state compression or distributed buffer strate-515

gies.516
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A Details of Experiments Setup701

A.1 Evaluation Datasets702

MMLU covers 57 tasks ranging from elementary703

math and U.S. history to computer science and704

law, primarily measuring knowledge breadth and705

reasoning (Hendrycks et al., 2021b,a). ARC-C is706

a challenging subset of the AI2 Reasoning Chal-707

lenge, featuring multiple-choice questions that de-708

mand complex reasoning and scientific knowledge709

(Clark et al., 2018). ComQA is a common-sense710

reasoning benchmark requiring real-world knowl-711

edge and inference (Talmor et al., 2019). GSM8K712

contains 8,000 grade-school math problems focus-713

ing on multi-step numeric reasoning (Cobbe et al.,714

2021). Table 2 provides more detailed information715

about these evaluation datasets.716

Dataset |Dval| |Dtest| Answer Type Metric

MMLU 285 14,042 Letter options Acc
ARC-C 299 1,172 Letter options Acc
ComQA 280 3 1,140 Letter options Acc
GSM8K 256 4 1,319 COT and answer Acc

Table 2: Statistics of evaluation datasets.

A.2 Hyperparameters717

When training the LLM in each round, we set the718

learning rate to 2e-5, use a cosine learning rate719

scheduler, and have no warm-up steps. When ppo720

training, we set actor learning rate, critic learning721

rate, weight decay, γ, λ, K respectively to 1e-1, 2e-722

1, 1e-2, 0.99, 1.0, 20. In our state fusion pipeline,723

we pool the instruction embedding vector to a di-724

mension of 32. Consequently, the fused state di-725

mension is 2 (stage) + 4 (diff) + 32 (sem) + 1 (avail)726

= 39. As a practical measure of model performance727

P(Mt), we use −Loss(Mt,Dval) for computa-728

tional efficiency. When evaluating the trained LLM,729

we use the lm_eval framework and set max_length730

to 512.731

A.3 SSPL Baseline732

In SSPL baseline, all training examples are sorted733

by their loss values and divided into max_steps734

buckets of approximately equal size, such that each735

bucket contains instructions with similar difficulty736

(as measured by loss). During training, the model737

3In ComQA, we randomly select 280 samples from the
original 1,221 validation data.

4For GSM8K, which does not have a dedicated validation
set, we sample 256 examples from its 7,473 training data.

sequentially takes data batches from these buck- 738

ets in ascending order of difficulty, moving from 739

simpler to more challenging tasks to progressively 740

enhance its capabilities. 741

B Effects of Different Components in 742

State Fusion 743

The ablation experimental results in Figure 4 sys- 744

tematically evaluate the 4 state components, re- 745

vealing the following importance ranking: Stage 746

> Instruction Difficulty > Instruction Semantic 747

> Instruction Availability. We provide a more 748

detailed analysis here. 749

B.1 Stage State 750

As the core component of RAISE’s dynamic selec- 751

tion, Stage State integrates current model perfor- 752

mance and training progress to provide global tem- 753

poral awareness. Figure 4 results show removing 754

this component causes the largest average perfor- 755

mance drop, as it directly controls training rhythm: 756

guiding broad semantic category exploration in 757

early stages (dispersed distributions in early/mid 758

phases in Figure 6) and focusing on high-value 759

samples later (dense distributions in later phases). 760

Its global and dynamic nature makes it most sig- 761

nificant in multi-task scenarios, serving as the key 762

source of temporal sensitivity for dynamic value 763

estimation. 764

B.2 Instruction Difficulty State 765

Drives progressive learning by quantifying instruc- 766

tion complexity. Ablation experiments show signif- 767

icant performance drops on ARC-Challenge when 768

removed, as this task heavily relies on complex 769

reasoning (e.g., scientific knowledge inference). 770

Works synergistically with Stage State: select- 771

ing easier samples early for stable training, then 772

gradually introducing harder ones. However, in 773

knowledge-intensive tasks (e.g., MMLU), difficulty 774

metrics show weaker correlation with task objec- 775

tives, making its impact relatively limited. This 776

indicates Difficulty State’s effectiveness varies sig- 777

nificantly by task type, being crucial for complex 778

reasoning tasks. 779

B.3 Instruction Semantic State 780

Captures semantic relevance through embedding 781

vectors. Ablation shows significant impact on 782

MMLU and CommonsenseQA but limited effect on 783

ARC-Challenge. This difference stems from vary- 784

ing task requirements: MMLU needs cross-domain 785
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knowledge generalization where semantic features786

