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Abstract

Multimodal Large Language Models (MLLMs)
excel in tasks like multimodal reasoning and
cross-modal retrieval but face deployment chal-
lenges in real-world scenarios due to distributed
multimodal data and strict privacy require-
ments. Federated Learning (FL) offers a so-
lution by enabling collaborative model train-
ing without centralizing data. However, in-
tegrating MLLMs into FL introduces chal-
lenges such as high computational demands,
limited client capacity, substantial communi-
cation costs, and heterogeneous client data.
Existing FL. methods, which require deploy-
ing full models on clients, are impractical in
these settings. To address these limitations, we
propose FedNano, a novel FL framework that
centralizes the LLM on the server while intro-
ducing NanoEdge, a lightweight module for
client-specific adaptation. NanoEdge employs
modality-specific encoders, connectors, and
trainable NanoAdapters with low-rank adap-
tation, achieving a 95% reduction in client-
side model storage and a transmission over-
head of just 0.01% of model parameters. By
transmitting compact updates of NanoAdapters,
FedNano effectively handles client heterogene-
ity and resource constraints, providing a scal-
able, privacy-preserving solution for MLLM
deployment. Experiments show that FedNano
outperforms existing methods, bridging the
gap between MLLM complexity and FL con-
straints and enabling efficient, decentralized
multimodal Al systems.

1 Introduction

Multimodal Large Language Models (MLLMs)
(Zhu et al., 2023; Liu et al., 2024b; Peng et al.,
2023b; Alayrac et al., 2022; Li et al., 2023) ex-
cel in tasks like multimodal reasoning and cross-
modal retrieval (Yin et al., 2024), making them in-
dispensable for applications such as visual question
answering (VQA) (Antol et al., 2015). However,
deploying MLLMs in real-world scenarios poses

significant challenges, particularly in decentralized
environments where sensitive multimodal data re-
sides on resource-constrained edge devices. The
computational and storage demands of MLLMs
make deploying the full model on clients infeasi-
ble, while privacy regulations limit centralized data
aggregation. These constraints highlight the need
for innovative solutions to enable MLLM deploy-
ment in distributed, privacy-sensitive systems.

Federated Learning (FL) (McMahan et al., 2017)
offers a promising solution for privacy-preserving
collaborative model training, enabling decentral-
ized learning without requiring data centralization.
However, existing FL. methods (Yang et al., 2024;
Yi et al., 2023; Zhang et al., 2024a; Chen et al.,
2023; Che et al., 2024; Chen and Zhang, 2022)
are poorly suited for MLLMs as they fail to ad-
dress the following critical challenges. First, client
data in FL is typically non-1ID, with heteroge-
neous distributions that hinder global model align-
ment and degrade performance. Second, parameter-
efficient fine-tuning (PEFT) techniques (Houlsby
et al., 2019; Lester et al., 2021; Zaken et al., 2021;
Hu et al., 2021), such as those used in FedDPA-
F(Yang et al., 2024), pFedLoRA (Yi et al., 2023),
and FedIT (Zhang et al., 2024a), reduce the number
of trainable parameters but still require deploying
the full MLLM—often exceeding 10 billion pa-
rameters—on clients, making them impractical for
resource-constrained devices like mobile phones
or 10T systems. Third, while PEFT reduces train-
able parameters, transmitting substantial parameter
updates to the server during each communication
round imposes significant overhead, making it un-
sustainable in bandwidth-limited environments. Fi-
nally, existing methods rely on client devices for
complex local optimizations, which are infeasible
for resource-limited devices. Together, these limi-
tations prevent the effective integration of MLLMs
into FL frameworks.

To address these challenges, we propose Fed-



Nano, a novel FL framework specifically designed
for MLLMs. FedNano establishes a new design
paradigm by centralizing the large language model
(LLM) on the server, where it remains frozen to
retain general-purpose capabilities, while deploy-
ing NanoEdge, a lightweight client-side adaptation
module, for efficient local tuning. NanoEdge em-
ploys modality-specific encoders, connectors, and
trainable NanoAdapters optimized using low-rank
decomposition (Hu et al., 2021). This design elimi-
nates the need to deploy the full MLLM on clients,
reducing client-side storage requirements by over
95%, as demonstrated in Tab. 1, and making it
highly practical for mobile and IoT devices. Fur-
thermore, NanoEdge transmits only compact up-
dates of the NanoAdapter between clients and the
server, achieving an over 99% reduction in the
number of uploaded parameters compared to exist-
ing PEFT-based FL methods, e.g., FedDAT (Chen
et al., 2023) and FedDPA-F (Yang et al., 2024)
while retaining task-relevant information. By the
transmission of compact updates of NanoAdapter,
FedNano also enhances privacy protection, making
it suitable for privacy-sensitive FL environments.

