
Reinforcement Learning Journal 2025
∣∣ Cover Page

Recursive Reward Aggregation
Yuting Tang Yivan Zhang Johannes Ackermann

Yu-Jie Zhang Soichiro Nishimori Masashi Sugiyama

Keywords: Markov decision process, reward aggregation, policy preference, Bellman equation,
algebraic data type, dynamic programming, recursion scheme, algebra fusion, bidirectional process

Summary
In reinforcement learning (RL), agents typically learn desired behaviors by maximizing

the (discounted) sum of rewards, making the design of reward functions crucial for aligning
the agent behavior with specific objectives. However, because rewards often carry intrinsic
meanings tied to the task, modifying them can be challenging and may introduce complex
trade-offs in real-world scenarios. In this work, rather than modifying the reward function itself,
we propose leveraging different reward aggregation functions to achieve different behaviors.
By introducing an algebraic perspective on Markov decision processes (MDPs), we show
that the Bellman equations naturally emerge from the recursive generation and aggregation
of rewards. This perspective enables the generalization of the standard discounted sum to
other recursive aggregation functions, such as discounted max and Sharpe ratio. We empirically
evaluate our approach across diverse environments using value-based and actor-critic algorithms,
demonstrating its effectiveness in optimizing a wide range of objectives. Furthermore, we apply
our method to a real-world portfolio optimization task, showcasing its potential for practical
deployment in decision-making applications where objectives cannot easily be expressed as the
discounted sum of rewards.

Contribution(s)
1. We provide an algebraic perspective on the recursive structure of MDPs based on fusion.

Context: The algebra of recursive functions (Meijer et al., 1991; Bird & de Moor, 1997;
Hutton, 1999) is a well-studied topic in functional programming. The fusion technique,
explored by Hinze et al. (2010), has been applied to dynamic programming (Bellman, 1966;
De Moor, 1994; Bertsekas, 2022). In the context of RL, the recursive structure of the
discounted sum of rewards was studied by Hedges & Sakamoto (2022). Our diagrammatic
representation of recursive reward generation and aggregation processes is inspired by
Gavranović (2022).

2. We generalize the Bellman equations and Bellman operators for the standard discounted sum
to other recursive aggregation functions, providing greater flexibility in goal specification.
Context: The problem of alternative reward aggregations is not entirely new. Prior works
have explored objectives such as optimizing the maximum (Quah & Quek, 2006; Gottipati
et al., 2020; Veviurko et al., 2024), minimum (Cui & Yu, 2023), top-k (Wang et al., 2020),
and Sharpe ratio (Nägele et al., 2024) of rewards. Specifically, the method proposed by
Cui & Yu (2023) is a special case of our framework, where the recursive structure is on the
original reward space, and the update function is order-preserving.

3. We extend existing RL algorithms by incorporating the generalized Bellman operators and
empirically demonstrate their effectiveness across various tasks.
Context: While our method modifies the Bellman operators within the base RL algorithms,
the fundamental structures of Q-learning (Watkins, 1989; Watkins & Dayan, 1992), PPO
(Schulman et al., 2017), and TD3 (Fujimoto et al., 2018) remain unchanged.

Recursive Reward Aggregation

Recursive Reward Aggregation

Yuting Tang1, 2 Yivan Zhang1, 2 Johannes Ackermann1, 2

Yu-Jie Zhang2 Soichiro Nishimori1, 2 Masashi Sugiyama2, 1

tang@ms.k.u-tokyo.ac.jp yivan.zhang@k.u-tokyo.ac.jp

1The University of Tokyo, Japan 2RIKEN AIP, Japan

Abstract
In reinforcement learning (RL), aligning agent behavior with specific objectives typically
requires careful design of the reward function, which can be challenging when the
desired objectives are complex. In this work, we propose an alternative approach for
flexible behavior alignment that eliminates the need to modify the reward function
by selecting appropriate reward aggregation functions. By introducing an algebraic
perspective on Markov decision processes (MDPs), we show that the Bellman equations
naturally emerge from the recursive generation and aggregation of rewards, allowing
for the generalization of the standard discounted sum to other recursive aggregations,
such as discounted max and Sharpe ratio. Our approach applies to both deterministic
and stochastic settings and integrates seamlessly with value-based and actor-critic
algorithms. Experimental results demonstrate that our approach effectively optimizes
diverse objectives, highlighting its versatility and potential for real-world applications.

1 Introduction

Reinforcement learning (RL) formalizes sequential decision-making as interaction between an agent
and an environment modeled by a Markov decision process (MDP). In standard RL, the objective
is to maximize the discounted sum of rewards obtained through interaction (Sutton & Barto, 1998;
Bowling et al., 2023). This formulation has been widely adopted across various domains, including
games (Mnih et al., 2015; Silver et al., 2018; Guss et al., 2019), autonomous driving (Kiran et al.,
2021), and stock trading (Wu et al., 2020; Kabbani & Duman, 2022; Liu et al., 2024).

While the discounted sum is standard in RL, many important objectives cannot be expressed in this
form. For example, in tasks where stability matters, minimizing some measure of variability in
rewards is as important as maximizing expected returns (Sobel, 1982; Tamar et al., 2012). In finance,
the Sharpe ratio (Sharpe, 1966) evaluates risk-adjusted returns by penalizing high volatility, requiring
optimization beyond simple returns. Other objectives include (i) maximizing the peak performance in
drug discovery to identify the most effective compounds (Quah & Quek, 2006; Gottipati et al., 2020),
(ii) maximizing the worst-case outcome in safety-critical domains like self-driving (Wang et al., 2020)
or bottleneck objective in network routing (Cui & Yu, 2023), or (iii) maximizing the average reward
in continuing tasks where future and immediate returns are equally important (Sutton & Barto, 1998,
Section 10.3). These cases call for alternative reward aggregation beyond the discounted sum.

Can we simply modify the reward function to accommodate these objectives? This is a natural idea,
and prior work has explored shaping or redesigning the rewards to reflect alternative criteria (Moody
et al., 1998; Ng et al., 1999; Moody & Saffell, 2001; Nägele et al., 2024). However, this approach
often requires expanding the state space to encode long-term objectives (Mannor & Tsitsiklis, 2011;
Wang et al., 2020), which can change the effective optimization landscape. Moreover, manually
redesigning a reward function that induces the desired behavior is notoriously difficult (Leike et al.,
2017; Hadfield-Menell et al., 2017; Zhu et al., 2020), which can lead to reward hacking or goal
misalignment (Amodei et al., 2016; Christiano et al., 2017; Di Langosco et al., 2022; Ji et al., 2023).

Reinforcement Learning Journal 2025

1

3

5

4 4

0 6

sum ↑ mean ↑ max ↑ min ↑ top -2 ↑ range ↓

π1 9 3 5 1 3 4
π2 8 4 4 4 4 0
π3 6 3 6 0 0 6

Figure 1: Illustration of three deterministic policies in a simple environment, shown as colored paths
with their rewards on edges. The table on the right shows the aggregated rewards for each policy,
with the optimal scores (higher ↑ or lower ↓) underlined. We can observe that different aggregation
functions lead to different policy preferences.

In this work, we propose a simple yet general alternative: optimize different reward aggregations
directly, while keeping the state space and reward function fixed. This shifts the focus from what to
reward to how to evaluate reward sequences, enabling greater flexibility without increased structural
complexity. Choosing the right aggregation is essential because it defines the optimization objective.
As shown in Fig. 1, even in a toy environment, different aggregation functions such as sum, mean, or
max can lead to different policy preferences. This highlights the need for a general framework that
can express and optimize such objectives in a unified way.

Intuition In order to optimize reward aggregations directly, our key insight is that many aggregation
functions, including the standard discounted sum, can be computed recursively, one reward at a time.
For example, the discounted sum aggregation sumγ with a discount factor γ satisfies

sumγ [r1, r2, r3, . . .] := r1 + γ · sumγ [r2, r3, . . .] = r1 + γr2 + γ2r3 + . . . , (1)
while the discounted maximum aggregation max obeys

maxγ [r1, r2, r3, . . .] := max(r1, γ ·maxγ [r2, r3, . . .]) = max{r1, γr2, γ2r3, . . .}. (2)
This shared structure suggests a unifying algebraic view: each aggregation folds a reward sequence
using an update rule and an initial value. Such recursions naturally induce Bellman-like equations,
enabling direct optimization of diverse objectives using standard RL machinery. Concretely, we use a
technique known as algebra fusion (Hinze et al., 2010) to derive Bellman-style updates for a wide
range of recursive reward aggregations, integrating them into standard RL algorithms without altering
the state space or reward function.

