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Abstract

Temporal Graph Neural Networks have garnered substantial attention for their ca-
pacity to model evolving structural and temporal patterns while exhibiting impres-
sive performance. However, it is known that these architectures are encumbered by
issues that constrain their performance, such as over-squashing and over-smoothing.
Meanwhile, Transformers have demonstrated exceptional computational capacity
to effectively address challenges related to long-range dependencies. Consequently,
we introduce Todyformer—a novel Transformer-based neural network tailored
for dynamic graphs. It unifies the local encoding capacity of Message-Passing
Neural Networks (MPNNs) with the global encoding of Transformers through
i) a novel patchifying paradigm for dynamic graphs to improve over-squashing,
ii) a structure-aware parametric tokenization strategy leveraging MPNNs, iii) a
Transformer with temporal positional-encoding to capture long-range dependen-
cies, and iv) an encoding architecture that alternates between local and global
contextualization, mitigating over-smoothing in MPNNs. Experimental evaluations
on public benchmark datasets demonstrate that Todyformer consistently outper-
forms the state-of-the-art methods for downstream tasks. Furthermore, we illustrate
the underlying aspects of the proposed model in effectively capturing extensive
temporal dependencies in dynamic graphs.

1 Introduction

Dynamic graphs, driven by the surge of large-scale structured data on the internet, have become
pivotal in graph representation learning. Dynamic graphs are simply static graphs where edges have
time attributes Kazemi et al. [2020]. Representation learning approaches for dynamic graphs aim to
learn how to effectively encode recurring structural and temporal patterns for node-level downstream
tasks. For instance, Future Link Prediction (FLP) uses past interactions to predict future links, while
Dynamic Node Classification (DNC) focuses on predicting labels of upcoming nodes based on
impending interactions. While models based on Message-Passing Neural Networks (MPNN) Gilmer
et al. [2017] have demonstrated impressive performance on encoding dynamic graphs Rossi et al.
[2020], Wang et al. [2021], Jin et al. [2022], Luo and Li [2022], many approaches have notable
limitations. Primarily, these methods often rely heavily on chronological training or use complex
memory modules for predictions Kumar et al. [2019], Xu et al. [2020], Rossi et al. [2020], Wang
et al. [2021], leading to significant computational overhead, especially for dynamic graphs with many
edges. Additionally, the use of inefficient message-passing procedures can be problematic, and some
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methods depend on computationally expensive random-walk-based algorithms Wang et al. [2021],
Jin et al. [2022]. These methods often require heuristic feature engineering, which is specifically
tailored for edge-level tasks.

Moreover, there is a growing consensus within the community that the message-passing paradigm
is inherently constrained by the hard inductive biases imposed by the graph structure Kreuzer et al.
[2021]. A central concern with conventional MPNNs revolves around the over-smoothing problem
stemmed from the exponential growth of the model’s computation graph Dwivedi and Bresson [2020].
This issue becomes pronounced when the model attempts to capture the higher-order long-range
aspects of the graph structure. Over-smoothing hurts model expressiveness in MPNNs where the
network depth grows in an attempt to increase expressiveness. However, the node embeddings
tend to converge towards a constant uninformative representation. This serves as a reminder of the
lack of flexibility observed in early recurrent neural networks used in Natural Language Processing
(NLP), especially when encoding lengthy sentences or attempting to capture long-range dependencies
within sequences Hochreiter and Schmidhuber [1997]. However, Transformers have mitigated these
limitations in various data modalities Vaswani et al. [2017], Devlin et al. [2018], Liu et al. [2021],
Dosovitskiy et al. [2020], Dwivedi and Bresson [2020]. Over-squashing is another problem that
message-passing networks suffer from since the amount of local information aggregated repeatedly
increases proportionally with the number of edges and nodes Hamilton [2020], Topping et al. [2021].

To address the aforementioned learning challenges on dynamic graphs, we propose Todyformer
—a novel Graph Transformer model on dynamic graphs that unifies the local and global message-
passing paradigms by introducing patchifying, tokenization, and encoding modules that collectively
aim to improve model expressiveness through alleviating over-squashing and over-smoothing in
a systematic manner. To mitigate the neighborhood explosion (i.e, over-squashing), we employ
temporal-order-preserving patch generation, a mechanism that divides large dynamic graphs into
smaller dynamic subgraphs. This approach breaks the larger context into smaller subgraphs suitable
for local message-passing, instead of relying on the model to directly analyze the granular and
abundant features of large dynamic graphs.

Moreover, we adopt a hybrid approach to successfully encode the long-term contextual information,
where we use MPNNs for tasks they excel in, encoding local information, while transformers handle
distant contextual dependencies. In other words, our proposed architecture adopts the concept
of learnable structure-aware tokenization, reminiscent of the Vision Transformer (ViT) paradigm
Dosovitskiy et al. [2020], to mitigate computational overhead. Considering the various contributions
of this architecture, Todyformer dynamically alternates between encoding local and global contexts,
particularly when capturing information for anchor nodes. This balances between the local and global
computational workload and augments the model expressiveness through the successive stacking of
the MPNN and Transformer modules.

2 Related Work

Representation learning for dynamic graphs: Recently, the application of machine learning to
Continuous-Time Dynamic Graphs (CTDG) has drawn the attention of the graph community Kazemi
et al. [2020]. RNN-based methods such as JODIE Divakaran and Mohan [2020], Know-E Trivedi
et al. [2017], and DyRep Trivedi et al. [2019] typically update node embeddings sequentially as
new edges arrive. TGAT Xu et al. [2020], akin to GraphSAGE Hamilton et al. [2017] and GAT
Veličković et al. [2018], uses attention-based message-passing to aggregate messages from historical
neighbors of an anchor node. TGN Rossi et al. [2020] augments the message-passing with an
RNN-based memory module that stores the history of all nodes with a memory overhead. CAW Wang
et al. [2021] and NeurTWs Jin et al. [2022] abandon the common message-passing paradigm by
extracting temporal features from temporally-sampled causal walks. CAW operates directly within
link streams and mandates the retention of the most recent links, eliminating the need for extensive
memory storage. Moreover, Souza et al. [2022] investigates the theoretical underpinnings regarding
the representational power of dynamic encoders based on message-passing and temporal random
walks. DyG2Vec Alomrani et al. [2022] proposes an efficient attention-based encoder-decoder
MPNN that leverages temporal edge encoding and window-based subgraph sampling to regularize
the representation learning for task-agnostic node embeddings. GraphMixer Cong et al. [2023]
simplifies the design of dynamic GNNs by employing fixed-time encoding functions and leveraging
the MLP-Mixer architecture Tolstikhin et al. [2021].
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Figure 1: Illustration of Todyformer encoding-decoding architecture.

