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Abstract

The quality of segmentation models is driven by their training datasets labeled with1

detailed segmentation masks. How does the composition of such a training dataset2

contribute to the performance of the resulting segmentation model? In this work,3

we take a step towards attaining such an understanding by applying the lens of data4

attribution to it. To this end, We first identify specific behaviors of these models5

to attribute, and then provide a method for computing such attributions efficiently.6

We validate the resulting attributions, and leverage them to both identify harmful7

labeling errors and curate a 50% subset of the MS COCO training dataset that leads8

to a 2.79%± 0.49% increase in mIOU over the full dataset.9

1 Introduction10

Semantic segmentation is a fundamental task in computer vision. Indeed, segmentation models11

classify individual pixels in an image, enabling a detailed understanding of complex scenes with12

diverse applications such as autonomous driving [1, 2], medical image analysis [3, 4], and agricultural13

field monitoring [5]. However, the quality of segmentation models is impacted by the difficulty of14

collecting high-quality training data [6].15

In particular, the process of manually creating the whole segmentation masks for an individual16

image is far more expensive than assigning a single label to it (as is done in the classification17

setting). Because of this complexity of creating pixel-wise annotations, the resulting masks often18

contain labeling errors [7, 8]. To what extent are these label errors detrimental to the performance of19

segmentation models though? And can we identify and remove problematic training examples in20

order to curate better training datasets?21

More broadly, we might wonder about the relationship between training data and the resulting22

behavior of segmentation models. For example, we might want to understand the possible pitfalls of23

training on synthetic data [9, 10], an increasingly popular alternative to manually annotated data.24

Our Contributions To answer such questions, in this work we study data attribution for segmen-25

tation models—that is, the task of tracing such models’ behavior to individual training examples.26

Performing data attribution in the segmentation setting requires addressing a number of complications.27

First, a segmentation model might aim to segment multiple distinct objects that can be of different28

classes, making it less clear how to choose a specific target of attribution (i.e., what to attribute). To29

this end, we begin by identifying specific behaviors (i.e., parts of the output) of segmentation models30

that we wish to attribute to the training dataset. Additionally, since the output of segmentation models31

is high-dimensional, computing gradients of this model output with respect to training inputs (a key32

step in most data attribution methods) might be difficult. However, by leveraging recent work in33

data attribution within classification settings [11], we provide an efficient method for computing data34

attributions for segmentation models, and validate the faithfulness of the resulting attributions.35

Finally, we demonstrate that the attributions identified by our method surface harmful labeling errors36

in segmentation datasets, and leverage these attributions to curate a 50% subset of the MS COCO37
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What impact does each training example have on the model’s ability to segment… 

…the class cats ? …that specific shoe ? …background from foreground ?

Figure 1: What do we want to attribute? In the segmentation setting, there are many possible
targets for attribution. Here, we visualize three possible targets of interest: a model’s predictions for a
particular class (left), a specific object (middle), or separation of background from foreground (right).

training dataset that achieves a 2.79% ± 0.49% increase in mIOU over the full training dataset.38

Related works are in Appendix A and a conclusion is in Appendix B.39

2 Preliminaries40

Data Attribution Data attribution has been closely studied for classification models, and within41

this setting, previous works have employed data attribution for a number of tasks that can provide42

great value in the segmentation setting. For example, mislabeled or otherwise poisoned training43

examples can by identified by examining negatively influential training examples [12–17]. More44

broadly, evaluating the overall impact of individual training examples can be useful for curating45

training datasets [13, 14, 18]. Data attribution can also be useful for debugging model behavior [19]46

and comparing learning algorithms [20]. Below, we formalize the task of data attribution.47

Consider a learning algorithm A (e.g., the training process for a neural network) paired with an48

n-element training dataset S ∈ Zn from input space Z . Broadly, data attribution aims at identifying49

how the behavior of models trained with algorithm A is impacted by each training point zi ∈ S. In50

particular, given some held-out example z ∈ Z , we can quantify the behavior of the model on this51

example via a model output function f(z, θ(S)) : Z ×Rd → R, where θ(S) ∈ Rd denotes the model52

parameters resulting from running the algorithm A on the dataset S.53

A valuable primitive that captures many of the underlying goals of data attribution is datamodel-54

ing [19]: the task of predicting the model output function f(z, θ(S′)) that results from running55

algorithm A on arbitrary subsets S′ ⊂ S. In fact, despite the complex dynamics of modern non-56

convex neural networks, prior works [19, 15, 11] have demonstrated that this prediction task can be57

well approximated by a linear mapping {0, 1}|S| → R. So, following Park et al. [11], we can formal-58

ize a data attribution method as a function τ : Z × Zn → Rn that assigns a score τ(z, S)i ∈ R to59

each training example zi ∈ S, indicating the change in f(z, θ(S)) induced by removing zi from S. In60

particular, we can interpret these scores as weights of a linear datamodel: f(z, θ(S′)) ≈ τ(z, S)T1S′61

where 1S′ , is the indicator vector of S′ in S.62

Segmentation Models We focus on the task of semantic segmentation, in which each pixel in an63

image is assigned a class. Each training example z ∈ Z consists of an image x of size H ×W ×Nch,64

where Nch is the number of channels, and a label y of size H ×W . Each pixel xij has a label65

yij ∈ {0, 1, . . . , Ncls}, where Ncls is the number of classes (and 0 represents the background class).66

