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Abstract

We introduce Paralinguistic Speech Captions001
(ParaSpeechCaps), a large-scale dataset that002
annotates speech utterances with rich style003
captions. While rich abstract tags (e.g. gut-004
tural, nasal, pained) have been explored in005
small-scale human-annotated datasets, exist-006
ing large-scale datasets only cover basic tags007
(e.g. low-pitched, slow, loud). We combine008
off-the-shelf text and speech embedders, clas-009
sifiers and an audio language model to auto-010
matically scale rich tag annotations for the first011
time. ParaSpeechCaps covers a total of 59012
style tags, including both speaker-level intrin-013
sic tags and utterance-level situational tags. It014
consists of 282 hours of human-labelled data015
(PSC-Base) and 2450 hours of automatically016
annotated data (PSC-Scaled). We finetune017
Parler-TTS, an open-source style-prompted018
TTS model, on ParaSpeechCaps, and achieve019
improved style consistency (+7.9% Consis-020
tency MOS) and speech quality (+15.5% Nat-021
uralness MOS) over the best performing base-022
line that combines existing rich style tag023
datasets. We ablate several of our dataset de-024
sign choices to lay the foundation for future025
work in this space. ParaSpeechCaps and our026
trained models will be open-sourced.027

1 Introduction028

Style-prompted text-to-speech models (Guo et al.,029
2022; Leng et al., 2023; Lacombe et al., 2024b) can030
synthesize speech while controlling for style factors031
like pitch, speed and emotion via textual style prompts.032
Building such a system requires a training dataset033
where each example consists of a transcript, a style034
prompt and an utterance reflecting the specified style035
prompt. Yet, such data is often costly to annotate036
and existing datasets (Kawamura et al., 2024; Lacombe037
et al., 2024b; Ji et al., 2024) are either limited in their038
scale or their coverage of style tag types.039

In this paper, we introduce Paralinguistic Speech040
Captions (ParaSpeechCaps), a dataset which covers041
59 unique style tags. We categorize style tags into in-042
trinsic tags tied to a speaker’s identity (e.g., shrill, gut-043
tural) and situational tags that characterize individual044

utterances (e.g., happy, whispered). Our dataset con- 045
sists of a human-annotated portion (PSC-Base, 282 046
hrs) and an automatically labeled portion (PSC-Scaled, 047
2539 hrs), covering 33 intrinsic and 26 situational tags. 048
Figure 1 shows a few examples. We first build PSC- 049
Base by aggregating existing situational annotations 050
as well as collecting new intrinsic annotations on 282 051
hours of speech (Nguyen et al., 2023; Richter et al., 052
2024; Nagrani et al., 2020) via crowdsourcing. 053

As the human-annotated dataset is limited in scale, 054
we propose two novel data scaling approaches to ex- 055
pand it, one for intrinsic tags and one for situational 056
tags (Figure 3). We source speech and transcripts from 057
the 45k-hr English portion of a large-scale speaker- 058
labeled corpus (He et al., 2024) and apply both ap- 059
proaches to identify instances with the target style tag. 060
Existing large-scale datasets (Lacombe et al., 2024b; 061
Lyth and King, 2024) only support basic tags (e.g. 062
high-pitched, fast, female) that can be extracted using 063
signal processing tools; in contrast, we scale to a larger 064
set of rich, abstract tags for the first time. 065

For intrinsic style tags, we use a perceptual speaker 066
similarity model (Ahn et al., 2024) to identify speak- 067
ers whose speech resembles that of speakers human- 068
annotated with intrinsic tags. Then, we propagate 069
the intrinsic tags of the similar speaker, multiplying 070
intrinsic data by 9x to 2450 hours. For situational 071
style tags, we combine three different types of sig- 072
nals. We first identify expressive speech using an 073
off-the-shelf dominance-valence-arousal speech clas- 074
sifier (Wagner et al., 2023). Among the selected 075
expressive speech clips, we use a text embedding 076
model (Meng et al., 2024) to find transcripts that se- 077
mantically match the desired situational tag. Lastly, we 078
use a large-scale speech-text multimodal LLM (Gem- 079
ini Team et. al., 2024) to check whether the speech 080
acoustically matches the situational tag. We use these 081
together to multiply situational data by 3x to 215 hours. 082

We verify the quality of our collected data compre- 083
hensively. First, we perform human evaluation and 084
show that annotators rate our automatically scaled data 085
to be on par with human-annotated data in terms of ad- 086
herence to the annotated style tags. Then, we train a 087
style-prompted TTS model by finetuning the widely- 088
used Parler-TTS (Lacombe et al., 2024b; Lyth and 089
King, 2024) model on our dataset. We evaluate its per- 090
formance in terms of speech style consistency, speech 091
quality, and intelligibility. Our model shows signif- 092
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Audio Transcription Style Prompt (Ours)

couple of hours walking...

the women who do...

A male speaker with an American accent and a lisp delivers
hesitant, slurred speech at a measured pace in a noisy

environment. His voice texture is soft, and his pitch falls
within the medium range.

Style Prompt (Basic)

A medium-pitched male
speaks at a measured pace

in a noisy environment.

An American female speaker delivers authoritative, crisp,
and flowing statements at a slow speed in a slightly clean

environment. Her voice is medium-pitched.

In a slightly clean
environment, a woman speaks

at a slow speed with a
medium pitch.

Speaker

EARS
Spkr 102 what is going on...

In a clean environment, a male speaker delivers a high-
pitched, loud, and nasal speech with a crisp, American

accent. His enunciation is clear, yet he is slow and confused.

A male speaker is very high-
pitched, speaking slowly in a

clean environment. 

Emilia
Spkr 8422 what you get back is...

A female speaker with an American accent delivers her words in
a measured pace, exhibiting a nasal and slightly shrill tone. Her
voice flows smoothly in a clean environment, but occasionally

includes vocal fry interjections, giving it a unique texture.

A high-pitched female speaks
at a measured speed in a clean

environment.

Figure 1: Random examples from ParaSpeechCaps that compare our rich style captions with basic tag captions.

icant gains in style consistency (+7.9% Consistency093
MOS) and quality (+15.5% Naturalness MOS) when094
compared to our best baseline finetuned on existing095
smaller-scaled datasets (Koizumi et al., 2023; Nguyen096
et al., 2023; Richter et al., 2024). An anonymized097
demo is available at https://paraspeechcaps.098
github.io/. In summary, our contributions are:099

• We introduce ParaSpeechCaps, a large-scale style-100
captioned dataset that covers 59 unique style tags.101

• We newly collect 282 hours of crowdsourced intrin-102
sic annotations for our human-annotated portion.103

• We propose two novel approaches to automatically104
annotate rich style tags for the first time and scale to105
2450 hours of data.106

• We show that human evaluators rate our scaled data107
to be on par with our human-labelled data, and that a108
style-prompted TTS model finetuned on it achieves109
the highest style consistency and naturalness.110

• We provide detailed analyses on each of our dataset111
design choices to contextualize their contributions.112

2 Style Tag Taxonomy113

2.1 Our taxonomy and coverage114

We first provide an overview of the types of style tags115
we study. We define a style factor (Jin et al., 2024;116
Guo et al., 2022; Ando et al., 2024) as a speech char-117
acteristic that one wants to control and a style tag as a118
word that selects a value for the style factor. For exam-119
ple, pitch, rhythm, emotion are style factors and {deep,120
shrill}, {singsong, monotonous} {angry, scared} are121
style tags for each. We broadly classify style tags along122
two axes, intrinsic vs. situational and rich vs. basic.123

Intrinsic tags are tied to a speaker’s identity and per-124
sist across their utterances (e.g. pitch, texture and ac-125
cent), while situational tags are utterance-level (e.g.126
emotion and expressivity). While intrinsic annotations127
can be obtained on a per-speaker basis, situational an-128
notations must be obtained on a per-utterance basis.129
Basic tags can be easily extracted using signal process-130
ing tools or simple classifiers, while rich tags are sub-131
jective and often require human annotations.132

To comprehensively cover style types, we manually133
select 11 style factors with an average of 5 tags per style134
factor, resulting in 59 total style tags consisting of 28135

rich intrinsic, 23 rich situational and 5 basic intrinsic 136
and 3 basic situational tags. Figure 2 visualizes our tag 137
taxonomy with all 11 style factors. 138

2.2 Comparison to other datasets 139

Table 1 summarizes datasets from style-prompted TTS 140
papers. We count the unique number of rich tags they 141
support and dataset size (duration and speaker count). 142
ParaSpeechCaps is the only large-scale, open-source 143
dataset covering both rich intrinsic and situational tags. 144