Graph Transformers: Transformers have been demonstrating remarkable efficacy across diverse
data modalities Vaswani et al. [2017], Dosovitskiy et al. [2020]. The graph community has recently
started to embrace them in various ways Dwivedi and Bresson [2020]. Graph-BERT Zhang et al.
[2020] avoids message-passing by mixing up global and relative scales of positional encoding.
Kreuzer et al. [2021] proposes a refined inductive bias for Graph Transformers by introducing a soft
and learnable positional encoding (PE) rooted in the graph Laplacian domain, signifying a substantive
stride in encoding low-level graph structural intricacies. Ying et al. [2021] is provably more powerful
than 1-WL; it abandons Laplacian PE in favor of spatial and node centrality PEs. Subsequently,
SAT Chen et al. [2022] argues that Transformers with PE do not necessarily capture structural
properties. Therefore, the paper proposes applying GNNs to obtain initial node representations.
Graph GPS Rampášek et al. [2022] provides a recipe to build scalable Graph Transformers, leveraging
structural and positional encoding where MPNNs and Transformers are jointly utilized to address
over-smoothing, similar to SAT. TokenGT Kim et al. [2022] demonstrates that standard Transformers,
without graph-specific modifications, can yield promising results in graph learning. It treats nodes
and edges as independent tokens and augments them with token-wise embeddings to capture the
graph structure. He et al. [2023] adapts MLP-Mixer Tolstikhin et al. [2021] architectures to graphs,
partitioning the input graph into patches, applying GNNs to each patch, and fusing their information
while considering both node and patch PEs. While the literature adapts Transformers to static graphs,
a lack of attention is eminent on dynamic graphs. In this work, we strive to shed light on such
adaptation in a principled manner and reveal how dynamic graphs can naturally benefit from a unified
local and global encoding paradigm.

3 Todyformer: Tokenized Dynamic Graph Transformer

We begin this section by presenting the problem formulation of this work. Next, we provide the
methodological details of the Todyformer architecture along with its different modules.

Problem Formulation: A CTDG G = (V, E ,XE ,X v) with N = |V| nodes and E = |E| edges
can be represented as a sequence of interactions E = {e1, e2, . . . , eE}, where X v ∈ RN×DV

and
XE ∈ RE×DE

are the node and edge features, respectively. DV and DE are the dimensions
of the node and edge feature space, respectively. An edge ei = (ui, vi, ti,mi) links two nodes
ui, vi ∈ V at a continuous timestamp ti ∈ R, where mi ∈ XE is an edge feature vector. Without
loss of generality, we assume that the edges are undirected and ordered by time (i.e., ti ≤ ti+1). A
temporal sub-graph Gij is defined as a set consisting of all the edges in the interval [ti, tj ], such that
Eij = {ek | ti ≤ tk < tj}. Any two nodes can interact multiple times throughout the time horizon;
therefore, G is a multi-graph. Following DyG2Vec Alomrani et al. [2022], we adopt a window-based
encoding paradigm for dynamic graphs to control representation learning and balance the trade-off
between efficiency and accuracy according to the characteristics of the input data domain. The
parameter W controls the size of the window for the input graph Gij , where j = i+W . For notation
brevity, we assume the window mechanism is implicit from the context. Hence, we use G as the input
graph unless explicit clarification is needed.
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Figure 2: Schematic depiction of the computation flow in the local and global encoding modules,
particularly highlighting node packing and unpacking modules in Todyformer.

Based on the downstream task, the objective is to learn the weight parameters θ and γ of a dynamic
graph encoder fθ and decoder gγ respectively. fθ projects the input graph G to the node embeddings
H ∈ RN×DH

, capturing temporal and structural dynamics for the nodes. Meanwhile, a decoder gγ
outputs the predictions given the node embeddings for the downstream task, enabling accurate future
predictions based on past interactions. More specifically: H = fθ(G) , Z = gγ(H) , Here, Z
represents predictions for the ground-truth labels. In this work, we focus on common downstream
tasks defined similarly to Alomrani et al. [2022] for training and evaluation: i) Future Link Prediction
(FLP) and ii) Dynamic Node Classification (DNC).

3.1 Encoder Architecture

Todyformer consists of L blocks of encoding fθ = {(ul, vl)}Ll=0 where u = {ul}Ll=0 and v = {vl}Ll=0
are the sets of local and global encoding modules, respectively. As illustrated in Figure 1, the encoding
network of Todyformer benefits from an alternating architecture that alternates between local and
global message-passing. The local encoding is structural and temporal, according to the learnable
tokenizer, and the global encoding in this work is defined to be temporal. We leave the structural and
temporal global encoding for future work. In the following, we define each encoding module in more
detail.

3.2 Patch Generation

Inspired by Dosovitskiy et al. [2020], Todyformer begins by partitioning a graph into M subgraphs,
each containing an equal number of edges. This partitioning is performed based on the timestamp
associated with each edge. Specifically, the patchifier p evenly segments the input graph G with
E = {e1, e2, . . . , eE} edges into M non-overlapping subgraphs of equal size, referred to as patches.
More concretely:

P = p(G;M) (1)

where P = {Gm |m ∈ {1, 2, ..., E
M }} and the m-th graph, denoted as Gm, consists of edges with

indices in the range {(m−1) E
M +1, · · · ,m E

M }. Partitioning the input graph into M disjoint subgraphs
helps message-passing to be completely separated within each patch. Additionally, M manages the
trade-off between alleviating over-squashing and maintaining the tokenizer’s expressiveness. Through
ablation studies, we empirically reveal how different datasets react to various M values.

3.3 Local Encoding: Structure-Aware Tokenization

Local encoding ul = (sl, c) contains two modules: the tokenization sl and the packing c modules.
The former handles local tokenization, and the latter packs tokens into a sequential data structure that
will be consumed by the global encoder.

Structure-Aware Tokenization: Following the recent trend in Graph Transformers, where tokeniza-
tion is structure-aware, local encoding in Todyformer utilizes a dynamic GNN to map the input node
embeddings to the latent embeddings that a Transformer will process later on. It should be noted
that the tokenizer has learnable parameters to encode both structural and temporal patterns in the
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patches. Without loss of generality, we use DyG2Vec Alomrani et al. [2022] as a powerful attentive
message-passing model to locally encode input features into semantically meaningful node tokens.

Hl = sl(⪯Hl−1) (2)

where Hl = {H l
i}

M−1
i=0 is the set of node embeddings Hi for M different patches, and ⪯Hl−1 is the

set of node embeddings computed by the previous block. As illustrated in Figure 1, the output of
one block from the global encoder is transferred as the input into the local encoder of the subsequent
block. It should be noted that ⪯H0 = X for the first layer, where X = {Xi}M−1

i=0 is the set of node
features for all patches.

