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Figure 1: An overview of our proposed benchmark, illustrating the dataset construction process and
the joint task definition. The left panel shows the 3 typical manipulation paradigms used for data
generation, i.e., Face Swapping, Face Editing, and Image Inpainting. The right panel defines the
task of Joint Localization and Explanation, which requires models to answer both “where” a forgery
is (Localization) and “why” it is a forgery (Explanation).

ABSTRACT

Existing facial forgery detection methods typically focus on binary classification
or pixel-level localization, providing little semantic insight into the nature of the
manipulation. To address this, we introduce Forgery Attribution Report Genera-
tion, a new multimodal task that jointly localizes forged regions (“Where”) and
generates natural language explanations grounded in the editing process (“Why”).
This dual-focus approach goes beyond traditional forensics, providing a compre-
hensive understanding of the manipulation. To enable research in this domain, we
present Multi-Modal Tamper Tracing (MMTT), a large-scale dataset of 152,217
samples, each with a process-derived ground-truth mask and a human-authored
textual description, ensuring high annotation precision and linguistic richness. We
further propose ForgeryTalker, a unified end-to-end framework that integrates vi-
sion and language via a shared encoder (image encoder + Q-former) and dual
decoders for mask and text generation, enabling coherent cross-modal reasoning.
Experiments show that ForgeryTalker achieves competitive performance on both
report generation and forgery localization subtasks, i.e., 59.3 CIDEr and 73.67
IoU, respectively, establishing a baseline for explainable multimedia forensics.
Dataset and code will be released to foster future research.

1 INTRODUCTION

The emergence of advanced generative models, particularly diffusion models (Ho et al., 2020; Song
et al., 2020; Zhang et al., 2025), has significantly enhanced the sophistication and realism of im-
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Table 1: Comparison of Face Manipulation Datasets. Our MMTT dataset is highlighted and provides
rich text annotations for the “why” problem, a unique feature among existing resources.

Dataset Tasks Modality Source Samples Unique Forgeries Manipulation Type GT Type
FaceForensics++ (Rossler et al., 2019) Class. / Seg. Video 1,000 4,000 Multi-Face Mods Label + Mask
Celeb-DF (Li et al., 2020) Classification Video 590 5,639 DeepFake Image Label
DeeperForensics-1.0 (Jiang et al., 2020) Classification Video 50,000 10,000 GAN Image Label
DFDC (Dolhansky et al., 2020) Classification Video 23,654 104,500 DeepFake Image Label
FaceShifter (Li et al., 2019) Classification Video N/A 5,000 GAN Image Label
ForgeryNet (He et al., 2021) Class. / Seg. Image, Video 116,321 221,247 DeepFake, GAN Label + Mask
OpenForensics (Le et al., 2021) Detection / Seg. Image, Video 45,473 70,325 GAN, Inpainting BBox, Mask
DF40 (Yan et al., 2024) Class. / Seg. Image, Video N/A > 1,000,000 Multi-Face Mods Label + Mask
DiffusionFace (Chen et al., 2024) Generation Image N/A 50,000 Diffusion Image Label
GenFace (Zhang et al., 2024a) Generation Image 10,000 10,000 GAN, Inpainting Mask

MMTT (Ours) Seg. / Caption Text, Image 100,000 152,217 Face Swap, Inpainting,
Attribute Edit Text + Mask

age generation techniques, making them increasingly difficult to detect. While these techniques
have shown immense potential in creative fields such as digital art and film production (Dhariwal
& Nichol, 2021; Liu et al., 2025a), they have also raised profound concerns about their misuse in
malicious contexts, including misinformation campaigns and privacy violations (Rana et al., 2022;
Liu et al., 2023; Zhu et al., 2025b; Liu et al., 2025b), especially the manipulation of facial im-
ages. Given these threats, DeepFake detection techniques have garnered significant attention and
have rapidly evolved in recent years. Recent studies are shifting from simple real-fake detection
to fine-grained forgery region localization to address the growing complexity of modern forgery
techniques (Verdoliva, 2020; Rossler et al., 2019; Wu et al., 2023; Yu et al., 2021).

Unlike binary classification methods, which merely determine whether an image is fake or real,
forgery localization segments the exact areas that have been tampered with (Verdoliva, 2020), aiming
to give the reason behind a forgery determination. However, binary masks, which merely highlight
tampered pixels, provide limited insights into the rationale behind the model’s predictions (Rossler
et al., 2019). Furthermore, these masks fail to differentiate between subtle and more significant
alterations, treating all manipulated pixels equally, which often obscures the most critical areas
that warrant closer scrutiny. Meanwhile, modern forgeries are often visually indistinguishable from
real images. This makes it challenging for even human reviewers to identify tampered regions.
For example, slight modifications in facial features, such as subtle distortions of the eyes or lips,
are often overlooked in existing works, providing human observers with insufficient information to
recognize the most anomalous regions and trust the recognition results.