Related work Several studies have extended Bellman-style updates to optimize non-cumulative
objectives. An early method by Quah & Quek (2006) defined a value function for expected discounted
maximum rewards, but it lacked rigorous justification and incorrectly interchanged expectation with
maximum (Gottipati et al., 2020), effectively optimizing the discounted maximum of expected
rewards. Later approaches addressed this issue by augmenting the state space with auxiliary variables
(Veviurko et al., 2024). Beyond maximum objectives, Wang et al. (2020); Cui & Yu (2023) analyzed
broader classes of objectives, including minimum, harmonic mean, and top-k, but their approaches
either required symmetry (precluding discounting), were limited to deterministic systems, or implicitly
used order-preserving properties. In contrast, we derive value functions from first principles using
algebraic fusion (Hinze et al., 2010), supporting recursive aggregations involving multi-dimensional
statistics (e.g., for range, mean, and variance), while unifying deterministic and stochastic cases.

Contributions In this paper, we introduce an algebraic perspective on the MDP model, showing
that the Bellman equations naturally emerge from the recursive generation and aggregation of
rewards (Section 2). This perspective allows us to generalize the standard discounted sum to other
recursive aggregation functions, such as discounted max and Sharpe ratio (Section 3), while unifying
deterministic and stochastic settings within the same framework (Section 4). We provide theoretical
justification for our approach, which enables the optimization of various objectives beyond cumulative
rewards while maintaining computational efficiency. Finally, we validate the effectiveness of our
method in both discrete and continuous environments across various recursive reward aggregation
functions, showcasing its flexibility and scalability in handling diverse reward structures (Section 5).1

1Code: https://github.com/Tang-Yuting/recursive-reward-aggregation.

https://github.com/Tang-Yuting/recursive-reward-aggregation

Recursive Reward Aggregation

2 An algebraic perspective on Bellman equations

In this section, we introduce the standard MDP model (Puterman, 1994) for sequential decision-
making problems from an algebraic perspective. Using a technique known as fusion in algebra and
functional programming (Meijer et al., 1991; Hinze et al., 2010), we show that the Bellman equations
(Bellman, 1966) naturally arise from the recursive generation and aggregation of rewards. This
perspective reveals opportunities for generalizing to alternative reward aggregation functions.

In this section, we focus on the standard discounted sum and deterministic transitions and policies. We
study other recursive aggregations in Section 3 and stochastic transitions and policies in Section 4.

2.1 Preliminaries

Notation In this section, S is the set of states, A is the set of actions, and R is the set of rewards,
which can be finite or infinite. The dynamics of the environment is given by a (deterministic) transition
function p : S ×A → S. An agent interacts with the environment by following a (deterministic)
policy π : S → A that maps states to actions. A reward function r : S ×A→ R assigns a reward
to each state-action pair. Furthermore, we assume that there is an initial state s0 ∈ S and a subset
Sω ⊂ S of terminal states, whose indicator function is ω. The horizon Ω of the task can be fixed or
varying, depending on the terminal condition ω.

Moreover, {∗} denotes a singleton (any set with a single element ∗). [R] denotes the set of finite lists
of rewards, defined using the empty list function nil : {∗} → [R], which represents the empty list [],
and the list constructor function cons : R× [R]→ [R], which prepends an element to a list. We have
cons(r, []) = [r] and cons(rt, [rt+1, . . . , rΩ]) = [rt, rt+1, . . . , rΩ], which we abbreviate as rt:Ω.

Composite functions Let us introduce some composite functions that are useful for defining the
recursive generation of states, actions, and rewards. Given a policy π : S → A, the pairing function
⟨idS , π⟩ : S → S ×A = [s 7→ s, π(s)] keeps a copy of the current state s ∈ S and outputs the next
action π(s) ∈ A.23 Then, pre-composing this function with the transition function p : S ×A→ S
and the reward function r : S ×A→ R yields two policy-dependent functions as follows. We use
the subscripts π to explicitly indicate the dependence on the policy π:

state transition pπ : S → S := p ◦ ⟨idS , π⟩ = [s 7→ p(s, π(s))] and
state reward function rπ : S → R := r ◦ ⟨idS , π⟩ = [s 7→ r(s, π(s))].

2.2 Recursive generation of rewards

Using the state transition pπ and reward function rπ , we can generate states and rewards step by step:

stepπ,p,r,ω : S → {∗}+R× S :=

[
s 7→

{
∗ s ∈ Sω

rπ(s),pπ(s) s /∈ Sω

]
. (3)

Let us take a closer look at this step function. The codomain, {∗}+R× S, is the disjoint union (+)
of a singleton {∗}, representing termination, and the Cartesian product R× S of rewards and states.
At each step, the step function either halts by returning the termination signal ∗ if the current state s
is terminal or continues by returning a pair of the reward rπ(s) ∈ R and the next state pπ(s) ∈ S,
both determined by the policy π.
Remark 1 (Terminal condition). By incorporating the terminal condition ω into the step function,
we can describe both episodic and continuing tasks for any reward aggregation, without relying on
a special absorbing state and the unit of the aggregation function, e.g., 0 for the discounted sum
function. See also Sutton & Barto (1998, Section 3.4).

2For a set C, idC : C → C is the identity function mapping an element c ∈ C to itself. For two functions f : C → A
and g : C → B, their pairing ⟨f, g⟩ : C → A×B is the unique function that applies these two functions to the same input,
mapping an input c ∈ C to a pair (f(c), g(c)) ∈ A×B of outputs.

3We write name : domain → codomain = [input 7→ output], assigning an anonymous function [input 7→ output]
to a named, typed function name : domain → codomain, following Petrov (2020).

Reinforcement Learning Journal 2025

Starting from an initial state, by recursively applying this step function and collecting the results, we
can obtain a sequence of rewards:
Definition 2.1 (Recursive generation). Given a policy π, a transition function p, a reward function r,
and a terminal condition ω, a recursive reward generation function genπ,p,r,ω : S → [R] is defined
as follows:

genπ,p,r,ω : S → [R] :=

[
s 7→

{
[] s ∈ Sω

cons(rπ(s), genπ,p,r,ω(pπ(s))) s /∈ Sω

]
. (4)

2.3 Recursive aggregation of rewards

Given a sequence of rewards, we can aggregate them into a single value using an aggregation function.
In the standard MDP setting, the discounted sum sumγ : [R] → R :=

[
r1:Ω 7→

∑Ω
t=1 γ

t−1rt

]
of

rewards is a standard choice, where γ ∈ [0, 1] is a discount factor.

Note that the discounted sum function can be expressed as a recursive function:

sumγ : [R]→ R :=

[
[] 7→ 0
rt:Ω 7→ rt + γ · sumγ(rt+1:Ω)

]
. (5)

In other words, the discounted sum function is uniquely defined by two functions: the base case 0 ∈ R
and the recursive case “discounted addition” +γ : R×R→ R := [a, b 7→ a+ γ · b]. This recursive
structure has been used, explicitly or implicitly, in prior work on alternative objectives (Quah & Quek,
2006; Hedges & Sakamoto, 2022; Cui & Yu, 2023; Veviurko et al., 2024). In Section 3, we show that
many other reward aggregations also admit similar recursive definitions.

2.4 Bellman equation for the state value function

We have introduced the recursive generation and aggregation of rewards in a standard MDP model.
The generation function genπ,p,r,ω : S → [R] is the producer of rewards, and the discounted sum
function sumγ : [R]→ R is the consumer of rewards. By composing these two recursive functions,
we obtain a state value function vπ : S → R, which can also be calculated recursively:

vπ : S → R := sumγ ◦ genπ,p,r,ω =

[
s 7→

{
0 s ∈ Sω

rπ(s) + γ · vπ(pπ(s)) s /∈ Sω

]
. (6)

This recursive calculation of the state value function vπ : S → R is known as the Bellman equation
(Bellman, 1966), which expresses the value of a state s under a policy π as the sum of the immediate
reward rπ(s) and the discounted value of the next state pπ(s).
Remark 2 (State-action recursion). We can define the state-action transition/step/generation functions
and derive a Bellman equation for the state-action value function qπ : S ×A→ R in a similar way,
which is omitted here for brevity and discussed in Appendix A.
Remark 3 (Algebra fusion). For readers familiar with algebra and functional programming, we point
out that the Bellman equation emerges as a consequence of the fusion law for recursive coalgebras
(Hinze et al., 2010, Section 4; Yang & Wu, 2022, Section 10), shown in the following diagram:4

{∗}+R× S {∗}+R× [R] {∗}+R×R

{∗} S [R] R

id{∗} + idR × genπ,p,r,ω

id{∗} + idR ×vπ

id{∗} + idR × sumγ

[nil,cons] [0,+γ]

s0

stepπ,p,r,ω

genπ,p,r,ω

vπ

sumγ

(7)

The left square is the recursive definition of the generation function in Eq. (4), and the right square is
the recursive definition of the discounted sum function in Eq. (5). Consequently, the whole rectangle
is the Bellman equation for the state value function in Eq. (6). See Appendix B for more details.

4For two functions f : A → C and g : B → C, their copairing [f, g] : A+B → C is the unique function defined by
cases, mapping an input x ∈ A+B to f(x) if x ∈ A, to g(x) if x ∈ B.