Human-annotated datasets InstructTTS (NL- 145
Speech) (Yang et al., 2023), PromptStyle (Liu et al., 146
2023) and MEAD-TTS (Guan et al., 2024) recruit 147
humans to newly record or annotate emotional data, 148
while TextrolSpeech (Ji et al., 2024) collates existing 149
emotion datasets. These focus on ≈ 8 emotions and 150
some basic tags. Expresso (Nguyen et al., 2023) 151
and EARS (Richter et al., 2024) cover a larger set of 152
situational tags. LibriTTS-P (Kawamura et al., 2024) 153
collects intrinsic human annotations for LibriTTS- 154
R (Koizumi et al., 2023), while Coco-Nut (Watanabe 155
et al., 2023) collects diverse annotations. 156

Large-scale automatically scaled datasets 157
PromptTTS (Guo et al., 2022) allows control over 158
4 emotions and is trained on a synthetic emotion 159
dataset, PromptSpeech, generated via commercial TTS 160
systems. While scalable, it only uses synthetic speech 161
and is limited by the set of speakers and emotions 162
supported by these TTS systems. PromptTTS2 (Leng 163
et al., 2023) largely focuses on an improved model 164
architecture. Parler-TTS (Lacombe et al., 2024b; 165
Lyth and King, 2024) proposes scaling up basic 166
tags automatically using signal processing tools and 167
rule-based binning. SpeechCraft (Jin et al., 2024) 168
additionally uses an emotion classifier to scale 8 169
emotions. AudioBox (Vyas et al., 2023) combines 170
these approaches for scaling basic tags with human 171
annotated rich tag datasets. 172

3 The ParaSpeechCaps Dataset 173

Our dataset aims to improve the coverage of style tags 174
and provide ways to automatically gather large-scale 175
annotations for rich tags without requiring human la- 176
bor. We select a large set of 59 style tags catego- 177
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Rich Size

Dataset I S # #hr #spk

Open-Source
ParlerTTS (Lacombe et al., 2024b) ✗ ✗ 0 45k 8.0k
LibriTTS-R (Koizumi et al., 2023) ✗ ✗ 0 0.6k 2.4k
PromptSpeech (Guo et al., 2022) ✗ ✓ 4 ? 2.4k
Expresso (Nguyen et al., 2023) ✗ ✓ 18 47 4
EARS (Richter et al., 2024) ✗ ✓ 18 60 107
TextrolSpeech (Ji et al., 2024) ✗ ✓ 8 0.3k 1.3k
MEAD-TTS (Guan et al., 2024) ✗ ✓ 8 36 47
SpeechCraft (Jin et al., 2024) ✗ ✓ 7 2.4k 5.9k
LibriTTS-P (Kawamura et al., 2024) ✓ ✗ 46 0.6k 2.4k
Coco-Nut (Watanabe et al., 2023) ✓ ✓ ? 8 7.3k
ParaSpeechCaps (Ours) ✓ ✓ 51 2.9k 45k

Closed-Source
PromptTTS2 (Leng et al., 2023) ✗ ✗ 0 44k 7.5k
NLSpeech (Yang et al., 2023) ✗ ✓ ? 44 7
PromptStyle (Liu et al., 2023) ✗ ✓ ? 12 6
AudioBox (Vyas et al., 2023) ✓ ✓ ? ? ?

Table 1: A comparison of speech style-captioned
datasets. Ours (ParaSpeechCaps) is the only large-scale
open-source dataset that covers both rich intrinsic and
situational tags. Rich: Rich tag support. I: Intrinsic, S:
Situational, #: Rich tag count. #hr: Dataset duration.
#spkr: Speaker count. ?: unknown.

rized by our taxonomy (Section 2), construct a human-178
annotated dataset (PSC-Base) covering all rich tags179
(Section 3.1) and develop our novel scalable annota-180
tion pipeline to create the PSC-Scaled dataset covering181
most rich tags (Section 3.2), shown in Figure 3.182

3.1 ParaSpeechCaps-Base183

We hire Amazon Mechanical Turk workers to anno-184
tate speakers from Expresso (Nguyen et al., 2023),185
EARS (Richter et al., 2024) consisting of enacted read186
speech and dialogue speech, as well as a 594-speaker187
subset of VoxCeleb (Nagrani et al., 2020)) consisting188
of natural in-the-wild celebrity interviews. The annota-189
tors provide all intrinsic tags in our ontology, excluding190
accent tags. We gather accent tags from metadata for191
Expresso and EARS and by prompting GPT-4 with the192
celebrity’s name and ask it to output their accent for193
VoxCeleb (Appendix E).194

Annotator Qualification Task We provide a simple195
task to annotators to check their ability to understand196
style tags, keeping only those 38 that succeeded on at197
least 5 of 6 examples ( Appendix B).198

Collecting Annotations For each speaker, we cre-199
ate a single audio file consisting of multiple utterances200
(3−8 clips whose total duration is 20−40 seconds). We201
provide this audio, the speaker’s name (if available) and202
a list of our rich intrinsic tags with definitions and ask203
annotators to write at least 3 distinct style tags. We col-204
lect 5 annotations per speaker. Since this task is highly205
subjective, we keep only those tags that at least 2 anno-206
tators agree on for our train and dev set, and only those207
that at least 3 annotators agree on for our holdout set.208

Sit.Intr.

Rich

Basic

Pitch

Shrill

Nasal

Texture

Silky

Husky

Clarity

Crisp

Slurred

Volume

Booming

Soft

Rhythm

Flowing

Singsong

Accent

British

Jamaican

Emotion

Happy

Angry

Expressiveness

Laughing

Whispered

Gender

Male

Female

Pitch Levels

High-pitched

Low-pitched

Speed Levels

Fast

Slow

Figure 2: Our tag taxonomy that classifies along
two axes, intrinsic (speaker-level) vs. situational
(utterance-level) and rich (subjective) vs. basic (ex-
tractable via signal processing tools). Not all tags are
shown; Appendix A has the full list of 59 tags.

Selecting Speakers Representing Diverse Tags We 209
identify celebrities to annotate intrinsic speech tags for 210
as follows. We combine three sources: (a) an IMDb 211
list (Ocean Breeze, 2024), (b) a ChatGPT-generated 212
list of celebrities with distinctive voices and (c) the top 213
200 longest Wikipedia pages for VoxCeleb celebrities 214
(collected using Majlis (2024)). This totals 302 unique 215
VoxCeleb celebrities. We collect annotations for them 216
and find that the style tag distribution is imbalanced. 217
For 12 least-frequent tags 1, we use GPT-4 (OpenAI et. 218
al., 2024) to obtain a list of celebrities that are likely to 219
have them (details in Appendix E), select a maximum 220
of 40 per tag, and end up with 187 new celebrities to 221
annotate. Finally, we randomly annotate 105 additional 222
celebrities, resulting in a total of 594 celebrities. 223

Supporting Rich Situational Tags We use Ex- 224
presso (Nguyen et al., 2023) and EARS (Richter et al., 225
2024) annotated with speaking styles which we remap 226
to our tag vocabulary. Table 5 in Appendix provides 227
the full mapping of tags. For example, the fear style 228
is mapped to the tag scared. Neutral speech and non- 229
verbal sounds (e.g. coughing, yelling) are filtered out. 230

Train-Dev-Holdout Splits We split PSC-Base into 231
three splits called train, dev and holdout; a tag- 232
balanced subset of the holdout split will eventually be 233
our model evaluation dataset. For VoxCeleb, we find 234
64 speakers that together ensure as far as possible that 235
each rich intrinsic tag has 2 male and 2 female speak- 236
ers available and place them into the holdout split. We 237
place the remaining 530 speakers into the train (90%) 238
and dev splits (10%). We place 80% of Expresso in 239
train, 10% in dev and 10% in holdout. We place unla- 240
belled emotional utterances in EARS into the train set, 241
and place the remaining utterances into train (80%), 242
dev (10%), and holdout splits (10%). We ensure that 243
there is no transcript overlap across splits, and in the 244
case of VoxCeleb, no speaker overlap either. 245

1lisp, hushed, pitchy, staccato, monotonous, punctuated,
vocal fry, guttural, singsong, soft, stammering, shrill
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Rich Situational Tags

Unlabelled Dataset

That 80 million is uncertain...

let's click on this node...

your car cut me off!

i'm furious, i'm gonna fire ...

you're mocking me...
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your car cut me off!

you're mocking me...

Angry
Transcript

Speaker Embedder

Human-annotated
Husky, Loud

Shrill, Singsong

Unlabelled

1. Extract speaker embeddings
2. Copy annotations to neighbors

copycopy

Labelled
1

2

3

4

5

6

7 1

3

2

4

5

7

6

Husky, Loud

Husky, Loud

Husky, Loud

Shrill, Singsong

Shrill, Singsong
3

4

5

6

7

Audio

i
i

Rich Intrinsic Tags

Figure 3: An overview of our automatic dataset scaling pipeline, for rich intrinsic and situational tags.