To address these limitations, we propose and establish a benchmark for a new multimodal task:
Joint Forgery Localization and Explanation. The goal is to answer both ”where” a forgery is lo-
cated and ”why” it is identified as a forgery. To achieve this, models must concurrently gener-
ate a pixel-level localization mask and a natural language report detailing the manipulation arti-
facts. To catalyze research on this task, we construct and release the Multi-Modal Tamper Tracing
(MMTT) dataset, the first large-scale benchmark for this purpose. MMTT contains 152,217 sam-
ples, each comprising a forged image, its high-precision process-derived ground-truth mask, and a
meticulously crafted human-authored textual description. Building on this benchmark, we propose
ForgeryTalker, a novel baseline model that offers a unified, end-to-end solution to this joint task.
At its core, ForgeryTalker is designed to integrate vision and language reasoning within a single,
cohesive architecture. It utilizes a shared encoder to learn a common, forgery-aware representation
from the input image, forcing a deep fusion of visual and semantic features. This shared understand-
ing is then processed by specialized dual decoders to generate both the pixel-level localization mask
and the natural language report. This integrated design is crucial, enabling the model to produce a
coherent attribution report where the textual explanation is semantically grounded in the visual evi-
dence highlighted by the mask, thereby directly addressing the shortcomings of traditional methods.
Our primary contributions are summarized as follows:

• A New Task and Dataset. We introduce Forgery Attribution Report Generation, a new multi-
modal task that jointly addresses the “Where” and “Why” of image forgery by combining pixel-
level localization and natural language explanation. To enable this research, we present Multi-
Modal Tamper Tracing (MMTT), a large-scale dataset with 152,217 samples, each featuring a
process-derived ground-truth mask and a human-authored textual description. This ensures both
high precision in localization and semantic richness in explanation.

• A Unified and Effective Baseline. We propose ForgeryTalker, a unified framework that jointly
performs forgery localization and report generation. It is designed to facilitate coherent cross-
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Figure 2: The manual annotation pipeline for the MMTT dataset. Here we show the key stages from
inconsistency inspection to textual description and final quality control.

modal reasoning through a shared encoder (image encoder + Q-former) and dual decoders (mask
decoder and a Large Language Model).

• Comprehensive Benchmarking. We conduct extensive experiments on the proposed dataset in
both report generation and forgery localization tasks. It validates that, albeit simple, our baseline
achieves competitive performance, i.e., 59.3 CIDEr and 73.67 IoU, and the complementary effects
between two tasks.

2 MULTI-MODAL TAMPER TRACING DATASET

As a comparison with other major forgery datasets in Table 1 highlights, the proposed MMTT is the
first to provide detailed textual explanations alongside forgery masks. The dataset contains 152,217
samples distributed across four manipulation paradigms, with diffusion-based inpainting and face
swapping being the most prevalent (Figure 3a). Our statistical analysis reveals several key proper-
ties: (1) Eyebrows, eyes, and lips are the most common targets for manipulation across all localized
editing methods (Figure 3b). (2) A significant portion of images feature multiple alterations, with
2-5 concurrent modifications being common (Figure 3c). (3) The textual annotations form a rich
corpus of over 4 million words, with an average description length of 27.4 words. The content of
these descriptions aligns closely with the visual forgeries, frequently referencing the manipulated
facial parts (Figure 3d). As shown in Figure 1, our MMTT dataset provides two complementary
types of annotations: binary forgery masks in Section 2.1 and forgery analysis text in Section 2.2.
The forgery analysis text primarily delivers diagnostic summaries of facial images, while the binary
masks serve as auxiliary clues, highlighting localized forgery artifacts.

2.1 FORGERY GENERATION

To construct a challenging and diverse dataset, we simulate forgery threats using three distinct ma-
nipulation paradigms. For each, we employed state-of-the-art models and developed specific proce-
dures to programmatically generate forged images If and their corresponding pixel-perfect ground-
truth masks M .

Source Image Collection. We first construct the MMTT dataset from 100,000 high-quality facial
images, comprising 30,000 images from CelebAMask-HQ (Zhu et al., 2022) and 70,000 images
from Flickr-Faces-HQ (FFHQ) (Karras et al., 2019). All images are resized to 512 × 512 pixels,
which serve as the primary source for subsequent forgery manipulations.

Face Swapping. We used the GAN-based E4S (Abou Akar et al., 2024) model to swap faces
between randomly paired images from our source datasets. Crucially, the E4S model automatically
generates a precise binary mask M during this process, which directly serves as the ground-truth
annotation for the manipulated region in the final forged image If .

Face Editing. We performed semantic alterations using GAN-inversion models StyleCLIP (Patash-
nik et al., 2021) and HFGI (Wang et al., 2022). The transformation is applied to an input image I
to produce the forged image If = Emodel(I, a), where E is the editing function guided by attribute
a, and model ∈ {StyleCLIP,HFGI}. The corresponding ground-truth mask, Mfinal, is constructed
by taking the union of any pre-existing mask (Mprev) and a new semantic mask (Msemantic) generated
via a face parsing model (Yu et al., 2018), formulated as Mfinal = Mprev ∪Msemantic.
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Figure 3: Statistical overview of the MMTT dataset and its four manipulation types: Face Swapping
(FS), Face Editing (FE), Transformer-based Inpainting (Trans. Inp.), and Diffusion-based Inpainting
(Diff. Inp.). The figure shows: (a) the proportional distribution of these types; (b) the modification
frequency of facial parts for localized edits (excluding FS, which alters the entire face); (c) the
number of concurrently modified parts per image; and (d) the word count distribution of the corre-
sponding textual descriptions.

Image Inpainting. We generated localized forgeries using both transformer-based (MAT (Li et al.,
2022)) and diffusion-based (SDXL (Podell et al., 2023)) models. The required input masks (M )
were created by programmatically selecting and merging facial component segments. The final
inpainted image If is produced by composing the original image I with the model’s output Imodel

g

using the mask M : If = (1−M) · I +M · Imodel
g , where model ∈ {MAT,SDXL}.

