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ABSTRACT

Simulation provides a cost-effective and flexible platform for data generation and
policy learning to develop robotic systems. However, bridging the gap between
simulation and real-world dynamics remains a significant challenge, especially in
physical parameter identification. In this work, we introduce a real-to-sim-to-real
engine that leverages the Gaussian Splat representations to build a differentiable
engine, enabling object mass identification from real-world visual observations
and robot control signals, while enabling grasping policy learning simultaneously.
Through optimizing the mass of the manipulated object, our method automatically
builds high-fidelity and physically plausible digital twins. Additionally, we pro-
pose a novel approach to train force-aware grasping policies from limited data by
transferring feasible human demonstrations into simulated robot demonstrations.
Through comprehensive experiments, we demonstrate that our engine achieves
accurate and robust performance in mass identification across various object geome-
tries and mass values. Those optimized mass values facilitate force-aware policy
learning, achieving superior and high performance in object grasping, effectively
reducing the sim-to-real gap. Our code is included in the Supplementary Material
and will be open source to facilitate reproducibility. Anonymous project page is
available at robot-drex-engine.github.io.
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Figure 1: We present D-REX, a differentiable real-to-sim-to-real engine that enables 4D photorealistic
rendering and physical simulation by identifying object mass from real-world visual observations and
robot interaction data. D-REX reconstructs object geometry using Gaussian Splat representations
and leverages a differentiable physics engine for end-to-end mass identification. The identified mass
is then used to enable force-aware policy learning from human demonstrations, supporting robust
grasping and sim-to-real transfer in dexterous grasping tasks.

1 INTRODUCTION

Simulation has become an essential platform for robotics, providing a cost-effective and scalable plat-
form that reduces the reliance on extensive robotics expertise. Through reusable and controlled data
generation, simulation has driven significant advancements in accelerating policy learning Akkaya
et al. (2019); Hafner et al. (2023); Chen et al. (2021); Agarwal et al. (2023); He et al. (2024); Ma
et al. (2023). However, despite these benefits, replicating the visual realism and complex physical
dynamics of the real world remains a significant challenge. High-fidelity physical simulations often
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demand specialized knowledge and complex modeling, which limits the scalability and robustness of
simulation-based approaches for real-world deployment.

A long line of research has focused on bridging the sim-to-real gap, which arises when transferring
models trained in simulation to real-world configurations. This gap remains a fundamental challenge
in robotics. Simulation-based policies typically assume accurate knowledge and modeling of real-
world configurations, including underlying physical parameters. However, differences between the
estimated geometry and mass from visual observations and their real-world values increase the
sim-to-real gap. Existing strategies to mitigate this gap include domain randomization Tobin et al.
(2017); Sadeghi and Levine (2016); Peng et al. (2018a), which enhances robustness by varying
simulation parameters, and system identification Hwangbo et al. (2019); Tan et al. (2018); Khalil et al.
(2007), which refines simulation dynamics by calibrating with real-world observations. Advances in
simulation fidelity Ho et al. (2020); Mittal et al. (2023) and domain adaptation Bousmalis et al. (2018);
Ren et al. (2023); Chen et al. (2023) have further facilitated the transfer of models from simulation to
reality in robotics applications. Complementary to these efforts, real-to-sim frameworks attempt to
construct digital twins that replicate real-world geometry and dynamics with high precision Chen
et al. (2024); Torne et al. (2024); Jiang et al. (2022). Nonetheless, building accurate digital twins
typically requires integrating multiple approaches, such as geometric reconstruction and parameter
identification. Despite these advances, achieving precise modeling from visual observations remains
challenging for current real-to-sim methods.

This challenge is fundamentally tied to the problem of system identification—inferring physical
parameters from visual observations to ensure simulated environments faithfully reflect real-world
dynamics. Estimating object attributes and system dynamics from images is difficult, even with
full system state access. While robust forward simulators Macklin et al. (2014) exist, their non-
differentiability limits applicability to inverse problems. Surrogate gradient methods such as finite
differences are commonly used Cranmer et al. (2020); Ramos et al. (2019); Wu et al. (2017), but scale
poorly in high-dimensional settings. Recent progress in differentiable simulation improves learning
efficiency. In particular, GradSim Jatavallabhula et al. (2021a) enables end-to-end differentiation
from visual observations to object-level physical parameters. Inspired by this, our work optimizes
object mass directly from video, enabling force-aware grasping policy learning conditioned on mass
and substantially improving performance.

To address these challenges, we introduce D-REX in this paper, a differentiable real-to-sim-to-real
framework that builds our simulation engine upon differentiable simulation Jatavallabhula et al.
(2021a); Freeman et al. (2021); Miiller et al. (2007); Macklin et al. (2016) and Gaussian Splat
representations Kerbl et al. (2023). This differentiable engine enables object mass identification
through visual observations and robot control signals in robot-object interactions. Additionally,
we propose a novel learning-based method for dexterous manipulation, where we transfer human
demonstrations into simulation-executable robot demonstrations, then utilize the proposed method to
optimize the grasp position and force simultaneously.

Our main contributions include:

* A real-to-sim-to-real framework that enables end-to-end object mass identification through differ-
entiable simulation from visual observations and robotic control signals.

* A novel approach to learn grasping policies from human demonstrations, conditioned on the
identified object mass, that integrates position and force control to reduce the sim-to-real gap and
achieve robust, high-performance grasping.

* Empirically, We show that identifying accurate mass with our differentiable framework and
conditioning the policy on it improve dexterous grasping on challenging object.

2 RELATED WORKS

2.1 DIFFERENTIABLE PHYSICAL SIMULATION FOR ROBOTICS

The development of physical simulation enables efficient data generation and policy training for
robotics Liu and Negrut (2021); Xu et al. (2021; 2022). Specifically, differentiable physical simula-
tions have had great advancements recently, as they provide efficient gradients for policy learning.
A popular approach is to develop a physical simulation with automatic differentiable program-
ming de Avila Belbute-Peres et al. (2018); Hu et al. (2019); Xu et al. (2022); Li et al. (2025). Another
line of work focuses on learning neural networks to approximate the real-world dynamics Li et al.
(2019); Pfaff et al. (2020); Xian et al. (2021), which are inherently differentiable and suitable for
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applications in planning and control optimization. On the robotic application side, a variety of down-
stream tasks have been studied: fluid manipulation Xian et al. (2023), soft-body manipulation Huang
et al. (2021), cloth manipulation Peng et al. (2024); Yu et al. (2023), and the co-optimization of soft
robot morphology and control policies Bhatia et al. (2021). Notably, Jatavallabhula et al. (2021a)
proposes to leverage differentiable multiphysics simulation for system identification from pixels.
Our framework proposes a novel perspective to backpropagate the gradients obtained from visual
observations for system identification through the differentiable approach, and enables dexterous
manipulation policy learning from our real-to-sim results.

2.2 REAL-TO-SIM-TO-REAL TRANSFER

Real-to-sim enables the replication of real-world assets and dynamics in simulation, enhancing
data-driven insights, optimization, and robotic capabilities. By capturing natural statistics, dynamic
behaviors, and kinematic structures, it supports robust decision-making, efficient model training, and
evaluation of complex scenarios. Several recent works exemplify these trends. Jiang et al. (2022)
creates interactive digital twins of articulated objects for simulation. Chen et al. (2024); Mandi
et al. (2024) generate articulated simulations from images, while Sundaresan et al. (2022) adapts
parameters for deformable objects using point clouds. Neural Radiance Fields have also been applied
to robotic tasks like manipulation and locomotion Kerr et al. (2022); Rashid et al. (2023); Zhou et al.
(2023); Byravan et al. (2023); Wang et al. (2023), though often without accurate physical realism.
More recent work Abou-Chakra et al. (2024); Zhang et al. (2024a); Kerr et al. (2024); Jiang et al.
(2025); Zhobro et al. (2025); Abou-Chakra et al. (2025); Yang et al. (2025); Xie et al. (2023) leverages
Gaussian Splats to construct digital twins from real-world visual input. Pfaff et al. (2025); Khalil
et al. (2007) identify robot and payload parameters via joint-torque sensing. In contrast to prior work,
which often lacks integration with differentiable real-to-sim-to-real frameworks due to limitations in
representation or simulation engines, our approach enables accurate object mass identification and
policy learning in the simulation for direct real-world deployment.

2.3 LEARNING FROM HUMAN VIDEOS FOR ROBOTIC MANIPULATION

Human demonstration videos provide a scalable and semantically rich source for robotic manipula-
tion. However, mapping human actions to robot control remains challenging due to differences in
embodiment and sensing. Prior work addresses this gap by leveraging pre-trained visual representa-
tions Nair et al. (2022); Radosavovic et al. (2023); Ma et al. (2022), or by extracting intermediate
cues such as affordances Bahl et al. (2023) and object-centric flow Xu et al. (2024), which are hard to
perform fine-grained and dexterous manipulation. Others focus on 3D human motion estimation for
skill transfer Shaw et al. (2023a); Patel et al. (2022); Peng et al. (2018b); Lum et al. (2025), which
are often limited by the human and robot embodiment gap. Recent methods attempt to relax this
constraint: Guzey et al. (2024) constructs reward functions from object tracking, and Singh et al.
(2024) generates 3D hand-object trajectories from in-the-wild videos for retargeting. While promising,
these approaches still struggle with generalizable policy learning from human videos. In contrast,
our framework transfers human demonstrations into simulation-executable robotic demonstrations,
enabling scalable policy learning with improved adaptability conditioned on object mass to improve
the performance.

3 PROBLEM STATEMENT

‘We focus on the real-to-sim-to-real task, which aims to construct a simulation environment that
closely mirrors real-world geometry, physics, and appearance. We assume access to several types of
RGB videos: scene-centric video sequences, denoted as Z, which capture the static environment;
object-centric videos, denoted as Z,, which provide multiple views of the manipulated object to
support accurate visual and geometric reconstruction; and human demonstration videos {Z;}~ ;,
which illustrate task execution. We also extract object trajectories from real-world robot rollouts,
denoted as {s**}_,, and simulate corresponding trajectories {s{™}Z_; within our framework.