prevent bias toward frequent domains (e.g., law,787

medicine). CommonsenseQA requires connecting788

similar common sense questions (e.g., causal rea-789

soning) to extract patterns. ARC-Challenge’s sci-790

entific reasoning depends more on logical chain791

completeness than semantic discrimination. Thus,792

Semantic State offers limited benefits for reasoning793

tasks.794

B.4 Instruction Availability State795

Tracks selection frequency to prevent oversam-796

pling. Ablation shows minimal impact, with analy-797

sis revealing <10% cases of repeated sampling (>3798

times) of same data. Its function becomes weaker799

with higher cluster counts (C). However, since it800

adds negligible overhead (just 1 extra dimension)801

and handles extreme oversampling cases, retaining802

it remains meaningful.803

C Dynamic Value804

C.1 Static Value Framework805

Existing approaches rely on static value computa-806

tion. Let f : d → R be the scoring function where807

∀d ∈ D, f(d) represents its general utility. The808

subset selection objective is:809

D′ = arg top
N ′

{
f(d) | d ∈ D

}
(14)810

J = max
f

P(M[D′]) (15)811

where N ′ is the selection size and P denotes812

evaluation metrics. Representative implementa-813

tions include:814

• AlpaGasus (Chen et al., 2023): fGPT-4(d) =815

Complexity(d) + FormatScore(d)816

• IFD (Li et al., 2024): fLlama(d) =
log p(y|x)
log p(y)817

C.2 Dynamic Value Definition818

We extend static values to dynamic values by intro-819

ducing temporal dependency:820

f : Mt−1 ×D → R, where t ∈ {1, . . . , T}
(16)821

The training dynamics are governed by:822

Dt = arg top
B

{
ft(Mt−1, d) | d ∈ D

}
(17)823

824
Mt = Update(Mt−1,Dt) (18)825

with final objective:826

J = max
f

P(MT ) (19)827

C.3 Conceptual Comparisons 828

• Vs. Reward: Reward Rt measures immedi- 829

ate performance improvement ∆Pt, whereas 830

f(Mt−1,D) estimates long-term utility of 831

each sample. 832

• Vs. Curriculum Learning: Dynamic values 833

adapt to emergent model states rather than 834

pre-defined difficulty schedules. 835

• Vs. Active Learning: Focuses on final model 836

capability rather than immediate uncertainty 837

reduction. 838

C.4 Example 839

Consider D = {d1, d2} with B = 1 at step t: 840

f(Mt−2, d1) = 0.8 841

f(Mt−2, d2) = 0.1 842

⇒ Dt = {d1} (via Eq. 17) 843

The model updates as Mt−1 → Mt following 844

Eq. 18. The value predictor f (we call it acquisi- 845

tion function) is optimized via RL. 846

C.5 Parameter-to-Time Simplification 847

Directly using model parameters in f(Mt, d) is 848

computationally prohibitive. We simplify to f(t, d) 849

because optimizers like Adam (Kingma, 2014) in- 850

duce smooth parameter updates, making t a suffi- 851

cient temporal index. The simplification reduces 852

complexity from O(|P |×|D|) to O(|D|), enabling 853

real-time computation. 854

D Selection Policy Optimization 855

The optimization algorithm for the data selection 856

strategy (acquisition function) is illustrated in Al- 857

gorithm 2. This framework employs a bi-level iter- 858

ative optimization process: 859

• The inner loop trains the LLM and adaptively 860

updates the data selection strategy based on 861

observed performance improvements during 862

training. 863

• The outer loop iteratively refines the selec- 864

tion strategy over multiple rounds, ultimately 865

achieving global optimization of the policy 866

πθ. 867
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Algorithm 2 Selection Policy Optimization
1: Input: Training dataset D, Validation set Dval, Initial