To address client heterogeneity, FedNano adapts
Fisher Merging (Matena and Raffel, 2022) to align
global updates with client-specific data distribu-
tions. This adaptation improves performance on
non-IID datasets and outperforms traditional aggre-
gation methods such as FedAvg (McMahan et al.,
2017) and FedProx (Li et al., 2020). By integrat-
ing these innovations, FedNano effectively bridges
the gap between the computational complexity of
MLLMs and the constraints of FL, enabling effi-
cient deployment in real-world scenarios.

Experiments across diverse MLLM and multi-
modal tasks demonstrate that FedNano not only out-
performs existing methods but also significantly re-
duces resource and communication costs, enabling
the scalable, efficient, and privacy-preserving de-
ployment of MLLMs. This framework lays a strong
foundation for advancing multimodal Al systems
in decentralized real-world applications, including
personalized healthcare, cross-device collaboration,
and multimodal user interfaces.

The key contributions of this work are:

* Novel Federated Framework: We propose a
new paradigm that centralizes the LLM on the
server while enabling lightweight client-side
adaptation through NanoEdge. This reduces
client-side storage by over 95%, making it

Approach Client Params Server Uploads
FedNano  304.55M (4.30%) 1.05M (0.01%)
FedDPA-F 7222.81M (100%) 180.89M (2.50%)
Reduction 1 95.8% 199.4%

Table 1: Comparison of parameter distribution and com-
munication efficiency between FedNano and FedDPA-F
(Yang et al., 2024) on LLaVA-1.5-7B (Liu et al., 2024b).
Client Params refers to parameters retained on client de-
vices, while Server Uploads denotes parameter updates
sent to the server per round. Both methods use adapters
with rank 64. FedNano achieves a 95.8% reduction in
client parameters and 99.4% in server uploads, high-
lighting its efficiency.

highly practical for resource-constrained de-
vices.

* Efficient Communication with Low-Rank Up-
dates: FedNano employs low-rank decomposi-
tion in NanoAdapters, achieving achieving an
over 99% reduction in the number of transmit-
ted parameters, allowing efficient deployment
in bandwidth-constrained environments.

* Improved Generalization on Non-1ID Data:
We adapt Fisher Merging for federated learn-
ing, aligning global updates with client-
specific distributions to significantly improve
model performance on heterogeneous datasets.

* Comprehensive Validation: Extensive exper-
iments on diverse multimodal tasks demon-
strate the superior performance of FedNano
and resource efficiency, establishing it as a
scalable solution for deploying MLLMs in
real-world decentralized applications.

2 Related Work

2.1 Multimodal Large Language Models

MLLMSs (Zhu et al., 2023; Liu et al., 2024b; Peng
et al., 2023b; Alayrac et al., 2022; Li et al., 2023;
Dai et al., 2023) extend LLMs (Touvron et al.,
2023; Peng et al., 2023a; Bai et al., 2023) to pro-
cess multimodal data by incorporating modality-
specific encoders and connectors. Encoders map
input modalities, such as images, into represen-
tations compatible with LL.Ms, while connectors
align these representations with the embedding
space of LLM. Recent advances focus on opti-
mizing connectors for efficient alignments, such
as the linear connector in MiniGPT-4 (Zhu et al.,



2023) and LLaVA (Liu et al., 2024b), as well as the
lightweight MLP bridge employed in LLaVA-1.5
(Liu et al., 2024a). However, these centralized ap-
proaches are ill-suited for FL, where resource con-
straints and data heterogeneity demand lightweight
and scalable solutions. FedNano addresses these
challenges by centralizing the LLM and deploy-
ing NanoAdapters on clients, enabling efficient and
scalable multimodal FL.