Recursive Reward Aggregation

Table 1: Recursive aggregation functions

definition initial value of statistic(s) update function post-processing
post ◦ agginit,▷ : [R]→ R init ∈ T ▷ : R× T → T post : T → R

discounted sum r1 + γr2 + · · ·+ γt−1rt discounted sum s: 0 ∈ R +γ := [r, s 7→ r + γ · s] idR

discounted min min{r1, γr2, . . . , γt−1rt} discounted min n: ∞ ∈ R minγ := [r, n 7→ min(r, γ · n)] idR

discounted max max{r1, γr2, . . . , γt−1rt} discounted max m: −∞ ∈ R maxγ := [r,m 7→ max(r, γ ·m)] idR

log-sum-exp log(er1 + er2 + · · ·+ ert) log-sum-exp m: −∞ ∈ R [r,m 7→ log(er + em)] idR

range max(r1:t)−min(r1:t)
max m
min n

[
−∞
∞

]
∈ R2

[
r,

[
m
n

]
7→
[
max(r,m)
min(r, n)

]] [[
m
n

]
7→ m− n

]
mean r := 1

t

∑t
i=1 ri

length n
sum s

[
0
0

]
∈
[
N
R

] [
r,

[
n
s

]
7→
[
n+ 1
s+ r

]] [[
n
s

]
7→ s

n

]
length n
mean m

[
0
0

]
∈
[
N
R

] [
r,

[
n
m

]
7→
[
n+ 1
n·m+r
n+1

]] [[
n
m

]
7→ m

]

variance 1
t

∑t
i=1(ri − r)2 = r2 − r2

length n
sum s
sum square q

00
0

 ∈
 N

R
R≥0

 r,
ns
q

 7→
n+ 1
s+ r

q + r2

 ns
q

 7→ q
n −

(
s
n

)2
length n
mean m
variance v

00
0

 ∈
 N

R
R≥0

r,
nm
v

 7→
 n+ 1

n·m+r
n+1

v + n(r−m)
2−(n+1)v

(n+1)
2

nm
v

 7→ v

top-k k-th largest in r1:t
top-k
buffer

top-1
top-2

...

−∞−∞
...

 ∈ Rk

[
r, b 7→

{
insert(r, b) r > min b

b r ≤ min b

]
[b 7→ min b]

3 Recursive reward aggregation functions

In this section, we generalize the discounted sum function in Eq. (5) to other recursive reward
aggregation functions that summarize a sequence of rewards into a single value. Our primary goal
is to derive a generalized Bellman equation extending Eq. (6) and provide theoretical insights for
efficient policy evaluation and optimization with recursive reward aggregation.

3.1 Bellman equation for the state statistic function

First, we observe that many aggregation functions are inherently recursive. However, the recursive
structure does not always operate directly within the original space. For instance, we can calculate
the arithmetic mean by calculating both the sum and the length recursively and then dividing the sum
by the length. Based on this observation, we propose the following definition:

Definition 3.1 (Recursive aggregation). Let T be a set of statistics. Given an initial value init ∈ T ,
an update function ▷ : R × T → T , and a post-processing function post : T → R, a recursive
statistic aggregation function agginit,▷ : [R]→ T of is defined as follows:

agginit,▷ : [R]→ T :=

[
[] 7→ init
rt:Ω 7→ rt ▷ agginit,▷(rt+1:Ω)

]
, (8)

and a recursive reward aggregation function post ◦ agginit,▷ : [R]→ R is the composition of this
function with the post-processing function post : T → R, shown in the following diagram:

{∗}+R× [R] {∗}+R× T

[R] T R

id{∗} + idR ×agginit,▷

[nil,cons] [init,▷]

agginit,▷ post

(9)

By substituting the discounted sum function with a general recursive reward aggregation function, we
can generalize the Bellman equation in Eq. (6) as follows:

Theorem 3.2 (Bellman equation for the state statistic function). Given a recursive reward
generation function genπ,p,r,ω (Definition 2.1) and a recursive statistic aggregation function agginit,▷
(Definition 3.1), their composition, called the state statistic function τπ : S → T , satisfies

τπ : S → T := agginit,▷ ◦ genπ,p,r,ω =

[
s 7→

{
init s ∈ Sω

rπ(s) ▷ τπ(pπ(s)) s /∈ Sω

]
. (10)

Reinforcement Learning Journal 2025

S

T

R

S

T

. . .

. . .

{∗}

T

π

p

r

▷

init

st st+1

τt τt+1

rt+1

at

postR postR

τπ τπvπ

Figure 2: By combining the recursive generation and aggregation of rewards, we can express the
state statistic function τπ : S → T as a composition of bidirectional processes. The forward process
S → R × S, parameterized by a policy π, takes a state st ∈ S and generates a reward rt+1 ∈ R
and the next state st+1 ∈ S. The backward process R× T → T takes a statistic τt+1 ∈ T from the
future and updates it with the previously generated reward rt+1 ∈ R to produce the current statistic
τt ∈ T . These bidirectional processes continue until a terminal state is reached, at which point its
statistic is assigned the initial value init ∈ T . See Appendix B for more details.

Definition 3.3 (Value function). The state value function vπ : S → R := post◦τπ is the composition
of the state statistic function τπ : S → T with the post-processing function post : T → R.

While prior work such as Quah & Quek (2006) defined the recursive structure of the value function
directly, our approach derives it from the recursive structure of the reward generation and aggregation
processes. Examples of recursive reward aggregation functions are provided in Table 1. An illustration
of the recursive structure is given in Fig. 2.

3.2 Policy evaluation: Iterative statistic function estimation

Next, we consider how to estimate the state statistic function τπ : S → T for an arbitrary policy π,
known as the policy evaluation problem (Sutton & Barto, 1998, Sections 4.1 and 11.4). We introduce
a generalized Bellman operator and prove the uniqueness of its fixed points under certain conditions.
This result enables iterative statistic/value function estimation used in policy iteration and modern
actor-critic methods (Barto et al., 1983; Mnih et al., 2016; Haarnoja et al., 2018; Fujimoto et al.,
2018). Concretely, the Bellman operator is defined as follows:
Definition 3.4 (Bellman operator). Given a policy π, a transition function p, a reward function r,
a terminal condition ω, and a recursive statistic aggregation function agginit,▷ (Definition 3.1), the
Bellman operator Bπ : [S, T]→ [S, T] for a function τ : S → T is defined by

Bπτ : S → T :=

[
s 7→

{
init s ∈ Sω

rπ(s) ▷ τ(pπ(s)) s /∈ Sω

]
. (11)

According to the Bellman equation in Theorem 3.2, we have Bπτπ = τπ , which means that the state
statistic function τπ is a fixed point of the Bellman operator. Then, we can generalize the classical
fixed point theorem under the following condition:
Definition 3.5 (Contractive update function). An update function ▷ : R× T → T is contractive with
respect to a premetric dT on statistics T if ∀r ∈ R. ∀τ1, τ2 ∈ T. dT (r ▷ τ1, r ▷ τ2) ≤ k · dT (τ1, τ2),
where k ∈ [0, 1) is a constant. In other words, r ▷ (−) : T → T is a contraction for all r ∈ R.

Theorem 3.6 (Uniqueness of fixed points of Bellman operator). Let τ1, τ2 : S → T be fixed points
of the Bellman operator Bπ (Definition 3.4). If the update function ▷ is contractive with respect to a
premetric dT on statistics T (Definition 3.5), then dT (τ1(s), τ2(s)) = 0 for all states s ∈ S. If dT is
a strict premetric, then τ1 = τ2 = τπ .

This result applies to a broad class of recursive aggregation functions beyond the discounted sum.
See Appendix C for further discussion on the premetric dT and the Bellman operator Bπ .

Recursive Reward Aggregation

3.3 Policy optimization: Optimal policies and optimal value functions

Finally, we consider how to find an optimal policy and compute its statistic/value functions recursively
based on the Bellman equation in Theorem 3.2:
Definition 3.7 (Optimal policy). Given a preorder≤T on statistics T , a policy π∗ is an optimal policy
if ∀π. ∀s ∈ S. τπ(s) ≤T τπ∗

(s), which has the optimal state statistic function τ∗ : S → T := τπ∗
and the optimal state value function v∗ : S → R := post ◦ τ∗.

Theorem 3.8 (Bellman optimality equation for the state statistic function). Given a preorder ≤T on
statistics T , the optimal state statistic function τ∗ (Definition 3.7) satisfies

τ∗ : S → T :=

s 7→
init s ∈ Sω

sup
a∈A

(r(s, a) ▷ τ∗(p(s, a))) s /∈ Sω

. (12)

Definition 3.7 and Theorem 3.8 are analogous to their classical counterparts (Sutton & Barto, 1998,
Section 3.6), but they extend to arbitrary recursive aggregation functions and allow comparisons
using a preorder ≤T on statistics. A Bellman optimality operator B∗ can be defined similarly to the
Bellman operator in Definition 3.4, and we can prove the uniqueness of its fixed points under certain
conditions. This result enables the value iteration algorithm (Sutton & Barto, 1998, Section 4.4),
temporal difference methods such as Q-learning (Watkins, 1989), and deep Q-network (DQN) based
methods (Mnih et al., 2013; Bellemare et al., 2017) to find the optimal policy π∗. See Appendix D
for further discussion on the preorder ≤T and the Bellman optimality operator B∗.