LLM M0, Number of rounds K, Steps per round T ,
Batch size B, Fusion functionH, PPO epochs K2

2: Output: πθK

3: Initialize θ0, ϕ0

4: for k = 1 to K do
5: // Data Collection Phase
6: Initialize buffer W ← ∅
7: for t = 1 to T do
8: St ← H(D,Mt−1, t)
9: Dt ← πθk−1(St, B)

10: Vt ← Vϕk−1(St)
11: Mt ← Update(Mt−1,Dt)
12: Rt ← P(Mt)− P(Mt−1)
13: W ←W ∪ {(St,Dt, Rt, Vt, St+1)}
14: end for
15: // Policy Optimization Phase
16: θ, θold, ψ = θk−1, θk−1, ψk−1

17: for k2 = 1 to K2 do
18: for (S′

t,D′
t, R

′
t, V

′
t , S

′
t+1) ⊆W do

19: Update θ by Eq.12
20: Update ψ by Eq.13
21: end for
22: end for
23: θk, ψk = θ, ψ
24: end for
25: return πθK

E Analysis of Computational Cost868

RAISE introduces moderate additional overhead869

due to its two-stage structure: instruction prepro-870

cessing and acquisition function training. We de-871

note Φ as the cost of full-data LLM training.872

Instruction Preprocessing. This stage computes873

instruction difficulty and semantic representations874

using an auxiliary model. Each instruction requires875

two forward passes. Assuming the auxiliary model876

is 3× larger than the target model, and training is877

5× more expensive than inference per epoch, the878

preprocessing cost is:879

Preprocess ≈ 2× 3

5× 3
Φ = 0.4Φ880

Acquisition Function Training. The acquisition881

function is trained via a bi-loop structure over K882

rounds. Each round performs one LLM training883

using a p-proportion data subset, costing pΦ. Addi-884

tional PPO and selection overheads are negligible885

(< 80s per round). Total training cost is:886

Train ≈ K · p · Φ887

Using p = 0.05, K = 30, we obtain 1.5Φ.888

Total Cost. The total computational cost of889

RAISE is approximately:890

Total ≈ 0.4Φ + 1.5Φ = 1.9Φ891

Despite a 90% increase over full-data train- 892

ing, RAISE enables targeted instruction selec- 893

tion and facilitates constructing high-quality, task- 894

aligned datasets. For instance, aligning Alpaca 895

with GSM8K as validation allows extraction of 896

reasoning-specific data for specialized downstream 897

training. 898

F Memory Optimization Strategy 899

During RL training of acquisition function, RAISE 900

maintains a replay buffer to store fused state vectors 901

for each instruction. Given a state dimension of M 902

and dataset size N , the memory cost scales linearly 903

as O(N ×M). This becomes prohibitive for large- 904

scale instruction datasets (e.g., N ≥ 200,000), 905

where simultaneous access to multiple state vec- 906

tors during batch sampling can exacerbate peak 907

memory pressure. 908

To address this scalability issue, we propose a 909

simple strategy: performing data selection every 910

M steps instead of every training step. During in- 911

termediate steps, random sampling is used in place 912

of selection. This reduces the frequency of pol- 913

icy updates and state maintenance, decreasing both 914

computational and memory costs to approximately 915

1/M of the original per-step selection setup. 916

This optimization leverages the observation that 917

model parameters typically change slowly between 918

adjacent training steps. Thus, the stage state re- 919

mains similar over short horizons, and infrequent 920

updates (e.g., every M steps) preserve most of the 921

benefits of dynamic selection while significantly 922

reducing overhead. 923

The interval parameter M provides a tunable 924

trade-off between adaptivity and efficiency: 925

• Fully Dynamic Selection (M = 1): Per-step 926

selection with maximum adaptivity but high- 927

est memory and compute cost. 928

• Fully Static Selection (M = N ): Single se- 929

lection before training with no runtime adap- 930

tation and minimal overhead. 931

This parameterization allows explicit control 932

over the adaptation-efficiency trade-off in practi- 933