2.2 Parameter Efficient Fine-tuning

PEFT techniques (Houlsby et al., 2019; Lester
et al., 2021; Zaken et al., 2021; Hu et al., 2021)
adapt large pretrained models to downstream tasks
by minimizing trainable parameters, significantly
reducing computational costs compared to full-
model fine-tuning. They can be categorized into
additive methods, such as Adapters (Houlsby et al.,
2019), which introduce trainable components like
MLP layers, and Soft Prompts (Lester et al., 2021),
which learn tunable embeddings prepended to the
input; selective approaches, such as BitFit (Zaken
et al., 2021), which update only specific parame-
ters; and reparameterized methods, such as LoRA
(Hu et al., 2021), which leverage low-dimensional
spaces for efficient adaptations. While effective in
centralized settings, PEFT faces challenges in FL
due to the communication overhead of parameter
updates, the heterogeneity of client datasets, and
the impracticality of modifying model architectures
on resource-constrained clients that cannot host
full LLMs. FedNano addresses these challenges
by introducing NanoAdapters, which enable effi-
cient task-specific tuning while keeping the LLM
frozen on the server, significantly reducing com-
munication costs and ensuring scalability in FL
environments.

2.3 Multimodal Federated Learning

The application of FL in multimodal models, par-
ticularly vision-language (VL) tasks, has gained
significant attention for addressing data heterogene-
ity and client diversity (Yang et al., 2024; Yi et al.,
2023; Zhang et al., 2024a; Chen et al., 2023; Che
et al., 2024; Chen and Zhang, 2022). Early works,
such as Yu et al. (Yu et al., 2023), focused on
tackling modality and model disparities between
servers and clients, while Chen et al. (Chen et al.,
2023) introduced PEFT-based methods for effi-
ciently fine-tuning VL models and addressing data
heterogeneity issues in federated settings. To sup-
port these advancements, benchmarks from Feng

et al. (Feng et al., 2023) and Xu et al. (Xu et al.,
2024) provided standardized frameworks for eval-
uating multimodal learning under heterogeneous
conditions. Building on these efforts in VL tasks,
recent FL research has begun exploring the adapta-
tion of MLLMs to decentralized and heterogeneous
environments. Che et al. (Che et al., 2024) ad-
dressed the challenge of incomplete modalities in
client-local data, while frameworks like FedMSplit
(Chen and Zhang, 2022) and DisentAFL (Chen
and Zhang, 2024) focused on resolving modality
incongruities and asymmetrical knowledge shar-
ing. Zhang et al. (Zhang et al., 2024b) introduced
FedMLLM, targeting data heterogeneity and long-
tailed distributions to enable effective fine-tuning
of MLLMs on diverse datasets. However, existing
approaches fail to address the resource-intensive
nature of MLLMSs in FL. Even with PEFT methods,
deploying MLLMs on clients remains impractical
due to their substantial computational and memory
demands. Moreover, PEFT still requires transmit-
ting a significant number of updated parameters,
leading to considerable communication overhead.
To overcome these limitations, FedNano centralizes
the LLM on the server, drastically reducing client
storage requirements and minimizing communica-
tion costs by restricting updates to lightweight pa-
rameters. This design enables efficient and scalable
adaptation, extending the applicability of MLLMs
to federated multimodal learning, even in resource-
constrained environments.

3 Methodology

3.1 Problem Definition

This work addresses federated fine-tuning for mul-
timodal large language models (MLLMs) in decen-
tralized, data-heterogeneous environments. Each
client k holds a private multimodal dataset D* =
{(vF, ¥, a¥)}, comprising image-question-answer
triplets. Due to data heterogeneity, the marginal
distributions of vf, qf, and af’ vary across clients,
leading to significant differences in both visual and
textual feature spaces. Such heterogeneity intro-
duces challenges for achieving consistent gener-
alization across clients, as traditional aggregation
strategies fail to reconcile diverse local updates.
Our objective is to collaboratively fine-tune a
shared global foundation model fy for VQA (Antol
et al., 2015). Following (Liu et al., 2024a), we for-
mulate this as an open-ended generation problem,
where the model generates free-form answers given
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Figure 1: Overview of the FedNano framework. The server hosts the frozen LLM backbone, while clients handle
lightweight modality-specific adapters. Each client adapts local tasks using compact updates, which are aggregated
on the server to improve global performance. This design reduces computational overhead and communication
costs, enabling scalable federated learning for multimodal tasks.

image-question pairs. Existing approaches strug-
gle under the resource constraints of client devices,
which include limited computational power and
high communication costs. Furthermore, privacy
concerns prevent raw data sharing, necessitating ef-
ficient mechanisms for client-server collaboration
while preserving data privacy.