3 Attributing Segmentation Models67

In order to perform data attribution for segmentation models, we first need to identify a specific target68

of attribution (and pair it with a model output function that formalizes this attribution target). So,69

we begin this section by identifying two such targets, towards which we will focus our attributions.70

Then, we introduce a method for computing such attributions efficiently by leveraging TRAK [11], a71

recent work in data attribution for supervised models.72

3.1 What do we want to attribute?73

Classification models aim to predict a single discrete value (the class label). So, in this setting, the74

target of attribution is generally the correctness of the model in predicting this label. To represent75
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Held-out example
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Figure 2: Investigating negative influencers uncovers labeling errors. For two MS COCO vali-
dation examples, we display the five most negatively influential training images according to our
attribution method. Note that these negative influencers reflect consistent mislabeling errors: in the
top row, each training example includes a cat that is not labeled, and in the bottom row, the flowers in
each image are mislabeled as potted plants. See Appendix D for further examples.

correctness, a common choice for the model output function is the correct-class margin [19, 11], that76

is, the difference between the logit for the correct class and the highest incorrect logit.77

For segmentation models, however, the question of what to attribute is less clear. In particular,78

segmentation models output a high-dimensional predicted mask with a separate prediction for each79

pixel of the input image. This output mask for a single image often predicts the presence of multiple80

objects, which may be of different classes. Thus, given a specific image of interest, there are a number81

of possible questions we might want to ask about the behavior of segmentation models on this image.82

For instance, consider the image (and corresponding ground-truth masks) in Figure 1. Beyond83

identifying the training examples that impact the model’s overall ability to segment the objects in84

this image, there might be a number of more fine-grained questions we might want to ask in order85

to isolate attributions to specific “subtasks” of the segmentation task. For example, we might be86

interested in identifying the training examples that impact the model’s ability to segment specifically87

the cats in this image, or the model’s ability to generally separate the background from foreground88

objects. Clearly, there are many possible such subtasks of interest. In this work, we limit our focus to89

the following two possible targets of attribution:90

1. Full-image Attribution: As a natural initial choice, we can directly attribute with respect91

to the full segmentation of a given image of interest. Specifically, we attribute the average92

of the per-pixel class predictions (each of which is its own classification task).93

2. Class-Specific Attribution: As one avenue of identifying more fine-grained attributions,94

we additionally consider attributing the model’s ability to segment a specific class. Specif-95

ically, given a class c we attribute the per-pixel binary classification task of identifying96

whether each pixel belongs to class c.97

3.2 Adapting TRAK to Segmentation Models98

One common strategy for assigning attribution scores τ(z)i for a given input z is to compute the99

leave-one-out influence of removing that particular example on the model output function:100

τ(z)i = f(z, θ(S))− f(z, θ(S \ {zi})).

In the linear regression setting, we can compute this influence directly, as there exists a closed form101

solution for the parameters θ(S′) given a training subset S′ ⊂ S. However, estimating the resulting102

model parameters when leaving out an example is difficult in the non-convex deep learning setting.103

To overcome this difficulty, TRAK [11] first linearize the model and then apply classical methods for104

data attribution in the linear setting [21]. In particular, recent work in studying the neural tangent105

kernel (NTK) has shown that linearizing neural networks with their first-order Taylor expansion can106

closely approximate training dynamics [22–24]. This expansion allows us to view the model output107

function f(z, θ(S)) as a linear model acting on inputs ∇θf(z, θ(S)) (see Section 3.2 of Park et al.108

[11] for a more detailed explanation). Now, applying TRAK to a given attribution task requires two109

steps: (1) computing gradients of the training examples with respect to the training loss, and (2)110
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Held-out example Most positive influencers Highest CLIP similarity 

Figure 3: Examples of positive influencers. For two MS COCO validation examples, we show the
most positive influencers identified by our method, along with the most similar training examples
according to CLIP similarity.