4 From deterministic to stochastic Markov decision processes

In this section, we briefly discuss the extension of our framework to the stochastic setting. We show
that the deterministic and stochastic settings share a fundamental similarity: all recursive structures
remain unchanged, except that (deterministic) functions are replaced by stochastic functions, and
function composition is replaced by marginalization over the intermediate variable, as described by
the Chapman–Kolmogorov equation (Giry, 1982; Puterman, 1994). The main difference is that the
stochastic setting allows for a richer class of aggregation functions (Bellemare et al., 2023), where the
non-commutativity and non-distributivity of certain operations can lead to more complex behaviors.

Notation Slightly abusing notation, we use the same symbols to denote the measurable spaces
of states S, actions A, rewards R, and statistics T . For a measurable space C, we write PC for the
measurable space of all probability measures on C, and we denote by δc ∈ PC the Dirac measure
concentrated at c ∈ C. An identity stochastic function idC : C → PC : [c 7→ δc] maps an element
c ∈ C to the Dirac measure δc ∈ PC. We consider stochastic transition p : S ×A → PS and
policy π : S → PA, while other functions can be deterministic. We also use the usual conditional
distribution notation such as p(s′|s, a) and π(a|s).

Stochastic composite functions In the stochastic setting, we can compose two stochastic functions
by marginalizing over the intermediate variable. Additionally, we can compose a stochastic function
with a deterministic one using the pushforward operation, which is equivalent to treating deterministic
functions as stochastic functions to Dirac measures. Then, we can define stochastic versions of

state transition pπ : S → PS := p ◦ ⟨idS , π⟩ =
[
s 7→ s′ ∼

∫
A
p(s′|s, a)π(a|s) da

]
and

state reward function rπ : S → PR := r ◦ ⟨idS , π⟩ =
[
s 7→ r ∼

∫
A
δr(s,a)(r)π(a|s) da

]
.

Stochastic recursive functions Analogous to Theorem 3.2, we can derive the recursive calculation
of the stochastic state statistic function τπ : S → PT , known as the distributional Bellman equation
(Morimura et al., 2010a;b; Bellemare et al., 2017), for any recursive aggregation function agginit,▷:

τπ : S → PT =

[
s 7→ τ ∼

{
δinit s ∈ Sω

r ▷ τ ′
∣∣∣ r ∼ rπ(r|s), τ ′ ∼

∫
S
τπ(τ

′|s′)pπ(s′|s) ds′ s /∈ Sω

]
. (13)

Reinforcement Learning Journal 2025

PR

PR

...

PR . . . δ0+ γ

ER

r+γ s s

r

E[r+γ s]
R

PR

R . . . 0+ γ

E

R

E[r] +γ E[s] E[s]

r

Figure 3: The recursive structures of (left) the expected discounted sum of rewards E[r+γ s] and
(right) the discounted sum of expected rewards E[r] +γ E[s].

Stochastic aggregation functions Note that this framework also accommodates the traditional
expected discounted sum of rewards E

[∑Ω
t=1 γ

t−1rt

]
learning objective, by selecting δ0 as init, the

(pushforward through) discounted addition function +γ : R×R→ R as the update function ▷, and
the expectation operator E : PR → R as post. The stochastic statistic function τπ : S → PR in
Eq. (13), refered to as the value distribution in Bellemare et al. (2017), outputs the distribution of the
discounted sum of rewards, while the value function outputs its expectation. Since the expectation
distributes over the discounted addition, by changing the update function and initial value, we can
recursively calculate the discounted sum of expected rewards

∑Ω
t=1 γ

t−1 E[rt] instead (see Fig. 3),
which is the traditional approach in RL (Sutton & Barto, 1998). In this case, the statistic function
and the value function coincide, as no post-processing is required. However, Bellemare et al. (2017)
have shown that even in the discounted sum setting, the Bellman operator may be a contraction
in some metrics but not in others, while the Bellman optimality operator is a contraction only in
expectation and not in any distributional metric, leading to different convergence behaviors. These
challenges persist and may become unavoidable when using alternative aggregation functions due
to the inconsistency between expected aggregated rewards and aggregated expected rewards. We
discuss this further in Appendix E and leave a full investigation for future work.

5 Experiments

In this section, we empirically evaluate the proposed recursive reward aggregation technique across a
variety of environments and optimization objectives to support the following claims:

Different aggregation functions significantly influence policy preferences. Selecting an appropriate
aggregation function is an alternative approach to optimizing policies for specific objectives and
aligning agent behaviors with task-specific goals without modifying rewards (Sections 5.1 to 5.3).
In challenging real-world applications such as portfolio optimization, our method can directly
optimize desired evaluation criteria, demonstrating superior performance compared to existing
approaches and showcasing its practical effectiveness (Section 5.4).

5.1 Grid-world: Value-based methods for discrete planning

First, we present illustrative experiments in a simple grid-world environment to demonstrate the
fundamental impact of different recursive reward aggregation functions on learned policies.

Environment Fig. 4a shows the results for a 3 × 4 grid environment, where an agent navigates
from the top-left corner to a fixed goal at the bottom-right corner. As shown in Fig. 4a, the agent
receives a small negative reward at each step, which varies across states, and a positive reward upon
reaching the terminal state.

Method For this discrete environment, we modified the Q-learning algorithm (Watkins, 1989;
Watkins & Dayan, 1992) using the Bellman optimality operator introduced in Section 3.3 (more
specifically, the one for the state-action statistic function in Definition D.9). We used four recursive
aggregation functions: discounted sum, discounted max, min, and mean, as detailed in Table 1. The
detailed algorithm is provided in Algorithm 1 in Appendix G.