2.2 DIAGNOSIS TEXT ANNOTATION

Annotation Methodology. To ensure high-quality annotations, we develop a structured pipeline
(see Figure 2) where a team of expert annotators receives specific guidelines. Guided by a ground-
truth mask for each image pair, annotators are instructed to describe visual inconsistencies or arti-
facts exclusively within the manipulated regions. They focus only on unnatural or poorly-integrated
features, omitting descriptions of authentic areas, and compose self-contained descriptions that do
not reference the original image. Each description is limited to a maximum of 120 words.

Annotation Process. Our annotation process involves 30 trained annotators who follow a three-step
procedure. First, annotators receive an original-forgery image pair (Io, If ) with its corresponding
ground-truth mask M . They then inspect the images for inconsistencies within the masked facial
regions, such as unnatural textures or asymmetries. Finally, they compose a detailed textual de-
scription T , explaining the specific nature of the alteration. This process culminates in a triplet
p = (If ,M, T ).

Annotation Quality Assurance. To ensure description reliability, we implement a series of quality
control measures. We enforce a minimum observation time of one minute per image pair to ensure
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Figure 4: Illustration of our ForgeryTalker framework. The training pipeline has two stages. In
the Forgery-aware Pretraining Stage, the Q-former, Mask Decoder, and Language Model are jointly
optimized with MLM, language modeling, segmentation, and contrastive losses to build multimodal
representations. In the Explanation Generation Stage, the FPN is trained with BCE and Dice losses
for region classification and then frozen while the Q-former and Mask Decoder are fine-tuned for
improved forgery localization and explanation. Finally, the multimodal features are fed to a Large
Language Model to generate explanatory reports.

thorough examination. Textual descriptions referencing regions outside the ground-truth mask are
automatically flagged for review to prevent false positives and maintain annotation accuracy.

3 FORGERYTALKER

The architecture of our baseline model, ForgeryTalker, extends InstructBlip (Dai et al., 2023) and
is structured around a shared encoder and dual decoders. The shared encoder, consisting of a Vi-
sion Transformer and a Q-Former, processes the tampered image I to extract multimodal features.
Guided by prompts from an integrated Forgery Prompter Network (FPN), these features are then
passed to two decoders: a Mask Decoder for forgery localization and a Large Language Model
(LLM) that generates the final attribution report. As shown in Figure 4, training proceeds in two
stages. In the Forgery-aware Pretraining Stage, we jointly optimize the core modules using a
weighted combination of losses to build forgery-sensitive multimodal representations. In the sub-
sequent Attribution Report Generation Stage, we first train the FPN to generate accurate region
prompts. Then, with the FPN fixed, we fine-tune the mask decoder and Q-Former using segmenta-
tion and language modeling losses to improve forgery localization and the final attribution report.

3.1 FORGERY-AWARE PRETRAINING

The goal of our forgery-aware pretraining stage is to learn robust multimodal representations that are
sensitive to manipulation artifacts. Given an image I and its corresponding ground-truth explanation
text T , we jointly optimize the core modules of our model using four distinct training objectives.
The image I is first processed by a frozen visual encoder to yield embeddings EI , which serve as
input alongside the text T for the following loss functions:

Masked Language Modeling (Lmlm): The text T is tokenized into T̃ . Before feeding T̃ into the
Q-Former, a subset of region-related tokens (e.g., “ear”, “eye”, etc.) M is masked, and the masked
token results in T̃\M. Along with the learned query tokens Q and image embeddings EI , the Q-
Former predicts the masked tokens. The loss is computed as:

Lmlm = −
∑
t∈M

logP (t | I, T̃\M). (1)

Language Modeling (Llm): The Q-Former output is projected and fed to a T5-based de-
coder (Chung et al., 2022) that generates the explanatory text T̂ with the length of LT̂ . The generated
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explanation is compared token-by-token with the ground truth via cross-entropy loss:

Llm = −
LT̂∑
k=1

logP
(
T̂k | I, T̂0, . . . , T̂k−1

)
, (2)

Forgery Localization (Lseg): The non-[CLS] tokens of EI are seamlessly fused with the text T
via cross-attention. The mask decoder predicts a forgery mask M̂ with the height H and width W ,
which is compared to the ground-truth mask M using pixel-wise cross-entropy loss:

Lseg = −
1

HW

H∑
i=1

W∑
j=1

[
Mij log M̂ij + (1 − Mij) log(1 − M̂ij)

]
, (3)

where Mij = 1 if the (i, j) pixel is manipulated, 0 otherwise. Cross-model Alignment Learning
(Lcon): To align modalities, we pull the global image feature v (from the [CLS] token) closer to the
mean-pooled text feature t with contrastive loss as:

Lcon = − 1

N

N∑
i=1

log
exp

(
sim(vi, ti)/τ

)
∑N

j=1 exp
(

sim(vi, tj)/τ
) , (4)

where N is the batch size, sim(·) denotes cosine similarity and τ is a temperature parameter. The
overall pretraining loss is defined as:

Lpretrain = λ1Lmlm + λ2Llm + λ3Lseg + λ4Lcon, (5)

where λ1, λ2, λ3, and λ4 being empirically tuned weights. The joint optimization of these losses
enables our model to capture both fine-grained local details and global semantic context. This robust
initialization is pivotal for the subsequent Attribution Report Generation Stage, where further fine-
tuning refines forgery localization and enhances the quality of the generated reports.