3.2 ParaSpeechCaps-Scaled246

We propose two approaches for scaling rich tag annota-247
tions, one for intrinsic tags and one for situational tags248
and apply both to the English portion of the large-scale249
Emilia (He et al., 2024) dataset (after preprocessing to250
remove infrequent speakers with < 5 min) to create251
PSC-Scaled. All style factors except clarity and expres-252
siveness are supported. We evaluate its quality and ab-253
late design choices via human evaluation in Section 4.254

Scaling Intrinsic Tags Perceptual speaker similarity255
refers to how similar humans perceive two speakers.256
This differs from standard speaker similarity rooted257
in speaker verification which measures the likelihood258
that two speakers are exactly the same. Based on ini-259
tial manual analyses, we find that two speakers with260
high perceptual similarity usually share most intrinsic261
tags excluding clarity tags. For every human-annotated262
VoxCeleb speaker from PSC-Base and every Emilia263
speaker, we compute a median perceptual speaker em-264
bedding over 10 randomly-sampled utterances from265
that speaker using VoxSim (Ahn et al., 2024). For each266
VoxCeleb speaker, we find Emilia speakers that have a267
cosine similarity of at least 0.8 (corresponding to a sim-268
ilarity rating of 5 out of 6 in VoxSim) and copy all in-269
trinsic tags (excluding clarity tags) from the VoxCeleb270
speaker to these Emilia speakers.271

Scaling Situational Tags We encounter two major272
challenges in scaling situational tags: (a) insufficient273
expressive data: A major portion of an internet-scale274
speech dataset like Emilia is neutral and does not275
strongly exhibit emotions. (b) no automatic classi-276
fiers: There are no automatic classifiers covering all277
of our tags; classifiers such as emotion2vec (Ma et al.,278
2023) only support 8 emotions. To solve the first chal-279
lenge, we propose an Expressivity Filtering step to280
keep only highly expressive speech. To solve the sec-281
ond challenge, we propose a Semantic Matching step282

to find utterances that semantically match a desired 283
emotion and an Acoustic Matching step to find utter- 284
ances that acoustically match a desired emotion. Our 285
overall pipeline cascades all three steps. 286

• Expressivity Filtering The dominance-valence- 287
arousal theory (Russell and Mehrabian, 1977) posits 288
that emotions live in a three-dimensional space con- 289
sisting of dominance (degree of control), arousal (in- 290
tensity) and valence (pleasantness), each with val- 291
ues between 0 and 1. Backed by Lotfian and Busso 292
(2019), we expect that utterances with extreme val- 293
ues for any one of these are likely to be expressive. 294
Using an off-the-shelf DVA classifier (Wagner et al., 295
2023), we filter for those utterances that have at least 296
one value below 0.35 or above 0.75. We further filter 297
using emotion-specific directions (e.g. for angry, we 298
expect the dominance or arousal to be high, and the 299
valence to be low) (Appendix C.4). 300

• Semantic Matching Recent work (Chen et al., 301
2024a) shows that the speech transcript can be 302
used to find utterances whose speaking style match 303
a desired emotion. We embed speech transcripts 304
from the Expressivity-Filtered dataset and queries 305
of the form Instruct: Given an emotion, re- 306
trieve relevant transcript lines whose overall style/e- 307
motions matches the provided emotion. Query: 308
{emotion} using a sentence embedding model (SFR- 309
Embedding-Mistral (Meng et al., 2024)) and sort 310
by the cosine similarity between the query and the 311
transcripts. Because the retriever overranks tran- 312
scripts containing keywords related to the emotion 313
(e.g. a transcript that contains the word angry will be 314
ranked even though it does not semantically convey 315
the angry emotion), we filter transcripts that contain 316
such emotion-specific keywords (Appendix C.4). 317

• Acoustic Matching The semantic matching process 318
results in many false positives. To filter these out, 319
we take the top 100k examples per emotion from 320
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the dataset sorted by the Semantic Matching step321
and prompt Gemini 1.5 Flash (Gemini Team et. al.,322
2024), a strong audio LLM, to rate on a 5-point Lik-323
ert scale whether the utterance matches the desired324
emotion, asking it to focus exclusively on the tone325
and not on the content (full prompt in Appendix E).326
We keep only those examples that obtain a 5 score.327

3.3 Extracting Basic Tags328

We automatically annotate all data in ParaSpeechCaps329
with basic tags (gender, pitch levels and speed levels).330
Because much of our data has background noise, we331
also extract noise level tags ranging from very clear to332
very noisy to help the model separate noisy speech from333
clear speech; at inference, we use a clear tag.334

Gender We use dataset metadata for Expresso and335
EARS and prompt GPT-4 with the celebrity’s name336
and ask it to output their gender for VoxCeleb (Ap-337
pendix E). For the rich intrinsic component of PSC-338
Scaled, we copy the gender tag of the parent VoxCeleb339
speaker to the Emilia speaker. For the rich situational340
component of PSC-Scaled, we apply a gender classi-341
fier (Burkhardt et al., 2023) on a maximum of 50 utter-342
ances per speaker and use the majority gender tag.343

Pitch, Speed and Noise Levels For pitch, we use344
PENN (Morrison et al., 2023) to compute the mean345
pitch across all utterances of a given speaker. We346
apply gender-dependent thresholds to label with low-347
, medium- or high-pitched. For speed, we use348
g2p (Pine et al., 2022) to compute the number of349
phonemes per second and apply thresholds to label350
with slow, measured or fast. For noise levels, we use351
Brouhaha (Lavechin et al., 2023) to compute the signal-352
to-noise ratio and use Parler-TTS (Lacombe et al.,353
2024b)’s noise bins for the very noisy, quite noisy,354
slightly noisy, moderate ambient sound, slightly clear,355
quite clear and very clear tags. All threshold values are356
available in Appendix C.3. We use the Dataspeech (La-357
combe et al., 2024a) library.358

3.4 Dataset Statistics359

Figure 4 showcases the distribution of different style360
tags in our ParaSpeechCaps dataset2 (combining PSC-361
Human and PSC-Scaled).362

4 Verifying Scaled Data Quality363

In this section, we provide human evaluation results for364
the scaled dataset we constructed in order to verify the365
quality of our automatic annotations.366

4.1 Scaled Dataset Ablations367

We compare our initial human-annotated dataset (PSC-368
Base), our automatically scaled dataset (PSC-Scaled)369
and ablated versions of PSC-Scaled, described below.370

2We only provide textual annotations for existing datasets.
Their speech data is subject to their own licenses.

Tag Recall ↑
Dataset Intrinsic Situational

PSC-Base 48.7% 68.1%
PSC-Scaled 50.3% 71.3%

Ablations
Std. Embedder 45.3% –
w/o Expressivity – 61.0%
w/o Semantic – 66.1%
w/o Acoustic – 63.3%

Table 2: Human evaluation of intrinsic/situational style
tag recalls, comparing our datasets and ablations.

Rich Intrinsic Tags We used a perceptual speaker 371
embedding model, VoxSim (Ahn et al., 2024), to con- 372
struct the intrinsic component of PSC-Scaled. We ab- 373
late it by creating a Std. Embedder version that uses 374
a standard WavLM Large (Chen et al., 2022) ECAPA- 375
TDNN embedder. We select a cosine similarity thresh- 376
old of 0.41 that scales to approximately the same num- 377
ber of total speakers as PSC-Scaled. 378

Rich Situational Tags We constructed the situa- 379
tional component of PSC-Scaled by pipelining three 380
steps: Expressivity Filtering, Semantic Matching 381
and Acoustic Matching. We create 3 ablated versions 382
that each skip one of these: 383

• w/o Expressivity Filtering We apply Semantic and 384
Acoustic Matching starting from the entire Emilia 385
dataset without Expressivity Filtering. 386

• w/o Semantic Matching We run Acoustic Match- 387
ing on random 100k examples per emotion from the 388
Expressivity-Filtered dataset. 389

• w/o Acoustic Matching We take the same number 390
of examples per emotion as PSC-Scaled from the 391
top of the Semantic Matching-sorted dataset without 392
Acoustically Matching them. 393

4.2 Evaluation Setup 394

We recruit annotators on Amazon Mechanical Turk 395
(Appendix B) collecting three annotations per example. 396
We provide annotators a speech clip and its associated 397
rich tag and ask them whether they hear it. For each tag, 398
we compute its recall (fraction of instances in which it 399
was selected) and report the average Tag Recall. 400

For each intrinsic tag, we sample a maximum of 12 401
speakers and 4 utterances per speaker for human evalu- 402
ation (skipping 4 tags: guttural, vocal-fry, monotonous, 403
punctuated as they have an insufficient number of 404
speakers) from each dataset, totalling 356, 420 and 376 405
examples for PSC-Base, PSC-Scaled and the Std. Em- 406
bedder ablation respectively. For each situational tag, 407
we randomly sample 20 examples per emotion for hu- 408
man evaluation from each dataset, totalling 360 exam- 409
ples per dataset. 410
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Figure 4: Distribution of rich intrinsic (left, 2518 hrs) and situational (right, 298 hrs) tags in ParaSpeechCaps.