Packing: Once the node features are locally encoded into node tokens, the next step is to pack the
set of node embeddings Hl into the standard format required by Transformers. Since a node may
appear in multiple patches, to collect all the node embeddings for a particular node across the patches,
a node-packing module c is utilized. This module collects the embeddings of all nodes across the
patches and arranges them in a sequential data format as follows:

H l = c(Hl,P) (3)

where H l ∈ RN×M×DH

such that N is the number of nodes in the input graph G, M is the total
number of patches, and DH is the dimension of the embedding space. The module c uses P to figure
out which patches a node belongs to. Consequently, the output of the local encoding module is
structured in a tensor that can be easily consumed by a Transformer. The computation flow in the
local encoder is shown in Figure 2. Since nodes may have interactions for a variable number of times
in the input graph, it is necessary to pad the short sequences with the [MASK] tokens at the end. Then,
the mini-batch of sequences can be easily packed into a dense tensor and fed as input to Transformers.

3.4 Global Encoding

The packed node tokens will be fed into the global encoding module to perform long-range message-
passing beyond the local context of the input patches. Therefore, Todyformer not only maximizes the
parametric capacity of MPNNs to encode local context but also leverages the long-range capacities of
Transformers to improve the model expressiveness. The global encoder vl = (ol, rl, nl) consists of
the positional encoder ol, Transformer rl, and unpacking module nl according to the details provided
in the following.

Positional Encoding: Transformers are aware of the ordering in the input sequences through
positional encoding. Various systematic approaches have been investigated in the literature for the
sake of improved expressiveness [Dwivedi and Bresson, 2020, Kreuzer et al., 2021]. Once the
structural and temporal features are locally mapped into node tokens, and the sequential input H l is
packed at layer l, positional encoding is needed to inform the Transformer of the temporal ordering
of the node tokens on a global scale. The positional encoding in Todyformer is defined based on
the notion of the position and the encoding function. The position can be explicitly defined as the
global edge index of a node upon an interaction at a timestamp or implicitly defined as the patch or
occurrence indices. The encoding function can be a linear or sinusoidal mapping. The PE is fused
into the packed node embeddings through the addition modulation, as follows:

H l = H l + P, P = o(P) ∈ RN×M×DH

(4)

Transformer: The global encoding updates node embeddings through a dot-product Multi-head
Self-Attention (MSA) Transformer architecture as follows:

H̄ l = rl(H l), rl = Transformer(Q,K, V ) = softmax
(QKT

√
dk

)
V (5)

where Q = H lWq ∈ RN×Dk

, K = H lWk ∈ RN×Dk

, and V = H lWv ∈ RN×Dv

are the query,
key, and value, respectively, and Wq, Wk ∈ RDH×Dk

and Wv ∈ RDH×Dv

are learnable matrices.
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Table 1: Future Link Prediction Performance in AP (Mean ± Std) on the test set.

Setting Model MOOC LastFM Enron UCI SocialEvol.

Tr
an

sd
uc

tiv
e JODIE 0.797± 0.01 0.691± 0.010 0.785± 0.020 0.869± 0.010 0.847± 0.014

DyRep 0.840± 0.004 0.683± 0.033 0.795± 0.042 0.524± 0.076 0.885± 0.004
TGAT 0.793± 0.006 0.633± 0.002 0.637± 0.002 0.835± 0.003 0.631± 0.001
TGN 0.911± 0.010 0.743± 0.030 0.866± 0.006 0.843± 0.090 0.966± 0.001
CaW 0.940± 0.014 0.903± 1e−4 0.970± 0.001 0.939± 0.008 0.947± 1e−4
NAT 0.874± 0.004 0.859± 1e−4 0.924± 0.001 0.944± 0.002 0.944± 0.010

GraphMixer 0.835± 0.001 0.862± 0.003 0.824± 0.001 0.932± 0.006 0.935± 3e−4
Dygformer 0.892± 0.005 0.901± 0.003 0.926± 0.001 0.959± 0.001 0.952± 2e−4
DyG2Vec 0.980± 0.002 0.960± 1e−4 0.991± 0.001 0.988± 0.007 0.987± 2e−4

Todyformer 0.992± 7e−4 0.976± 3e−4 0.995± 6e−4 0.994± 4e−4 0.992± 1e−4

In
du

ct
iv

e

JODIE 0.707± 0.029 0.865± 0.03 0.747± 0.041 0.753± 0.011 0.791± 0.031
DyRep 0.723± 0.009 0.869± 0.015 0.666± 0.059 0.437± 0.021 0.904± 3e−4
TGAT 0.805± 0.006 0.644± 0.002 0.693± 0.004 0.820± 0.005 0.632± 0.005
TGN 0.855± 0.014 0.789± 0.050 0.746± 0.013 0.791± 0.057 0.904± 0.023
CaW 0.933± 0.014 0.890± 0.001 0.962± 0.001 0.931± 0.002 0.950± 1e−4
NAT 0.832± 1e−4 0.878± 0.003 0.949± 0.010 0.926± 0.010 0.952± 0.006

GraphMixer 0.814± 0.002 0.821± 0.004 0.758± 0.004 0.911± 0.004 0.918± 6e−4
Dygformer 0.869± 0.004 0.942± 9e−4 0.897± 0.003 0.945± 0.001 0.931± 4e−4
DyG2Vec 0.938± 0.010 0.979± 0.006 0.987± 0.004 0.976± 0.002 0.978± 0.010

Todyformer 0.948± 0.009 0.981± 0.005 0.989± 8e−4 0.983± 0.002 0.9821± 0.005

We apply an attention mask to enforce directed connectivity between node tokens through time,
where a node token from the past is connected to all others in the future. The Transformer module is
expected to learn temporal inductive biases from the context on how to deploy attention on recent
interactions versus early ones.

Unpacking: For intermediate blocks, the unpacking module nl is necessary to transform the packed,
unstructured sequential node embeddings back into the structured counterparts that can be processed
alternately by the local encoder of the next block. It is worth mentioning that the last block L does
not require an unpacking module. Instead, a readout function e is defined to return the final node
embeddings consumed by the task-specific decoding head:

⪯Hl = nl(H̄ l), H̄L = e(H̄L−1) ∈ RN×DH

(6)

where ⪯Hl = {H̄ l
i}

M−1
i=0 is the set of node embeddings H̄i for M different patches, e is the readout

function, and DH is the dimension of the output node embeddings. The readout function is defined
to be a MAX, MEAN, or LAST pooling layer.