3.2 FORGERY PROMPTER NETWORK
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Figure 5: Illustration of the Forgery Prompter
Network (FPN). The FPN generates region-
aware prompts for forgery localization.

Motivation. Accurately identifying the most
salient manipulated regions in forged images is
challenging due to the high visual fidelity of mod-
ern manipulation techniques. Even human re-
viewers must closely inspect the images to de-
tect inconsistencies. Therefore, we propose the
Forgery Prompter Network (FPN) to generate an
initial set of salient region keywords, which guide
downstream reasoning and facilitate the coherent
generation of attribution reports.

Region Keywords Extraction. We extract re-
gion labels from the textual descriptions. The la-
bel space comprises 21 facial semantics, where
each image is associated with a 21-dimensional
vector Y ; the i-th element is 1 if the correspond-
ing facial part is mentioned in the textual descrip-
tion, and 0 otherwise.

Forgery Prompter Network (FPN) takes the vision transformers as the main architecture. Con-
sidering the crucial role of fine-grained local context in identifying subtle flaws, we introduce a
convolution branch at the early m layers to complement the global contexts captured by the vision
transformer. As shown in Figure 5, the forgery image I concurrently traverses self-attention blocks
and convolution blocks in parallel, producing global-aware features Fg = {F 0

g , F
2
g , ..., F

m−1
g } and

local-aware features Fl = {F 0
l , F

2
l , ..., F

m−1
l }. At each encoding level, the corresponding features

are element-wise summed and fed into next attention block:

F i
g = MHAi−1(F

i−1
g ), F i

l = Convi−1(F
i−1
l ), (6)

F i
g = MHAi(F

i
g + F i

l ), i = 1, · · · ,m (7)
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where “MHA” and “Conv” mean the multi-head attention and convolution. Furthermore, we note
that the positioning of facial regions in a natural image follows a rigid and predictable structure,
with the eyes typically positioned laterally relative to the nose and the eyebrows aligned above the
eyes. Leveraging this regularity, we integrate coordinate convolution (Liu et al., 2018) in the initial
convolutional layer to detect anomalies in the arrangement of facial features, i.e., Conv0 = CoorConv.
The resultant feature Fm

g contains both global and local contexts and is fed into subsequent multi-
head attention blocks and a classification head to produce the probability Ŷ across regions, while
also being used in cross-attention with Q-former features to enhance forgery localization. Finally,
the forgery prompter network is trained using a combined loss, incorporating both Binary Cross-
Entropy (BCE) and Dice loss to effectively balance region classification and overlap precision:

LBCE = − 1

21

21∑
i=1

Yi log Ŷi + ω(1− Yi) log(1− Ŷi), (8)

where ω is a discount factor set to ω < 1 to address the imbalance due to the prevalence of unmodi-
fied regions. The Dice loss is employed to measure the overlap between the predicted labels Ŷ and
ground truth Y , ensuring that less frequent classes receive more attention:

LDice = 1−
2
∑21

i=1 YiŶi∑21
i=1 Yi +

∑21
i=1 Ŷi

. (9)

Finally, we optimize FPN with the average of the BCE and Dice losses via 1
2 (LBCE + LDice).

3.3 ATTRIBUTION REPORT GENERATION

Subsequently, we fix the trained FPN network and take its region predictions as prior clues to aid
both the report generation and the cross-attention process for improved forgery localization. Assume
the set of regions from the FPN is R = {r1, r2, ...}. We design a particular template to include R
and form a report-focused instruction Tinstr:

These facial areas may be manipulated by AI: [R]. Please describe
the specific issues in these areas.

This structured prompt serves as the guiding context for the language model, thereby ensuring that
the final output accurately reflects the manipulations detected by the FPN. This integration enhances
the coherence and quality of the generated reports, offering a comprehensive understanding of the
tampered regions. Subsequently, the instruction and the image embeddings are fed into the Q-
former, and the resulting features are passed to the large language model to generate the explanatory
text T̂ with the length of LT̂ . This output is then supervised by the language modeling loss as:

Lt = −E(I,T )∼D

 LT̂∑
k=1

logP
(
T̂k | I, T̂0, . . . , T̂k−1

) , (10)

where (I, T ) ∼ D indicates that the expectation is taken over samples from the dataset D.

3.4 MASK DECODER

We employ SAM’s Two-way Transformer (Kirillov et al., 2023) as the mask decoder. The image
encoder of InstructBLIP encodes the forgery image. The resulting features from the Q-former are
then enhanced through cross-attention with the FPN’s regional prompts. These enriched features are
subsequently fed into the Two-way Transformer to predict the forgery mask M̂ . The cross-entropy
loss is applied:

Lm = − 1

HW

H∑
i=1

W∑
j=1

[
Mij log M̂ij + (1−Mij) log(1− M̂ij)

]
, (11)

where H,W are the height and width of the image. Overall, the full loss in the second stage for
report generation and forgery localization is formulated as Lfull = Lt + Lm.
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Table 2: Performance comparison of generated captions and forgery localization across models.
”Report Generation” metrics evaluate caption relevance and diversity, while ”Forgery Localization”
metrics assess accuracy in identifying tampered regions.