4.3 Main Results411

Table 2 presents our evaluation results. For rich in-412
trinsic tags, PSC-Scaled achieves a comparable per-413
formance to PSC-Base, while Std. Embedder wors-414
ens it. For rich situational tags, PSC-Scaled achieves415
a comparable performance to PSC-Base, while remov-416
ing any of Expressivity Filtering, Semantic Matching,417
or Acoustic Matching worsens it. This shows that each418
step in our scaling pipeline is necessary and that it cre-419
ates data of comparable quality to human annotations.420
In absolute terms, the tag recalls of PSC-Base are lower421
than 100% which we attribute to human subjectivity for422
tag identification.423

5 Style-Prompted TTS Experiments424

In this section, we verify the utility of ParaSpeechCaps425
by using it to train style-Prompted TTS models.426

5.1 Evaluation Setup427

Main Evaluation Dataset We create a tag-balanced428
test dataset from the holdout split of PSC-Base (Sec-429
tion 3.1) that evaluates adherence to one rich tag at a430
time. For each tag, we select a maximum of five clips,431
covering as many speakers as possible. Then, for each432
clip, we construct a tag set consisting of the rich tag,433
one to three basic tags (we always include gender, and434
randomly include pitch and speed with a 50% probabil-435
ity), and a clear noise tag, and convert to style prompts.436

Compositional Evaluation Dataset We create a437
compositional style prompt dataset that evaluates si-438
multaneous adherence to two rich tags (one intrinsic,439
one situational). We select 12 intrinsic tags (shrill,440
deep, husky, guttural, soft, authoritative, crisp, slurred,441
hesitant, flowing, british, canadian), randomly se-442
lect 10 situational tags (desirous, animated, sarcastic,443
pained, admiring, whispered, awed, anxious, enunci-444
ated, sleepy) and use both genders (male, female) cre-445
ating 12×10×2 = 240 compositions. We sample 240446
random transcripts of 6− 10 words from the LibriTTS447
test set. Note that is no ground truth speech for these448
compositional examples.449

Evaluation Metrics We evaluate for style consis- 450
tency (Consistency MOS, Tag Recall), speech qual- 451
ity (Naturalness MOS), and intelligibility (Intelligibil- 452
ity MOS, WER). Except WER, all other metrics rely 453
on human evaluation due to lack of robust automatic 454
evaluation metrics, in line with prior work. For human 455
evaluation, we recruit annotators on Amazon Mechan- 456
ical Turk (details in Appendix B), collect 3 annotations 457
per example and report the mean and 95% confidence 458
intervals for MOS (Ribeiro et al., 2011). 459

• Style Consistency We report CMOS (Consistency 460
MOS) where each annotator is asked to rate the 461
agreement between a given speech clip and the style 462
prompt on a 5-point Likert scale, similar to Vyas 463
et al. (2023). Since the style prompt contains a mix 464
of rich and basic tags, for our main evaluation, we 465
additionally ask annotators to select whether they 466
specifically hear the rich tag for a more finegrained 467
evaluation. For each rich tag, we compute its recall 468
(fraction of instances in which it was selected), and 469
report the average Tag Recall over intrinsic and sit- 470
uational tags separately. For the compositional eval- 471
uation experiment that contain both intrinsic and sit- 472
uational tags, we instead assess whether the model 473
generated both types of tags, just intrinsic, just situ- 474
ational or neither. 475

• Quality We report NMOS (Naturalness MOS) 476
where each annotator is asked to rate the naturalness 477
and realisticity of a given speech clip on a 5-point 478
Likert scale, similar to Vyas et al. (2023). 479

• Intelligibility We report IMOS (Intelligibility MOS) 480
where each annotator is asked to rate the intelli- 481
gibility of a given speech clip on a 5-point Likert 482
scale, similar to Peng et al. (2024). We report a 483
text-normalized Word Error Rate (WER) between 484
the ASR transcript of the clip and the input transcript 485
using distil-whisper/distil-large-v2 (Gandhi et al., 486
2023) and the Whisper text normalizer. 487

Model Architecture We use Parler-TTS (Lyth and 488
King, 2024; Lacombe et al., 2024b),3 an 880M pa- 489
rameter style-prompted TTS model trained on Lib- 490

3parler-tts/parler-tts-mini-v1 checkpoint.
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Style Consistency Quality Intelligibility

Model CMOS ↑ Intr TR ↑ Sit TR ↑ NMOS ↑ IMOS ↑ WER ↓
Ground Truth 4.42±0.07 88.7% 88.6% 4.36±0.07 4.28±0.06 7.93

Baselines
Parler-TTS 3.05±0.08 33.0% 21.2% 2.85±0.07 4.31±0.07 4.62
+LTTSR 3.07±0.08 33.7% 22.4% 2.95±0.07 4.44±0.06 4.47
+LTTSP,Exp,EARS 3.55±0.08 40.7% 69.7% 3.10±0.07 4.19±0.07 7.14

Our Models
Base: +VoxC,Exp,EARS 3.75±0.08 63.6% 68.1% 3.27±0.08 4.05±0.07 9.14
Scaled: +VoxC,Exp,EARS,Emilia 3.83±0.08 69.5% 75.4% 3.58±0.07 4.07±0.07 8.63

Table 3: Evaluation results comparing style consistency (CMOS, Intrinsic and Situational Rich Tag Recall), speech
quality (NMOS) and intelligibility (IMOS, WER). Mean score and 95% confidence intervals are reported for MOS.
Our Base and Scaled models obtain improved style consistency (+5.6% and +7.9% Consistency MOS) and speech
quality (+5.5% and +15.5% Naturalness MOS) over baselines.

rispeech (Pratap et al., 2020) and LibriTTS-R (Koizumi491
et al., 2023) that can control pitch, speed, gender and492
expressivity style factors. We briefly describe its ar-493
chitecture here; it has two main components: the494
Parler-TTS decoder LM that autoregressively generates495
DAC (Kumar et al., 2023) audio tokens, and a frozen496
text encoder, Flan-T5-Large (Chung et al., 2022). The497
style prompt is encoded by this text encoder and made498
available to the decoder LM via cross-attention. The499
text transcript is tokenized by Flan-T5 and prefilled to500
the decoder LM.501

Inference Setup We perform inference using tem-502
perature 1.0, repetition penalty 1.0 and a maximum of503
2580 tokens. Because autoregressive TTS inference is504
unstable (Han et al., 2024), we sample a maximum of 3505
times, stopping when the sample’s WER < 20 and se-506
lecting the sample with the lowest WER otherwise. Al-507
though we do not train with classifier free guidance (Ho508
and Salimans, 2022) we find that including it at infer-509
ence with a 1.5 scale consistently improves style con-510
sistency (Section 5.5) and do so for all models. We511
represent the unconditional prompt as a zero-tensor.512

5.2 Comparison Systems513

Our models We train a Base model on the train set514
of PSC-Base (VoxCeleb, Expresso and EARS) and a515
Scaled model combining PSC-Base and PSC-Scaled.516
Since Parler-TTS is trained on LibriTTS-R, we include517
a 150-hr random subset of LibriTTS-R train set anno-518
tated with basic tags for regularization. We train both519
models with a total batch size of 32, a weight decay520
of 0.01 and cosine schedulers with no warmup. We521
train our Base model on 4 NVIDIA A40 GPUs for 140k522
steps with a peak LR of 8×10−5, and use the same con-523
figuration for all baselines. We train our Scaled model524
on 4 NVIDIA H100 GPUs for 840k steps in 2 420k-525
step stages: a first stage with a peak LR of 8 × 10−5526
and a second stage with a peak LR of 4× 10−5 initial-527
ized from the first stage. As PSC-Scaled is much larger528
than PSC-Base, we train the model for longer.529

Parler-TTS We initialize all baselines and our mod- 530
els with the Parler-TTS-Mini-v1 model, denoted 531
Parler-TTS. 532