Recursive Reward Aggregation

-10.0

-3.0

-10.0 -4.0

-10.0

-3.0

-10.0 -4.0

-10.0

-3.0

-10.0 -4.0

-10.0

-3.0

-10.0 -4.0

-5.0

-2.0

-10.0 -6.0

-5.0

-2.0

-10.0 -6.0

-5.0

-2.0

-10.0 -6.0

-5.0

-2.0

-10.0 -6.0

-3.0

-10.0

-10.0 -2.0

-3.0

-10.0

-10.0 -2.0

-3.0

-10.0

-10.0 -2.0

-3.0

-10.0

-10.0 -2.0

-10.0

-6.0

-5.0 -1.0

-10.0

-6.0

-5.0 -1.0

-10.0

-6.0

-5.0 -1.0

-10.0

-6.0

-5.0 -1.0

-4.0

-2.0

-3.0 -7.0

-4.0

-2.0

-3.0 -7.0

-4.0

-2.0

-3.0 -7.0

-4.0

-2.0

-3.0 -7.0

-6.0

-10.0

-2.0 -2.0

-6.0

-10.0

-2.0 -2.0

-6.0

-10.0

-2.0 -2.0

-6.0

-10.0

-2.0 -2.0

-10.0

-7.0

-4.0 -2.0

-10.0

-7.0

-4.0 -2.0

-10.0

-7.0

-4.0 -2.0

-10.0

-7.0

-4.0 -2.0

-1.0

-2.0

-6.0 -1.0

-1.0

-2.0

-6.0 -1.0

-1.0

-2.0

-6.0 -1.0

-1.0

-2.0

-6.0 -1.0

-7.0

-10.0

-2.0 10.0

-7.0

-10.0

-2.0 10.0

-7.0

-10.0

-2.0 10.0

-7.0

-10.0

-2.0 10.0

-10.0

-1.0

-1.0 -10.0

-10.0

-1.0

-1.0 -10.0

-10.0

-1.0

-1.0 -10.0

-10.0

-1.0

-1.0 -10.0

-2.0

10.0

-7.0 -10.0

-2.0

10.0

-7.0 -10.0

-2.0

10.0

-7.0 -10.0

-2.0

10.0

-7.0 -10.0

(a) Environment

-10.6

-1.3

-10.6 -0.7

-10.6

-1.3

-10.6 -0.7

-10.6

-1.3

-10.6 -0.7

-10.6

-1.3

-10.6 -0.7

-5.6

1.9

-8.3 -2.1

-5.6

1.9

-8.3 -2.1

-5.6

1.9

-8.3 -2.1

-5.6

1.9

-8.3 -2.1

-1.3

-6.1

-6.1 4.3

-1.3

-6.1

-6.1 4.3

-1.3

-6.1

-6.1 4.3

-1.3

-6.1

-6.1 4.3

-6.7

-2.1

-5.6 3.7

-6.7

-2.1

-5.6 3.7

-6.7

-2.1

-5.6 3.7

-6.7

-2.1

-5.6 3.7

-0.7

4.3

-1.3 0.2

-0.7

4.3

-1.3 0.2

-0.7

4.3

-1.3 0.2

-0.7

4.3

-1.3 0.2

-2.1

-3.7

1.9 7.0

-2.1

-3.7

1.9 7.0

-2.1

-3.7

1.9 7.0

-2.1

-3.7

1.9 7.0

-5.3

0.2

-0.7 5.2

-5.3

0.2

-0.7 5.2

-5.3

0.2

-0.7 5.2

-5.3

0.2

-0.7 5.2

3.7

7.0

-2.1 8.0

3.7

7.0

-2.1 8.0

3.7

7.0

-2.1 8.0

3.7

7.0

-2.1 8.0

0.2

-1.0

4.3 10.0

0.2

-1.0

4.3 10.0

0.2

-1.0

4.3 10.0

0.2

-1.0

4.3 10.0

-2.8

8.0

3.7 -2.8

-2.8

8.0

3.7 -2.8

-2.8

8.0

3.7 -2.8

-2.8

8.0

3.7 -2.8

5.2

10.0

0.2 -1.0

5.2

10.0

0.2 -1.0

5.2

10.0

0.2 -1.0

5.2

10.0

0.2 -1.0

(b) sum0.9

5.9

6.6

5.9 6.6

5.9

6.6

5.9 6.6

5.9

6.6

5.9 6.6

5.9

6.6

5.9 6.6

5.9

7.3

6.6 7.3

5.9

7.3

6.6 7.3

5.9

7.3

6.6 7.3

5.9

7.3

6.6 7.3

6.6

7.3

7.3 8.1

6.6

7.3

7.3 8.1

6.6

7.3

7.3 8.1

6.6

7.3

7.3 8.1

6.6

7.3

5.9 7.3

6.6

7.3

5.9 7.3

6.6

7.3

5.9 7.3

6.6

7.3

5.9 7.3

6.6

8.1

6.6 8.1

6.6

8.1

6.6 8.1

6.6

8.1

6.6 8.1

6.6

8.1

6.6 8.1

7.3

8.1

7.3 9.0

7.3

8.1

7.3 9.0

7.3

8.1

7.3 9.0

7.3

8.1

7.3 9.0

7.3

8.1

6.6 8.1

7.3

8.1

6.6 8.1

7.3

8.1

6.6 8.1

7.3

8.1

6.6 8.1

7.3

9.0

7.3 9.0

7.3

9.0

7.3 9.0

7.3

9.0

7.3 9.0

7.3

9.0

7.3 9.0

8.1

9.0

8.1 10.0

8.1

9.0

8.1 10.0

8.1

9.0

8.1 10.0

8.1

9.0

8.1 10.0

8.1

9.0

7.3 8.1

8.1

9.0

7.3 8.1

8.1

9.0

7.3 8.1

8.1

9.0

7.3 8.1

8.1

10.0

8.1 9.0

8.1

10.0

8.1 9.0

8.1

10.0

8.1 9.0

8.1

10.0

8.1 9.0

(c) max0.9

-10.0

-3.0

-10.0 -4.0

-10.0

-3.0

-10.0 -4.0

-10.0

-3.0

-10.0 -4.0

-10.0

-3.0

-10.0 -4.0

-5.0

-2.0

-10.0 -6.0

-5.0

-2.0

-10.0 -6.0

-5.0

-2.0

-10.0 -6.0

-5.0

-2.0

-10.0 -6.0

-3.0

-10.0

-10.0 -2.0

-3.0

-10.0

-10.0 -2.0

-3.0

-10.0

-10.0 -2.0

-3.0

-10.0

-10.0 -2.0

-10.0

-6.0

-5.0 -1.8

-10.0

-6.0

-5.0 -1.8

-10.0

-6.0

-5.0 -1.8

-10.0

-6.0

-5.0 -1.8

-4.0

-2.0

-3.0 -7.0

-4.0

-2.0

-3.0 -7.0

-4.0

-2.0

-3.0 -7.0

-4.0

-2.0

-3.0 -7.0

-6.0

-10.0

-2.0 -2.0

-6.0

-10.0

-2.0 -2.0

-6.0

-10.0

-2.0 -2.0

-6.0

-10.0

-2.0 -2.0

-10.0

-7.0

-4.0 -2.0

-10.0

-7.0

-4.0 -2.0

-10.0

-7.0

-4.0 -2.0

-10.0

-7.0

-4.0 -2.0

-1.8

-2.0

-6.0 -1.0

-1.8

-2.0

-6.0 -1.0

-1.8

-2.0

-6.0 -1.0

-1.8

-2.0

-6.0 -1.0

-7.0

-10.0

-2.0 9.0

-7.0

-10.0

-2.0 9.0

-7.0

-10.0

-2.0 9.0

-7.0

-10.0

-2.0 9.0

-10.0

-1.0

-1.8 -10.0

-10.0

-1.0

-1.8 -10.0

-10.0

-1.0

-1.8 -10.0

-10.0

-1.0

-1.8 -10.0

-2.0

9.0

-7.0 -10.0

-2.0

9.0

-7.0 -10.0

-2.0

9.0

-7.0 -10.0

-2.0

9.0

-7.0 -10.0

(d) min0.9

-1.3

0.2

-1.3 0.4

-1.3

0.2

-1.3 0.4

-1.3

0.2

-1.3 0.4

-1.3

0.2

-1.3 0.4

-0.5

1.0

-1.2 0.0

-0.5

1.0

-1.2 0.0

-0.5

1.0

-1.2 0.0

-0.5

1.0

-1.2 0.0

0.2

-1.0

-1.0 2.0

0.2

-1.0

-1.0 2.0

0.2

-1.0

-1.0 2.0

0.2

-1.0

-1.0 2.0

-0.8

0.0

-0.5 1.5

-0.8

0.0

-0.5 1.5

-0.8

0.0

-0.5 1.5

-0.8

0.0

-0.5 1.5

0.4

2.0

0.2 0.7

0.4

2.0

0.2 0.7

0.4

2.0

0.2 0.7

0.4

2.0

0.2 0.7

0.0

-0.7

1.0 4.0

0.0

-0.7

1.0 4.0

0.0

-0.7

1.0 4.0

0.0

-0.7

1.0 4.0

-0.8

0.7

0.4 2.3

-0.8

0.7

0.4 2.3

-0.8

0.7

0.4 2.3

-0.8

0.7

0.4 2.3

1.5

4.0

0.0 4.5

1.5

4.0

0.0 4.5

1.5

4.0

0.0 4.5

1.5

4.0

0.0 4.5

0.7

0.0

2.0 10.0

0.7

0.0

2.0 10.0

0.7

0.0

2.0 10.0

0.7

0.0

2.0 10.0

-0.3

4.5

1.5 -0.3

-0.3

4.5

1.5 -0.3

-0.3

4.5

1.5 -0.3

-0.3

4.5

1.5 -0.3

2.3

10.0

0.7 0.0

2.3

10.0

0.7 0.0

2.3

10.0

0.7 0.0

2.3

10.0

0.7 0.0

(e) mean

Figure 4: Grid-world: Fig. 4a shows the discrete environment and the reward function r(s, a), where
the agent starts from the top-left corner • and needs to reach the goal at the bottom-right corner ■.
Figs. 4b to 4e show the optimal state-action value functions q∗(s, a) under different aggregations.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Ag

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(a) Environment

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

max

mean

mean−0.2 var

min

(b) Trajectory

0 10 20 30 40 50

Step

0

20

40

60

80

100

R
ew

ar
d

max

mean

mean−0.2 var

min

(c) Rewards

mean

min

var range

max

20

40

60

80

100 max

mean

mean−0.2 var

min

(d) Metrics

Figure 5: Wind-world: Fig. 5a shows the continuous environment, where the agent encounters wind
disturbances (visualized with streamlines) and receives higher rewards near the center (depicted with
colored contours). Fig. 5b illustrates the trajectories of agents trained using different aggregation
functions, while Fig. 5c compares the rewards obtained by each agent. Fig. 5d presents the evaluation
metrics, highlighting the impact of aggregation functions on performance.

Results Compared to the standard discounted sum aggregation (Fig. 4b), optimizing for the
discounted max reward (Fig. 4c) makes the agent indifferent to intermediate costs, favoring shorter
paths to the goal. In contrast, the discounted min (Fig. 4d) encourages risk-averse behavior, while
the mean aggregation (Fig. 4e) promotes efficiency by maximizing average reward per step. Overall,
these results demonstrate how each aggregation function uniquely impacts reward evaluation and
policy preferences.

5.2 Wind-world: Policy improvement methods for trajectory optimization

Next, we show that the recursive reward aggregation technique can also be seamlessly integrated into
methods for continuous state and action spaces to optimize trajectories in complex environments.

Environment Inspired by Dorfman et al. (2021); Ackermann et al. (2024), we designed a two-
dimensional continuous environment where an agent navigates to a fixed goal amidst varying wind
disturbances, as shown in Fig. 5a. This setup allows us to evaluate the impact of different aggregation
functions on trajectory optimization.

Method For this continuous environment, we utilized the Proximal Policy Optimization (PPO)
algorithm (Schulman et al., 2017), which is a widely used policy improvement method. We estimated
the value function using the Bellman operator for the state statistic function in Definition 3.4. The
detailed algorithm is provided in Algorithm 2 in Appendix G.