The scene and object videos (Zs, Z,) are used to initialize the real-to-sim process via visual and
geometric reconstruction. Trajectories from both real and simulated rollouts enable mass identification
through a differentiable engine, producing an optimized object mass m that is incorporated as a
physical parameter in the simulator. Meanwhile, human demonstration videos {Z; }7_, are translated
into robot-executable trajectories {A;}7]_; using our proposed method and are used to train a force-
aware manipulation policy 7.
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Figure 2: Overview of our method. Our approach consists of four components: (1) Real-to-Sim,
(2) Mass Identification, (3) Learning from Human Demonstrations, and (4) Policy Learning. We
begin by capturing videos of the scene and human demonstrations. Robotic actions are then executed
in both simulation and the real world to identify object mass via our differentiable physics engine.
Lastly, a manipulation policy is trained using the demonstrations and identified mass.

4 METHODS

We propose a real-to-sim-to-real framework that constructs accurate simulation environments and
identifies object mass via system identification using a differentiable engine from visual observations
and robot control signals, enabling robust policy learning and sim-to-real transfer. The framework
is built on MuJoCo Todorov et al. (2012), a general-purpose physics simulator, the differentiable
engine Brax Freeman et al. (2021), and Gradsim Jatavallabhula et al. (2021a). It operates in four
steps shown in Figure 2: Real-to-Sim (Section 4.1), Mass Identification (Section 4.2), Learning from
Human Demonstrations (Section 4.3), and Policy Learning (Section 4.4). First, the scene and object
are reconstructed from RGB videos Z; and 7, capturing static environments and target objects. The
output simulation is formalized as S = {K, 8} in MJICF format, where K denotes collision meshes
and 6 the physical parameters. Next, the framework executes consistent robotic actions in simulation
and the real world, collecting {s™¥}7_, and {s{™}’_, to identify object mass m. Third, human
demonstrations {Z;}]_,; are translated into robot-executable trajectories {A;}~ ;. Finally, these
trajectories are used to train a policy in simulation, which is then deployed in the real world directly.

4.1 VISUAL AND GEOMETRIC RECONSTRUCTION

Our framework starts with reconstructing high-fidelity visual and geometric models of key elements
in the manipulation environment with Zg, including objects, robotic arms, dexterous hands and
workspaces. This reconstruction ensures accurate representations of both collision geometry and
visual appearance. To integrate these models into a differentiable simulation, we adopt the Gaussian
Splat representation Kerbl et al. (2023); Huang et al. (2021), which enables photorealistic rendering
and high-quality mesh generation for collision detection following Lou et al. (2024). Specifically, we
process videos collected from mobile devices to train two ensembles of Gaussian primitives: one for
collision geometry and another for visual appearance. Specifically, 2D Gaussian Splats with surface
normal estimation Ye et al. (2024a) provide accurate geometry for simulation, while 3D Gaussian
Splats ensure high-fidelity rendering. This process yields two complementary outputs: a collision
mesh XC and Gaussian particles P. Additional details are provided in the Appendix.

4.2 PHYSICAL PARAMETER IDENTIFICATION FROM ROBOT-OBJECT INTERACTIONS

Accurate identification of physical parameters @ is essential for constructing physically plausible
simulations. We begin by using a Vision-Language Model Hurst et al. (2024) to generate an initial
MICEF representation S from environment images and prompts Zhang et al. (2024b). While this
approach provides a reasonable structural prior, parameters inferred solely from visual inputs often
deviate from real-world values due to the lack of observable physical cues Asenov et al. (2020).

To address this, we focus on identifying the object mass, which is a key parameter in dynamics that
can be reliably measured. Accurate mass identification improves simulation fidelity and enables
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robust policy learning. We choose a planar pushing task with a virtual fulcrum assumption to reduce
frictional effects, and optimize mass m to minimize the discrepancy between simulated and real-world
trajectories Jatavallabhula et al. (2021a):

mm Liraj(m Z | | sblm sfal ||;, e))

where s = [p,q]" € R7 denotes the object’s 6-DoF pose, consisting of position p € R? and
orientation represented as a unit quaternion q € R*. s is obtained by FoundationPose Wen et al.
(2024) in the real world while s{™(m) is obtained by executing the same actions in the simulation.

Dynamics Modeling. To simulate object motion, we adopt a standard rigid-body formulation of
the Newton-Euler mechanism. Let u; = [vy, wt]T denote the object’s velocity at timestep ¢, where
v, and wy are the linear and angular velocity components, respectively. We express the governing
equation as the second order differential equation(ODE) Chen et al. (2019):

M(stautvmaa) lit = f(stautae)v (2)

where M is the mass-inertia matrix Baraff (1992) and f collects external and contact forces equation 3,
gravity and torques. We adopt a compliant penalty-based contact model, parameterized by stiffness
and damping (k., kq) € 6, which applies normal forces proportional to penetration depth and contact
velocity Todorov et al. (2012); Erez et al. (2015):

f.(s,u,0) = —n (k. C(s) + kg C(u)), 3)

where f,, is the contact force, n is the contact normal, C(s) the penetration depth, and C'(u) is the
derivative of C(s). This contact model is differentiable and readily integrated into our simulation
framework. In practice, we implement the dynamics using a discrete-time update Erez et al. (2015):

Sil—l‘?—ll 7G(Siim)ut7 m, ft)’ t:()?""Ti]" (4)

f; are external forces at timestep ¢, including actuator impulses, gravity, and object-ground contacts.

Differentiable Physics. To optimize equation |, we compute gradients of the simulated trajectory
with respect to the object mass m. Following the discrete adjoint method from Jatavallabhula et al.
(2021a), we adopt a semi-implicit Euler integration scheme for stability under contact dynamics. We
couple kinematics from MjX/Brax Freeman et al. (2021) with rigid-body dynamics equation 2 and
the contact model equation 3, forming a differentiable computation graph Hu et al. (2020).

Semi-Implicit Euler Modeling. The update function G(-) in equation 4 is implemented using a
semi-implicit Euler integration scheme:

G( [s¢, u,m, 6) =

s¢ + At(ut + AtM_l(st,uhmﬁ)f(st7 u,ﬂ)]
u; + At M_l(st7 Ug, M, 0) f(sta ut)

S; + At ut+11

Ut+1
&)
where At is the integration timestep, and f(-) encapsulates both external and contact forces.

Differentiable Real-to-Sim-to-Real Optimization. We simulate the system starting from the initial
condition s{i™, and iteratively update the state via equation 4. To quantify the discrepancy between
simulated and real-world trajectories, we define the trajectory loss between the simulated state s™
and the corresponding real-world state i as:
T
2
La(m) = 3 s — 5|7 ©)
t=0
This objective encourages the simulated trajectory, parameterized by mass m, to closely match
the observed real-world dynamics over time. The gradient V,,, Lir,j(m) is computed via automatic
differentiation, using backpropagation as implemented in PyTorch Paszke et al. (2019), as follows:

T sim
aﬁtmj _ Z aﬁtmj 8St 8Mt (7)

om dsim  OM;  dm

t=1

Unlike system identification methods such as GradSim Jatavallabhula et al. (2021a), which rely
on manually specified external forces, our approach supports end-to-end optimization by directly
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leveraging consistent robotic control signals in both simulation and the real world to model the
external forces applied to the object. This creates a tight coupling between real-world and simulated
trajectories, enabling us to capture contact dynamics through robot-object interactions.

Importantly, our method does not require ground-truth object mass or contact points. Object geometry
and poses are obtained via Section 4.1, while actuator signals and robot-object interactions are derived
from the MJCF kinematic model. These serve as inputs to our differentiable framework for accurate
mass optimization. Additional modeling details and experiments are provided in the Appendix.

4.3 TRANSFERRING HUMAN DEMONSTRATIONS TO ROBOT DEMONSTRATIONS

After accurately modeling the scene and object, the next step is to collect real-world human demon-
strations and transfer them into robot demonstrations for policy learning. Although learning directly
from human demonstrations is intuitive, substantial differences between human and robotic hands
complicate grasp interaction transfer, particularly due to varied object geometries and masses.

Our approach aims to transform human demonstrations captured from RGB video sequences {Z; }£_;
into executable robotic demonstrations within the simulation. Each video frame Z; is processed using
HaMeR Pavlakos et al. (2024) and MCC-HO Wau et al. (2024) to reconstruct detailed articulated
models of the human hand and the manipulated object. At each timestep ¢, these methods output:

h; € SE(3) x R/*, o, € SE(3), ®)

where h; encodes the 6-DoF wrist pose and finger joint angles (Jp,), and o; describes the object’s
6-DoF pose. Subsequently, we employ Dex-Retargeting Qin et al. (2023) to map these human
hand-object poses h, o; to the robotic hand with J,. degrees of freedom. This produces robot actions:

A; = R(h;,0;) € R, )

where A, represents target joint angles for robotic actuators. Given our assumption that the object
geometry remains consistent between human demonstration and robotic manipulation, the resulting
action set A, directly serves as a data source for our policy learning.

4.4 PoOLICY LEARNING WITH TRANSFERRED ROBOT DEMONSTRATIONS

We initialize policy learning using robot demonstrations {A;}7_; described in Section 4.3. Each
demonstration maps the reconstructed object’s collision mesh vertices /C as inputs to the corresponding
robotic grasp pose. These observation-action pairs directly supervise training of the manipulation
policy 74, which maps object-centric observations to dexterous grasp configurations.

Grasping Position Learning. To capture an object’s geometry and pose, we encode the vertices of
its collision mesh /C using positional encoding Tancik et al. (2020), forming the input to our policy.
This policy conditions the observation o on the reconstructed collision mesh K and the identified
mass m. Concretely, 74 is a multi-head neural network that predicts dexterous hand joint positions
A, contact-related rewards r, and a mass-related control force f.

A
ml0)= | T | €eRY, | = ;” 9, (10)
f active

where A € R'® denotes the predicted joint positions, € R? represents the contact constraint,
and f € R denotes the grasping force constraint. The variable 7,y indicates the number of active

contacts between the robotic hand and the object. The network uses fully connected layers with
ReLU activations, followed by a pooling layer. More details are in the Appendix.

Force-Aware Optimization Design. At training onset, we define a two-dimensional contact con-
straint : one term encourages sustained contact during the rollout, the other ensures object retention
at the end. The policy dynamically influences this constraint based on hand—object interactions
through our simulation engine and the simulation asset S from Section 4.1 and 4.2. It remains high
when active contact points exceed a threshold N,;, over the time horizon H:

1a if nactive(t) Z 15
0, otherwise,

vt S [t07t0 + H] : nactive(t) Z Nmina Hin_hand(t) = { (11)

We subsequently retrain the manipulation policy with the force-based constraint in 10, enabling
adaptive force control that responds to object mass variations Vassiliadis et al. (2021); Zhang et al.
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(2025). This enhances the robustness of grasp poses learned from demonstrations, ensuring stability
under diverse dynamics.