3.5 Improving Over-Smoothing by Alternating Architecture

Over-smoothing is a critical problem in graph representation learning, where MPNNs fall short in
encoding long-range dependencies beyond a few layers of message-passing. This issue is magnified
in dynamic graphs when temporal long-range dependencies intersect with structural patterns. MPNNs
typically fall into the over-smoothing regime beyond a few layers (e.g., 3), which may not be
sufficient to capture long-range temporal dynamics. We propose to address this problem by letting the
Transformer widen up the temporal contextual node-wise scope beyond a few hops in an alternating
manner. For instance, a 3-layer MPNN encoder can reach patterns up to 9 hops away in Todyformer.

4 Experimental Evaluation

In this section, we evaluate the generalization performance of Todyformer through a rigorous empirical
assessment, spanning a wide range of benchmark datasets across the downstream tasks. First, the
experimental setup is explained and a comparison with state-of-the-art (SoTA) on dynamic graphs is
given. Next, the quantitative results are presented. Later, in-depth comparative analysis and ablation
studies are provided to further highlight the role of the design choices in this work.

4.1 Experimental Setup

Baselines: The performance of Todyformer is compared with a wide spectrum of dynamic graph
encoders, ranging from random-walk based to attentive memory-based approaches: DyRep [Trivedi
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Table 2: Future Link Prediction performance on the test set of TGBL datasets measured using Mean
Reciprocal Rank (MRR). The baseline results are directly taken from Huang et al. [2023].

Model Wiki Review Coin Comment Flight Avg. Rank ↓
Dyrep 0.366± 0.014 0.367± 0.013 0.452± 0.046 0.289± 0.033 0.556± 0.014 4.4
TGN 0.721± 0.004 0.532± 0.020 0.586± 0.037 0.379± 0.021 0.705± 0.020 2
CAW 0.791± 0.015 0.194± 0.004 OOM OOM OOM 4.4
TCL 0.712± 0.007 0.200± 0.010 OOM OOM OOM 4.8

GraphMixer 0.701± 0.014 0.514± 0.020 OOM OOM OOM 4.4
EdgeBank 0.641 0.0836 0.1494 0.364 0.580 4.6

Todyformer 0.7738± 0.004 0.5104± 86e−4 0.689± 18e−4 0.762± 98e−4 0.777± 0.014 1.6

et al., 2019], JODIE [Kumar et al., 2019], TGAT [Xu et al., 2020], TGN [Rossi et al., 2020],
CaW [Wang et al., 2021], NAT Luo and Li [2022], and DyG2Vec Alomrani et al. [2022]. CAW
samples temporal random walks and learns temporal motifs by counting node occurrences in each
walk. NAT constructs temporal node representations using a cache that stores a limited set of historical
interactions for each node. DyG2Vec introduces a window-based MPNN that attentively aggregates
messages in a window of recent interactions. Recently, GraphMixer Cong et al. [2023] as a simple
yet effective MLP-Mixer-based dynamic graph encoder. Dygformer Yu et al. [2023] also presents a
Transformer architecture that encodes the one-hop node neighborhoods.

Downstream Tasks: We evaluate all of the models on both FLP and DNC. In FLP, the goal is to
predict the probability of future edges occurring given the source and destination nodes, and the
timestamp. For each positive edge, we sample a negative edge that the model is trained to predict
as negative. The DNC task involves predicting the ground-truth label of the source node of a future
interaction. Both tasks are trained using binary cross entropy loss function. For FLP, we evaluate
all models on the transductive and inductive settings. The latter is a more challenging setting where
a model makes a prediction on unseen nodes. The Average Precision (AP) and the Area Under the
Curve (AUC) metrics are reported for the FLP and DNC tasks respectively. DNC is evaluated on
AUC due to the class imbalance issue.

Datasets: In the first set of experiments, we use 5 real-world datasets for FLP: MOOC, and LastFM
[Kumar et al., 2019]; SocialEvolution, Enron, and UCI [Wang et al., 2021]. Three real-world
datasets including Wikipedia, Reddit, MOOC [Kumar et al., 2019] are used for DNC as well. These
datasets span a wide range of the number of nodes and interactions, timestamp ranges, and repetition
ratios. The dataset statistics are presented in Appendix 6.1 We perform the same 70%-15%-15%
chronological split for all datasets as in [Wang et al., 2021]. The datasets are split differently under
two settings: Transductive and Inductive. All the benchmark datasets are publicly available. We
follow similar experimental setups to Alomrani et al. [2022], Wang et al. [2021] on these datasets to
split into training, validation, and test sets under the transductive and inductive settings.

In the second set of experiments, we evaluate Todyformer on the Temporal Graph Benchmark for
link prediction datasets (TGBL) Huang et al. [2023]. The goal is to target large-scale and real-world
experimental setups with a higher number of negative samples generated based on two policies:
random and historical. The deliberate inclusion of such negative edges aims to address the substantial
bias inherent in negative sampling techniques, which can significantly affect model performance
inference. Among the 5 datasets, 3 are extra-large-scale where model training on a regular setup
may take weeks of processing. We follow the experimental setups similar to Huang et al. [2023] to
evaluate our model on TGBL (e.g., number of trials or negative sampling).

Model Hyperparameters: Todyformer has a large number of hyperparameters to investigate. There
are common design choices such as activation layers, normalization layers, and skip connections that
we assumed the results are less sensitive to in order to dial down the total number of trials. We chose
L = 3 for the number of blocks in the encoder. The GNN and Transformers have 3 and 2 layers
respectively. The neighbor sampler in the local encoder uniformly samples (64, 1, 1) number of
neighbors for 3 hops. The model employs uniform sampling within the window instead of selecting
the latest N neighbors of a node [Xu et al., 2020, Rossi et al., 2020]. For the DNC task, following
prior work Rossi et al. [2020], the decoder is trained on top of the frozen encoder pre-trained on FLP.

4.2 Experimental Results

Future Link Prediction: We present a comparative analysis of AP scores on the test set for future
link prediction (both transductive and inductive) across several baselines in Table 1. Notably, a
substantial performance gap is evident on the transductive setting, with Todyformer outperforming
the second-best model by margins exceeding 1.2%, 1.6%, 0.6%, and 0.5% on the MOOC, LastFM,
UCI, and SocialEvolve datasets, respectively. Despite the large scale of SocialEvolve dataset with
around 2 million edges, our model achieves SoTA performance on this dataset. This observation
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Table 3: Dynamic Node Classification performance in AUC (Mean ± Std) on the test set. Avg. Rank
reports the mean rank of a method across all datasets.