Method Reference Report Generation Forgery Localization
CIDEr METEOR BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L IoU Precision Recall

SCA (Huang et al., 2024) CVPR24 40.6 29.2 30.6 17.8 11.2 8.2 27.6 46.69 48.49 92.11
LISA-7B (Lai et al., 2024) ICCV23 44.1 28.1 31.1 17.9 10.8 8.5 28.4 52.45 73.26 71.53
Osprey (Yuan et al., 2024) CVPR24 24.5 27.5 28.7 16.4 9.4 6.2 25.9 - - -
InstructBLIP (Dai et al., 2023) NeurIPS23 51.7 14.6 31.8 20.3 14.6 11.4 27.7 64.04 87.88 78.53
ForgeryTalker - 59.3 15.9 35.0 22.1 16.0 12.5 28.8 73.67 91.43 86.22

The woman's eyebrows are 
missing, her glasses are not clear, 

her nose is not clear, and her teeth 
are not clear.

This man has asymmetrical 
eyebrows on both sides, a large 
right eye, and a small left eye.

The man has asymmetrical 
eyebrows, a large left eye, a small 
right eye, and a different skin tone 

on his face and neck.

This man has a close distance 
between his eyebrows, a large left 

eye, and a small right eye.

The woman has asymmetrical 
eyebrows on both sides, with the 

left eyebrow being higher than the 
right one

This woman has asymmetrical 
eyebrows on both sides of her face, 
with the left eyebrow being longer 
than the right one the contours of 

her teeth are not clear.

This man has asymmetrical 
eyebrows on both sides of his face, 
with the left eyebrow being higher 

than the right one the eyelashes 
are not clear, and the contours of 

his lips are not clear.

This man has asymmetrical 
eyebrows on both sides, with the 

left eyebrow being higher than the 
right one the eyelashes are blurry, 
and the contours of his lips are not 

clear.

ForgeryTalker InstructBLIP

Figure 6: Qualitative comparison of ForgeryTalker and InstructBLIP. For the results, the predicted
mask is shown in green and the ground-truth in red to highlight localization errors.

4 EXPERIMENT

In this section, we present a series of experiments to evaluate our proposed model, ForgeryTalker,
on the MMTT dataset against several baselines.

4.1 QUANTITATIVE RESULTS

As shown in Table 2, we benchmark our proposed baseline, ForgeryTalker, against several existing
models adapted for our task: SCA (Huang et al., 2024), LISA-7B (Lai et al., 2024), Osprey (Yuan
et al., 2024), and InstructBLIP (Dai et al., 2023).

Report Generation. ForgeryTalker obtains the highest CIDEr score (59.3), surpassing InstructBLIP
(51.7), LISA-7B (44.1), SCA (40.6), and Osprey (24.5). It also achieves the best performance across
all BLEU scores, with a BLEU-1 of 35.0 and BLEU-4 of 12.5, and leads in ROUGE-L (28.8). The
comparatively lower scores of SCA and Osprey suggest they produce more simplistic reports. To
further verify the report generation of ForgeryTalker, we augment the evaluation to the DQ F++
dataset (Zhang et al., 2024b). Results are reported in Table 3, our ForgeryTalker variants demonstrate
superior generalization compared to the baselines. Specifically, our final configuration (2:1:1:1)
achieves the highest CIDEr score of 113.6, significantly outperforming the next best, InstructBLIP
(98.5). Concurrently, our 1:1:1:2 configuration leads on all fluency-related metrics, including Bleu-1
(48.5) and ROUGE-L (47.2). These strong results validate that our method generalizes effectively
to unseen datasets.

Forgery Localization. ForgeryTalker achieves the highest IoU (73.67) and Precision (91.43). Its
competitive Recall (86.22) is second only to SCA, which achieves the highest Recall of 92.11 but
with a notably lower IoU (46.69) and Precision (48.49). Other baselines like LISA-7B and Instruct-
BLIP report IoUs of 52.45 and 64.04, respectively. Note that Osprey does not provide standalone
forgery masks, so its localization metrics are not reported. The qualitative results in Figure 6 visu-
ally corroborate these findings. While InstructBLIP’s predicted masks (green) often over-segment
beyond the ground-truth (red) and its reports are verbose, ForgeryTalker consistently produces more
precise masks and concise, relevant reports.
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Table 3: Report generation comparison on the DQ F++ dataset (Zhang et al., 2024b). The best score
for each metric is shown in bold.

Model Bleu 1 Bleu 2 Bleu 3 Bleu 4 ROUGE L CIDEr
SCA 47.6 39.9 35.2 30.1 40.4 71.0
LISA 46.5 38.4 33.1 31.2 45.6 74.3
InstructBLIP 43.5 38.0 34.2 31.0 47.9 98.5
ForgeryTalker (2:1:1:1) 47.1 40.0 35.1 31.0 46.8 113.6
ForgeryTalker (1:1:1:2) 48.5 41.4 36.5 32.4 47.2 113.3

Table 4: Ablation study on the impact of different variants. w/ and w/o mean equipping or not
equipping the following modules.