Traditional position-based policies replicate grasp poses from human demonstrations Patel et al.
(2022); Lum et al. (2025); Chen et al. (2025a); Wan et al. (2023); Wei et al. (2025); Shaw et al. (2022)
but overlook unobserved forces, particularly those countering gravity. Applying uniform forces
across varying object masses often leads to instability. To address this, we propose a hybrid control
framework that combines position and force control, using a prediction module conditioned on the
optimized mass m. This jointly optimizes the policy parameters ¢ and grasping force, enabling more
robust and physically grounded manipulation.

5 EXPERIMENTS

The objective of our experiments is to evaluate the performance of our system across the following key
aspects: (1) Evaluate the effectiveness and robustness of mass identification using the differentiable
engine across varying object geometries, densities, and categories. (2) Analyze how incorporating
object mass affects policy learning performance, assessing the feasibility of force-based control. (3)
Assess the effectiveness of learning grasping policies from transferred robot demonstrations and their
direct sim-to-real deployment.

5.1 MASS IDENTIFICATION VIA OBJECT PUSHING

We evaluate our mass identification method through object pushing experiments by applying identical
actions in both the real world and simulation. The resulting trajectories are used to optimize object
mass via our differentiable engine, as detailed in Section 4.2. We assess the performance in two
settings: (1) across objects with varying geometries, and (2) across replicas with identical geometry
but different internal densities. Our method accurately recovers mass in both cases, demonstrating
generalization to diverse shapes and sensitivity to subtle physical differences. The objects we used
for mass identification are shown in Figure 3.

7269 2109 134g 106g 59g 82g 1259 218g

Figure 3: Objects for Mass Identification. We conduct experiments on mass identification across
diverse object geometries and identical geometries with varying densities. Our method accurately
estimates mass in both settings, demonstrating robustness to shape and density variations.

To evaluate robustness across shapes, sizes, and mass scales, we select a diverse set of objects for
mass identification. This tests the pipeline’s ability to generalize across varying contact geometries.
As shown in Table 1, percentile errors range from 4.8% to 12.0%, demonstrating accurate mass
optimization without object-specific tuning.

To isolate the effect of mass, we fabricate three replicas with identical geometry but varying internal
densities p using different 3D printing infill ratios. By keeping shape constant, any identification error
reflects mass sensitivity. As shown in Table 2, mass is accurately identified with deviations under 13
grams, confirming the effectiveness of estimating physical parameters independent of geometry.

As shown in Figure 4, simulations using the optimized mass closely match real-world object dynamics,
while those using an incorrect lighter mass deviate significantly. This demonstrates that accurate
mass identification improves both the physical realism and visual quality of simulated rollouts.

Object \ Letter U Letter A Lego Domino Cookie Ketchup D it
Inferred Mass (g) 500 500 300 500 500 1000 ensity | p1 P2 ps
Identified Mass (g) 110 145 53 117 200 667 :
Ground Truth Mass (g) 125 134 59 106 210 726 Identified Mass (g) 95 129 207
Ground Truth Mass (g) | 82 125 218
Percentile Error (%) \ 12.0 9.0 8.6 9.3 4.8 8.1

Table 1: Mass identification across diverse objects with ~ 1able 2: kll\/l.ass 1flelit1ﬁcat10n across ob-
varying shapes, sizes, and mass scales. The inferred mass J_eCt;WIt. .1dentlca geometry but vary-
is obtained from VLM as described in Section 4.2. Ing densities.

These experiments demonstrate that our differentiable Real-to-Sim-to-Real framework achieves
accurate mass identification across both inter-object diversity and intra-object density variations.
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Figure 4: Quantitative Results of Mass Identification. We show the real-world object pushing (top)
and render object trajectories using Gaussian Splats: simulated with optimized mass (middle), and
simulated with a lighter mass (bottom), all using the same robot actions. The optimized mass closely
reproduces real-world dynamics, reducing the sim-and-real gap with high visual fidelity.

z Success Rate vs. Object Mass
Train\Eval | p1 P2 p3 i !
P1 75%  30% 15%
P2 40% 80% 30% ”
pP3 15% 40% 95% 50 Letter A

Cookie
25 Ketchup
Letter AGT mass
Cookie GT mass
0 Ketchup GT mass

Success Rate (%)

Table 3: Cross-evaluation of grasping poli-
cies trained on different object densities

50 134 200 500 667 726 800 1000

and evaluated across varying masses. Each Mass (g)

cell shows the grasp success rates. Policies

perform well only when the training and Figure 5: Grasping success rates across three ob-
evaluation masses match. jects with different mass values.

5.2 EFFECTIVENESS OF FORCE-BASED CONTROL THROUGH GRASPING

In our grasping experiments, we evaluate how incorporating force-based constraints conditioned on
object mass influences sim-to-real performance. This setup highlights the need for mass-aware force
control and demonstrates the impact of accurate mass identification on policy success.

We first evaluate our grasping policy on three objects that share identical geometry and demonstrations
but differ in mass. Each policy is trained with a specific object mass to assess the impact of mass-
aware force control. As shown in Figure 6, policies perform well only when training and evaluation
masses matched: the medium-mass policy succeeds on the medium object but fails on the heavier
and lighter ones due to under- and over-applied force, respectively. Mass mismatches likewise lead to
unstable grasps for the other two policies. Table 3 confirms this trend, with the highest success rate
(80%) on the training mass, while performance drops to 40% and 30% on mismatched cases. These
results highlight the importance of accurate mass conditioning for robust, reliable grasping.

Figure 6: Qualitative Results. Left to right: policies trained on medium, light, and heavy objects.
Only the mass-matched policy achieves stable grasps, while mismatched ones fail due to excessive or
insufficient force, causing bounce-off for lighter objects or slippage for heavier ones.

8
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Second, we evaluate whether policies conditioned on automatically identified mass can match the
performance of those trained with object mass. As shown in Figure 5, success rates consistently peak
at either the ground-truth or identified mass. Notably, policies using identified mass often match or
even exceed those using ground-truth values, while substantially outperforming policies conditioned
on arbitrary masses. These results underscore the effectiveness of our mass identification approach in
enabling robust, force-aware grasping without requiring access to true mass values.

These experiments demonstrate that accurate mass is essential for effective force-aware grasping.
Policies trained with object mass consistently outperform those trained on mismatched masses, and
policies conditioned on automatically identified mass achieve comparable performance to those using
ground-truth values. Together, these results validate our mass identification framework as a practical
and reliable solution for enabling robust grasping without prior knowledge of object mass.

5.3 TABLETOP OBJECT GRASPING EXPERIMENTS

We compare our grasping policy against two baselines across various objects: (1) DexGraspNet
2.0 Zhang et al. (2024c), trained on large-scale simulation datasets, and (2) Human2Sim2Robot Lum
et al. (2025), a recent real-to-sim-to-real method that learns dexterous manipulation policies from
RGBD videos of human demonstrations. All use the collision mesh K generated by our real-to-sim
framework as input. As shown in Figure 7, our method consistently outperforms the baselines across
eight objects with diverse geometries and masses, achieving high success rates with substantially
lower variance. While baseline performance degrades as object mass increases, our force-aware
policy maintains stable, reliable grasps across the full range of object characteristics.

DexGraspNet 2.0 Human2Sim2Robot DREAM
— 100 o5 100 100 100
2 90 90 90
< 80 80 s 85 s %5
o 80 75 70 75
® 65 oo
X 6o 55
» 45
2 a0
o
o 20
S5 20 10 1549 e
(7] — '_
0
Lightbulb Cube A Cookie Spam Nutella Spray Ketchup  Average
379 120g 134g 210g 3659 414g 5489 7269

Figure 7: Quantitative Results of Grasping Policies. Grasp success rates across eight objects with
varying geometries and mass values, with the average and standard deviation of each method.

Figure 8 presents qualitative results of our force-aware grasping policy across a range of objects.
The top row captures the motion leading to the pre-grasp pose, while the bottom row displays the
resulting post-grasp configurations. These examples demonstrate the policy’s ability to consistently
achieve stable and secure grasps under varying object geometries and mass values.

Figure 8: Qualitative Results of Our Policy. We evaluate our force-aware grasping policy across
various objects. The first row illustrates the approach to the pre-grasp pose, while the second row
shows two post-grasp positions, demonstrating that the policy achieves stable, secure grasps.

6 CONCLUSION

D-REX is a real-to-sim-to-real framework that leverages differentiable simulation to create visually
realistic and physically accurate digital twins from visual observations and robot control signals,
enabling robust dexterous grasping policies. Through identifying object mass through robot-object
interactions, it achieves generalization across diverse object shapes and densities. Furthermore,
integrating force-aware control conditioned on mass into imitation learning enhances policy robustness
and adaptability, thus offering promising potential for scalable data generation and the development
of generalizable policies, representing a significant step toward robust real-world robotic systems.
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7 REPRODUCIBILITY STATEMENT

We rely on several open-source foundation models. The implementation details necessary to repro-
duce our experiments are provided in the Appendix and Supplementary Material. For our primary
contributions—Ilearning mass from video and the force—position hybrid policy—we also include the
codebase in the Supplementary Material.
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A APPENDIX

A.1 PRELIMINARIES

This paper aims to accurately reconstruct the physical process of human hand grasping using only
visual observations and robot control signals, without requiring access to ground-truth physical
parameters. Our approach is grounded in two key components. The first is a differentiable, particle-
based physics simulation engine Freeman et al. (2021), which enables gradient-based optimization of
physical properties such as object mass. The second is a Real-to-Sim reconstruction pipeline based on
Gaussian Splatting Lou et al. (2024), which allows us to build photorealistic and spatially consistent
3D scenes from video input. By combining these two components, we construct a fully differentiable
pipeline that bridges real-world perception and physical simulation, supporting accurate modeling of
dynamic hand-object interactions and enabling robust policy learning in simulation.