Model Wikipedia Reddit MOOC Avg. Rank ↓
TGAT 0.800± 0.010 0.664± 0.009 0.673± 0.006 3.6
JODIE 0.843± 0.003 0.566± 0.016 0.672± 0.002 4.6
Dyrep 0.873± 0.002 0.633± 0.008 0.661± 0.012 4
TGN 0.828± 0.004 0.655± 0.009 0.674± 0.007 3.3

DyG2Vec 0.824± 0.050 0.649± 0.020 0.785± 0.005 3.3
Todyformer 0.861± 0.017 0.656± 0.005 0.745± 0.009 2

reinforces the conclusions drawn in Xu et al. [2020], emphasizing the pivotal role played by recent
temporal links in the future link prediction task. Within the inductive settings, Todyformer continues
to exhibit superior performance across all datasets. The challenge posed by the prediction of links over
unseen nodes impacts the overall performance of most methods. However, Todyformer consistently
outperforms the baselines’ results on all datasets. These empirical results support the hypothesis
that model expressiveness has been improved significantly while increasing the generalization under
the two experimental settings. Additionally, Todyformer outperforms the two latest SoTA methods
namely GraphMixer Cong et al. [2023] and Dygformer Yu et al. [2023]. The results further validate
that the dynamic graphs require encoding of the long-range dependencies that cannot be simply
represented by the short-range one-hop neighborhoods. This further verifies that multi-scale encoders
like Todyformer are capable of learning the inductive biases across various domains.

Additionally, the performance of Todyformer on 2 small and 3 large TGBL datasets are presented in
Table 2. On extra-large TGBL datasets (Coin, Comment, and Flight), Todyformer outperforms SoTA
with significant margins, exceeding 11%, 39%, and 7% respectively. This interestingly supports the
hypothesis behind the expressive power of the proposed model to scale up to the data domains with
extensive long-range interactions. In the case of smaller datasets like TGBL-Wiki and TGBL-Review,
our approach attains the second and third positions in the ranking respectively. It should be noted
that hyperparameter search has not been exhausted during experimental evaluation. The average
ranking reveals that Todyformer is ranked first, followed by TGN in second place on this challenging
experimental setup.

Dynamic Node classification: Todyformer has undergone extensive evaluation across three datasets
dedicated to node classification. In these datasets, dynamic sparse labels are associated with nodes
within a defined time horizon after interactions. This particular task grapples with a substantial
imbalanced classification challenge. Table 3 presents AUC metric, known for its robustness toward
class imbalance, across various methods on the three datasets. Notably, Todyformer demonstrates
remarkable performance, trailing the best by only 4% in the MOOC dataset and 1% in both the Reddit
and Wikipedia datasets. Across all datasets, Todyformer consistently secures the second-best position.
However, it’s important to acknowledge that no model exhibits consistent improvement across all
datasets, primarily due to the presence of data imbalance issues inherent in anomaly detection tasks
Ranshous et al. [2015]. To establish the ultimate best model, we have computed the average ranks of
various methods. Todyformer emerges as the top performer with an impressive rank of 2 validating
the overall performance improvement.

Ablation Studies and Sensitivity Analysis: In Appendix 6.4, We conducted experiments to assess
the sensitivity of the major hyperparameters across various parameters and datasets.

5 Conclusion

We propose Todyformer, a tokenized graph Transformer for dynamic graphs where over-smoothing
and over-squashing are empirically improved through a local and global encoding architecture. We
present how to adapt the best practices of Transformers in various data domains (e.g. Computer
Vision) to dynamic graphs in a principled manner. Primary novel components are patch generation,
structure-aware tokenization using typical MPNNs that locally encode neighborhoods, and the
utilization of Transformers to aggregate global context in an alternating fashion. The consistent
experimental gains across different experimental settings empirically support the hypothesis that the
SoTA dynamic graph encoders severely suffer from over-squashing and over-smoothing phenomena,
especially on real-world large-scale datasets introduced in TGBL. We hope Todyformer sheds light on
the underlying aspects of dynamic graphs and opens up the door for further principled investigation
on dynamic graph transformers.
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6 Supplementary Material

6.1 Dataset Statistics

In this section, we provide an overview of the statistics pertaining to two distinct sets of datasets
utilized for the tasks of Future Link Prediction (FLP) and Dynamic Node Classification (DNC). The
initial set, detailed in Table 4, presents information regarding the number of nodes, edges, and unique
edges across seven datasets featured in Table 1 and Table 3. For these three datasets, namely Reddit,
Wikipedia, and MOOC, all edge features have been incorporated, where applicable. Furthermore,
within this table, the last column represents the percentage of Repetitive Edges, which signifies the
proportion of edges that occur more than once within the dynamic graph.

Table 4: Dynamic Graph Datasets. % Repetitive Edges: % of edges which appear more than once in
the dynamic graph.

Dataset # Nodes # Edges # Unique Edges Edge Features Node Labels Bipartite % Repetitive Edges

Reddit 11,000 672,447 78,516 ✓ ✓ ✓ 54%
Wikipedia 9,227 157,474 18,257 ✓ ✓ ✓ 48%

MOOC 7,144 411,749 178,443 ✓ ✓ ✓ 53%
LastFM 1980 1,293,103 154,993 ✓ 68%

UCI 1899 59,835 13838 ✓ 62%
Enron 184 125,235 2215 92%

SocialEvolution 74 2,099,519 2506 97%

6.1.1 TGB dataset

In this section, we present the characteristics of datasets as proposed by the Dynamic Graph Encoder
Leaderboard Huang et al. [2023]. Similar to previous benchmark datasets, we have conducted
comparisons regarding the number of nodes, edges, and type of graphs. Additionally, we report the
Number of Steps and the Surprise Index, as defined in Poursafaei et al. [2022], which illustrates the
ratio of test edges that were not observed during the training phase.

Table 5: Statistics of TGBL Dynamic Graph Datasets
Dataset # Nodes # Edges # Steps Edge Features Bipartite Surprise Index Poursafaei et al. [2022]

Wiki 9,227 157,474 152,757 ✓ ✓ 0.108
Review 352,637 4,873,540 6,865 ✓ ✓ 0.987

Coin 638,486 22,809,486 1,295,720 ✓ 0.120
Comment 994,790 44,314,507 30,998,030 ✓ 0.823

Flight 18143 67,169,570 1,385 ✓ 0.024

6.2 Implementation details

In this section, we elucidate the intricacies of our implementation, providing a comprehensive
overview of the specific parameters our model accommodates during hyperparameter optimization.
Subsequently, we delve into a discussion of the optimal configurations and setups that yield the best
performance for our proposed architecture.

Furthermore, in addition to an in-depth discussion of the baselines incorporated into our paper, we also
offer a comprehensive overview of the respective hyperparameter configurations in this section. We
are confident that with the open-sourcing of our code upon acceptance and the thorough descriptions
of our model and baseline methodologies presented in the paper, our work is fully reproducible.

6.2.1 Evaluation Protocol

Transductive Setup: Under the transductive setting, a dataset is split normally by time, i.e., the
model is trained on the first 70% of links, validated on %15 and tested on the rest.