+LTTSR We finetune Parler-TTS on the LibriTTS- 533
R (Koizumi et al., 2023) dataset annotated with basic 534
tags. This baseline ablates training on only basic tags 535
vs. rich tags for the same number of steps. 536

+LTTSP,Exp,EARS We train with LibriTTS- 537
P (Kawamura et al., 2024), a dataset that annotates 538
LibriTTS-R with a different set of rich intrinsic tags, 539
combined with Expresso and EARS. LibriTTS-P 540
provides three annotations per speaker and each style 541
tag may have strength qualifiers (slightly, very). We 542
remove slightly tags and remap some to our vocabulary 543
(see Appendix C). We randomly select one of the three 544
annotations and extract basic tags ourselves. This 545
baseline ablates the VoxCeleb component of PSC-Base 546
against LibriTTS-P. 547

548

5.3 Main Results 549

Table 3 presents our results, comparing models for 550
style consistency, speech quality and intelligibility. Our 551
Scaled model achieves the highest style consistency, 552
with clear improvements for both intrinsic and situa- 553
tional tags, as well as the highest naturalness. 554

Speech-Style Consistency The low Consistency 555
MOS and Tag Recalls of the Parler-TTS and +LTTSR 556
models show that training on basic tags does not 557
generalize to rich styles. Our Base model and the 558
+LTTSP,Exp,EARS model is trained on the same sit- 559
uational tag data but different intrinsic tag data. There- 560
fore, both models achieve similar Situational Tag Re- 561
calls but our model vastly improves Intrinsic Tag Re- 562
call (40.7% → 63.6%), demonstrating that our human- 563
annotated intrinsic data is superior in quality. Our 564
Scaled model achieves even higher Consistency MOS 565
(3.73 → 3.83) and Tag Recalls (Intr: 63.6% → 69.5%, 566
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Figure 5: Evaluation results for compositional style
prompts. We report how frequently both types of tags,
one of the two, or neither are generated. Our Scaled
model achieves the highest compositionality.

Sit: 68.1% → 75.4%) compared to our Base model,567
showing the benefit of scaling the dataset.568

Speech Quality +LTTSP,Exp,EARS improves nat-569
uralness as compared to Parler-TTS and +LTTSR570
(2.95 → 3.10), showing the benefits of training on571
existing rich style datasets. Our model trained on our572
human-annotated data (PSC-Base) further improves it573
(3.10 → 3.27) and training on PSC-Scaled vastly im-574
proves it (3.27 → 3.58), again showcasing its utility.575

Intelligibility Baselines trained only on clean audio-576
book data and basic tags (Parler-TTS and +LTTSR) ob-577
tain the highest intelligibility MOS and lowest WER,578
both outperforming even the ground truth. Because579
the Parler-TTS and +LTTSR baselines generate neutral,580
non-expressive speech, they are easier to understand581
by both humans (IMOS) and ASR models (WER) as582
compared to the ground truth, while our models trained583
on rich style data obtain a lower MOS score. We dig584
deeper into this result in Section 5.5, finding that faith-585
ful adherence to style tags (a beneficial property of our586
model) that are naturally less intelligible to evaluators587
(e.g. non-American accents, clarity tags like slurred,588
etc.) expectedly causes a drop in intelligibility.589

5.4 Compositionality Results590

Figure 5 presents our compositional evaluation results,591
where we present style prompts that simultaneously592
contain an intrinsic tag and a situational tag. We com-593
pare the best baseline (+LTTSP,Exp,EARS) with our594
Base and Scaled models. We find that our Scaled595
model correctly generates both tags more frequently596
than our Base model, which in turn outperforms the597
+LTTSP,Exp,EARS baseline. We also observe that598
when the models partially succeed by generating one of599
the two types, +LTTSP,Exp,EARS and our Base model600
prefer generating the situational tag, while our Scaled601

model prefers the intrinsic tag, likely owing to the large 602
intrinsic component of PSC-Scaled. 603

5.5 Discussion 604

Why do models trained on rich style data have lower 605
intelligibility? We compute the difference in the In- 606
telligibility MOS obtained by our Scaled model and the 607
+LTTSR baseline, as well as the difference in the Tag 608
Recall, broken down by tag. We present the results 609
in Figure 8 in the Appendix. We find that amongst 610
the top tags with the largest drop in IMOS, we find 611
non-American accent tags (Indian, Scottish, Jamaican, 612
Canadian), clarity tags (slurred, stammering), extreme 613
emotions (pained) which are naturally less intelligible 614
to MTurk annotators. As shown by Tag Recall differ- 615
ence, our model generates these tags more faithfully, 616
and thus incurs this natural intelligibility drop, as com- 617
pared to the +LTTSR baseline. 618

Inference-time classifier-free guidance improves 619
style consistency, even without dropout-based train- 620
ing Table 7 in the Appendix presents human evalu- 621
ation results for style consistency (Consistency MOS, 622
Intrinsic and Situational Tag Recalls) using our main 623
evaluation dataset, comparing models inferred with and 624
without classifier-free guidance. Even though we do 625
not train the model to handle empty style prompts using 626
CFG dropout (Ho and Salimans, 2022) as is commonly 627
done, we still find that all models are able to utilize it 628
to improve style consistency across all metrics. 629

6 Related Work 630

Style-Prompted Text-to-Speech Models We al- 631
ready describe style-prompted TTS papers in detail in 632
Section 2.2. An orthogonal line of work (Chen et al., 633
2024b; Zhu et al., 2024; Yamamoto et al., 2024) inno- 634
vates on style control architecture. 635

Style Control for other Speech Tasks Recent work 636
has explored style prompts for tasks other than TTS. 637
DreamVoice (Hai et al., 2024) annotates LibriTTS-R 638
with rich intrinsic tags for voice conversion. VCTK- 639
RVA (Sheng et al., 2024) annotates the VCTK dataset 640
with intrinsic tags for training a style-prompted speech 641
editing system. 642

7 Conclusion 643

We present ParaSpeechCaps, a large-scale speech style 644
captioned dataset that supports a rich and diverse set of 645
styles. Using our novel two-pronged scaling approach 646
for intrinsic and situational tags, we automatically scale 647
rich, abstract tags for the first time and create 2450 648
hours of automatically annotated data, in addition to 649
282 hours of human-labelled data. Our automatically 650
annotated data quality is verified by human evaluators 651
to be on par with human-labelled data. Furthermore, 652
style-prompted TTS models finetuned on ParaSpeech- 653
Caps achieve the highest style consistency and natural- 654
ness as compared to baselines, showing its utility. 655
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Limitations656

Language coverage We limit our current experi-657
ments to English data; there is a lot of potential to658
expand style-prompted TTS to more languages, both659
in terms of the language of the utterance and the lan-660
guage of the style prompt. Some work (Jin et al., 2024;661
Yamamoto et al., 2024) explores other languages like662
Chinese and Japanese in addition to English for style-663
prompted TTS.664

Lack of automatic metrics This field requires ex-665
pensive and subjective human evaluation metrics due666
to the lack of automatic evaluation, which prevents667
quick experimental turnarounds, large-scale evaluation668
datasets, and the ability to analyze model behavior in a669
finegrained manner. Future work can investigate how670
to develop automatic metrics for style-prompted TTS.671
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Dupoux, and Hervé Bredin. 2023. Brouhaha: multi-790
task training for voice activity detection, speech-791
to-noise ratio, and C50 room acoustics estimation.792
ASRU.793

Yichong Leng, Zhifang Guo, Kai Shen, Xu Tan, Zeqian794
Ju, Yanqing Liu, Yufei Liu, Dongchao Yang, Leying795
Zhang, Kaitao Song, Lei He, Xiang-Yang Li, Sheng796
Zhao, Tao Qin, and Jiang Bian. 2023. Prompttts 2:797
Describing and generating voices with text prompt.798
Preprint, arXiv:2309.02285.799

Guanghou Liu, Yongmao Zhang, Yi Lei, Yunlin800
Chen, Rui Wang, Zhifei Li, and Lei Xie. 2023.801
Promptstyle: Controllable style transfer for text-to-802
speech with natural language descriptions. Preprint,803
arXiv:2305.19522.804

Haohe Liu, Qiuqiang Kong, Qiao Tian, Yan Zhao,805
DeLiang Wang, Chuanzeng Huang, and Yux-806
uan Wang. 2021. Voicefixer: Toward general807
speech restoration with neural vocoder. Preprint,808
arXiv:2109.13731.809

Reza Lotfian and Carlos Busso. 2019. Building natu-810
ralistic emotionally balanced speech corpus by re-811
trieving emotional speech from existing podcast812
recordings. IEEE Transactions on Affective Com-813
puting, 10(4):471–483.814