Method Report Generation Forgery Localization
CIDEr METEOR Bleu 1 Bleu 2 Bleu 3 Bleu 4 ROUGE L IoU Precision Recall

ForgeryTalker w/ FPN-GT 95.1 20.6 41.5 27.6 20.3 16.0 37.0 66.90 88.74 79.83
ForgeryTalker w/o FPN 51.7 14.6 31.8 20.3 14.6 11.4 27.7 64.04 87.88 78.53
ForgeryTalker 59.3 15.9 35.0 22.1 16.0 12.5 28.8 73.67 91.43 86.22

Table 5: Ablation study results for different pretraining loss weight settings (λ1:λ2:λ3:λ4) as defined
in Eq. 5. Here, λ1, λ2, λ3, and λ4 denote the weights for the masked language modeling, language
modeling, segmentation, and contrastive losses.

Loss Ratio (λ1:λ2:λ3:λ4) Report Generation Forgery Localization
CIDEr BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L IoU Precision Recall

w/o Pretraining Stage 54.4 33.8 21.6 15.5 12.1 28.3 65.87 89.00 78.87
1:1:1:1 57.1 35.1 21.9 15.7 12.2 28.9 72.33 90.90 86.42
1:1:1:2 59.0 33.5 20.9 15.2 12.0 28.5 74.04 91.34 86.74
1:1:2:1 57.6 34.1 21.4 15.4 12.1 28.6 73.56 91.44 86.16
1:2:1:1 57.9 30.3 19.1 14.1 11.3 27.8 73.92 91.05 86.47
2:1:1:1 59.3 35.0 22.1 16.0 12.5 28.8 73.67 91.43 86.22

4.2 ABLATION STUDY

Effect of the Forgery Prompter Network (FPN). The FPN is shown to be a critical component.
Table 4 reveals a significant performance drop in report generation (CIDEr drops to 51.7) when the
FPN is removed. Conversely, an oracle FPN using ground-truth prompts (w/ FPN-GT) establishes a
high upper bound at 95.1 CIDEr. This large performance gap underscores that the quality of region
prompts is a key factor for this task and motivates future work on improving the FPN module.

Pretraining Stage. Our forgery-aware pretraining stage proves highly effective, substantially boost-
ing both localization and report generation over a baseline without it (e.g., IoU +8.8, CIDEr +4.9),
as shown in Table 5. Among the tested loss weight ratios, we selected 2:1:1:1 (λ1:λ2:λ3:λ4) as it
provides the best overall trade-off. It achieves the highest report generation scores (59.3 CIDEr)
while maintaining a competitive localization performance (73.67 IoU), making it the optimal choice
for our joint task.

5 CONCLUSION

In this paper, we address the limitations of traditional forgery localization methods, which typically
provide only binary masks and lack sufficient explanatory power. To move beyond this, we introduce
and formalize the novel task of Forgery Attribution Report Generation, aiming to produce both pre-
cise localization masks and rich, human-readable textual explanations. To catalyze research in this
new direction, we construct and release the MMTT dataset, the first large-scale benchmark for this
task, featuring high-precision, programmatically-generated masks and meticulously crafted textual
annotations. Furthermore, we propose ForgeryTalker, a powerful baseline model that effectively
unifies the localization and report generation processes into a single end-to-end framework. Our
comprehensive experiments not only validate the effectiveness of ForgeryTalker but also establish
a solid benchmark on the MMTT dataset. We believe our contributions, the new task, the public
dataset, and the effective baseline, will pave the way for future advancements in explainable and
trustworthy facial forgery analysis.
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ETHICS STATEMENT

We affirm that this work complies with the ICLR Code of Ethics. The MMTT dataset and corre-
sponding analyses were developed exclusively for research on localizing and explaining the forgery
of facial images. We acknowledge the dual-use nature of synthesizing realistic and semantically con-
sistent examples—the methods involved could potentially be repurposed to create deceptive content.
To mitigate such risks, we implement a controlled-release protocol: (i) the full generation pipeline,
detailed prompts, and prompt–response pairs will not be disclosed to prevent malicious use; (ii)
public access to the dataset will be restricted to research purposes under a Data Usage Agreement
(DUA); (iii) high-resolution originals and sensitive metadata will be retained securely; (iv) content
involving minors and explicitly sensitive real-world conflict scenarios has been excluded; and (v)
access may be revoked in cases of misuse.

REPRODUCIBILITY STATEMENT

We are committed to research reproducibility. To support this, we would release code, experi-
ments configuration details, pretrained checkpoints, and our MMTT dataset to reproduce all re-
sults reported in this paper. (1) Code: Our source code, including model implementations, train-
ing/evaluation scripts, and analysis tools, will be publicly released on GitHub. The repository in-
cludes a detailed README.md with setup instructions to facilitate replication of our results. (2)
Data: The dataset will be made accessible to academic researchers under a Data Use Agreement.
(3) Experimental Setup: Detailed hyperparameters, software/hardware environment specifications,
and metric computation procedures are provided in Appendix.
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A RELATED WORK

Facial Manipulation Localization. Detecting manipulated facial regions, especially deepfakes,
has garnered attention. CNN-based methods (Sabir et al., 2019) utilize temporal inconsistencies for
videos, while GAN-based approaches, such as GANprintR (Neves et al., 2020) and MaskGAN (Liu
et al., 2022a), address synthetic artifacts. Hybrid models like HCiT (Kaddar et al., 2021) combine
CNNs and ViTs to enhance generalization, and multi-modal methods (Sun et al., 2023; Khedkar
et al., 2022) leverage spatial-temporal inconsistencies. However, these models lack interpretability
and fine-grained mask generation, which our work addresses by providing both localization masks
and textual explanations.