Inductive Setup: In the inductive setting, we strive to test the model’s prediction performance on
edges with unseen nodes. Therefore, following [Wang et al., 2021], we randomly assign 10% of the
nodes to the validation and test sets and remove any interactions involving them in the training set.
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Additionally, to ensure an inductive setting, we remove any interactions not involving these nodes
from the test set.

6.2.2 Loss Function

As previously discussed in the main body of this paper, we focus on two specific downstream tasks:
Future Link Prediction (FLP) and Dynamic Node Classification (DNC). For the former, we employ
the binary cross-entropy loss, while for the latter, our model is trained through the minimization of
the cross-entropy loss function. The formula for the binary cross-entropy loss is presented below:

H(y, ŷ) = − (y · log(ŷ) + (1− y) · log(1− ŷ)) (7)

where y ∈ {0, 1} is the true label, and ŷ is the predicted probability that the instance belongs to class
1. Moreover, the formulation of the cross-entropy loss is as follows:

H(y, ŷ) = −
∑
i

yi · log(ŷi) (8)

where i represents the index over all classes, yi is the true probability of the sample belonging to
class i, encoded as a one-hot vector. It is 1 for the true class and 0 for all other classes. Finally, ŷi is
the predicted probability of the sample belonging to class i.

6.2.3 Best Hyperparameters for Benchmark datasets.

Table 6 displays the hyperparameters that have been subjected to experimentation and tuning for each
dataset. For each parameter, a range of values has been tested as follows:

• Window Size (W): This parameter signifies the window length chosen for selecting the input
subgraph based on edge timestamps. It falls within the range of ∈ { 16384, 32768 ,65536,
262144 }.

• Number of Patches: This parameter indicates the count of equal and non-overlapping chunks
for each input subgraph. It is the range of ∈ {8, 16, 32}.

• #Local Encoders: This parameter represents the number of local encoder layers within each
block, and its value falls within the range of ∈ {1, 2}.

• Neighbor Sampling (NS) mode: ∈ {uniform, last}. In the case of a uniform Neighbor
Sampler (NS), it uniformly selects samples from the 1-hop interactions of a given node.
Conversely, in last mode, it samples from the most recent interactions.

• Anchor Node Mode: ∈ {GlobalTarget, LocalInput, LocalTarget} depending on the
mechanism of neighbor sampling we can sample from nodes within all patches (LocalInput),
nodes within the next patch (LocalTarget), or global target nodes (GlobalTarget).

• Batch Size: ∈ {8, 16, 32, 64}
• Positional Encoding: ∈ {SineCosine, T ime2V ec, Identity, Linear}

Dataset Window Size (W ) Number of Patches #Local Encoders NS Mode Anchor Node Mode Batch Size
Reddit 262144 32 2 uniform GlobalTarget 8

Wikipedia 65536 8 2 uniform GlobalTarget 8
MOOC 65536 8 2 uniform GlobalTarget 8
LastFM 262144 32 2 uniform GlobalTarget 8

UCI 65536 8 2 uniform GlobalTarget 8
Enron 65536 8 2 uniform GlobalTarget 8

SocialEvolution 65536 8 2 uniform GlobalTarget 8
Table 6: Best Parameters of the model pipeline after Hyperparameter search

SineCosine is utilized as the Positional Encoding (PE) method following the experiments conducted
in Appendix 6.4.1.

Selecting Best Checkpoint: Throughout all experiments, the models undergo training for a duration
of 100 epochs, with the best checkpoints selected for testing based on their validation Average
Precision (AP) performance.
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6.2.4 Best Hyperparameters for TGBL dataset

In this section, we present the optimal hyperparameters used in our architecture design for each TGBL
dataset. We conducted hyperparameter tuning for all TGBL datasets; however, due to time constraints,
we explored a more limited set of parameters for the large-scale dataset. Despite Todyformer
outperforming its counterparts on these datasets, there remains potential for further improvement
through an extensive hyperparameter search.

Dataset Window Size (W ) Number of Patches First-hop NS size NS Mode Anchor Node Mode Batch Size
TGBWiki 262144 32 256 uniform GlobalTarget 32

TGBReview 262144 32 64 uniform GlobalTarget 64
TGBComment 65536 8 64 uniform GlobalTarget 256

TGBCOin 65536 8 64 uniform GlobalTarget 96
TGBFlight 65536 8 64 uniform GlobalTarget 128

Table 7: Optimal Window size W for downstream training.

6.3 More Experimental Result

In this section, we present the additional experiments conducted and provide an analysis of the
derived results and conclusions.

6.3.1 FLP result on Benchmark Datasets

Table 8 is an extension of Table 1, now incorporating the Wikipedia and Reddit datasets. Notably,
for these two datasets, Todyformer attains the highest test Average Precision (AP) score in the
Transductive setup. However, it secures the second-best and third-best positions in the Inductive setup
for these Wikipedia and Reddit respectively. While the model does not attain the top position on these
two datasets for inductive setup, its performance is only marginally below that of state-of-the-art
(SOTA) models, which have previously achieved accuracy levels exceeding 99% Average Precision
(AP).

Table 8: Future link Prediction Performance in AP (Mean ± Std). Bold font and ul font represent
first- and second-best performance respectively.

Setting Model Wikipedia Reddit MOOC LastFM Enron UCI SocialEvol.

Tr
an

sd
uc

tiv
e JODIE 0.956± 0.002 0.979± 0.001 0.797± 0.01 0.691± 0.010 0.785± 0.020 0.869± 0.010 0.847± 0.014

DyRep 0.955± 0.004 0.981± 1e−4 0.840± 0.004 0.683± 0.033 0.795± 0.042 0.524± 0.076 0.885± 0.004
TGAT 0.968± 0.001 0.986± 3e−4 0.793± 0.006 0.633± 0.002 0.637± 0.002 0.835± 0.003 0.631± 0.001
TGN 0.986± 0.001 0.985± 0.001 0.911± 0.010 0.743± 0.030 0.866± 0.006 0.843± 0.090 0.966± 0.001
CaW 0.976± 0.007 0.988± 2e−4 0.940± 0.014 0.903± 1e−4 0.970± 0.001 0.939± 0.008 0.947± 1e−4
NAT 0.987± 0.001 0.991± 0.001 0.874± 0.004 0.859± 1e−4 0.924± 0.001 0.944± 0.002 0.944± 0.010

GraphMixer 0.974± 0.001 0.975± 0.001 0.835± 0.001 0.862± 0.003 0.824± 0.001 0.932± 0.006 0.935± 3e−4
Dygformer 0.991± 0.0001 0.992± 0.0001 0.892± 0.005 0.901± 0.003 0.926± 0.001 0.959± 0.001 0.952± 2e−4
DyG2Vec 0.995± 0.003 0.996± 2e−4 0.980± 0.002 0.960± 1e−4 0.991± 0.001 0.988± 0.007 0.987± 2e−4