To address these challenges, we propose Fed-
Nano, a parameter-efficient framework that cen-
tralizes the computationally intensive LLM on the
server while enabling lightweight, client-specific
tuning. In the following sections, we detail the
design of FedNano, focusing on how it minimizes
computational and communication overhead, and
addresses data heterogeneity.

3.2 Overview of FedNano Architecture

FedNano is designed to address the inherent chal-
lenges of deploying MLLMs in FL environments.
As illustrated in Fig.1, the computationally inten-
sive LLLM backbone, constituting the majority of
the model parameters, is centralized on the server,
while clients manage lightweight modules, includ-
ing NanoAdapters, for task-specific updates. This
design eliminates the need to deploy the full model
on resource-constrained devices, alleviating the
computational limitations of edge environments
like mobile and IoT systems. By centralizing the
LLM, FedNano significantly reduces the client-side
burden while ensuring that raw data and sensitive
computations remain local, preserving data privacy.

The architecture tackles four critical challenges
in FL: high computational demands, communica-
tion overhead, data heterogeneity, and privacy con-

cerns. Centralizing the LLM mitigates the compu-
tational burden on clients, requiring them to handle
only NanoEdge, which involves less than 5% of the
total model parameters. During model aggregation,
clients upload only the NanoAdapter, which ac-
counts for just 0.01% of the total model size. This
lightweight communication design ensures reduced
bandwidth usage, enabling efficient operation even
in bandwidth-constrained settings. Privacy is fur-
ther safeguarded as no raw data or labels are shared,
and only task-specific updates are exchanged be-
tween clients and the server.

To address data heterogeneity, FedNano adapts
Fisher Merging (Matena and Raffel, 2022) into
FL as an advanced aggregation method, leverag-
ing client-specific posterior distributions to balance
global generalization with local adaptability. This
approach ensures robust performance across di-
verse tasks and datasets, even in non-IID scenar-
ios. By effectively integrating these design princi-
ples, FedNano bridges the gap between the com-
putational challenge of deploying MLLMs and the
practical constraints of FL, providing a scalable,
efficient, and privacy-preserving framework for de-
ploying MLLMs in decentralized systems.

3.3 NanoEdge: Client-Side Tuning Module

MLLMs are composed of three key components:
modality encoders, a connector, and a pretrained
LLM backbone. The modality encoders extract
embeddings from raw inputs, such as images and
text, while the connector aligns these embeddings
into a unified representation compatible with the
LLM. Together, these components enable MLLMs



to effectively handle diverse multimodal tasks by
leveraging their pretrained capabilities.

Building on this structure, NanoEdge introduces
NanoAdapters at the interface between the connec-
tor and the LLM to facilitate efficient task-specific
tuning while preserving the pretrained alignment
across modalities. By freezing the modality en-
coders and the connector, NanoEdge maintains
their alignment with the LLLM, ensuring the foun-
dational structure of the pretrained model remains
intact. This design allows NanoAdapters to focus
solely on learning task-specific patterns from lo-
cal client data and integrating federated knowledge
updates, avoiding any disruption to the pretrained
alignment. By restricting training to the lightweight
NanoAdapter parameters, NanoEdge minimizes
client-side computational demands while enabling
efficient and privacy-preserving adaptation.

The NanoAdapters employ a low-rank decom-
position mechanism, inspired by LoRA (Hu et al.,
2021), consisting of a down-projection to reduce
embedding dimensionality and an up-projection
to restore it. This design balances parameter ef-
ficiency and adaptation capability, enabling Na-
noEdge to perform localized tuning and transmit
updates efficiently. Each modality is equipped with
a dedicated NanoAdapter— Ay for images and A
for text—capturing modality-specific patterns es-
sential for multimodal tasks.

Extensive ablation studies demonstrate the effec-
tiveness of this design. Configurations combining
both A; and A7 consistently outperform those us-
ing a single adapter, highlighting the importance
of modality-specific tuning. By transmitting only
highly compact NanoAdapter updates, which ac-
count for just 0.01% of the total model size per
round, NanoEdge achieves a 98% reduction in the
number of uploaded parameters compared to tra-
ditional PEFT-based FL methods, while retaining
task-relevant information. This compact commu-
nication strategy not only ensures scalability in
bandwidth-constrained environments but also in-
herently minimizes the exposure of sensitive client-
specific information.