Multi-label Classification for Facial Localization. Multi-label classification captures indepen-
dent alterations in facial regions but struggles with dependencies across features. CNNs (Lalitha
& Sooda, 2022) face limitations in fine-grained tasks, while hybrid models (Kaddar et al., 2021)
improve detection by combining local and global features. Weighted loss functions (Ramachan-
dran et al., 2021) and parallel branches (Richards et al., 2023) address class imbalance and refine
detection. Yet, few works integrate multi-label classification with localization. Our ViT-based clas-
sifier bridges this gap by capturing complex dependencies with parallel branches and weighted loss
functions.

Segmentation Techniques. Segmentation is crucial for identifying localized manipulations. Mod-
els like U-Net and DeepLab (Ross & Dollár, 2017) focus on spatial features, while Transformer
models (Alexey, 2020) capture global context. Recent methods like SAM (Kirillov et al., 2023) use
a Two-Way Transformer for high-quality masks but lack manipulation-specific context. By inte-
grating SAM with InstructBLIP, we create context-aware forgery masks, unifying segmentation and
manipulation detection for enhanced localization.

Explainable Forgery Detection. A recent trend is moving towards explainable forgery detection,
with FakeShield (Xu et al., 2025) being the most closely related work. While FakeShield addresses
general image forgery and constructs its dataset using GPT-4o, our work introduces MMTT, the first
benchmark focusing specifically on the facial forgery domain with meticulous human annotation.

B EXAMPLES FROM MMTT DATASET

To enhance the understanding of the MMTT dataset and its unique contributions to facial image
forgery localization, we provide a word cloud generated from the textual descriptions (captions)
and a series of representative examples. The MMTT dataset is meticulously designed to facilitate
fine-grained forgery localization by leveraging multimodal annotations. Each sample consists of
three complementary components: a manipulated image, a binary mask delineating the forged re-
gions, and a detailed textual description that explicitly identifies and contextualizes the alterations.
These comprehensive annotations provide a robust foundation for research tasks requiring precise
localization and explainability of facial manipulations.

Figure 8: Word cloud of captions in the MMTT
dataset. This visualization highlights the most
frequently used words in the dataset’s textual
descriptions, where the font size represents the
frequency of occurrence.

The word cloud, presented in Figure 8, visually
encapsulates the linguistic distribution within the
dataset’s textual annotations. Dominant terms
such as ”woman,” ”man,” ”skin tone,” and ”fa-
cial skin” highlight the dataset’s focus on de-
scribing forgery in specific facial regions. Fur-
thermore, frequent mentions of region-specific
features, such as ”left eye,” ”nose bridge,” and
”right eyebrow,” underscore the granularity and
specificity of the annotations. This visualization
demonstrates the alignment between the textual
descriptions and the underlying task of forgery
localization, offering an overview of the dataset’s
descriptive richness and consistency.

Figure 7 illustrates selected examples from the
MMTT dataset, showcasing its multimodal struc-
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The outline of this man's mouth is blurred.

This man has indistinct ear contours on both sides, with 

unclear textures. The outlines and textures of his mouth 

and teeth are also indistinct. There is a white spot on the 

right side of his face.

This man has indistinct eyebrows on both sides. There is 

shadow on his nose. Both eyes are blurry. The teeth are 

not clear. The contours of both ears are not distinct.

The man has uneven sizes in his left and right eyes, a 

thick, prominent nose, lips of different colors on the 

upper and lower parts, and crooked teeth. His neck skin 

tone is different from that of his face.

The man's eyes lack the true color and texture of his 

eyes, and his eyelashes are not clear. His facial skin is 

too smooth, lacking the true texture of skin. His lips lack 

the true texture of skin.

This man has a partial absence of the right eyebrow and 

the right eye.

Origin Manipulated Caption

MMTT Dataset

Figure 7: Examples from the MMTT dataset. Each row illustrates a case from the dataset, compris-
ing a manipulated image, its corresponding binary mask (overlaid in green), and a textual description
detailing the altered facial regions. For illustrative purposes, the original (authentic) images are also
included in this figure to highlight the extent and nature of the manipulations. The green regions
indicate the localized areas of forgery as identified by the binary masks. It is important to note that
the original images are not part of the MMTT dataset; the dataset itself consists only of manipulated
images, binary masks, and their associated textual descriptions.

ture and the diversity of forgery types. Each ex-
ample includes a manipulated image, its corresponding binary mask, and a textual description. For
illustrative purposes, we have also included the original (authentic) images alongside the manipu-
lated samples in Figure 7 to provide additional context for understanding the nature and extent of the
forgeries. It is important to note that these original images are not part of the MMTT dataset and are
shown exclusively to highlight the transformations and to provide clarity on the dataset’s structure.
The actual dataset is focused on forged images, binary masks, and detailed captions, without the
inclusion of original (authentic) images.

C EXPERIMENTAL SETUP

We implement ForgeryTalker with PyTorch (Paszke et al., 2019) and train on four NVIDIA A100
GPUs, using an 8:1:1 train/validation/test split of the MMTT dataset. The two-stage training process
is as follows: (1) The FPN is trained for 125k steps (batch size 16, initial lr 7.5e-3 with cosine decay)
with the BCE loss weight ω set to 0.2. (2) With the FPN frozen, the main model is trained for 60
epochs (batch size 16, lr 4e-6) using mixed-precision (fp16) training.
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Table 6: Performance comparison against state-of-the-art models in the supplementary material.
Specialist models (IML-ViT, PSCC-NET) and our ForgeryTalker are trained on our dataset. General
Large Vision-Language Models (LVLMs) are evaluated in a zero-shot setting. Best performance
for each metric is in bold.