Dan Lyth and Simon King. 2024. Natural language815
guidance of high-fidelity text-to-speech with syn-816
thetic annotations. Preprint, arXiv:2402.01912.817

Ziyang Ma, Zhisheng Zheng, Jiaxin Ye, Jinchao818
Li, Zhifu Gao, Shiliang Zhang, and Xie Chen.819
2023. emotion2vec: Self-supervised pre-training820
for speech emotion representation. Preprint,821
arXiv:2312.15185.822

Martin Majlis. 2024. Wikipedia-api: Python wrap- 823
per for wikipedia’s api. https://github. 824
com/martin-majlis/Wikipedia-API. Ac- 825
cessed: 2024. 826

Rui Meng, Ye Liu, Shafiq Rayhan Joty, Caiming 827
Xiong, Yingbo Zhou, and Semih Yavuz. 2024. 828
Sfr-embedding-mistral: Enhance text retrieval with 829
transfer learning. Salesforce AI Research Blog. 830

Max Morrison, Caedon Hsieh, Nathan Pruyne, and 831
Bryan Pardo. 2023. Cross-domain neural pitch 832
and periodicity estimation. In arXiv preprint 833
arXiv:2301.12258. 834

Arsha Nagrani, Joon Son Chung, Weidi Xie, and 835
Andrew Zisserman. 2020. Voxceleb: Large-scale 836
speaker verification in the wild. Computer Speech 837
& Language, 60:101027. 838

Tu Anh Nguyen, Wei-Ning Hsu, Antony D’Avirro, 839
Bowen Shi, Itai Gat, Maryam Fazel-Zarani, Tal Re- 840
mez, Jade Copet, Gabriel Synnaeve, Michael Has- 841
sid, Felix Kreuk, Yossi Adi, and Emmanuel Dupoux. 842
2023. Expresso: A benchmark and analysis of 843
discrete expressive speech resynthesis. Preprint, 844
arXiv:2308.05725. 845

Ocean Breeze. 2024. Imdb: People with distinc- 846
tive voices. https://www.imdb.com/list/ 847
ls001839542/. Accessed: 2024. 848

OpenAI et. al. 2024. Gpt-4 technical report. Preprint, 849
arXiv:2303.08774. 850

Puyuan Peng, Po-Yao Huang, Shang-Wen Li, Ab- 851
delrahman Mohamed, and David Harwath. 2024. 852
Voicecraft: Zero-shot speech editing and text-to- 853
speech in the wild. Preprint, arXiv:2403.16973. 854

Aidan Pine, Patrick William Littell, Eric Joanis, David 855
Huggins-Daines, Christopher Cox, Fineen Davis, 856
Eddie Antonio Santos, Shankhalika Srikanth, De- 857
lasie Torkornoo, and Sabrina Yu. 2022. Gi2Pi 858
rule-based, index-preserving grapheme-to-phoneme 859
transformations. In Proceedings of the Fifth Work- 860
shop on the Use of Computational Methods in 861
the Study of Endangered Languages, pages 52–60, 862
Dublin, Ireland. Association for Computational Lin- 863
guistics. 864

Vineel Pratap, Qiantong Xu, Anuroop Sriram, Gabriel 865
Synnaeve, and Ronan Collobert. 2020. Mls: A 866
large-scale multilingual dataset for speech research. 867
In Interspeech 2020. ISCA. 868

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock- 869
man, Christine McLeavey, and Ilya Sutskever. 2022. 870
Robust speech recognition via large-scale weak su- 871
pervision. Preprint, arXiv:2212.04356. 872

Flávio Ribeiro, Dinei Florêncio, Cha Zhang, and 873
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A List of Speech Style Tags927

This is the list of tags we consider:928

• Intrinsic:929

– Rich:930

* Pitch: Shrill, Nasal, Deep.931

* Texture: Silky, Husky, Raspy, Guttural, 932
Vocal-fry. 933

* Clarity: Crisp, Slurred, Stammering. 934

* Volume: Booming, Authoritative, Loud, 935
Soft. 936

* Rhythm: Flowing, Monotonous, Punc- 937
tuated, Hesitant, Singsong. 938

* Accent: American, British, Scottish, 939
Canadian, Australian, Irish, Indian, Ja- 940
maican. 941

– Basic: 942

* Pitch Levels: High-pitched, Medium- 943
pitched, Low-pitched. 944

* Gender: Male, Female. 945

• Situational: 946

– Rich: 947

* Emotion: Enthusiastic, Happy, Angry, 948
Saddened, Awed, Calm, Anxious, Dis- 949
gusted, Scared, Confused, Bored, Sleepy, 950
Pained, Guilt, Sarcastic, Sympathetic, 951
Admiring, Desirous. 952

* Expressiveness: Animated, Laughing, 953
Passive, Whispered, Enunciated. 954

– Basic: 955

* Speed Levels: Fast, Measured, Slow. 956

Some style factors like volume, speed and rhythm 957
can technically be both intrinsic and situational. How- 958
ever, since we collect data for volume and rhythm with 959
intrinsic human annotations, but extract speed tags on 960
an utterance-level i.e. situationally, we place them in 961
their respective categories. Manually written defini- 962
tions for each style tag can be found in Table 4. 963

B Human Annotation: Details 964

We visualize our human annotation pipeline in Fig- 965
ure 6. 966

B.1 Annotation Details 967

We recruit Amazon Mechanical Turk workers with a 968
Masters certification with a minimum approval rate 969
of 99% and at least 5000 successful HITs situated 970
in the United States. For training dataset annota- 971
tions, we perform a qualification task using 6 pairs 972
of manually selected clips from VoxCeleb or Expresso 973
where one clip exhibits a style (one of deep, whis- 974
pered, scared, slurred, high-pitched, enunciated) and 975
the other doesn’t, and select 38 annotators that suc- 976
ceeded on at least 5. We pay $9/hr. 977

B.2 Annotation User Interfaces 978

We display the annotation UIs for qualification task in 979
Figure 9, crowdsourcing abstract intrinsic style tag an- 980
notations in Figure 10, speech quality evaluation in Fig- 981
ure 11, and speech-style consistency evaluation in Fig- 982
ure 12, and intelligibility evaluation in Figure 13. 983

11

https://arxiv.org/abs/2406.06185
https://arxiv.org/abs/2406.06185
https://arxiv.org/abs/2406.06185
https://arxiv.org/abs/2406.06185
https://arxiv.org/abs/2406.06185
https://doi.org/10.1016/0092-6566(77)90037-X
https://doi.org/10.1016/0092-6566(77)90037-X
https://doi.org/10.1016/0092-6566(77)90037-X
https://arxiv.org/abs/2404.08857
https://arxiv.org/abs/2404.08857
https://arxiv.org/abs/2404.08857
https://arxiv.org/abs/2312.15821
https://arxiv.org/abs/2312.15821
https://arxiv.org/abs/2312.15821
https://arxiv.org/abs/2409.17452
https://arxiv.org/abs/2409.17452
https://arxiv.org/abs/2409.17452
https://arxiv.org/abs/2409.17452
https://arxiv.org/abs/2409.17452
https://arxiv.org/abs/2301.13662
https://arxiv.org/abs/2301.13662
https://arxiv.org/abs/2301.13662
https://arxiv.org/abs/2301.13662
https://arxiv.org/abs/2301.13662
https://openreview.net/forum?id=7BZ4biy975
https://openreview.net/forum?id=7BZ4biy975
https://openreview.net/forum?id=7BZ4biy975