cal deployments. For very large-scale instruction 934

tuning, this strategy enables RAISE to scale more 935

efficiently without significant loss in performance. 936

G Why “Less Is More”? 937

We observe that full-data training incurs signif- 938

icantly higher computational cost—up to 100× 939
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compared to selective training baselines—while re-940

sulting in comparable or only marginally improved941

performance. This finding may appear to contra-942

dict existing scaling laws. However, as noted in943

prior work (Zhou et al., 2024), scaling laws do944

not directly apply to the alignment phase, for the945

following reasons:946

• The majority of LLMs’ core capabilities are947

acquired during pretraining.948

• The alignment phase primarily teaches output949

patterns that activate these pretrained capabil-950

ities.951

• Thus, only a small amount of high-quality952

data is sufficient for effective alignment.953
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Figure 7: Model performance during training.

Checkpoint Analysis. To further examine this954

behavior, we conducted full-data training and saved955

10 equally spaced checkpoints. Figure 7 reports956

performance across checkpoints. The results show957

that performance plateaus after early training steps,958

with only minor fluctuations throughout the rest of959

training. This reinforces the hypothesis that only a960

small subset of the full data contributes meaning-961

fully to alignment.962

H Bias of Auxiliary Model963

The Instruction Difficulty and Instruction Seman-964

tic features computed by auxiliary models are cru-965

cial for RAISE’s performance. We emphasize966

these components exhibit strong generalizability,967

while absolute values may differ significantly be-968

tween architecturally distinct models (e.g., GPT vs.969

Llama), their feature distributions remain similar.970

To validate this experimentally, we implemented971

RAISE-Q using Qwen-2.5-7B-Instruct as the auxil-972

iary model. The experimental results are shown in973
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Figure 8: Experiment result of using Qwen-2.5-7B-
Instruct as auxiliary model (RAISE-Q).

Figure 8. It can be observed that even when using 974

an auxiliary model of another architecture, RAISE 975

still exhibits excellent performance, indicating that 976

RAISE’s dependence on the reference model is not 977

particularly strong. 978

I Case Study 979

In the experiments where GSM8K was used as the 980

task objective, we were surprised to find that the 981

selected instruction data were typical CoT data, 982

which were highly aligned with GSM8K. Here we 983

present two data cases for reference. 984

Solve for the inverse of the matrix

### Instruction:
Find the inverse of the matrix.

### Input:1 −3 2
3 2 1
4 0 −1


### Response:
We can find the inverse of the input matrix
using the adjugate or classical adjoint
method. Here are the steps:
Solution: First, we need to find the matrix
of minors. The matrix of minors is a matrix
where each element is the determinant of
the minor for the corresponding entry in the
original matrix. The minor for an entry is
the determinant of the matrix that we get by
removing the entry’s row and column.

985
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The matrix of minors of

1 −3 2
3 2 1
4 0 −1



is



∣∣∣∣2 1
0 −1

∣∣∣∣ ∣∣∣∣3 1
4 −1

∣∣∣∣ ∣∣∣∣3 2
4 0

∣∣∣∣∣∣∣∣−3 2
0 −1

∣∣∣∣ ∣∣∣∣1 2
4 −1

∣∣∣∣ ∣∣∣∣1 −3
4 0

∣∣∣∣∣∣∣∣−3 2
2 1

∣∣∣∣ ∣∣∣∣1 2
3 1

∣∣∣∣ ∣∣∣∣1 −3
3 2

∣∣∣∣

 =

−2 −1 −8
3 −6 −12
−7 −1 11

.

Then we need to turn this matrix of minors
into a matrix of cofactors by negating the
elements at the positions where the sum of
the row number and the column number
is odd, i.e, alternate signs in the matrix of
minors.
The matrix of cofactors is−2 1 −8
−3 −6 12
−7 1 11

.