Todyformer 0.996± 2e−4 0.998± 8e−5 0.992± 7e−4 0.976± 3e−4 0.995± 6e−4 0.994± 4e−4 0.992± 1e−4

In
du

ct
iv

e

JODIE 0.891± 0.014 0.865± 0.021 0.707± 0.029 0.865± 0.03 0.747± 0.041 0.753± 0.011 0.791± 0.031
DyRep 0.890± 0.002 0.921± 0.003 0.723± 0.009 0.869± 0.015 0.666± 0.059 0.437± 0.021 0.904± 3e−4
TGAT 0.954± 0.001 0.979± 0.001 0.805± 0.006 0.644± 0.002 0.693± 0.004 0.820± 0.005 0.632± 0.005
TGN 0.974± 0.001 0.954± 0.002 0.855± 0.014 0.789± 0.050 0.746± 0.013 0.791± 0.057 0.904± 0.023
CaW 0.977± 0.006 0.984± 2e−4 0.933± 0.014 0.890± 0.001 0.962± 0.001 0.931± 0.002 0.950± 1e−4
NAT 0.986± 0.001 0.986± 0.002 0.832± 1e−4 0.878± 0.003 0.949± 0.010 0.926± 0.010 0.952± 0.006

GraphMixer 0.966± 2e−4 0.952± 2e−4 0.814± 0.002 0.821± 0.004 0.758± 0.004 0.911± 0.004 0.918± 6e−4
Dygformer 0.985± 3e−4 0.988± 2e−4 0.869± 0.004 0.942± 9e−4 0.897± 0.003 0.945± 0.001 0.931± 4e−4
DyG2Vec 0.992± 0.001 0.991± 0.002 0.938± 0.010 0.979± 0.006 0.987± 0.004 0.976± 0.002 0.978± 0.010

Todyformer 0.989± 6e−4 0.983± 0.002 0.948± 0.009 0.981± 0.005 0.989± 8e−4 0.983± 0.002 0.9821± 0.005

6.3.2 FLP validation result on TGBL dataset

As discussed in the paper, Todyformer has been compared to baseline methods using the TGBL
dataset. Table 9 represents an extension of Table 2 specifically for validation (MRR). The results
presented in both tables are in line with counterpart methods outlined in the paper by Huang et al.
[2023]. It is important to note that for the larger datasets, TCL, GraphMIxer, and EdgeBank were
found to be impractical due to memory constraints, as mentioned in the paper.
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Table 9: (Validation) Future Link Prediction performance in Validation MRR on TGB Leaderboard
datasets.

Model TGBWiki TGBReview TGBCoin TGBComment TGBFlight Avg. Rank ↓
Dyrep 0.411± 0.015 0.356± 0.016 0.512± 0.014 0.291± 0.028 0.573± 0.013 4.2
TGN 0.737± 0.004 0.465± 0.010 0.607± 0.014 0.356± 0.019 0.731± 0.010 2.2

CAWN 0.794± 0.014 0.201± 0.002 OOM OOM OOM 3
TCL 0.734± 0.007 0.194± 0.012 OOM OOM OOM 5

GraphMixer 0.707± 0.014 0.411± 0.025 OOM OOM OOM 4
EdgeBank 0.641 0.0894 0.1244 0.388 0.492 4.6

Todyformer 0.799± 0.0092 0.4321± 0.0040 0.6852± 0.0021 0.7402± 0.0037 0.7932± 0.014 1.2

10 15 20 25 30
Number of Patches

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

Av
er

ag
e 

Pr
ec

is
io

n

50K 100K 150K 200K 250K
Input Window Size

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

LastFM
MOOC

Figure 3: Sensitivity analysis on the number of patches
and input window size values on MOOC and LastFM. The
plot on the left has a fixed input window size of 262,144,
while the one on the right has 32 patches.

Dataset G. E. P. E. Alt. 3 AP

MOOC

✗ ✗ ✗ 0.980
✓ ✗ ✗ 0.981
✓ ✓ ✗ 0.987
✓ ✓ ✓ 0.992

LastFM

✗ ✗ ✗ 0.960
✓ ✗ ✗ 0.961
✓ ✓ ✗ 0.965
✓ ✓ ✓ 0.976

UCI

✗ ✗ ✗ 0.981
✓ ✗ ✗ 0.983
✓ ✓ ✗ 0.987
✓ ✓ ✓ 0.993

SocialEvolution

✗ ✗ ✗ 0.987
✓ ✗ ✗ 0.987
✓ ✓ ✗ 0.989
✓ ✓ ✓ 0.991

Table 10: Ablation studies on three
major components: global encoder (G.
E.), Positional Encoding (P. E.), and
number of alternating blocks (Alt. 3)

6.4 Ablation Studies and Sensitivity Analysis

We conducted an evaluation of the model performance across various parameters and datasets to
assess the sensitivity of the major hyperparameters. Figure 3 illustrates the sensitivity analysis
regarding the window size and the number of patches, with one parameter remaining constant while
the other changes. As highlighted in Xu et al. [2020], recent and frequent interactions display
enhanced predictability of future interactions. This predictability is particularly advantageous for
datasets with extensive long-range dependencies, favoring the utilization of larger window size
values to capture recurrent patterns. Conversely, in datasets where recent critical interactions reflect
importance, excessive emphasis on irrelevant information becomes prominent when employing
larger window sizes. Our model, complemented by uniform neighbor sampling, achieves a balanced
equilibrium between these contrasting sides of the spectrum. As an example, the right plot in Figure 3
demonstrates that with a fixed number of patches (i.e., 32), an increase in window size leads to a
corresponding increase in the validation AP metric on the LastFM dataset. This trend is particularly
notable in LastFM, which exhibits pronounced long-range dependencies, in contrast to datasets like
MOOC and UCI with medium- to short-range dependencies.

In contrast, in Figure 3 on the left side, with a window size of 262k, we change the number of
patches. Specifically, for the MOOC dataset, performance exhibits an upward trajectory with an
increase in the number of patches from 8 to 16; however, it experiences a pronounced decline when
the number of patches reaches 32. This observation aligns with the inherent nature of MOOC datasets,
characterized by their relatively high density and reduced prevalence of long-range dependencies.
Conversely, when considering LastFM data, the model maintains consistently high performance even
at 32 patches. In essence, this phenomenon underscores the model’s resilience on datasets featuring
extensive long-range dependencies, illustrating a trade-off between encoding local and contextual
features by tweaking the number of patches.