Attribute Description

High-pitched A voice with a distinctly high frequency.
Shrill A high-pitched, piercing, and sharp voice.
Nasal A whiny voice that sounds like someone is speaking through their nose.
Medium-pitched A voice with a medium frequency that is neither very high or low-pitched.
Low-pitched A voice with a distinctly low frequency.
Deep A low-pitched, resonant, rich voice.
Silky A smooth, pleasant and soothingly soft voice.
Husky A slightly rough, low voice that conveys a gritty texture.
Raspy A rough, grating, somewhat harsh voice.
Guttural A deep, throaty, gravelly voice.
Vocal-fry A creaky, breathy voice that occurs when vocal cords flutter and produce a sizzling, popping sound at ends of

sentences.
American A voice with an American accent.
British A voice with a British accent.
Scottish A voice with a Scottish accent.
Canadian A voice with a Canadian accent.
Australian A voice with a Australian accent.
Irish A voice with an Irish accent.
Indian A voice with an Indian accent.
Jamaican A voice with an Jamaican accent.
Male A male voice, often having a lower pitch.
Female A female voice, often having a higher pitch.
Booming A loud, resonant, commanding, powerful voice.
Authoritative A confident, clear voice with a tone that conveys expertise and assurance.
Loud A voice with a high volume.
Soft A gentle, low-volume, calm and soothing voice typically used to convey subtlety.
Whispered A breathy, low-volume voice typically used to speak discreetly.
Crisp A clear, distinct, articulate voice.
Slurred An unclear, difficult-to-understand voice that blends together sounds and words.
Stammering A voice with pauses, repetitions and prolongations of words that disrupt the speech flow.
Singsong A melodious voice that rises and falls in a musical manner.
Flowing A clear, coherent, seamless and easy-to-understand voice.
Monotonous A dull, flat voice whose pitch, tone and speed remains constant throughout.
Punctuated An engaging voice with clear, deliberate pauses that emphasize key words.
Enunciated A voice that clearly and precisely articulates words, with each syllable distinctly pronounced.
Fast speed A rapidly speaking, quick voice with few pauses.
Measured speed A controlled, deliberate voice that has an even tone and a moderate speed.
Slow speed A voice with a slower speaking rate.
Hesitant An uncertain, tentative voice, often marking a lack of confidence, reluctance or confusion.
Enthusiastic A lively, energetic, positive voice that conveys excitement and interest in the topic being discussed.
Happy A warm, positive and joyful voice.
Angry A raised voice that conveys anger, frustration or displeasure, characterized by raised volume and emphatic speech

patterns.
Saddened A voice with a low, subdued, and unenergetic tone that conveys distress, disappointment or sadness.
Awed A voice that conveys the speaker’s admiration, wonder or reverance of something the speaker appreciates.
Calm A calm, gentle and serene voice that conveys the speaker’s relaxed and peaceful emotion.
Anxious A voice that conveys nervousness and anxiety, often marked by rapid or jittery speech patterns.
Disgusted A intonated voice that conveys repulsion and disgust by appropriately altering its pitch and rhythm.
Scared A shaky, rapid voice that reflects the speaker’s anxiety or fear.
Confused A voice characterized by indecision and a lack of clarity, often marked by hesitance.
Bored A voice, often monotonous, that indicates lack of enthusiasm and disinterest.
Sleepy A soft, slow, low-energy voice that indicates tiredness.
Pained A voice characterized by a strained, trembling tone that indicates sorrow or anguish.
Guilt A voice that carries a wavering, hesitant tone that hints at discomfort or regret.
Sarcastic A speaking style that is characterized by a distinct tone of irony that suggests that the speaker’s intention is to mock

or convey contempt.
Sympathetic A gentle, compassionate voice that reassures and seeks to empathize with the listener.
Admiring An appreciative, positive and complimentary manner of speaking.
Desirous An emotional voice that conveys deep longing or desire.
Animated A energetic, heightened voice characterized by varied intonations or emotional intensity.
Laughing A voice with intermittent sounds of laughter conveying amusement and joy.
Passive A tentative, subdued and uninterested voice.

Table 4: Manually written style tag definitions.
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Rich Intrinsic Tags Rich Situational Tags

Unlabelled dataset

Willem Defoe Taylor Swift

Write your answer here... Submit

Name: Willem Defoe

Question

Given the following list of style tags
**Pitch:** Shrill, Nasal, Deep
**Texture:** Silky, Husky, Raspy, Gu�ural
Which aspects would you consider most salient
and uniquely descriptive of the speaker?

Annotator 1: Deep, Enunciated, Husky, Measured

Annotator 2: Gu�ural, Measured, Raspy

Annotator 3: Flowing, Silky, Soft

Annotator 4: Deep, Gu�ural, Nasal

Annotator 5: Deep, Measured, Raspy

>=2 annotator overlap

Existing labelled dataset

Deep, Measured, Gu�ural, Raspy

Projected Whispered Amazement

Loud Whispered Awed

Map onto our vocabulary

Figure 6: An overview of our human annotation pipeline, for rich intrinsic and situational tags.

C Dataset Preprocessing984

For all datasets, we filter for audios between 2 − 30985
seconds. For data sourced from VoxCeleb, EARS and986
Expresso, we apply loudness normalization using SoX987
and PyDub 4 such that the peak volume of each audio988
is −0.1 dB. We synthesize transcripts using the Whis-989
per (Radford et al., 2022) large-v3 ASR model for990
utterances that do not have ground truth transcripts, We991
describe dataset-specific preprocessing below:992

C.1 VoxCeleb993

We combine the VoxCeleb1 and VoxCeleb2 datasets.994
We apply a noise removal model, Voicefixer (Liu995
et al., 2021) to all audios, since we observed that a996
significant proportion of VoxCeleb data is noisy (the997
median SNR for VoxCeleb data is 31.76 dB com-998
puted by Brouhaha (Lavechin et al., 2023); compare999
to 59.49, 50.42 and 61.70 for Expresso, EARS and1000
LibriTTS-R respectively). We then run a language1001
identification model Lingua 5 over the transcripts and1002
only keep those examples whose transcripts are identi-1003
fied as English text and discard celebrities with fewer1004
than 10 English audio clips.1005

C.2 Expresso and EARS1006

The Expresso and EARS dataset consists of a total1007
of 111 speakers enacting various speaking styles. We1008
discard the default, narration, non-verbal, interjection1009
and vegatative speaking styles, as they do not possess1010

4https://sourceforge.net/projects/sox/,
https://github.com/jiaaro/pydub

5https://github.com/pemistahl/
lingua-py

the styles we are interested in. Some Expresso data 1011
is in the form of long dual-channel conversations be- 1012
tween two voice actors, which we splice into chunks 1013
using Voice Activity Detection metadata provided by 1014
the dataset. We discard long freeform EARS examples 1015
since they are not labelled with speaking styles. We 1016
then remap each speaking style to our tag vocabulary 1017
as depicted in Table 5. 1018

C.3 Basic Tagging Thresholds 1019

Pitch: low-pitched (male: < 115.7 Hz, female: < 1020
141.6 Hz), high-pitched (male: > 149.7 Hz, female > 1021
184.5 Hz), otherwise medium-pitched. 1022

Speed: slow: < 11.5 PPS, fast: > 19.1 PPS, other- 1023
wise measured. 1024

Noise Levels: 17.1 dB, 25.4 dB, 33.7 dB, 42.0 dB, 1025
50.2 dB, 58.5 dB, 66.8 dB, 75.0 dB. 1026

C.4 Scaling Situational Rich Tagging: Details 1027

We use emotion-specific dominance-valence-arousal 1028
threshold directions in the Expressivity Filtering step 1029
and remove transcripts with certain emotion-specific 1030
keywords in the Semantic Matching step. These thresh- 1031
old directions and keywords can be found in Table 6. 1032

D Dataset Statistics 1033

Distributional statistics for basic tags in ParaSpeech- 1034
Caps is presented in Figure 7. 1035
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Original Mapped Original Mapped

feminine female halting stammering
tensed anxious relaxed calm
powerful authoritative muffled slurred
masculine male fluent flowing
weak hushed sharp crisp
reassuring sympathetic lively enthusiastic
cool calm happy happy, animated
laughing laughing, animated sad saddened
whisper whispered singing singsong
angry angry, animated awe awed
bored bored, passive desire desirous, animated
projected loud fearful scared
amusement happy distress anxious, scared
disappointment saddened, passive realization awed
amazement awed disgust disgusted
fear scared anger angry
adoration admiring confusion confused
desire desirous interest enthusiastic
serenity calm contentment calm, passive
sadness saddened extasy happy
pain pained cuteness happy
relief calm, passive pride admiring
embarrassment anxious loud loud

Table 5: Terms in existing datasets remapped to terms
in our vocabulary.

Emotion A/D V Keywords

Enthusiastic High High enthusiast, excite, eager, energetic, passion
Happy High High happ, joy, cheer, delight, bliss, happy
Angry High Low ang, rage, fury, irritat, frustrat
Saddened Low Low sad, grief, sorrow, mourn, heartbreak
Awed – High awe, wonder, amaz, astonish, marvel
Calm Low – calm, peace, seren, relax, tranquil
Anxious – Low anxi, nerv, uneas, worr, restless
Disgusted – Low disgus, revolt, repuls, nausea, offend
Scared High Low scar, fear, terror, fright, panick
Confused – – confu, bewild, perplex, puzzle, unclear
Bored Low – bore, dull, uninterest, monoton, tiresom
Sleepy Low – sleep, drows, fatigu, letharg, slugg
Pained – Low pain, ache, hurt, agon, torment
Guilt – Low guilt, blame, shame, remors, regret
Sarcastic – – sarca, mock, snark, irony, ridicul
Sympathetic – High sympath, compass, kind, empath, understand
Admiring High High admir, prais, adore, respect, esteem
Desirous High High desir, crave, long, want, yearn

Table 6: Mapping of Emotions to Arousal/Dominance
and Valence thresholds, along with keywords that are
filtered out. Dashes (–) indicate we do not apply a
threshold direction.