3.4 Fisher-Guided Adaptive Aggregation

In FL, the aggregation process can be interpreted
as maximizing the joint likelihood of the posterior
distributions of all clients. The traditional method,
FedAvg, can be viewed as equivalent to this process
under the assumption of isotropic Gaussian poste-
rior distributions for client models. (Matena and

Raffel, 2022), which oversimplifies the process and
struggles with data heterogeneity. FedNano over-
comes this limitation by employing Fisher Merging
(Matena and Raftel, 2022), leveraging the Laplace
approximation for a more accurate estimation of
posterior distributions. The aggregation formula is
defined as:
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where F' is the Fisher Information Matrix (FIM),
which serves as the precision matrix of the Laplace
approximation, k denotes the k-th client, and ¢ in-
dexes the parameters. This approach improves the
precision of maximizing the joint likelihood of the
posterior distributions of all clients by providing a
more accurate posterior distribution estimation for
each client. As a result, it achieves superior FL per-
formance, particularly in scenarios with non-IID
data distributions.

To enhance scalability, FedNano introduces an
efficient approach for FIM computation. We ap-
proximate the full FIM with its diagonal form
(Kirkpatrick et al., 2017), reducing computational
complexity from O(]0|?) to O(|0|). Then, the diag-
onal FIM is computed directly from squared gra-
dients during backpropagation (Wu et al., 2023),
minimizing additional overhead while maintain-
ing aggregation accuracy. By combining Fisher
Merging with this efficient computation strategy,
FedNano effectively addresses the dual challenges
of heterogeneity and scalability in FL.. Compared
to uniform averaging in FedAvg, which fails to
adapt to diverse client data, FedNano dynamically
prioritizes impactful updates, achieving better gen-
eralization across non-IID datasets.

;o (D

4 Experiment

4.1 Experimental Setup

Datasets and Partitioning We evaluate our ap-
proach on the Visual Question Answering (VQA)
task using two established benchmarks: ScienceQA
(Lu et al., 2022) and IconQA (Lu et al., 2021).
These datasets were selected for their well-defined
categorical structures and multimodal complexities,
making them particularly suitable for assessing the
performance of FL in non-IID settings. To simu-
late FL, we partitioned the datasets using Dirichlet
distributions following (Che et al., 2023; Lai et al.,



Algorithm 1 FedNano
Server Update:

1: Randomly initialize 6, and distribute to clients
2: forr =1to Rdo

3: for k£ = 1 to K in parallel do

4: 07 <« Client Update(60" !, Dy,)

5: Compute FIM F},

6 end for

7: 6" < ServerAgg({6;, F}'})
8: end for

Client Update ("', Dy,):

D0 0!

: for local stept = 1to 7T do
Sample { X, y} from Dy,
0:®) < Optimization(; Y, X y)

end for

return 0],

> Eq. 1
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2022; Zhang et al., 2024a) with a concentration
parameter a = 1 to create strongly non-IID splits.
Partitioning was guided by topic annotations in Sci-
enceQA and skill annotations in IconQA, ensuring
heterogeneous yet meaningful distributions across
five simulated clients. Each partition, representing
an individual client dataset, maintains consistent
train-validation-test splits for evaluation.

Metrics Performance is evaluated using accuracy,
computed following the official methodology spec-
ified for each dataset.

4.2 Implementation Details

Backbones We evaluate our approach on two
state-of-the-art pretrained MLLMs, MiniGPT-4
(Zhu et al., 2023) and LLaVA-1.5 (Liu et al.,
2024b). Both integrate a vision encoder with a pre-
trained LLLM via lightweight connectors, enabling
effective multimodal alignment and reasoning.

Baselines To the best of our knowledge, Fed-
Nano is the first framework designed to deploy
MLLMs in FL by centralizing the LLM on the
server. Given the absence of prior work address-
ing this setting, we evaluate FedNano against
three widely recognized FL baselines: FedAvg
(McMabhan et al., 2017), a foundational aggregation
method with limited handling of data heterogene-
ity; FedProx (Li et al., 2020), which mitigates client
drift through a proximal term but lacks parameter-
specific adaptation; and FedDPA-F (Yang et al.,
2024), which integrates advanced alignment strate-

gies but incurs high computational and communi-
cation overheads. We further include comparisons
with a centralized model, representing the perfor-
mance upper bound achieved with access to all
data, and locally fine-tuned models, which operate
in isolation without collaboration.