Robotic simulation engines such as MuJoCo Todorov et al. (2012), Isaac Sim Mittal et al. (2023),
and GradSim Jatavallabhula et al. (2021b); Fuji-Tsang et al. (2019) are fundamentally built upon
the Lagrangian formulation of mechanics Li et al. (2023), which models the evolution of physical
systems by tracking a fixed set of particles or reference points through space and time. This approach
assumes a consistent and predefined structure in the simulation environment, typically described
using formats such as MJCF or URDF. These configurations specify the number and arrangement of
system components, such as joints, links, and actuated elements, which remain constant throughout
the simulation. At each discrete timestep, the state of every object is updated based on dynamic and
kinematic equations that reflect the physical principles embedded in the simulation engine. As a result,
the evolution of object poses, velocities, and contact interactions is governed by the engine’s internal
numerical solvers and integration schemes. This structured and physics-informed representation is
crucial for accurately modeling force transmission, contact behavior, and motion in robotic grasping
scenarios.

Differentiable Physics. A foundational assumption of our engine is that once the static scene
reconstruction is completed, the physical configuration of the environment remains unchanged
throughout the system identification and policy training stages. That is, no additional objects or robots
are introduced to, nor are existing components removed from, either the simulation environment or
the real-world scene. Consequently, the states of all entities captured during the observation phase
remain consistent and are used directly for deploying control signals in both simulation and real-world
execution. This guarantees the fidelity of simulation rollouts and the alignment of dynamics between
domains.

Our system architecture is governed by two fundamental categories of equations. The first involves
kinematic equations Corke (2007), which model the articulated motion of the robotic arm and hand,
accounting for joint angles, velocities, and end-effector trajectories. These equations underpin the
robot’s ability to reach and manipulate objects in a controlled fashion. The second set comprises
dynamic equations Jatavallabhula et al. (2021b), which govern the interactions between the object,
the robotic hand, and the supporting surface (e.g., table). These dynamics describe the forces and
torques that arise during contact, enabling accurate simulation of object responses.

To simulate and optimize object behavior, we employ a dual-engine architecture consisting of MJX
(the JAX-based backend of Brax) and GradSim. For spatial representation within the differentiable
physics engine, we use the object’s mesh vertices as the fundamental particles. These vertices
serve as geometric and physical descriptors that enable fine-grained modeling of object-hand and
object-environment interactions.

MIJX is used to model robot kinematics and extract detailed contact information during simulation
rollouts. It provides precise contact points, surface normals, and force vectors arising from interactions
with the robotic hand. This information is crucial for establishing accurate boundary conditions for
system identification and subsequent policy learning.

In parallel, GradSim Jatavallabhula et al. (2021b) offers a PyTorch-based engine for gradient-
based simulation of object dynamics. It models the effects of gravity, inertial forces, and external
perturbations (such as pushes from the robot or collisions with the ground), enabling smooth gradient
flow through time. This setup facilitates efficient mass parameter optimization and supports end-to-
end training pipelines involving both perception and control.
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A key assumption in our setup is that the relative poses between the object, the ground, and the robotic
hand within the simulation closely approximate those in the real world. This alignment is critical to
ensure that simulated contact events reflect real-world conditions, enabling high-fidelity modeling of
physical interactions. To this end, we align object placement using estimated poses obtained from
visual tracking pipelines such as FoundationPose, ensuring consistent coordinate frames.

Although our engine incorporates Position-Based Dynamics (PBD) Miiller et al. (2007) for stabil-
ity and efficiency, we introduce tailored modifications to enhance collision detection and contact
resolution. Specifically, we refine the broad-phase collision detection algorithm to better handle
high-resolution meshes and non-convex geometries. This is essential for accurately modeling complex
objects with fine surface detail and for ensuring robust gradient propagation during contact-rich
interactions.

By combining MJXs strengths in kinematic modeling and contact extraction with GradSim’s gradient-
based physical simulation, our engine enables end-to-end mass identification and force-aware policy
training. These capabilities lay the foundation for accurate and generalizable robotic grasping in
real-world settings, bridging the sim-to-real gap through physically grounded learning.

A.1.1 PARTICLE-BASED PHYSICS SIMULATION

Particle-based physics simulation is extensively used in computational physics and graphics for
modeling dynamic behaviors of objects Jiang et al. (2016). Unlike traditional methods that rely on
continuous volumes or polygonal meshes, particle-based methods discretize objects into numerous
discrete particles, each endowed with physical attributes such as mass m;, position x;, and velocity v;,
as well as material properties including elasticity, friction, and damping. This discrete representation
allows the efficient and realistic simulation of complex behaviors, especially beneficial in scenarios
involving deformable or fragmented objects, fluids, and granular materials.

The center of mass COM for a particle-based system can be computed by:

COM = szx (12)
i T

The inertia tensor I, which describes an object’s resistance to rotational acceleration, is computed
relative to the center of mass as:

I:Zmi [||riH2E—ririT] , where r;=x;—C (13)
i
with E denoting the identity matrix.

Position-Based Dynamics (PBD). Position-Based Dynamics (PBD) is a widely adopted paradigm
in real-time and interactive physics simulation due to its stability, simplicity, and efficiency in
handling constraint-driven dynamics Bender et al. (2017). Unlike traditional force-based methods
that compute motion by integrating forces and torques explicitly, PBD enforces physical consistency
by iteratively projecting particle positions to satisfy a set of predefined geometric and physical
constraints. This projection-based formulation naturally accommodates large simulation time steps,
making it particularly suitable for high-speed applications such as robotic grasping and interactive
environments.

Prediction Step (Implicit Integration). The simulation begins by predicting particle states using
semi-implicit Euler integration, which offers numerical stability and reduces oscillations during stiff
interactions. For each particle i, the translational motion is computed as:

£t

viTAt — vt A (14)
m;

x| A = x! 4+ AtviTAY, (15)

where f} is the external force (e.g., gravity or contact impulses), m; is the particle mass, and At is
the simulation timestep. For rigid-body components, angular motion is predicted using:

Wit = Wl + ALI7H (7 - Wl x (Liw))) , (16)
At _
it = ai + et ), (17)
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where I; is the inertia tensor, Tf is the external torque, and q§ is the orientation represented as a unit
quaternion. Here, @; = [0, w," ] T embeds angular velocity into the quaternion algebra.

Constraint Projection Step. Once predicted states are available, positional constraints are enforced
through iterative corrections. Each constraint C'(x;,q,;) > 0 represents a physical requirement (e.g.,
no interpenetration, fixed distances, volume preservation) and is resolved using a gradient-based
position correction scheme. For constraint satisfaction, the positional update is computed as:

1 . C(xi)
AXi = —)\—inC(xi), with A= ’
m; 25 7 1V, C(x)) 12

where the Lagrange multiplier A\ ensures physically consistent constraint enforcement. Iterative
Gauss-Seidel or Jacobi solvers are used to converge the system to a valid constraint-satisfying
configuration.

(18)

Velocity Update Step. After the constraints are enforced, particle velocities are updated to reflect the
corrected positions:
t+At t
t+at , X X
viTat . 19
i Al 19)
This ensures consistency between position corrections and subsequent dynamics, maintaining mo-
mentum while preserving the stability advantages of PBD.

Discussion. The particle-based formulation enables fine-grained spatial resolution and direct grasping
of geometric attributes, which is particularly beneficial for simulating high-DOF robotic hands
interacting with rigid, deformable or complex-shaped objects. Furthermore, the implicit treatment of
constraints circumvents many of the numerical instabilities associated with stiff force-based models,
making PBD highly suitable for differentiable simulation settings where robustness and gradient flow
are important Standley et al. (2017).

A.1.2 GAUSSIAN SPLATTING

Gaussian Splatting has emerged as a powerful technique in robotic real-to-sim pipelines for capturing
scenes, objects, and backgrounds with high geometric fidelity and photorealistic detail. It enables
flexible and efficient modeling of complex environments from monocular video input, facilitating
accurate spatial reconstruction and rendering. In our engine, we adopt the real-to-sim pipeline
proposed in Lou et al. (2024), which transforms real-world scanned videos into simulation-ready
assets. By leveraging Gaussian Splatting, we efficiently align the reconstructed object meshes with
the simulation environment, enabling seamless integration.

To further enhance geometric consistency, we incorporate the stable normal constraint introduced
in Ye et al. (2024b;a), which enforces consistent surface normals across reconstructed points. This
constraint is particularly important for preserving fine surface details and mitigating noise, especially
in scenes with complex geometry or intricate textures.

Together, this process allows us to recover two critical components for our differentiable physics
modeling: (1) the object’s 3D geometry and (2) its relative pose with respect to the robotic arm, both
of which are essential for accurate system identification and simulation alignment.

A.2 IMPLEMENTATION DETAILS
A.2.1 IMPLEMENTATION OF REAL-TO-SIM RECONSTRUCTION

We begin by constructing a visually and geometrically precise digital twin of the target environment,
leveraging a particle-based Gaussian splatting approach Kerbl et al. (2023); Huang et al. (2024). From
environment-centric (Z,) video streams captured by a mobile device, we obtain calibrated camera
trajectories via structure-from-motion (SfM) Pan et al. (2024); Schonberger and Frahm (2016). The
pipeline then trains two disjoint ensembles of Gaussian primitives, each pursuing a separate objective.

1) Volumetric rendering set. We maintain a set of 3D Gaussians
rend Nrend
P = {(@i, i, 2i5 Tis G biy 01y 56, 54) Fi
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where (x;,y;,2;) € R? is the center of the i-th Gaussian, (r;,g;,b;) € [0,1]® its RGB color,
0; € [0,1] the opacity coefficient for alpha blending, ; € R3*3 a symmetric positive-definite
covariance specifying anisotropic extent, s; represent the semantic and instance id of the gaussian,
and Nieyq the total count of such primitives. These particles are optimized exclusively for photometric
fidelity, enabling differentiable volume splatting and achieving real-time novel-view synthesis.

2) Surface reconstruction set. Geometry is approximated with a separate set of 2D surface-aligned

Gaussians
Ngurt

surf
pot = {(J?j, Yjiir %5, tu,ja tv,ja Su,js Sv,j)}jzl 5
where (z;,;, 2;) € R represents the disk center, t,, ;, t, ; € R? are orthonormal tangent vectors,
and s, ;, Sy,; > 0 set the standard deviations along those directions. The outward surface normal is

nj =ty Xty ;.

This ensemble is trained with depth distortion and normal consistency terms for geometric accuracy,
remaining untouched by photometric loss.

After training, the surface Gaussians in P are rasterized into multi-view depth maps, fused into
a truncated signed-distance field, and converted via marching cubes into a triangle mesh. Surface
normals are estimated Ye et al. (2024a), giving the final collision mesh M. Since P and P*"" do
not share parameters and employ disjoint loss functions, improvements in appearance do not degrade
geometric fidelity.