Top positive class-specific influencers
Class car Class traffic lightClass personHeld-out example

Figure 4: Per-class positive influencers. An example MS COCO validation example that includes
segmentations for the person, car, and traffic light classes, as well as the top two most positively
influential training images according to class-specific TRAK scores for each of these classes.

computing gradients of each held-out example of interest with respect to the model output functions111

(see Section 3.4 of Park et al. [11] for more details).112

At first glance, it may appear that since the output of a segmentation model is high-dimensional113

(with a multi-class prediction for each pixel in the image), computing the gradient with respect to114

each training example (the first step) might require tracking a large number of independent gradients.115

However, note that each training example impacts the final model parameters only through its116

contribution to the gradient of the training loss. Thus, we only need to compute the gradient of each117

training example with respect to this loss. Finally, to compute the second step, below we define a118

model output function for each of the two attribution targets introduced in Section 3.1.119

Full-image Attribution In the classification setting, a common choice of model output function120

(as we introduced in Section 3.1), is the correct-class margin between the correct-class logit and121

the largest incorrect logit [19]. However, prior theoretical work [25] motivates the use of the model122

output function123

f(z; θ) = log

(
p(z; θ)

1− p(z; θ)

)
,

where p(z; θ) is the correct-class probability; this model output can be viewed as a “soft” version of124

the correct-class margin.125

Since the training loss takes the average of individual pixel-wise cross-entropy losses over all pixels126

in an image, a natural choice of model output function for the semantic segmentation setting is to127

adapt the above model output in the same manner. Specifically, in the full-image attribution setting,128

we calculate the above model output function for each pixel-wise classification problem, then average129

over pixels as follows:130

f (z; θ(S)) =
1

HW

H∑
i=1

W∑
j=1

log

(
p(zij ; θ)

1− p(zij ; θ)

)
, (1)

where p(zij ; θ) is the correct-class probability predicted for pixel xij .131

Class-Specific Attribution To attribute a model’s segmentation predictions for a specific class c,132

we treat the segmentation task as a binary classification task with respect to c. That is, we adapt the133
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Figure 5: Counterfactual experiments. We quantify the counterfatual impact of removing the
highest scoring training examples and retraining according TRAK scores targeted at either full-image
or per-class attribution, or according to CLIP similarity. (Left) We apply this intervention to 15
validation examples and plot the average increase in cross-entropy loss of the segmentation task.
(Right) We apply this intervention to 15 pairs of (validation example, class) and plot the average
increase in cross-entropy loss over the pixel-wise binary classification task of predicting the presence
of that class, with per-class attributions targeted at the this class. Error bars represent standard error.

above model output such that all classes that other than c are treated as the same "not-c" class. Our134

model output for an example z = (x, y) then becomes:135

f (z; θ(S)) =
1

HW

H∑
i=1

W∑
j=1

(
1{yij = c} log

(
pc(xij ; θ)

1− pc(xij ; θ)

)

+ 1{yij 6= c} log
(
1− pc(xij ; θ)
pc(xij ; θ)

))
,

(2)

where pc(xij ; θ) refers to the predicted probability that pixel xij belongs to class c.136

4 Experiments137

We now evaluate our attribution method on segmentation models trained on the MS COCO138

dataset [26]. After visually inspecting the computed attributions, we validate their counterfactual139

significance, and then demonstrate their value for curating training datasets.140

Experimental Setup We use DeepLabV3 [27] segmentation models trained on segmentations141

from the MS COCO dataset [26]. When validating our attribution scores, we use image similarity142

according to a pretrained CLIP [28] ViT-L/14 [29] model as a baseline.143

4.1 Visually Inspecting Our Attributions144

In Figures 2 and 3, we visualize the most negative and most positive influencers, respectively, for145

images from the MS COCO validation set. We find that positive influencers identify semantically146

similar (or even nearly-duplicated) training examples, while negative influencers often surface147

consistent labeling errors. In Figure 4, we additionally visualize an example of top positive class-148

specific influencers. See Appendix D for further examples of attributions identified by our method.149

4.2 Validating Our Attributions150

To validate our full-image attributions, we measure the counterfactual impact of the following151

intervention: removing the most positive influencers for a given held-out example, retraining, and152

then measuring the change in loss between the original and new models. If the attributions are153

meaningful, we would expect this intervention to cause a significant increase in loss. We repeat this154

process over 25 randomly selected validation examples and compare to the baseline of removing the155

most visually similar training examples according to CLIP (see Figure 5, left). Our results suggest156

that that the full-image TRAK scores indeed identify influencers that are counterfactually significant.157

To validate our class-specific attributions, we repeat the above intervention with top influencers158

identified by either the class-specific attributions fora given class within an image or full-image159
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Figure 6: Overall Most Negative Influencers. Six of the twenty overall most negatively influential
training examples across the full MS COCO validation set, according to our attribution method. Note
that person, cat, pizza, laptop, apple, and teddy bear are all MS COCO classes, but labels for these
classes are missing in the above training masks.
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Figure 7: Dataset curation. Mean IoU of models trained on MS COCO after removing the most
negatively influential examples of the training set according to our attribution scores. The shaded
region represents standard error.