In table 10, we conduct ablation studies on the major design choices of the encoding network to assess
the roles of the three hyperparameters separately: a) Global encoder, b) Alternating mode c) Positional
Encoding. Across the four datasets, the alternating approach exhibits significant performance variation
compared to others, ensuring the mitigation of over-smoothing and the capturing of long-range
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Positional Encoding Anchor_Node_Mode Average Precision ↑
SineCosinePos global target 0.9901
Time2VecPos global target 0.989
IdentityPos global target 0.99
LinearPos global target 0.9886

SineCosinePos local input 0.9448

Table 11: Ablation Study on Positional Encoding Options on MOOC Dataset: This table compares
the validation performance at the same epoch across various setups.

dependencies. The outcomes of the single-layer vanilla transformer as global encoder attain the
second-best position, affirming the efficacy of our global encoder in enhancing expressiveness. Finally,
the global encoder without PE closely resembles the model with only a local encoder (e.i. DyG2Vec
MPNN model).

Positional Encoding (PE) Input Average Precision ↑
without PE 0.9872

random index 0.9873
patch index 0.9889
edge time 0.9886
edge index 0.9877

Table 12: Ablation Study on the Input of Positional Encoding on MOOC Dataset: This table
compares the validation performance at the same epoch across various types of positions tagged to
nodes before PE layer.

6.4.1 Complementary Sensitivity Analysis and Ablation Study

In this section, we have presented the specifics of sensitivity and ablation experiments, which, while
of lesser significance in our hyper-tuning mechanism, contribute valuable insights. In all tables, the
Average Precision scores reported in the table are extracted from the same epoch on the validation
set. Table 13 showcases the influence of varying input window sizes and patch sizes on two datasets.
Table 11 illustrates the effects of various PEs, including SineCosine, Time2VecKazemi et al. [2019],
Identity, Linear, and a configuration utilizing Local Input as the Anchor Node Mode. The table
presents a comparison of results for these different PEs. Notably, the architecture appears to be
relatively insensitive to the type of PE used, as the results all fall within a similar range. However, it
is worth mentioning that SineCosine PE slightly outperforms the others. Consequently, SineCosine
PE will be selected as the primary module for all subsequent experiments. In Table12, an additional
ablation study has been conducted to elucidate the influence of positions tagged to each node before

Table 13: Sensitivity analysis on number of patches and target window size
dataset Input Window size Number of Patches Average Precision ↑
LastFM 262144 8 0.9772
LastFM 262144 16 0.9791
LastFM 262144 32 0.9758
MOOC 262144 8 0.9811
MOOC 262144 16 0.9864
MOOC 262144 32 0.9696
LastFM 16384 32 0.9476
LastFM 32768 32 0.9508
LastFM 65536 32 0.9591
LastFM 262144 32 0.9764
MOOC 16384 32 0.9798
MOOC 32768 32 0.9695
MOOC 65536 32 0.9685
MOOC 262144 32 0.9726

15



being input to the Positional Encoder module. Various mechanisms for adding positions are delineated
as follows:

• Without PE: No position is utilized or tagged to the nodes.
• Random Index: An index is randomly generated and added to the embeddings of a given

node.
• Patch Index: The index of the patch from which the embedding of the given node originates

is used as a position.
• Edge Time: The most recent edge time within its patch is employed as a position.
• Edge Index: The index of the most recent interaction within the corresponding patch is

utilized as a position.

As evident from the findings in this table, the validation performance exhibits high sensitivity to
the positional encoder’s outcomes. Specifically, the model without positional encoder (PE) and the
model with random indices manifest the lowest performance among all available options. Consistent
with our expectations from previous experiments, the patch index yields the highest performance,
providing a compelling rationale for its incorporation into the architecture.

6.5 Computational Complexity

6.5.1 Qualitative Analysis for Time and Memory Complexities

In this section, we delve into the detailed measurement and discussion of the computational complexity
of Todyformer. Initially, we adopt the assumption that the time complexity of Transformers is O(X2)
for an input sequence of length X . The primary complexity of Todyformer encompasses both the
complexity of the Message Passing Neural Network (MPNN) component and the complexity of the
Transformer. To elaborate further, assuming we have a sparse dynamic graph with temporal attributes,
we can replace the complexity of MPNNs with O(l× (N +E)), where N and E represent the number
of nodes and edges within the temporal input subgraph, and l is the number of MPNN layers for
the Graph Neural Network (GNN) tokenizer. In the transformer part, N unique nodes are fed into
the Multihead-Attention module. If the maximum length of the sequence fed to the Transformer is
Na, then the complexity of the Multihead-Attention module is O(N2

a ). Notably, Na is at most equal
to M , the number of patches. This scenario occurs when a node appears in all M patches and has
interactions in all patches. Consequently, if L is the number of blocks the final complexity is given
by:

O(L× l × (N + E) + L×N ×M2) ≈ O(N + E) (9)

The LHS part of Equation 9 can be simplified to RHS if we assume that L, l, and M2 are negligible
compared to N and E. The RHS of this equation is the time complexity of GNNs for sparse graphs.

6.5.2 Training/Inference Speed

In this section, an analysis of Figure 4 is provided, depicting the performance versus inference time
across three sizable datasets. Considering the delicate trade-off between performance and complexity,
our models surpass all others in terms of Average Precision (AP) while concurrently positioning in
the left segment of the diagrams, denoting the lowest inference time. Notably, as depicted in Figure 4,
Todyformer remains lighter and less complex than state-of-the-art (SOTA) models like CAW across
all datasets.

6.6 Discussion on Over-Smoothing and Over-Squashing

In Figure 5, the blue curve illustrates the Average Precision performance of dynamic graph Mes-
sage Passing Neural Networks (MPNNs) across varying numbers of layers. Notably, an observed
trend indicates that as the number of layers increases, the performance experiences a decline—a
characteristic manifestation of oversmoothing and oversquashing phenomena.

Within the same figure, the red square dots represent the performance of MPNNs augmented with
transformers, specifically Todyformer with a single block. It is noteworthy that the increase in
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Figure 4: The performance versus inference time across LastFM, SocialEvol and MOOC datasets
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Figure 5: Sensitivity Analysis on the Number of Layers and Blocks on Mooc Dataset

the number of MPNN layers from 3 to 9 in this configuration results in a comparatively minor
performance drop compared to traditional MPNNs.

Furthermore, the yellow circles denote the performance of Todyformer with an alternating mode,
where the total number of MPNNs is 9, and three blocks are incorporated. In this setup, a transformer
is introduced after every 3 MPNN layers. Strikingly, this configuration outperforms all others, espe-
cially those that stack a similar number of MPNN layers without the insertion of a transformer layer
in the middle of the architecture. This empirical observation serves as a significant study, highlighting
the efficacy of our architecture in addressing oversmoothing and oversquashing challenges.
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