A.2.2 CONSTRUCTING MJCF MODELS USING RECONSTRUCTED GAUSSIAN AND MESH
REPRESENTATIONS

The MuJoCo XML Control Format (MJCF) encodes key simulation components, including an object’s
kinematic structure, PID control gains, stiffness parameters, collision geometries K along with the
surface point cloud P Zeng et al. (2017), and specifications of actuated joints. To construct a
complete MJCF model from our reconstructed Gaussian splats and mesh representations, we first
embed the static environment as an unmovable background and define the reconstructed object as a
free joint body within the simulation environment.

We then align the reconstructed Gaussian coordinate frame and chirality with MuJoCo’s convention,
following the transformation procedure described in Lou et al. (2024). To ensure simulation realism,
we extract the relative pose between the object and the robotic arm in the real-world scene and apply
this transformation as the initial configuration of the free joint object in simulation. After integrating
all relevant positional and control information, we use Vision-Language Models (VLMs) to infer
initial estimates of physical parameters, including object mass, which are critical for downstream
simulation fidelity.

The resulting MJCF model, with accurately aligned coordinates, initial pose, and geometry, provides
a strong foundation for subsequent system identification and physics-based policy learning. It also
enables high-fidelity rendering and precise real-to-sim transitions.

A.2.3 IMPLEMENTATION OF MASS IDENTIFICATION

This section addresses two key aspects of our mass identification engine: (1) the strategy for mass-
inertia modeling, and (2) the set of adaptive parameters necessary to support mass learning across
objects with diverse physical properties and geometric variations.

Mass-Inertia Modeling. In conventional settings, an object’s ground-truth mass is typically dis-
tributed uniformly across its constituent particles, as defined in Equation 12. However, this strategy
often leads to numerical instability and gradient explosion within real-to-sim-to-real optimization
engines, particularly when dealing with high-resolution objects that contain over 50,000 vertices but
possess relatively low mass Chen et al. (2025b). Under such conditions, the resulting average particle
mass can fall below 10~ kg, introducing significant numerical errors.

To mitigate this issue, we assign the full object mass to each particle. Gravitational forces are
uniformly applied to all particles, and external forces are scaled proportionally to the number of
sampled vertices. This formulation preserves numerical stability by avoiding exceedingly small
per-particle mass values.
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Additionally, because the number of vertices varies across reconstructed objects, we adaptively select
a subset of active vertices that lie on contact surfaces between the object and the robotic fingers. This
further improves simulation fidelity and ensures relevant physical interactions are emphasized.

To guarantee consistency between the real-world observations and simulation environment, we
explicitly synchronize frame rates, temporal bounds (start and end times), and spatial centering
between the FoundationPose tracking system and the MuJoCo simulation defined in MJCF format.

Contact Modeling, Explicit Gradient Representation, Adaptive Learning Parameters. We
extract contact points and corresponding forces from robotic action rollouts conducted in both
simulated and real-world environments. In the simulation, following the real-to-sim reconstruction,
objects are placed in relative positions consistent with their real-world configurations. To ensure
stable contact modeling within a Position-Based Dynamics (PBD) engine, objects are initialized
slightly above the ground (e.g., [0.05, 0.05, He;gm +0.01]), preventing premature ground contact and
maintaining simulation stability.

Precise temporal synchronization across real-world object trajectories, robot control signals, and
simulation rollouts is essential for reliable mass identification. We leverage FoundationPose Wen
et al. (2024) to obtain accurate object pose estimates, and align simulation timelines accordingly to
ensure consistency between observed and simulated motion.

For explicit gradient computation, we implement a semi-implicit integration scheme following the
formulation introduced in Jatavallabhula et al. (2021a), enabling differentiable backpropagation
through contact events and object dynamics.

Adaptive Learning Strategy To accommodate objects with varying mass scales, we employ an
adaptive learning strategy. Initially, particle masses are uniformly set to approximately 0.002 kg
per vertex, but this baseline must be adjusted according to the object’s overall mass to ensure stable
convergence. For heavier objects, such as a ketchup bottle (0.8 kg), training requires higher learning
rates and longer schedules, often up to 2000 epochs, to achieve convergence. In contrast, medium-
mass objects (0.1 kg) typically converge efficiently within 100 epochs using a moderate learning rate.
Lightweight objects (0.05 kg) benefit from learning rate decay and similarly converge within 100
epochs.

Successful mass learning also depends on several key factors. The duration of the applied impulse,
determined by the active contact interval between the robotic fingers and the object, directly influences
the estimated dynamics. We select the active tracking frame from FoundationPose to mark the critical
transition from motion onset to rest. Additionally, we apply a canonical re-centering vector to align
object positions in simulation space, reducing variation introduced by camera viewpoint differences.
Finally, the estimated contact area is adjusted proportionally to the object’s vertex count and active
contact regions, allowing accurate modeling of the hand-object interaction Lu et al. (2023); Bronstein
et al. (2022).

A.2.4 IMPLEMENTATION OF DREAM’S GRASPING PoOLICY

Table 4 details the neural network architecture used in our GraspMLP, while Algorithm | and
Algorithm 2 describe the training pipeline. For standard objects, the grasping policy is trained
with approximately 200 demonstrations per object. For objects with higher geometric or dynamic
complexity, we scale the dataset to include up to 5000 demonstrations, ensuring sufficient coverage
of the variance necessary for robust policy learning. Empirically, we find that the integration of
a lightweight policy network, accurate modeling of human hand-object interactions, and precise
physics-informed constraints enables reliable and high-performance grasping behavior tailored to
each object.

A.2.5 COMPUTATIONAL DETAILS AND TIMINGS

Our grasping policy is trained on datasets containing 200 to 300 demonstration poses per object by
default, which results in a training duration of approximately 2 minutes per object on one NVIDIA
RTX 4090 GPU. For more complex or high-variance objects that require additional data coverage,
we scale the training dataset to include up to 5000 demonstrations. In such cases, the training time
increases to approximately 20 minutes per object, due to the additional dataset batch size.
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Algorithm 1 Force-Aware Policy Training

Input: Set of object meshes and masses: {(K;, M)},
Output: Learned actions and forces: {(Action;, Force;)} Y,
1: for each demonstration (K;, M;) do

2:

3:
4:

Extract human hand poses and object poses using HaMeR Pavlakos et al. (2024) and MCC-
HO Wu et al. (2024).

Retarget human hand poses and corresponding end-effector poses onto the robotic hand.

Positional Encoding: Encode vertices using positional encoding to obtain feature represen-
tations.

Dataset Construction: Prepare training batches comprising encoded vertices, object mass
M, and ground-truth actions. Load corresponding MJCF files generated by Real2Sim.

Stage One Training (Supervised): Train the policy network by setting force and contact
head ground-truth labels to 1, optimizing initial grasp prediction.

Stage Two Training (Simulation-based Refinement): Roll out predicted actions within
the MuJoCo simulator using the Real2Sim-generated MJCF files. Compute force and contact
rewards from simulation outcomes and perform backpropagation to refine the model.

Real-world Deployment: Deploy the grasping policy onto the real robotic system using the
reconstructed object mesh, executing predicted actions with force control.
end for

Algorithm 2 Two-phase Training Procedure

1

2
3

»

°

10:
11:
12:
13:

14
15

16:
17:
18:
19:
20:
21:

22:
23:
24
25:

26

: Initialize: model parameters 6, optimizer, dataloader D, environment &, loss functions: MSELoss

(Lmse), BCELoss (LpcE).
: Phase 1: Supervised Pre-training
: forepoch=1,..., FE; do
for batch (z,a,r, f) ~ D do
Compute predictions: (@, 7, f) < model(z; 6)
Compute losses:
Lo < Luse(a,a)
,Cr — ,CBCE(?Q, 7’)
Ly« Luse(f, f)
Backpropagate total loss: £ = L, + L, + Ly
Update parameters 6
end for
end for
: Phase 2: Environment Interaction
: forepoch=1,..., F> do
for batch x ~ D do .
Predict actions and rewards: (&, 7, f) + model(z; 6)
Execute a in environment £ and observe rewards 7, and contact-based forces feny
Compute scaled ground-truth force: fep, = clip(Z-g 2PN [y 1)
Compute losses:
Ly < Lpce(7,; reny)
Ef — EMSE(fa fenv)
Backpropagate weighted loss: £ = 0.8£, +0.3L;
Update parameters 6
end for
: end for

max

Inference is highly efficient. Once the policy is trained and deployed, it requires only a reconstructed
URDF or MJCF representation as input, capturing the object’s geometry, pose, and physical properties.
Given such input, the policy predicts a stable grasp configuration in approximately 0.5 seconds per
object pose. This low-latency inference time makes the system practical for real-time and on-robot
applications, particularly in scenarios that demand quick adaptation to dynamic object placements or
orientations.
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Overall, our engine demonstrates a favorable trade-off between training cost and deployment effi-
ciency, with scalable training capabilities and low runtime overhead for inference.

Component Operation Output Dim. Details

Input Positional Encoding N x 3 N object vertices (XYZ)
Linear Layer 1 Fully Connected 256 Input: 3 — 256
Activation 1 ReLU 256 Non-linearity
Linear Layer 2 Fully Connected 256 256 — 256
Activation 2 ReLU 256 Non-linearity
Linear Layer 3 Fully Connected 256 256 — 256
Activation 3 ReLU 256 Non-linearity
Action Head Linear 16 Joint action output
Reward Head Linear + Sigmoid 2 Contact constraint prediction
Force Head Linear + Sigmoid 1 Grasping force prediction

Table 4: Architecture of the proposed GraspMLP network. The input consists of per-vertex 3D
coordinates. The shared backbone maps the input into a latent feature space, which is subsequently
decoded into separate heads for predicting joint actions, contact-based reward signals, and grasping
force.

A.2.6 IMPLEMENTATION OF BASELINES ON OBJECT GRASPING

Human2Sim2Robot Baseline. In the Human2Sim2Robot engine Lum et al. (2025), we operate
under the assumption that the grasping end-effector pose extracted from human demonstration videos
is both accurate and physically feasible for robot execution. These grasp poses—typically obtained
from hand-object interaction sequences—are directly retargeted to the Leap Hand using the official
retargeting implementation provided by the Leap Hand repository, preserving the spatial fidelity of
the original grasp intent.