Next, we have to find the adjugate of the ma-
trix is by taking the transpose of the matrix
of cofactors.
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Solve the Eight Queens puzzle

### Instruction:
Design an algorithm to solve the Eight
Queens puzzle

### Response:
The Eight Queens puzzle is a classic
problem where the goal is to place eight
queens on an 8x8 chessboard in such a way
that no two queens threaten each other. This
means that no two queens can be placed in
the same row, column, or diagonal.
One solution to this problem is to use back-
tracking. Here is an algorithm to solve the
Eight Queens puzzle using backtracking:
1. Start with an empty 8x8 chessboard and
add the first queen to the first row in the first
column.
2. Move to the next row and try placing a
queen in each column. Check if the position
is safe by verifying if any of the previously
placed queens is attacking the current posi-
tion. If it’s a safe position, place a queen in
that column.

987

3.Boolean function:
def is_safe(board, row, col):

for i in range(col):
# Check row and columns
if board[row][i] == 1:

return False
# Check diagonals
for i, j in zip(range(row, -1, -1),

range(col, -1 ,-1))
if board[i][j] == 1:

return False
for i, j in zip(range(row, N, 1),

range(col, -1, -1))
if board[i][j] == 1

return False
return True

4. If a queen can be placed, move to the next
row and repeat step 2. If no safe position
is found for the current row, go back to the
previous row and move the queen to the
next safe position.
5. If all eight queens have been placed on
the chessboard without attacking each other,
the solution is found. Print the solution.
5. Do this for rows from 1-7 since the first
row already has a queen.
6. Continue the process until all possible
solutions are found, or if the solutions are
exhausted, and none is found.

988

Solve a Tower of Hanoi problem

### Instruction:
Create an algorithm for solving a Tower of
Hanoi problem

### Response:
The Tower of Hanoi is a classic puzzle
game with a goal of moving a stack of disks
from one peg to another with the following
three constraints:
1. Only one disk can be moved at a time.
2. Each move consists of taking the upper
disk from one peg and moving it to another
peg. 3. No disk may be placed on top of a
smaller disk.
Given these constraints, we can use a recur-
sive algorithm to solve the Tower of Hanoi
puzzle.
Let’s define the function ‘towerOfHanoi(n,
source, destination, auxiliary)‘ where ‘n‘
is the number of disks, ‘source‘ is the peg
where the disks are initially stacked, ‘desti-

989
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nation‘ is the peg where the disks need to
be transferred to and ‘auxiliary‘ is the third
peg that can be used as a temporary peg for
moving the disks.
1. If ‘n == 1‘, then move the top disk from
‘source‘ to ‘destination‘ peg. 2. If ‘n > 1‘,
then: a. Recursively call ‘towerOfHanoi(n-
1, source, auxiliary, destination)‘ to move
the top ‘n-1‘ disks from the ‘source‘ peg
to the ‘auxiliary‘ peg using the ‘destina-
tion‘ peg as the temporary peg. b. Move
the ‘n‘th disk from the ‘source‘ peg to
the ‘destination‘ peg. c. Recursively call
‘towerOfHanoi(n-1, auxiliary, destination,
source)‘ to move the ‘n-1‘ disks from the
‘auxiliary‘ peg to the ‘destination‘ peg using
the ‘source‘ peg as the temporary peg.
Below is sample code for the algorithm in
Python:
def towerOfHanoi(n, source, destination,

auxiliary):
if n == 1:

print(f’Move disk 1 from {source}
to {destination}’)

else:
towerOfHanoi(n-1, source,

auxiliary, destination)
print(f’Move disk {n} from {source

} to {destination}’)
towerOfHanoi(n-1, auxiliary,

destination, source)

When the function is called with the appro-
priate initial values, it will print out the step-
by-step solution to the Tower of Hanoi puz-
zle. For example:
towerOfHanoi(3, ’A’, ’B’, ’C’)

990
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