Model Interpretation Generation Forgery Localization
CIDEr ROUGE L Bleu 1 Bleu 2 Bleu 3 Bleu 4 IoU Precision Recall

Seed1.5VL (Guo et al., 2025) 0.54 13.74 17.19 5.35 1.86 0.98 - - -
Qwen2.5VL (72B) (Bai et al., 2025) 2.72 16.52 20.34 6.33 2.55 1.46 - - -
Qwen2.5VL (32B) (Bai et al., 2025) 2.53 16.89 22.44 8.16 3.3 1.78 - - -
Qwen2.5VL (7B) (Bai et al., 2025) 2.48 17.0 22.33 8.2 3.24 1.78 - - -
llava (72B) (Liu et al., 2024) 3.06 16.83 22.01 8.35 3.3 1.8 - - -
llava (8B) (Liu et al., 2024) 2.1 18.05 20.75 7.66 3.15 1.75 - - -
InternVL3 (78B) (Zhu et al., 2025a) 2.67 16.82 22.31 8.08 3.16 1.75 - - -
InternVL3 (38B) (Zhu et al., 2025a) 2.29 17.18 21.21 7.83 3.2 1.76 - - -
InternVL3 (14B) (Zhu et al., 2025a) 2.29 16.85 20.81 7.54 3.03 1.71 - - -
IML-ViT (Ma et al., 2023) - - - - - - 77.89 83.76 90.04
PSCC-NET (Liu et al., 2022b) - - - - - - 32.33 70.3 37.44
ForgeryTalker 59.3 28.8 35.0 22.1 16.0 12.5 73.67 91.43 86.22

D COMPARISON WITH STATE-OF-THE-ART MODELS

We compare the performance of our proposed ForgeryTalker framework against a range of re-
cent models, including specialist forgery localization models and general-purpose Large Vision-
Language Models (LVLMs). It is important to note that while the specialist models and our
ForgeryTalker were trained on our dataset, the general LVLMs were evaluated in a zero-shot setting
to assess their out-of-the-box capabilities for this novel task. The evaluation covers both forgery lo-
calization (IoU, Precision, Recall) and interpretation generation (CIDEr, ROUGE-L, BLEU scores),
with results summarized in Table 6.

For forgery localization, specialist models like IML-ViT expectedly achieve the highest scores
in IoU (77.89) and Recall (90.04), as they are solely optimized for this task. However, our
ForgeryTalker demonstrates highly competitive localization capabilities, achieving a strong IoU of
73.67 and securing the best Precision score (91.43) among all compared models. This indicates our
model’s superior ability to avoid over-predicting forged regions.

For the primary task of interpretation generation, ForgeryTalker significantly outperforms all other
LVLMs across every text-based metric. It achieves a CIDEr score of 59.3, which is an order of mag-
nitude higher than the next best competitor, Llava-72B (3.06). This substantial gap highlights the
effectiveness of our forgery-aware architecture in generating accurate and relevant textual explana-
tions, a task where general-purpose LVLMs, which were not fine-tuned on our forgery-specific data,
naturally struggle. In summary, ForgeryTalker establishes a new state-of-the-art in interpretable
forgery localization by providing best-in-class captioning performance while maintaining a robust
and precise localization ability.

E ABLATION STUDY ON THE IMPACT OF THE FPN

Impact of FPN Loss and Discount Factor. We use Positive Label Matching (PLM) to evaluate the
effectiveness of FPN. PLM calculates the ratio of correctly predicted positive labels over the union
of predicted and ground-truth positive labels:

PLM =
|Predicted Positive Labels ∩ Ground Truth Positive Labels|
|Predicted Positive Labels ∪ Ground Truth Positive Labels|

. (12)

Model ω Loss PLM
ViT 1 BCE 34.23
ViT 0.2 BCE 38.92
FPN 0.2 BCE 39.16
FPN 0.2 BCE + Dice 41.05

Table 7: Ablation Study on the Impact of the FPN

Unlike IoU, PLM focuses on detecting manip-
ulated regions without being influenced by a
large number of correctly predicted negative la-
bels, making it ideal for tasks with sparse mod-
ifications.

The forgery prompter network is optimized by
a combined loss, incorporating both Binary
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Cross-Entropy (BCE) loss and Dice loss to ef-
fectively balance region classification and over-
lap precision:

LBCE = − 1

21

21∑
i=1

Yi log Ŷi + ω(1− Yi) log(1− Ŷi), (13)

where ω is a discount factor set to ω < 1 to address the imbalance due to the prevalence of unmodi-
fied regions.

Table 7 examines the effect of the discount factor ω in the BCE loss (Eq. 13) and the addition of
Dice loss. Setting ω = 0.2 improves the PLM metric from 34.23 to 38.92 on a ViT backbone;
further incorporating the FPN boosts PLM to 39.16, and combining BCE with Dice raises it to
41.05. This confirms that discounting unmodified regions and combining losses enhances region
prompt accuracy.

F LLM USAGE STATEMENT

During the preparation of this work, the authors used a large language model to assist with improving
grammar, rephrasing sentences, and ensuring terminological consistency. The authors reviewed and
edited all model-generated text and take full responsibility for the final content of this paper.
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