For a fair and consistent baseline comparison, we replace the original demonstration assets and
object meshes used in Human2Sim2Robot with our own Real-to-Sim reconstructed meshes, which
incorporate photogeometric fidelity and physical realism as described in Section Real2sim. Using
these assets, grasping policies are trained until convergence, which generally requires approximately
20,000 training epochs to stabilize reward signals and behavior.

At deployment, we assume that the relative end-effector pose remains feasible under the Franka
arm and CuRobo motion planning stack. That is, we expect the grasp pose transferred from human
demonstrations to be executable without requiring additional replanning or corrections during real-
world trials. While this assumption aligns with the original baseline setting, it introduces potential
limitations in robustness, particularly under challenging object configurations.

It is important to note that the original controller, fabric, used in Human2Sim2Robot—including
closed-loop visual servoing and grasp adjustment mechanisms—is not publicly available. Conse-
quently, our reimplementation focuses solely on static inference: given a fixed RGBD frame and
known object pose, the system predicts a single-step grasp action without online feedback or corrective
replanning. This constraint is taken into account in our evaluations to ensure fair comparison.

DexGraspNet 2.0 Baseline. We adopt the two-stage grasping pipeline proposed in DexGraspNet
2.0 Zhang et al. (2024c), which separates grasp pose generation from execution via motion planning.
However, rather than directly regressing relative translations and rotations from synthetic training
data, our method infers these grasp parameters through MCC-HO, a pretrained model that extracts
meaningful grasp features from real human hand-object interactions captured in video. These
interactions are grounded in geometry reconstructed through our Real-to-Sim pipeline, where object
vertices derived from point clouds are directly used to estimate feasible grasp poses in 3D space.

Once grasp poses are generated, we utilize CuRobo for trajectory planning and execution. The
planned trajectories are constrained by the robotic arm’s kinematic and dynamic limits, ensuring safe
and feasible real-world deployment of the inferred grasp poses.
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To ensure fair comparison with DexGraspNet 2.0, which assumes a fixed object mass of approximately
0.1 kg across all test scenarios. We limit our evaluation to objects of similar mass to match the
conditions under which their policy was trained. However, in contrast to this fixed-mass assumption,
our approach explicitly optimizes grasp strategies using the mass identified through our differentiable
real-to-sim-to-real pipeline. This enables force-aware grasping, as the identified mass is used to refine
force predictions and enhance grasp stability.

By leveraging human demonstrations and accurate physical modeling, our approach generalizes
more robustly across varying object shapes and dynamic properties, offering improved realism
and adaptability compared to methods relying solely on simulated training data and heuristic mass
assumptions.

Object Tracking and Motion Planning. We employ FoundationPose Wen et al. (2024) for real-
time 6-DoF object pose estimation during grasping. This robust visual tracking system provides
temporally consistent pose predictions that enable dynamic, collision-aware trajectory planning for
the robotic end-effector. These object pose estimates serve as a foundation for constructing grasping
trajectories in cluttered or dynamic environments.

Once the object pose is reliably tracked, we incorporate wrist pose predictions generated by MCC-
HO Wu et al. (2024), a pretrained model designed to reconstruct hand-object interaction trajectories
from human demonstration videos. The wrist poses extracted from these interactions represent
feasible, human-derived grasping configurations. Together with the Real-to-Sim object pose, they
define the target end-effector pose required for grasp execution.

To generate collision-free motion plans, we formulate a constrained inverse kinematics (IK) opti-
mization problem using CuRobo Sundaralingam et al. (2023). Specifically, we seek the robot joint
configuration A* that minimizes the distance between the robot’s forward kinematics (FK) output and
the desired end-effector pose X%, while remaining within the robot’s collision-free configuration
space Qfree:

A* =arg Aglgigee HFK(A) — ngSHp. (20)

Here, X9 is derived from aligning the object pose (reconstructed via Gaussian Splatting and
photogrammetry) with the wrist pose from human demonstration, forming a grounded and physically
meaningful grasp target. The norm || - ||, (typically L) measures the spatial error in SE(3) between
the planned and desired poses.

This enables physically plausible and task-relevant grasp execution that leverages real-world percep-
tion, human demonstration priors, and differentiable simulation to close the sim-to-real loop.

A.2.7 REAL-WORLD EXPERIMENTS

In our experimental setup, the scene is composed of five primary components: a static table, a fixed
background, a target object, a robotic arm, and a robotic hand. Both the table and background
remain stationary and unchanging throughout the duration of each experiment, providing a consistent
spatial context. The robotic arm and hand are fully actuated and precisely controlled, with all joint
movements accurately tracked to ensure reproducibility and reliable system behavior.

The target object is entirely passive, which is not actuated or directly controlled. Its motion arises
solely from physical interactions with the robotic hand, such as contact-induced forces during grasping
or pushing. This object-centric dynamic behavior forms the basis for our system identification and
policy learning tasks.

For visual tracking, we employ a third-person Intel RealSense D4351 RGB-D camera positioned
to capture the entire grasping workspace. To estimate the 6-DoF object pose over time, we use
FoundationPose Wen et al. (2024), a real-time object pose estimation engine that ensures robust,
frame-consistent predictions even under occlusion or clutter.

To reconstruct the geometric details of the experimental scene—including the table, object, and
robot—we supplement the depth camera data with smartphone-based photogrammetry. Capturing
a short monocular video using a mobile phone, we apply multi-view stereo techniques to generate
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dense 3D reconstructions of the environment. This process enables us to build high-resolution object
meshes and spatially aligned scene representations, which are later used for initializing simulation
environments and real-to-sim transfers.

Together, this combination of accurate tracking and high-fidelity geometric reconstruction provides
the foundation for grounded simulation, physical parameter identification, and robust real-world
policy deployment.

A.2.8 HARDWARE SETUP

We employ two distinct robotic hands in our experimental engine to accommodate the varying
requirements of system identification and dexterous grasping: the Allegro Hand and the LEAP
Hand, each equipped with 16 independently actuated degrees of freedom (DoF). These platforms are
selected to balance mechanical precision and torque capabilities across the experimental tasks.

The Allegro Hand is a widely used 16-DoF anthropomorphic robotic hand developed specifically for
research in dexterous grasping. It features internalized wiring and a compact mechanical structure,
minimizing external interference during physical interactions. Its low-profile design and clean joint
layout simplify kinematic and dynamic modeling, making it well-suited for physical parameter
identification tasks such as object mass estimation. The reduced presence of external cabling allows
for more stable contact modeling and cleaner gradient flow during differentiable physics-based
optimization.

The LEAP Hand Shaw et al. (2023b) is a high-torque, cost-efficient robotic hand designed with
modularity and real-world applicability in mind. It is constructed from a combination of 3D-printed
components and off-the-shelf actuators, enabling easy customization, repair, and experimentation.
Critical mechanical attributes—including finger length, joint stiffness, and inter-finger spacing—can
be modified to suit specific grasping scenarios or object geometries. The LEAP Hand features a novel
tendon-driven kinematic structure that enables highly dexterous and human-like articulation. Each
joint is capable of exerting torques that exceed those of the human hand, while maintaining realistic
velocities up to approximately 8 radians per second.

A core design principle of the LEAP Hand is to maximize the proportion of mass allocated to
actuators relative to the hand’s total weight, thereby enhancing grip strength while preserving a
compact form factor. This focus enables it to handle heavy or irregularly shaped objects that require
strong and adaptive force control. Importantly, the LEAP Hand includes integrated current- and
torque-limiting mechanisms, allowing for both powerful and delicate grasping. These features make
it especially suitable for executing real-world grasping tasks, where force control must be both robust
and compliant.

In our experiments, we regulate the grasping force exerted by the LEAP Hand by tuning its actuator
current limits, which are linearly correlated with the applied joint torques. This control scheme
enables precise modulation of contact force based on object mass and surface properties, a critical
requirement for sim-to-real generalization in force-aware policy learning.

By leveraging the complementary strengths of the Allegro and LEAP Hands, our engine supports
both accurate physical modeling and high-performance real-world grasping, facilitating end-to-end
real-to-sim-to-real learning and deployment.

Rationale for Using Different Hands We employ the Allegro Hand for mass identification exper-
iments due to its compact, self-contained mechanical design, which minimizes external interference.
Its internalized wiring and low-torque actuation contribute to stable and noise-free contact dynamics,
making it ideal for tasks that require accurate gradient propagation and precise system identification.
These attributes are particularly advantageous when using differentiable physics to estimate object
mass from robot-object interactions, where mechanical noise or inconsistent contact can significantly
degrade optimization performance. The consistent kinematics and low-inertia structure of the Allegro
Hand further improve the fidelity of object dynamics modeling during the real-to-sim identification
stage.

We utilize the LEAP Hand Shaw et al. (2023b) for grasping and grasping tasks due to its high-torque
capabilities and modular, human-like kinematic structure. The LEAP Hand features tendon-driven
actuation with robust motors that can generate significantly higher forces than the Allegro Hand,
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enabling it to perform reliable grasps on objects with varying shapes, weights, and compliance. This
is particularly important when evaluating real-world policy deployment, where robustness and grasp
stability are critical. Its design prioritizes strength and dexterity, making it suitable for executing
force-aware policies under physically realistic conditions. The hand’s current-controlled actuation
also enables precise regulation of grasping force, which we leverage in our policy to adapt to different
object masses.

However, the LEAP Hand includes exposed wiring and tendon routing, which introduce mechanical
noise and modeling complexity, especially during sensitive parameter estimation stages such as mass
identification. These structural factors can interfere with accurate contact modeling and introduce
inconsistencies in force feedback during differentiable simulation.

Through decoupling the roles of the two hands—using the Allegro Hand for precise physical parameter
estimation and the LEAP Hand for robust grasping—we are able to optimize each stage of our real-to-
sim-to-real engine. This separation of concerns allows our engine to balance accuracy and practicality,
supporting both high-fidelity modeling and real-world deployment across a diverse set of grasping
scenarios.

A.2.9 DATASET COLLECTION AND EXPERIMENT DEPLOYMENT

To support accurate real-to-sim modeling, we collect approximately 300 RGB images per scene
using a third-person RGB-D camera (Intel RealSense D4351) or scanning device like Iphone. These
images are used for high-fidelity 3D reconstruction, which captures both the object geometry and
environmental context. The full reconstruction process typically takes around 30 minutes per scene
and produces a Gaussian Splats representation.