Training Configurations Each dataset partition
is assigned to a single client, resulting in ' = 5
clients. The training process includes 10 communi-
cation rounds (R = 10), with each client perform-
ing one local epoch per round using a batch size
of 8. All experiments were conducted on NVIDIA
A100 80G GPUs.

4.3 Main Results

The main results in Tab. 2 demonstrate that FLL
methods consistently outperform locally fine-tuned
models, i.e., LocFT, highlighting the advantages
of leveraging global knowledge to enhance client-
specific performance in distributed and heteroge-
neous environments.

FedNano achieves the highest average perfor-
mance across all FL. methods, narrowing the gap
with centralized training more effectively than base-
lines. While FedAvg performs competitively by
employing simple weighted averaging, its lack of
adaptability to non-IID data results in lower perfor-
mance on heterogeneous clients. FedProx mitigates
client drift by constraining local updates to remain
close to the global model, but this rigid approach
limits its ability to adapt to diverse local patterns,
making it insufficient for complex multimodal tasks
requiring flexibility. FedDPA-F, although designed
for personalization, depends on careful tuning of
the number of global training epochs. However,
it carries the risk of forgetting the knowledge en-
coded in the global adapter, as the parameters of
the global adapter are overwritten during subse-
quent local adapter training, leading to potential
decreases in model performance.

In contrast, the superior results of FedNano are
driven by its innovative design. The use of NanoAd-
apters for lightweight, modality-specific tuning sig-
nificantly reduces client-side computational and
storage burdens, enabling efficient deployment on
resource-constrained devices. Additionally, the
Fisher Merging mechanism leverages diagonal ap-
proximations of the FIM to prioritize critical up-
dates, aligning client contributions with global ob-
jectives. These innovations allow FedNano to out-
perform baselines consistently across datasets, ad-



ScienceQA (Clients)

IconQA (Clients)

Backbone  Approach
Cl C2 C3 c4 C5 Avg ClI C2 C3 c4 C5 Avg

Centralized 73.70 88.34 89.83 84.52 87.41 84.76 80.76 86.62 81.16 82.74 85.36 83.33
LocFT 67.74 74.69 7742 7246 74.07 7328 67.70 73.48 70.63 70.86 77.53 72.04

MiniGPT-4 FedAvg 7022 79.65 79.65 75.19 75.56 76.05 70.31 75.61 7498 72776 81.25 74.98
FedProx 70.97 80.40 80.15 75.19 7580 76.50 7094 7736 74.58 71.50 80.70 75.01
FedDPA-F 71.96 78.41 81.14 76.42 75.80 76.75 70.94 7791 7451 73.08 80.30 75.35
FedNano 6898 81.89 80.89 7643 77.04 77.05 7221 7728 75.85 74.27 82.52 76.42
Centralized 83.87 91.07 89.33 90.57 89.38 88.84 86.62 88.92 84.88 87.25 88.45 87.22
LocFT 71.96 80.89 76.92 79.65 75.80 77.04 75.93 78.94 72.53 7435 76.50 75.65

LLaVA-1.5 FedAvg 73.20 84.37 83.62 82.13 80.49 80.76 71.18 79.89 76.80 77.51 83.23 77.72
FedProx 7395 84.37 83.87 81.39 80.00 80.71 70.23 80.13 76.72 77.51 82.36 77.39
FedDPA-F 7370 84.12 84.12 81.89 79.51 80.67 72.12 79.65 76.80 77.43 82.36 77.68
FedNano 7494 84.12 84.86 82.88 80.25 81.41 72.13 80.44 77.36 77.43 82.83 78.04

Table 2: Performance comparison of MiniGPT-4-7B and LLaVA-1.5-7B on ScienceQA and IconQA. Results include
centralized training, local fine-tuning (LocFT), and various federated approaches. Metrics include individual client
accuracies (C1-C5) and their average performance (Avg). FedNano achieves superior average performance on both
datasets compared to other federated approaches, demonstrating its effectiveness in handling client heterogeneity.

dressing the challenges of data heterogeneity while
maintaining scalability and communication effi-
ciency. The results validate the effectiveness of
FedNano in federated learning environments, high-
lighting its ability to balance generalization and
personalization while overcoming limitations in-
herent in existing FL methods.