Results The results in Figs. 5b to 5d show that different aggregation functions lead to distinct
trade-offs in trajectory optimization. Specifically, the max aggregation function prioritizes high-
reward paths, while the min function ensures more conservative and consistent behavior. The
variance-regularized mean aggregation provide balanced strategies, demonstrating the flexibility of
the recursive reward aggregation technique in optimizing diverse objectives.

Reinforcement Learning Journal 2025

max!.##

2s

sum!.##

10s

min

33s (Termination)

6s

sum!.##
+

max!.##

sum!.##
−
var

33s (Termination)

Figure 6: Lunar Lander Continuous: Comparison of five reward aggregation methods. (Left) Radar
plot showing performance across seven evaluation metrics, averaged over four random seeds. (Right)
Sample trajectories illustrating the qualitative behaviors induced by each aggregation method.

5.3 Physics simulation: Actor-critic methods for continuous control

Then, we extend our evaluation to more complex physics simulation environments.

Environment We conducted experiments on three continuous control environments: (i) Lunar
Lander Continuous (Brockman et al., 2016) from the Box2D environment, (ii) Hopper (Erez et al.,
2012), and (iii) Ant (Schulman et al., 2016) simulated using MuJoCo (Todorov et al., 2012). A
detailed description of these environments can be found in Appendix H.3.

Method In these experiments, we employed the Twin Delayed Deep Deterministic Policy Gradient
(TD3) algorithm (Fujimoto et al., 2018), with a modified recursive version detailed in Algorithm 3
in Appendix G. We considered five different reward aggregation functions: (i) discounted sum
(sum0.99), (ii) discounted max (max0.99), (iii) min (min), (iv) discounted sum plus discounted max
(sum0.99 +max0.99), and (v) discounted sum minus variance (sum0.99− var).

Results The results for Lunar Lander Continuous are provided in Fig. 6, with results for other
environments in Appendix H.3. As a goal-reaching task, Lunar Lander Continuous reveals how
different aggregation strategies influence landing behavior and overall performance.

With the sum0.99 aggregation, which serves as the baseline, the agent learns a balanced landing
strategy, effectively managing thrust control to achieve a smooth descent while minimizing fuel
consumption. In contrast, the max0.99 aggregation encourages the agent to seek high instantaneous
rewards, leading to aggressive thrusting behaviors. As a consequence, the lander may exhibit erratic
flight patterns, either applying excessive thrust to maximize immediate reward or failing to decelerate
properly, which increases the likelihood of hard landings, instability, or even complete mission failure.
This outcome underscores the risk of optimizing for short-term reward spikes at the expense of
long-term stability and control. The min aggregation demonstrates its effectiveness in risk-averse
tasks, as it prioritizes maximizing the worst-case outcomes rather than accumulate reward. The
agent adopts a cautious descent strategy, reducing the likelihood of crashes by avoiding sudden
thrust changes. Furthermore, since goal-reaching tasks inherently align cumulative and peak rewards,
the sum0.99 +max0.99 aggregation performs similarly to sum0.99, as both encourage stable and
efficient landings without introducing significant behavioral differences. Finally, in the sum0.99− var
aggregation, the lander remains airborne, ultimately leading to mission termination. This occurs
because both successful and failed landings yield large positive or negative rewards, the agent
attempts to avoid these extremes, increasing variance and leading to hesitant and inefficient control.
This highlights the conflict between variance minimization and goal-reaching tasks, where effective
performance relies on high-reward actions often discouraged by variance penalties. These findings
emphasize the need to choose aggregation strategies that align with the specific demands of the task.

Recursive Reward Aggregation

Table 2: Performance comparison of different methods for portfolio optimization using the Sharpe
ratio. The table reports the mean and standard deviation of the Sharpe ratio across five random seeds
during the test period, where a higher value indicates better risk-adjusted returns.

DiffSharpe NCMDP Ours

Sharpe Ratio (Test) 0.29± 1.22 0.48± 0.79 1.12± 0.92

5.4 Real-world application: Sharpe ratio in portfolio optimization

Lastly, we evaluate the practical applicability of our method in a real-world application.

Portfolio optimization (Moody et al., 1998; Sood et al., 2023; Liu et al., 2024) is a real-world
financial application where an agent (or investor) determines the optimal allocation of assets across
different investment options. It can be framed as a sequential decision-making problem as the agent
continuously adjusts the portfolio in response to evolving market conditions, fluctuating asset prices,
and shifting risk preferences, rather than setting a static allocation. Each decision not only influences
immediate returns but also conditions future decisions.

The Sharpe ratio (Sharpe, 1966) is a standard metric for evaluating the performance of investment
strategies by quantifying the trade-off between return and risk. It is defined as the ratio of the average
return (arithmetic mean) to the volatility of return (standard deviation) (Bodie et al., 2011, Eq. (5.18)):

SharpeRatio(r1:t) :=
mean(r1:t)

std(r1:t)
, (14)

where rt := (Pt+1 − Pt)/Pt represents the simple return, and Pt is the portfolio value at time t.
Since the Sharpe ratio is non-cumulative, previous RL approaches have relied on the approximate
differential Sharpe ratio (Moody et al., 1998; Moody & Saffell, 2001) as a reward signal to facilitate
learning. However, this approach introduces an inconsistency between the learning objective and the
actual Sharpe ratio, potentially leading to suboptimal policy learning.

Environment This experiment was conducted in a financial market simulation, where an agent
learned to optimize portfolio allocations across 11 different S&P 500 sector indices from 2006 to
2021. The environment is the same as that described by Sood et al. (2023); Nägele et al. (2024), with
further details provided in Appendix H.4.

Baselines We considered two baseline methods: (i) DiffSharpe (Moody et al., 1998; Moody &
Saffell, 2001), which optimizes an approximate differential Sharpe ratio, and (ii) a non-cumulative
Markov decision process (NCMDP) method proposed by Nägele et al. (2024), which maps NCMDPs
to standard MDPs and defines per-step rewards based on consecutive differences.

Method As demonstrated in Table 1, since both mean and variance admit recursive computation,
the Sharpe ratio can also be expressed and updated in a recursive manner. This property allows our
method to address the aforementioned inconsistency, aligning the learning objective with the true
Sharpe ratio. Our method is built upon the PPO (Schulman et al., 2017) algorithm, with specific
modifications on Bellman equation detailed in Algorithm 2 in Appendix G.

Results We conducted experiments across five random seeds, reporting the mean and standard
deviation of test performance. Since a higher Sharpe ratio reflects superior risk-adjusted returns, the
results in Table 2 and Fig. 17 in Appendix H.4 indicate that our method often attains improved risk-
reward balance relative to the baselines. These results illustrate that modifying either the local reward
signal or the global performance measure can create misalignment, leading to inconsistencies in
policy training and suboptimal outcomes. Unlike baseline methods, our method maintains the original
per-step reward structure while estimating and optimizing the exact Sharpe ratio over the entire
trajectory. This design may help maintain alignment between training and evaluation, enabling the
agent to focus more on long-term performance and become less sensitive to short-term fluctuations.

Reinforcement Learning Journal 2025

6 Conclusion

Summary In this paper, we revealed that the recursive structures in the standard MDP can be
generalized to a broader class of recursive reward aggregation functions, resulting in generalized
Bellman equations and operators. Our theoretical analysis on the existence and uniqueness of fixed
points of the generalized Bellman operators provides a solid foundation for designing RL algorithms
based on recursive reward aggregation and understanding their convergence properties. Empirical
evaluations across discrete and continuous environments confirmed that different aggregation
functions significantly influence policy preferences, and we can align the agent behavior with
the task requirements by selecting appropriate aggregation functions. These findings highlight the
flexibility of recursive reward aggregation, paving the way for more versatile RL algorithms that can
be tailored to complex task requirements.

Scope and limitations Our framework is designed for recursive aggregations. As such, it does
not directly support non-recursive objectives such as the median or semivariance, which cannot
be computed using a bounded-size accumulator in an online fashion with a single pass. Although
approximate solutions may be feasible, e.g., sketching algorithms such as online quantile estimation
(Greenwald & Khanna, 2001), they fall outside the exact scope of our algebraic formulation.

Additionally, while our method frees the designer from modifying the reward function itself, it
introduces a different axis of design: selecting or constructing a suitable aggregation function. The
space of meaningful aggregations is vast and may require domain-specific insight or empirical tuning.

Finally, our work is agnostic to the validity of the reward hypothesis (Bowling et al., 2023): the idea
that all goals can be expressed as the maximization of expected cumulative scalar rewards. We neither
rely on this assumption nor seek to refute it. Instead, we explore an orthogonal dimension of goal
specification: how reward signals are aggregated over time. This perspective complements traditional
reward design and provides a flexible mechanism for aligning behavior with complex objectives,
without requiring any claims about the ultimate expressiveness or limitations of scalar rewards.

Future work Future research could explore several extensions and applications of the proposed
recursive reward aggregation framework.