E LLM Prompting1036

E.1 Imperfectly labelling celebrities with style1037
tags1038

We use the gpt-4-0125-preview version of GPT-1039
4 via the OpenAI API with the default hyperparameters1040
(temperature 1.0, top-p 1.0, maximum 2048 tokens).1041
We instruct it to output a list of style tags associated1042
with the celebrity’s voice with the following prompt,1043
parameterized by name, the name of the celebrity:1044

1045
Given the name of a famous celebrity or actor, you1046

↪→ must retrieve your knowledge about that1047
↪→ celebrity's voice and map the voice to a1048
↪→ subset of speech style attribute labels1049
↪→ provided to you. Here is the list of speech1050
↪→ style attribute types you should pay1051
↪→ attention to, along with attribute labels1052
↪→ for each type:1053

<attributes>1054
- **Pitch:** Shrill, Nasal, Deep.1055
- **Texture:** Silky, Husky, Raspy, Guttural, Vocal-1056

Speed Levels Pitch Levels Gender
0

20

40

60

80

100

%

Measured

Slow

Fast

Medium

Low

High

Male

Female

Basic Tags

Figure 7: Basic tag distribution in ParaSpeechCaps.

↪→ fry. 1057
- **Volume:** Booming, Authoritative, Loud, Hushed, 1058

↪→ Soft. 1059
- **Clarity:** Crisp, Slurred, Lisp, Stammering. 1060
- **Rhythm:** Singsong, Pitchy, Flowing, Monotonous, 1061

↪→ Staccato, Punctuated, Enunciated, Hesitant. 1062
</attributes> 1063

1064
Your task is to associate the celebrity with a 1065

↪→ subset of these attributes, taking into 1066
↪→ account how the celebrity always sounds like 1067
↪→ . Only use the attributes that are extremely 1068
↪→ salient to the celebrity's voice i.e. their 1069
↪→ unique speech styles. Don't create any new 1070
↪→ attributes because you will fail the task if 1071
↪→ you do so. 1072

1073
The celebrity is {name}. First generate a paragraph 1074

↪→ of around 5 sentences, within <description> 1075
↪→ tags, using your knowledge, that describes 1076
↪→ the salient attributes of {name}'s voice. 1077
↪→ Then, within <attribute> tags, generate a 1078
↪→ list of comma-separated speech style 1079
↪→ attributes, from the above attributes list, 1080
↪→ that saliently apply to {name}. Use the 1081
↪→ following format: 1082

<description> 1083
(Description goes here) 1084
</description> 1085
<attribute> 1086
(Comma-separated list of attributes) 1087
</attribute> 10881089

E.2 Acoustic Matching 1090

We use the gemini-1.5-flash-002 version of 1091
Gemini 1.5 Flash via Vertex AI with temperature 1.0, 1092
top-p 0.95, maximum 2048 tokens. We instruct it to 1093
output its analysis and a rating on a 5-point Likert scale 1094
with a two-part request consisting of the speech clip 1095
and the following prompt, parametrized by emotion, 1096
the emotion we are querying about: 1097

1098
Analyze the provided speech clip to evaluate how 1099

↪→ effectively it conveys the emotion {emotion 1100
↪→ }, focusing on tone of voice and delivery 1101
↪→ rather than the spoken content. 1102

1103
Key Instructions: 1104
- Focus on Tone: Analyze pitch, tempo, loudness, 1105

↪→ intonation, and rhythm to judge emotional 1106
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↪→ expression.1107
- Strength of Emotion: Rate how strongly the tone1108

↪→ conveys the emotion on a scale of 1 to 5 (11109
↪→ = not at all, 5 = very strongly).1110

- Ignore Content Bias: Evaluate tone and delivery1111
↪→ only, disregarding the meaning of the spoken1112
↪→ words.1113

1114
Aspects to Consider:1115
- Does the pitch and intonation match the energy1116

↪→ level of the emotion?1117
- Is the tempo, rhythm, and loudness appropriate for1118

↪→ the emotion?1119
- Are the tone and delivery consistent with typical1120

↪→ characteristics of the emotion?1121
1122

In your output, start by describing the tone and1123
↪→ manner of speaking in the clip. Then,1124
↪→ analyze how well the tone aligns with the1125
↪→ provided emotion. Finally, rate how strongly1126
↪→ the emotion is conveyed on a scale of 1 to1127
↪→ 5. To make it easier to parse, format your1128
↪→ final answer as follows: "Rating: X/5",1129
↪→ where X is the number of your choice.11301131

E.3 Extracting Gender and Accent1132

We use the gpt-4-0125-preview version of GPT-1133
4 via the OpenAI API with the default hyperparame-1134
ters (temperature 1.0, top-p 1.0, maximum 2048 to-1135
kens). We instruct it to output the celebrity’s gender1136
and accent with the following prompt, parameterized1137
by name, the name of the celebrity:1138

1139
Tell me the accent and the gender of {name}1140

↪→ formatted as1141
Accent: <accent>1142
Gender: <gender>11431144

E.4 Generating Style Prompts1145

We use the Mistral-7B-Instruct-v0.2 LLM (Jiang et al.,1146
2023) to generate prompts via the Dataspeech library1147
with a per-device batch size of 32 and sample with a1148
temperature of 0.6, a top-p of 1.0 with a maximum1149
256 new tokens. We instruct the model to generate a1150
style prompt with the following prompt, parametrized1151
by all tags str, a comma-separated list of style1152
tags:1153

1154
An audio sample of a person's speech can be1155

↪→ described in several ways using descriptive1156
↪→ keywords. These keywords may include1157
↪→ demographic data about the person (e.g.1158
↪→ gender, name, accent) and voice1159
↪→ characteristics (e.g. related to pitch,1160
↪→ gender, texture and rhythm, volume, clarity,1161
↪→ speaking rate, emotion, expressiveness).1162

1163
You will be provided several keywords that describe1164

↪→ the speech sample. Your task is to create a1165
↪→ simple text description using the provided1166
↪→ keywords that accurately describes the1167
↪→ speech sample. Ensure that the description1168
↪→ remains grammatically correct, easy to1169
↪→ understand, and concise. You can rearrange1170
↪→ the keyword order as necessary, and1171
↪→ substitute synonymous terms where1172
↪→ appropriate. After you are provided the1173
↪→ keywords, generate only the description and1174
↪→ do not output anything else.1175

1176
An example is provided below.1177
female, confused, hesitant, slightly noisy1178

↪→ environment1179
1180

Description: A woman's speech sounds confused and1181
↪→ hesitant, recorded in a slightly noisy1182
↪→ environment.1183

Model CFG? CMOS ↑ Intr TR ↑ Sit TR ↑

+LTTSP,Exp,EARS ✗ 3.50±0.09 49.8% 66.7%
✓ 3.64±0.10 51.2% 73.3%

Base (Ours) ✗ 3.76±0.09 67.1% 68.6%
✓ 3.81±0.09 68.8% 71.3%

Scaled (Ours) ✗ 3.69±0.09 64.8% 65.1%
✓ 3.92±0.08 70.7% 76.4%

Table 7: Style consistency results comparing Consis-
tency MOS, Intrinsic and Situational tag recall with and
without inference-time classifier-free guidance (CFG).
Mean score and 95% confidence intervals shown for
MOS. CFG improves style consistency across all met-
rics and models.

1184
Now, generate a description for the following 1185

↪→ example: 1186
{all_tags_str} 1187

1188
Description: 11891190

F Discussion Results 1191

Table 7 presents ablation results comparing consistency 1192
MOS, Intrinsic and Situational Tag Recalls with and 1193
without inference-time classifier-free guidance. 1194

Figure 8 shows the difference in the Intelligibility 1195
MOS obtained by our Scaled model and the +LTTSR 1196
baseline, as well as the difference in the Tag Recall, 1197
broken down by tag. 1198
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Figure 8: Results showing the difference in the Intelligibility MOS obtained by our Scaled model and the +LTTSR
baseline, as well as the difference in the Tag Recall, broken down by tag.

Figure 9: Annotation UI for selecting qualified annotators.
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Figure 10: Annotation UI for crowdsourcing abstract intrinsic style tag annotations.
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Figure 11: Annotation UI for collecting Naturalness Mean Opinion Score ratings.
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Figure 12: Annotation UI for collecting Consistency Mean Opinion Score and Tag Recall ratings.
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Figure 13: Annotation UI for collecting Intelligibility Mean Opinion Score ratings.
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