Then we convert the reconstructed visual assets into simulation-ready MJCF. This conversion en-
codes the object geometry as collision meshes, specifies object kinematics, and initializes physical
parameters for use in simulation environments such as MuJoCo. We also extract the relative pose
between the object and the robotic base, which is crucial for alignment during simulation deployment.

Our experimental environment comprises a 7-DoF robotic arm (Franka Emika Panda), a dexterous
robotic hand (Allegro or LEAP, depending on the task), and a static table on which the object is placed.
During data collection and evaluation, the robotic system executes predefined control trajectories or
learned policies while interacting with the object. Simultaneously, FoundationPose Wen et al. (2024)
provides real-time 6-DoF object pose tracking using third-view RGB-D video input. This ensures
precise alignment between real-world motion and the corresponding simulated trajectories.

All collected sensor data—including RGB frames, depth maps, robot joint states, and object
poses—are synchronized and logged for later use in simulation, policy training, and evaluation.
This structured dataset serves as the basis for mass identification and grasping policy learning,
enabling consistent real-to-sim-to-real transfer across experiments.

A.3 ABLATION STUDY

A.3.1 SCALING PERFORMANCE

We investigate how the number of human demonstrations influences grasping performance on a
challenging object: a compact, high-density screwdriver. This object is particularly difficult to
manipulate due to its small contact area and high moment of inertia, making it an ideal benchmark
for evaluating the scalability of our learning engine. As illustrated in Figure 9a, we assess grasping
success over 20 real-world trials using policies trained on varying numbers of demonstrations. These
demonstrations are automatically filtered and converted into robot-executable grasp poses using our
Real-to-Sim pipeline.

The training dataset size ranges from 255 to 6,386 grasp poses, extracted from 1 to 40 unique human
video demonstrations. Our results show a clear positive correlation between demonstration count
and grasping success rate: with just a handful of examples, the policy struggles to generalize and
frequently fails to stabilize the object. However, as the number of demonstrations increases, the
policy gains sufficient exposure to diverse object configurations and interaction patterns, enabling
more robust and consistent grasps. Figure 9b provides qualitative visualizations of the grasp poses
learned at different data scales. With minimal data, the policy produces suboptimal or unstable grasps,

27



Under review as a conference paper at ICLR 2026

often misaligned with the object’s geometry or balance point. As the dataset grows, the learned poses
become progressively more aligned with physically stable and human-like strategies. These results
underscore the importance of dataset scale in training force-aware grasping policies and highlight the
effectiveness of our system in leveraging human video demonstrations to improve dexterous grasping
performance.

A.3.2 ROBUST MASS IDENTIFICATION ACROSS DIVERSE OBJECTS USING DIFFERENTIABLE
OPTIMIZATION

We present three representative examples of our differentiable mass optimization process in Figure 11,
illustrating its convergence behavior across a diverse set of objects: Cookie, Lego, and Ketchup. In all
cases, the optimization begins from a deliberately underestimated initial mass of 2 g—approximately
100x, 350x, and 30x smaller than the ground-truth masses for the Cookie, Lego, and Ketchup,
respectively.

For the Cookie object, which has moderate mass and contact dynamics, the optimization converges
smoothly to the correct value despite the large initial gap. This demonstrates the robustness of
our engine under mild mass discrepancies. In the case of the Lego object, which features a small
contact surface and lower inertia, the large initial error induces an early overshoot. Nonetheless, the
gradient-based optimizer is able to recover and guide the system toward the correct mass value within
a stable number of iterations. The Ketchup bottle presents the most challenging case due to its high
mass and complex geometry. The significant mismatch between the initial and true mass results in
a high initial loss. However, by applying an adaptive learning rate and increasing the number of
training epochs, the system successfully converges to an accurate mass estimate.

These examples collectively highlight the flexibility and effectiveness of our differentiable engine.
Regardless of the object’s scale or dynamic properties, our method reliably refines mass estimates
from poor initializations, enabling physically grounded simulation essential for force-aware policy
learning.

A.3.3 SCOPE, LIMITATIONS, AND PATH TO GENERAL POLICIES.

These results highlight the flexibility of our engine while clarifying its scope. Generalization currently
depends on (i) accurate mesh reconstruction and mass identification and (ii) task setups whose contact
conditions are well approximated by our rigid-body simulator. The present policies remain object-
specific; however, conditioning on an estimated mass offers a plug-in signal that can be combined
with architectures designed for category-level or multi-object training (e.g., Zhang et al. (2024c))
to obtain more general policies when suitable demonstrations are available. Grounding learning in
human demonstrations and targeted parameter identification reduces reliance on hand-engineered
rewards and large-scale robot-collected datasets, enabling data-efficient transfer across tasks.

Table 5: Cross-object generalization from a larger to a smaller electric screwdriver. The policy is
trained on five human demonstrations and conditioned on object mass and reconstructed mesh.

Training Object Test Object Success Rate
10x3x3cm, 600g 7x2x2cm, 500g 90% — 70%

A.3.4 MASS-AWARE LEARNING VS. DOMAIN-RANDOMIZED RL

We compare D-REX—trained from human demonstrations and conditioned on accurately inferred
object mass—against CrossDex Yuan et al. (2024), a reinforcement-learning baseline using domain
randomization (DR). CrossDex randomizes mass in the range 0.5—1.5 kg during training and reports
an 89% success rate in simulation.

To isolate the effect of mass, we evaluate on a family of Symbol Y objects that share identical geometry
but differ in mass: 117 g, 206 g, and 324 g (i.e., 0.117, 0.206, and 0.324 kg). Notably, all three test
masses lie below the CrossDex training range. As summarized in Table 6, CrossDex performs well
on the heaviest variant and moderately on the medium one, but struggles on the lightest object,
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demonstrations for robust performance.

Figure 9: Scaling performance of our force-aware grasping policy with increasing number of
demonstrations.

illustrating DR’s sensitivity when deployed on out-of-distribution (OOD) mass values, especially far
from the training support.

In contrast, D-REX leverages low-cost human demonstrations to infer object mass and conditions the
policy accordingly, enabling targeted adaptation without additional randomized training. The result is
consistently high success across all three masses, despite the OOD shift relative to the DR baseline’s
training range.

Table 6: Real-world grasp success across mass variants of a single object geometry (Symbol Y); 10
trials per condition. CrossDex was trained with mass randomization in [0.5, 1.5] kg; all test masses
are below this range. Higher is better.

Method 117 g (Light) 206 g (Medium) 324 g (Heavy)
CrossDex 4/10 7/10 9/10
Ours 9/10 10/10 9/10

These results suggest two complementary points: (i) Domain Randomization can yield strong
performance within or near its training support but degrades for larger OOD mass shifts (e.g.,
very light objects), and (ii) explicit, mass-aware conditioning provides a simple and data-efficient
mechanism for robust transfer across mass variation without requiring broad randomization. While
Domain Randomization and mass-aware learning are not mutually exclusive, our findings indicate
that accurate parameter identification is a powerful lever for real-world generalization, particularly
when deployment conditions fall outside the range covered by domain randomization.

A.4 LEARNING PHYSICAL PARAMETERS BEYOND MASS AND HANDLING FRAGILE OBJECTS

We focus on estimating object mass because it admits a clear ground truth, is straightforward to
validate experimentally, and exerts an immediate and observable influence on grasping performance
(e.g., grasp failures due to underactuation). While it is in principle feasible to learn additional physical
parameters—such as friction, stiffness, or damping—we prioritize mass owing to its measurability,
stability across settings, and direct relevance to grasp dynamics. Moreover, mass variation can be
applied systematically across diverse objects, which enables a controlled assessment of generalization
across geometries and densities.

Prior work has explored learning richer sets of physical properties in simulation (e.g., gradSim Jataval-
labhula et al. (2021b)) and dense object attributes from visual observations (e.g., Xu et al. (2019)).
However, reliable real-world validation of such parameters remains substantially more challenging
due to contact dependence, spatial and temporal variability, and sensitivity to surface conditions.
Consequently, extending parameter learning beyond mass is outside the scope of the present study.

In our current D-REX engine, rigid-body dynamics are assumed and object mass is the sole learnable
physical parameter. This design choice serves two purposes: (i) it isolates the causal role of mass in
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Figure 10: Quantitative Results of Object Grasping trained on the heavy one. Only the mass-
matched policy achieves stable grasps, while mismatched ones fail due to excessive or insufficient
force, causing bounce-off for lighter objects or slippage for heavier ones.
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Figure 11: Mass-Loss curves. We present three examples of our system applied to mass identification.
The blue curves represent the estimated masses, all of which converge reliably to the ground-truth
values, demonstrating the accuracy of our approach.

dexterous grasping and (ii) it demonstrates that D-REX can recover this key quantity directly from
data. The policy is conditioned on demonstrations for the same object, making it object-specific
rather than fully general. For broader generalization, the mass-estimation module can be used as
a plug-in: estimate an object’s mass and then fine-tune (or condition) a task policy on the inferred
value.

For objects that are too fragile to tolerate pushing, we do not attempt to learn additional contact
parameters. Instead, we employ lower-force grasping strategies to reduce contact uncertainty—for
example, rolling or reorientation while following a predefined orientation trajectory (via quater-
nion slerp) Xu et al. (2019)—thereby limiting impulsive interactions without requiring explicit
estimation of frictional properties.

Finally, after the real-to-sim alignment step, execution proceeds without external human intervention
in the physical scene. This assumption preserves consistency with the Lagrangian rigid-body dynam-
ics underlying our simulator and cleanly attributes observed performance differences to the learned
mass parameter rather than to uncontrolled external corrections.

30



Under review as a conference paper at ICLR 2026

A.5 ON THE GENERALIZATION OF D-REX

As noted in our limitations, the current policy is object-specific: training and evaluation assume
that the object’s mass is consistently identified and transferred between simulation and the real
system. Nevertheless, we examine the extent to which D-REX exhibits cross-object and cross-task
generalization under this assumption.

Within-category, cross-object transfer. To assess transfer within a category, we collected twenty
human demonstration episodes for a larger electric screwdriver and trained a policy conditioned on
its reconstructed mesh and mass. At test time, without any fine-tuning, we replaced the mesh and
mass with those of a smaller screwdriver from the same category and executed the policy for 10 trials.
As summarized in Table 5, the policy maintained stable performance with only a minor decrease in
success rate, indicating that D-REX generalizes across moderate variations in geometry and mass
within a category. Qualitative rollouts are provided on the anonymous project website.