First, since the abstract framework does not require the outputs of the generation function and the
inputs of the aggregation function to be real values, one promising direction is to investigate the use
of multi-dimensional objectives or non-numerical feedback signals, enhancing the flexibility and
expressiveness of policy preferences, particularly in complex environments with intricate reward
structures (Pitis, 2023; Wiltzer et al., 2024) or constraints (Gattami et al., 2021; Wachi et al., 2024).

Second, exploring the properties of the generalized Bellman operators in the stochastic setting,
especially their contraction behavior under different distributional metrics, is an important area of
study (Bellemare et al., 2023).

Third, extending the framework to approximate non-recursive aggregations (Greenwald & Khanna,
2001) or to learn aggregation functions from data (Zaheer et al., 2017; Ong & Veličković, 2022)
could broaden its applicability and automate goal specification.

Finally, applying recursive reward aggregation to real-world settings such as (i) risk-sensitive decision-
making, (ii) risk-adjusted return optimization and portfolio diversification in finance, and (iii) safe,
robust, and multi-objective control in robotics and autonomous driving, presents promising directions
(Kober et al., 2013; Kiran et al., 2021; Liu et al., 2024).

Recursive Reward Aggregation

Acknowledgments

We are grateful to Tongtong Fang for carefully reviewing the abstract and introduction and offering
insightful suggestions. We also thank the anonymous reviewers for their constructive feedback.

YT was supported by Institute for AI and Beyond, UTokyo. SN was supported by JSPS KAKENHI
Grant Number JP24KJ0818. MS was supported by Institute for AI and Beyond, UTokyo.

References
Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In

International Conference on Machine Learning, 2017. URL https://proceedings.mlr.
press/v70/achiam17a.html.

Johannes Ackermann, Takayuki Osa, and Masashi Sugiyama. Offline reinforcement learning from
datasets with structured non-stationarity. In Reinforcement Learning Conference, 2024. URL
https://openreview.net/forum?id=qowNlhKcPw.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete problems in AI safety. arXiv preprint, 2016. URL https://arxiv.org/abs/16
06.06565.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
In Neural Information Processing Systems, 2017. URL https://proceedings.neurips.
cc/paper/2017/hash/453fadbd8a1a3af50a9df4df899537b5-Abstract.ht
ml.

Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, methods
and progress. Artificial Intelligence, 297:103500, 2021. URL https://doi.org/10.1016/
j.artint.2021.103500.

David H Bailey, Jonathan Borwein, Marcos Lopez de Prado, and Qiji Jim Zhu. The probability
of backtest overfitting. Journal of Computational Finance (Risk Journals), 2015. URL
https://dx.doi.org/10.2139/ssrn.2326253.

Leemon C. Baird. Reinforcement learning in continuous time: Advantage updating. In IEEE
International Conference on Neural Networks, volume 4, pp. 2448–2453. IEEE, 1994. URL
https://doi.org/10.1109/ICNN.1994.374604.

Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics,
SMC-13(5):834–846, 1983. URL https://doi.org/10.1109/TSMC.1983.6313077.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, 2017. URL https://proceedi
ngs.mlr.press/v70/bellemare17a.html.

Marc G Bellemare, Will Dabney, and Mark Rowland. Distributional Reinforcement Learning. MIT
Press, 2023. URL https://doi.org/10.7551/mitpress/14207.001.0001.

Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966. URL https:
//doi.org/10.1126/science.153.3731.34.

Dimitri Bertsekas. Abstract Dynamic Programming. Athena Scientific, 2022.

Richard Bird and Oege de Moor. Algebra of Programming. Prentice Hall, 1997.

Zvi Bodie, Alex Kane, and Alan J Marcus. Investments. McGraw-hill, 2011.

https://proceedings.mlr.press/v70/achiam17a.html
https://proceedings.mlr.press/v70/achiam17a.html
https://openreview.net/forum?id=qowNlhKcPw
https://arxiv.org/abs/1606.06565
https://arxiv.org/abs/1606.06565
https://proceedings.neurips.cc/paper/2017/hash/453fadbd8a1a3af50a9df4df899537b5-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/453fadbd8a1a3af50a9df4df899537b5-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/453fadbd8a1a3af50a9df4df899537b5-Abstract.html
https://doi.org/10.1016/j.artint.2021.103500
https://doi.org/10.1016/j.artint.2021.103500
https://dx.doi.org/10.2139/ssrn.2326253
https://doi.org/10.1109/ICNN.1994.374604
https://doi.org/10.1109/TSMC.1983.6313077
https://proceedings.mlr.press/v70/bellemare17a.html
https://proceedings.mlr.press/v70/bellemare17a.html
https://doi.org/10.7551/mitpress/14207.001.0001
https://doi.org/10.1126/science.153.3731.34
https://doi.org/10.1126/science.153.3731.34

Reinforcement Learning Journal 2025

Michael Bowling, John D Martin, David Abel, and Will Dabney. Settling the reward hypothesis. In
International Conference on Machine Learning, 2023. URL https://proceedings.mlr.
press/v202/bowling23a.html.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/jax-ml/jax.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI Gym. arXiv preprint, 2016. URL https://arxiv.org/abs/
1606.01540.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In Neural Information Processing Systems,
volume 30, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/d
5e2c0adad503c91f91df240d0cd4e49-Abstract.html.

Geoffrey SH Cruttwell, Bruno Gavranović, Neil Ghani, Paul Wilson, and Fabio Zanasi. Categorical
foundations of gradient-based learning. In European Symposium on Programming, pp. 1–28, 2022.
URL https://doi.org/10.1007/978-3-030-99336-8_1.

Wei Cui and Wei Yu. Reinforcement learning with non-cumulative objective. IEEE Transactions
on Machine Learning in Communications and Networking, 1:124–137, 2023. URL https:
//doi.org/10.1109/TMLCN.2023.3285543.

Oege De Moor. Categories, relations and dynamic programming. Mathematical Structures in
Computer Science, 4(1):33–69, 1994. URL https://doi.org/10.1017/S096012950
0000360.

Lauro Langosco Di Langosco, Jack Koch, Lee D Sharkey, Jacob Pfau, and David Krueger. Goal
misgeneralization in deep reinforcement learning. In International Conference on Machine
Learning, 2022. URL https://proceedings.mlr.press/v162/langosco22a.h
tml.

Ron Dorfman, Idan Shenfeld, and Aviv Tamar. Offline meta reinforcement learning – identifiability
challenges and effective data collection strategies. In Neural Information Processing Systems,
2021. URL https://openreview.net/forum?id=IBdEfhLveS.

Tom Erez, Yuval Tassa, and Emanuel Todorov. Infinite-horizon model predictive control for
periodic tasks with contacts. In Robotics: Science and Systems VII. The MIT Press, 2012.
URL https://doi.org/10.7551/mitpress/9481.003.0015.

Brendan Fong and Michael Johnson. Lenses and learners. In International Workshop on Bidirectional
Transformations, 2019. URL https://arxiv.org/abs/1903.03671.

Tobias Fritz. A synthetic approach to Markov kernels, conditional independence and theorems on
sufficient statistics. Advances in Mathematics, 370:107239, 2020. URL https://doi.org/
10.1016/j.aim.2020.107239. https://arxiv.org/abs/1908.07021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International Conference on Machine Learning, 2018. URL https:
//proceedings.mlr.press/v80/fujimoto18a.html.

Ather Gattami, Qinbo Bai, and Vaneet Aggarwal. Reinforcement learning for constrained Markov
decision processes. In International Conference on Artificial Intelligence and Statistics, 2021.
URL https://proceedings.mlr.press/v130/gattami21a.html.

https://proceedings.mlr.press/v202/bowling23a.html
https://proceedings.mlr.press/v202/bowling23a.html
http://github.com/jax-ml/jax
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1606.01540
https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://doi.org/10.1007/978-3-030-99336-8_1
https://doi.org/10.1109/TMLCN.2023.3285543
https://doi.org/10.1109/TMLCN.2023.3285543
https://doi.org/10.1017/S0960129500000360
https://doi.org/10.1017/S0960129500000360
https://proceedings.mlr.press/v162/langosco22a.html
https://proceedings.mlr.press/v162/langosco22a.html
https://openreview.net/forum?id=IBdEfhLveS
https://doi.org/10.7551/mitpress/9481.003.0015
https://arxiv.org/abs/1903.03671
https://doi.org/10.1016/j.aim.2020.107239
https://doi.org/10.1016/j.aim.2020.107239
https://arxiv.org/abs/1908.07021
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v130/gattami21a.html

Recursive Reward Aggregation

Bruno Gavranović. Space-time tradeoffs of lenses and optics via higher category theory. arXiv
preprint, 2022. URL https://arxiv.org/abs/2209.09351.

Michèle Giry. A categorical approach to probability theory. Categorical Aspects of Topology and
Analysis, pp. 68–85, 1982. URL https://doi.org/10.1007/BFb0092872.