4.4 Ablation Studies

To illurstrate the importance of different decisions
we made for FedNano, we conduct a series of abla-
tion experiments.

The Necessity of Combining Both A, and A;
To assess the necessity of textual A7 and visual A;
adapters, we conducted ablation experiments with
configurations using only Ap, only Aj, or both.
As shown in Tab. 3, combining both adapters con-
sistently achieves the best performance, highlight-
ing their complementary roles. The results show
that A outperforms A7 individually, emphasizing
its critical role in addressing the modality gap for
visual embeddings. However, Ar + A; outper-
forms A; alone, validating the importance of Ap
in enhancing cross-client generalization through
federated updates. In summary, A; is essential
for visual adaptation, while A7 refines textual up-
dates, and their combination effectively addresses
modality-specific challenges, achieving the best
overall performance.

Trade-offs in Fisher-Guided Adaptive Aggrega-
tion FIM is specific to a particular set of model
parameters and plays a key role in the ability of Fed-

Backbone  Variants ScienceQA IconQA
Ar 4591 57.77
MiniGPT-4 Aj 74.57 75.17
Ar + Af 76.42 76.04
Ar 50.08 48.15
LLaVA-1.5 Aj 77.03 77.12
Ar + Ap 78.04 77.83

Table 3: Performance comparison of adapter config-
urations on ScienceQA and IconQA. Combining both
textual adapter A7 and visual adapter A; yields the best
results, highlighting the importance of modality-specific
adapters for improved multimodal performance.

Nano to achieve superior global alignment by cap-
turing parameter importance. To compute the FIM
precisely, FedNano employs additional forward
and backward passes per communication round,
ensuring accurate parameter estimation. While this
enhances accuracy, it introduces modest compu-
tational overhead. To explore the trade-offs be-
tween precision and efficiency, we conduct an ab-
lation study with FedNano-EF, a variant that ap-
proximates the FIM during standard training, elim-
inating the need for additional computation steps.
This modification reduces computational overhead
to the level of FedAvg. Despite this simplifica-
tion, FedNano-EF incurs only a slight accuracy
trade-off and consistently outperforms baselines,
as shown in Tab. 4. These results demonstrate
the adaptability of FedNano: the standard ver-
sion excels in accuracy-critical tasks by leveraging



Dataset Variants ~ MiniGPT-4 LLaVA-1.5
FedNano 77.05 81.41
FedNano-EF  76.55 80.81
ScienceQA  FedAvg 76.05 80.76
FedProx 76.50 80.71
FedDPA-F 76.75 80.67
FedNano 76.42 78.04
FedNano-EF  76.04 77.83
IconQA FedAvg 74.98 77.72
FedProx 75.01 77.39
FedDPA-F 75.35 77.68

Table 4: Performance comparison of FedNano and
FedNano-EF on ScienceQA and IconQA. FedNano
achieves the highest accuracy, while FedNano-EF of-
fers a trade-off with reduced computational overhead,
demonstrating strong performance across both datasets.

precise FIM computation to optimize alignment,
while FedNano-EF provides a practical alternative
for resource-constrained environments, achieving
strong performance with reduced overhead.

Higher Adapter Ranks Enhance FedNano Per-
formance Fig. 2b illustrates the impact of adapter
rank on model performance, comparing FedNano
with FedAvg on the ScienceQA dataset. As the
adapter rank increases, accuracy improves due to
the enhanced capacity to encode task-specific and
client-specific information, which is particularly
important in non-IID settings. However, higher
ranks also incur greater communication costs, ne-
cessitating a trade-off between performance and
resource efficiency in FL. FedNano consistently
outperforms FedAvg across all ranks, with the per-
formance gap widening at higher ranks. This im-
provement is driven by the FIM aggregation, which
leverages richer client-specific updates at higher
ranks to achieve better alignment between local
contributions and the global model. In contrast, at
lower ranks, the limited adapter capacity constrains
the quality of updates, reducing the effectiveness
of FIM aggregation.