Beyond grasping: articulated and fine-grained tasks. To probe broader applicability, we eval-
uated D-REX on more complex grasping scenarios, including articulated-object interactions (e.g.,
opening a refrigerator door, operating a stapler) and fine-grained tasks (e.g., manipulating a computer
mouse). For each task, we used 5-10 human demonstrations processed through the same real-to-sim
pipeline, but for the articulated object digital asset creation, we manually perform the segmentation
and re-assembly, with mass identification integrated into training. We find that, provided the recon-
structed simulation captures the salient articulated structure and task-relevant geometry, the policy
transfers reliably to these settings, suggesting that D-REX is not limited to grasping but can support a
wider class of object interactions.

A.6 PERFORMANCE DEGRADATION OF THE BASELINE

The primary cause of the baseline’s degraded performance is the absence of explicit force (or
impedance) control combined with a narrow training mass distribution. Both Human2Sim2Robot
and DexGraspNet 2.0 Zhang et al. (2024c) were trained entirely in simulation with object masses
concentrated around ~0.1 kg. When deployed on substantially heavier items (e.g., Spam, Ketchup,
Nutella), which lie outside this training distribution, the controller applies essentially fixed or weakly
adaptive grasp forces that are insufficient to prevent slip—i.e., grasp failures due to underactuation.

For a gravity-resisting, frictional grasp, the required normal force per contact grows with the object
weight and inversely with the effective friction coefficient. In a simplified parallel-jaw setting with
two symmetric contacts,

mg

Fz ;

where m is the object mass, g is gravitational acceleration, y is the effective (task-dependent) friction
coefficient, and v > 1 absorbs wrench distribution, contact geometry, and safety margins. If m
is outside the range encountered during training—or is underestimated at deployment—a fixed
position-control policy lacks the ability to scale F}, accordingly, violating the inequality and inducing
slip.

Low-friction surfaces (e.g., plastic wrap or smooth metal) further increase the force requirement by
reducing p, exacerbating failures when the applied force is already marginal. Conversely, lighter
objects are more tolerant to small positioning or force errors and may remain secured despite
suboptimal control. We also observe exceptions where heavier objects succeed due to fortuitous
geometry: for instance, spray-bottle nozzle heads can incidentally create partial form-closure (or
caging) between fingers, partially compensating for insufficient frictional support.

Our method augments the policy with mass-aware force modulation: we estimate object mass from
robotic action and videos and adjust the grasp force (or impedance setpoints) as a function of the
inferred mass at test time. This targeted adaptation restores adequate contact forces on heavier
or otherwise challenging objects, reducing slip and improving success rates. More broadly, these
findings underscore the necessity of mass-conditioned control for robust, generalizable dexterous
grasping across diverse real-world objects and surface conditions.
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A.7 REASON TO BUILD UP ACCURATE DIGITAL TWIN

Building accurate digital twins and applying domain randomization are two complementary strategies
for bridging the sim and real gap, each offering distinct advantages depending on the task and
deployment context. Accurate digital twins aim to faithfully reproduce real-world physical and visual
fidelity, etc. enabling: 1) Precise policy evaluation and benchmarking under realistic dynamics, 2)
System identification, particularly for contact-rich tasks or sensitive physical parameters such as
mass and friction, 3) Gradient-based optimization of physical properties or control strategies, which
requires differentiable and realistic simulation feedback.

Our approach extends beyond visual or geometric digital twins by incorporating differentiable system
identification to capture underlying physics—a long-standing challenge in robotics and graphics. This
enables more accurate and efficient parameter adaptation, improving both realism and policy transfer.
We view digital twins and domain randomization as complementary tools, with high-fidelity modeling
serving to support informed adaptation in contact-rich or dynamic scenarios where randomization
alone may overlook critical constraints.

A.8 RELATIONSHIP BETWEEN MASS IDENTIFICATION AND FORCE-BASED POLICY
LEARNING

We deliberately decouple mass identification from policy learning to isolate the causal role of
mass in sim-to-real transfer and to enable clean evaluation. Concretely, from a small set of human
demonstrations and robot grasping D we estimate a scalar mass

m = argmin Liq(m; D),
m
and then train a control policy that is explicitly conditioned on this estimate,
u = mo(x,m),

where x denotes the robot/object state and u the control command. This two-stage design avoids
confounding between parameter estimation and control optimization, making it possible to attribute
downstream performance changes specifically to the accuracy of 7.

Conditioning the policy on m enables explicit modulation of force or impedance setpoints and
of feedforward gravity terms (e.g., u D ¢(g;7)). In practice, we scale grasp-force targets and
compliance parameters as functions of 7, which restores adequate contact forces on heavier objects
while avoiding unnecessarily high forces on lighter ones. The result is improved robustness across a
broad mass range without requiring extensive re-training.

A.9 SYSTEM SUBMODULES AND LIMITATIONS

Prior differentiable real-to-sim approaches (e.g., Chen et al. (2025b)) typically rely on rich robot
proprioception (e.g., motor torque sensing) and tight hardware calibration to perform system identifi-
cation. Such requirements limit deployability outside well-instrumented labs and differ substantially
from our setting. By contrast, we pursue vision-driven identification that uses only externally ob-
served signals, which we find more accessible and scalable in practice. Accordingly, we evaluate
against ground-truth physical measurements (e.g., mass) rather than sim-only metrics, providing a
direct assessment of real-world fidelity. To our knowledge, few real-to-sim engines offer end-to-end
differentiability that remains practical at deployment time; those that do often require assumptions
that are difficult to satisfy in unstructured environments.

Our pipeline leverages FoundationPose Wen et al. (2024) as a robust 6-DoF pose estimator. These
poses serve as the primary observation signal for identification and control, replacing the need for
onboard torque sensing. We combine these estimates with a differentiable physics engine (MJX)
operating on real2sim-generated MJCF assets, which supply geometry, inertial properties, and contact
models.

Gradsim Jatavallabhula et al. (2021b) is designed for System Identification using rendered image
observations from simulation, combining state-based and photometric losses. Our setting differs in
two fundamental ways:
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Real-world, partial observations. We operate directly on real videos and 6-DoF object poses esti-
mated by FoundationPose Wen et al. (2024). Rather than assuming access to full simulator state and
gradients as in Jatavallabhula et al. (2021b), we estimate physical parameters (e.g., mass) from partial,
noisy observations by minimizing state-space trajectory error over time in a differentiable simulator.
Photometric supervision is impractical in our setup. Applying Jatavallabhula et al. (2021b) would
require carefully controlled lighting, calibrated cameras, and often even 3D-printed objects with
known properties to obtain reliable photometric losses. We explored using 4D Gaussian Splatting to
synthesize renders for photometric alignment, but optimization was unstable and inaccurate in our
scenes, reinforcing the limitations of purely image-based losses for physical deployment. Physics-
constrained identification. In our engine, the differentiable simulator acts as a numerical solver
obeying physical laws. Given known robot inputs (e.g., commanded joint trajectories) and accurate
initial/boundary conditions from Real2Sim, we pose mass estimation as a constrained optimization
problem: find the parameter values that best reproduce observed FoundationPose trajectories.

For these reasons, we do not treat Jatavallabhula et al. (2021b) as a competing baseline in our
evaluation. Instead, we reuse its differentiable rendering mechanism internally while MJX provides
the physical kinematic and dynamic of robotic hand.

Modularity, robustness, and extensibility. Our system is intentionally modular: (i) pose estimation
(FoundationPose Wen et al. (2024)); (ii) asset generation and scene reconstruction (Real2Sim) Lou
et al. (2024); Ye et al. (2024b;c); (iii) differentiable physics (MJX,Gradsim) Jatavallabhula et al.
(2021b); Todorov et al. (2012); and (iv) policy learning. Similar multi-component designs are
common in robotics and vision system work Pfaff et al. (2025); Andrychowicz et al. (2020) because
they enable targeted improvements, swapping of submodules as better tools emerge, and reusability
of well-validated components. We do not treat these modules as black boxes; rather, we select them
based on empirical reliability and integrate them with sanity checks and data filtering.

Data strategy and practicality. We rely on human demonstration videos as the primary supervision
signal for policy learning. Such videos are inexpensive and widely accessible (e.g., public internet
platforms and existing datasets), dramatically reducing the collection burden compared to robot-
executed demonstrations or reinforcement learning, which often require hand-engineered rewards and
long training cycles. Occasional failures of individual submodules (e.g., transient pose estimation
errors) typically result only in filtering out a small fraction of low-quality demonstrations; overall
effectiveness is maintained through scale. The combination of scalable supervision with differentiable
real-to-sim identification yields a practical and extensible pathway toward robust sim-to-real transfer.

Limitations. The D-REX framework currently only supports rigid-body dynamics and relies solely
on mass as the primary learnable parameter. Once the real-to-sim stage concludes, our simulation
engine requires the absence of human interaction with the real-world operation scene to maintain
consistency under the assumed Lagrangian dynamics framework.

A.10 LLM USAGE
We employed large language models solely for grammatical refinement and stylistic polishing of the

manuscript. No part of the conceptualization, experimental design, implementation, or analysis relied
on these models.
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A.11 Li1ST OF NOTATIONS

Symbol Description

I Scene-centric RGB video sequences

I, Object-centric RGB video sequences

{I,}YE, Human demonstration RGB video sequences
{s}T | Real-world object trajectories

{s$m}T, Simulated object trajectories

m Optimized object mass

m Force-aware grasping policy

S Simulation environment representation (MJCF)
K Collision mesh for object geometry

0 Physical simulation parameters

P Gaussian splatting particles for visual appearance
St Object’s state at timestep ¢ (position and orientation)
Uy Object’s velocity at timestep ¢

Ut Linear velocity component at timestep ¢

Wy Angular velocity component at timestep ¢

M Mass-inertia matrix

f External and contact forces

fn Contact force vector

ke, kq Contact stiffness and damping parameters

G(") Discrete-time update function

At Simulation timestep

Ly Trajectory loss function

hy Human hand pose at timestep ¢

Ot Object pose at timestep ¢

Ay Robot action at timestep ¢

T Learned grasping policy (parameterized by ¢)
A Predicted robot joint positions

& Predicted contact constraint

f Predicted grasping force constraint

Tactive Number of active contacts between robot and object
P Object density parameter
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