attributions, and measure the impact of this intervention on the loss of the binary classification task160

with respect the corresponding class. We find that when targeting attributions towards a specific class,161

the impact of the intervention is greater than that of full-image attributions (see Figure 5, right).162

4.3 Curating Datasets for Segmentation163

In Section 4.1, we saw that the most negative influencers often surface training examples with labeling164

errors. Intuitively, such training examples should be detrimental to the segmentation model. By165

removing such problematic examples from the training dataset, can training on the resulting curated166

dataset improve the quality of the resulting model?167

As proxy for each individual training image’s effect on overall model’s performance, we average its168

attribution scores across the entire validation set. In Figure 6, we visualize samples among the most169

negative “overall” influencers according to this proxy and find that the surfaced training examples170

include notable cases of mislabeling, often missing multiple objects within a single image. Now,171

for various values of N , we remove the bottom N% of training examples (according to averaged172

attribution scores) and re-train new models on the resulting smaller, curated dataset. To prevent173

leakage, we randomly split the validation set into two halves, using one half to calculate average174

influence scores and the other half to evaluate our re-trained models. We evaluate models via mean175

intersection-over-union (mIoU) of predicted masks versus ground-truth masks. We find that our176

curated datasets are able to outperform the full MS COCO training set (see Figure 7), and in particular,177

we achieve a 2.79%± 0.49% increase in mean IoU with a 50% subset of the training set.178
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A Related Work275

Data Attribution The task of data attribution has been studied closely, with early work focusing on the276

linear regression setting [30, 21]. In the modern machine learning settings, there is a long line of work in277

influence functions [31–34], as well as works that perform data attribution through Shapley values [12, 35, 36]278

or other heuristic approaches [37, 38]. Recently, Park et al. [11] proposed a method that significantly improves279

upon tradeoffs between computational efficiency and accuracy by leveraging the empirical kernel structure of280

neural networks (see Section 3 for further discuss on this work).281

Detecting Labeling Errors in Segmentation Models. Recent methods for detection labeling error [8, 7]282

compare each training example’s mask label to predictions from a segmentation model train trained without283

when excluding training example. For example, Lad and Mueller [8] propose an efficient strategy for label284

error detection using a label quality score for segmentation models based on taking a soft minimum over285

pixel-wise correct-class probabilities estimated by a trained segmentation model. Rather than directly processing286

pixel-wise predictions, Rottmann and Reese [7] instead identify labeling errors by comparing the predicted287

“connected components” (i.e., pixel-wise connected regions in an image with the same class label) from a trained288

segmentation model to the connected components in the ground truth mask to identify mismatches.289
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B Conclusion290

In this work, we study the task of data attribution for segmentation models. We first identify two specific291

behaviors of these models that we hope to attribute: their overall ability to segment an image (i.e., full-image292

attribution), and their ability to properly segment a specific class within an image (i.e., class-specific attribution).293

We then provide a method for computing such attributions and instantiate this method on the MS COCO dataset.294

We validate the counterfactual significant of our computed attributions, and leverage them to both uncover295

labeling errors and curate subsets of the MS COCO training dataset that lead to increased accuracy over training296

on the full dataset.297
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C Experimental details298

Dataset and models. We train and test all models on segmentations from the MS COCO dataset (2017299

version) [26]. We center-crop images to a size of 224× 224 and use random horizontal flip as an augmentation.300

For our models, we train DeepLabV3 [27] models for semantic segmentation for 120 epochs with the Adam301

optimizer with initial learning rate 0.0001, batch size 64, weight decay 0.0005, and a learning rate scheduler that302

reduces when loss plateaus. We use cross-entropy loss with no smoothing applied.303

TRAK hyperparameters. For all uses of TRAK, we use a projection dimension of k = 2048. We find that304

attributions using a projection dimension of k = 8192 did not appear much stronger visually, and yielded very305

similar results when running preliminary data curation experiments. We also do not apply soft-thresholding to306

improve the quality of TRAK’s attributions, though this is discussed in [11].307
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D Additional Results308

We show additional top positive influencers for four randomly MS COCO validation examples in Figure 8. We309

also show the most negative influencers for two MS COCO validation examples in Figure 9, and highlight the310

labeling errors reflected in these influencers.311

Held-out example Most positive influencers

Figure 8: More examples of top influencers. For four MS COCO validation examples, we show
the most positive influencers identified by TRAK.

Held-out Example

Dining tables not labeled

Most Negative Influencers

dining table

Hot dogs poorly labeled

hot dog

Figure 9: More examples of negative influencers. For two MS COCO validation examples, we
show the most negative (lowest-scoring) influencers identified to TRAK.
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