Frequent Communication Amplifies the Advan-
tages of FedNano This study on the MiniGPT-4
backbone with the ScienceQA dataset evaluates the
impact of communication frequency. As shown in
Fig. 2a, reduced communication frequency leads
to a general decline in global model performance
across all methods due to increased parameter di-
vergence, which hinders effective aggregation. Im-
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Figure 2: (a) Impact of communication frequency on av-
erage accuracy. FedNano outperforms FedAvg, with
more frequent communication amplifying its advan-
tages; (b) Effect of adapter rank on accuracy. FedNano
consistently achieves superior performance across all
ranks, demonstrating its ability to capture task-specific
and client-specific information effectively.

portantly, the results highlight that FedNano outper-
forms FedAvg by a larger margin when communi-
cation is more frequent. With shorter intervals, FIM
mechanism of FedNano can better leverage aligned
client parameters to prioritize impactful updates,
amplifying its advantages in handling data hetero-
geneity. In contrast, FedAvg struggles with param-
eter divergence regardless of communication fre-
quency, showing minimal improvement with more
frequent updates. These findings underscore that
while frequent communication benefits all meth-
ods, it significantly enhances the effectiveness of
FedNano, reinforcing its superior ability to inte-
grate client-specific updates and maintain robust
performance in federated learning environments.

5 Conclusion

This work introduced FedNano, an FL framework
designed to address the unique challenges of de-
ploying MLLMs in decentralized settings. By
centralizing the LLM on the server and employ-
ing lightweight NanoAdapters on clients, FedNano
achieves significant efficiency in resource utiliza-
tion and communication, while effectively handling
data heterogeneity in non-IID environments. Com-
prehensive evaluations on ScienceQA and IconQA
benchmarks demonstrate that FedNano consistently
outperforms SOTA FL baselines, narrowing the
gap between federated and centralized training
paradigms. By combining scalable design with
robust performance, FedNano provides a practical
and privacy-preserving solution, paving the way
for advancing MLLM deployment in real-world
applications.



Limitation and Future Work

While FedNano demonstrates robust performance
and efficiency, certain areas warrant further explo-
ration to enhance its applicability and effectiveness.
One limitation lies in the assumption that all clients
possess similar hardware capabilities for managing
NanoAdapters. This assumption may not hold in
real-world scenarios characterized by highly het-
erogeneous devices. Future research could inves-
tigate adaptive mechanisms that dynamically tai-
lor NanoAdapter configurations to match the com-
putational resources and capabilities of individual
clients, broadening FedNano usability across di-
verse environments.

Although FedNano effectively mitigates data het-
erogeneity, federated learning in real-world settings
often involves extreme client disparities in data
size, quality, and distribution. Addressing such
scenarios may require dynamic strategies to adapt
aggregation weights or incorporate more sophisti-
cated representations of client-specific characteris-
tics. These enhancements could further strengthen
FedNano resilience and generalization capabili-
ties in highly non-IID environments. Moreover,
while the current framework supports vision and
language modalities, extending it to incorporate au-
dio, sensor data, or other modalities could unlock
applications in areas such as autonomous systems,
multimodal healthcare, and industrial IoT.

Deploying FedNano in noisy or incomplete fed-
erated datasets presents another promising avenue
for research. Benchmarking its performance un-
der these challenging conditions would not only
provide valuable insights but also identify addi-
tional opportunities for optimization. Furthermore,
integrating FedNano into federated multi-agent sys-
tems—where distinct agents collaborate to learn
and share knowledge—could enable groundbreak-
ing applications in fields like logistics and au-
tonomous vehicles, highlighting the framework ver-
satility.

Finally, while FedNano achieves strong pri-
vacy guarantees by transmitting only NanoAdapter
updates, integrating advanced privacy-preserving
methods such as differential privacy or se-
cure multi-party computation could provide even
stronger safeguards for sensitive client data. A
critical future direction lies in achieving these en-
hanced privacy measures without compromising
the computational and communication efficiency
that underpins FedNano practicality.

In summary, while FedNano addresses many crit-
ical challenges in federated learning for MLLMs,
these future directions highlight its potential for
further innovation. By extending its capabilities to
tackle more diverse environments, extreme hetero-
geneity, and advanced privacy requirements, Fed-
Nano can serve as a foundational framework that
inspires continued advancements in federated learn-
ing research and applications.
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