David Goldberg. What every computer scientist should know about floating-point arithmetic. ACM
computing surveys (CSUR), 23(1):5–48, 1991. URL https://doi.org/10.1145/103162
.103163.

Sai Krishna Gottipati, Yashaswi Pathak, Rohan Nuttall, Raviteja Chunduru, Ahmed Touati,
Sriram Ganapathi Subramanian, Matthew E Taylor, and Sarath Chandar. Maximum reward
formulation in reinforcement learning. arXiv preprint, 2020. URL https://arxiv.org/ab
s/2010.03744.

Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of quantile summaries.
ACM SIGMOD Record, 30(2):58–66, 2001. URL https://doi.org/10.1145/376284
.375670.

William H. Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden Codel, Manuela Veloso,
and Ruslan Salakhutdinov. MineRL: A large-scale dataset of Minecraft demonstrations. In
Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, 2019.
URL https://doi.org/10.24963/ijcai.2019/339.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning, 2018. URL https://proceedings.mlr.press/v80/haarno
ja18b.html.

Dylan Hadfield-Menell, Anca Dragan, Pieter Abbeel, and Stuart Russell. The off-switch game. In
Workshop on AI, Ethics, and Society at the Thirty-First AAAI Conference on Artificial Intelligence,
2017. URL https://arxiv.org/abs/1611.08219.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,
Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming
with NumPy. Nature, 585(7825):357–362, 2020. URL https://doi.org/10.1038/s415
86-020-2649-2. https://numpy.org.

Jules Hedges and Riu Rodríguez Sakamoto. Value iteration is optic composition. In International
Conference on Applied Category Theory, 2022. URL https://arxiv.org/abs/2206.0
4547.

Ralf Hinze, Thomas Harper, and Daniel W. H. James. Theory and practice of fusion. In
Symposium on Implementation and Application of Functional Languages, pp. 19–37, 2010. URL
https://doi.org/10.1007/978-3-642-24276-2_2.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning:
A survey of learning methods. ACM Computing Surveys (CSUR), 50(2):1–35, 2017. URL
https://doi.org/10.1145/3054912.

Graham Hutton. A tutorial on the universality and expressiveness of fold. Journal of Functional
Programming, 9(4):355–372, 1999. URL https://doi.org/10.1017/S09567968990
03500.

https://arxiv.org/abs/2209.09351
https://doi.org/10.1007/BFb0092872
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
https://arxiv.org/abs/2010.03744
https://arxiv.org/abs/2010.03744
https://doi.org/10.1145/376284.375670
https://doi.org/10.1145/376284.375670
https://doi.org/10.24963/ijcai.2019/339
https://proceedings.mlr.press/v80/haarnoja18b.html
https://proceedings.mlr.press/v80/haarnoja18b.html
https://arxiv.org/abs/1611.08219
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://numpy.org
https://arxiv.org/abs/2206.04547
https://arxiv.org/abs/2206.04547
https://doi.org/10.1007/978-3-642-24276-2_2
https://doi.org/10.1145/3054912
https://doi.org/10.1017/S0956796899003500
https://doi.org/10.1017/S0956796899003500

Reinforcement Learning Journal 2025

Jiaming Ji, Tianyi Qiu, Boyuan Chen, Borong Zhang, Hantao Lou, Kaile Wang, Yawen Duan,
Zhonghao He, Jiayi Zhou, Zhaowei Zhang, Fanzhi Zeng, Kwan Yee Ng, Juntao Dai, Xuehai Pan,
Aidan O’Gara, Yingshan Lei, Hua Xu, Brian Tse, Jie Fu, Stephen McAleer, Yaodong Yang, Yizhou
Wang, Song-Chun Zhu, Yike Guo, and Wen Gao. AI alignment: A comprehensive survey. arXiv
preprint, 2023. URL https://arxiv.org/abs/2310.19852.

Taylan Kabbani and Ekrem Duman. Deep reinforcement learning approach for trading automation in
the stock market. IEEE Access, 10:93564–93574, 2022. URL https://doi.org/10.1109/
ACCESS.2022.3203697.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yogamani,
and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2021. URL https:
//doi.org/10.1109/TITS.2021.3054625.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey.
The International Journal of Robotics Research, 32(11):1238–1274, 2013. URL https:
//doi.org/10.1177/0278364913495721.

Robert Tjarko Lange. gymnax: A JAX-based reinforcement learning environment library, 2022. URL
http://github.com/RobertTLange/gymnax.

Jan Leike, Miljan Martic, Victoria Krakovna, Pedro A Ortega, Tom Everitt, Andrew Lefrancq,
Laurent Orseau, and Shane Legg. AI safety gridworlds. arXiv preprint, 2017. URL https:
//arxiv.org/abs/1711.09883.

Xiao-Yang Liu, Ziyi Xia, Hongyang Yang, Jiechao Gao, Daochen Zha, Ming Zhu, Christina Dan
Wang, Zhaoran Wang, and Jian Guo. Dynamic datasets and market environments for financial
reinforcement learning. Machine Learning, 113(5):2795–2839, 2024. URL https://doi.or
g/10.1007/s10994-023-06511-w. https://arxiv.org/abs/2304.13174.

Shie Mannor and John Tsitsiklis. Mean-variance optimization in Markov decision processes. In
International Conference on Machine Learning, 2011. URL https://dl.acm.org/doi/a
bs/10.5555/3104482.3104505. https://icml.cc/2011/papers/156_icml
paper.pdf.

Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with bananas, lenses,
envelopes and barbed wire. In Conference on Functional Programming Languages and Computer
Architecture, pp. 124–144, 1991. URL https://doi.org/10.1007/3540543961_7.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing Atari with deep reinforcement learning. arXiv preprint,
2013. URL https://arxiv.org/abs/1312.5602.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015. URL https://doi.org/10.1038/nature14236.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, 2016. URL https://proceedi
ngs.mlr.press/v48/mniha16.html.

John Moody and Matthew Saffell. Learning to trade via direct reinforcement. IEEE transactions on
neural Networks, 12(4):875–889, 2001. URL https://doi.org/10.1109/72.935097.

https://arxiv.org/abs/2310.19852
https://doi.org/10.1109/ACCESS.2022.3203697
https://doi.org/10.1109/ACCESS.2022.3203697
https://doi.org/10.1109/TITS.2021.3054625
https://doi.org/10.1109/TITS.2021.3054625
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
http://github.com/RobertTLange/gymnax
https://arxiv.org/abs/1711.09883
https://arxiv.org/abs/1711.09883
https://doi.org/10.1007/s10994-023-06511-w
https://doi.org/10.1007/s10994-023-06511-w
https://arxiv.org/abs/2304.13174
https://dl.acm.org/doi/abs/10.5555/3104482.3104505
https://dl.acm.org/doi/abs/10.5555/3104482.3104505
https://icml.cc/2011/papers/156_icmlpaper.pdf
https://icml.cc/2011/papers/156_icmlpaper.pdf
https://doi.org/10.1007/3540543961_7
https://arxiv.org/abs/1312.5602
https://doi.org/10.1038/nature14236
https://proceedings.mlr.press/v48/mniha16.html
https://proceedings.mlr.press/v48/mniha16.html
https://doi.org/10.1109/72.935097

Recursive Reward Aggregation

John Moody, Lizhong Wu, Yuansong Liao, and Matthew Saffell. Performance functions and
reinforcement learning for trading systems and portfolios. Journal of forecasting, 17(5-6):441–
470, 1998. URL https://doi.org/10.1002/(SICI)1099-131X(1998090)17:
5/6%3C441::AID-FOR707%3E3.0.CO;2-%23.

Tetsuro Morimura, Masashi Sugiyama, Hisashi Kashima, Hirotaka Hachiya, and Toshiyuki Tanaka.
Nonparametric return distribution approximation for reinforcement learning. In International
Conference on Machine Learning, 2010a. URL https://dblp.org/rec/conf/icml/M
orimuraSKHT10.html. https://icml.cc/2010/papers/652.pdf.

Tetsuro Morimura, Masashi Sugiyama, Hisashi Kashima, Hirotaka Hachiya, and Toshiyuki Tanaka.
Parametric return density estimation for reinforcement learning. In Conference on Uncertainty in
Artificial Intelligence, 2010b. URL https://dblp.org/rec/conf/uai/MorimuraSK
HT10.html. https://event.cwi.nl/uai2010/papers/UAI2010_0115.pdf.

Jean-Michel Muller, Nicolas Brunie, Florent De Dinechin, Claude-Pierre Jeannerod, Mioara Joldes,
Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol, and Serge Torres. Handbook of floating-
point arithmetic, volume 1. Springer, 2018. URL https://doi.org/10.1007/978-3-3
19-76526-6.

Kevin Murphy. Reinforcement learning: An overview. arXiv preprint, 2024. URL https:
//arxiv.org/abs/2412.05265.

Maximilian Nägele, Jan Olle, Thomas Fösel, Remmy Zen, and Florian Marquardt. Tackling decision
processes with non-cumulative objectives using reinforcement learning. arXiv preprint, 2024. URL
https://arxiv.org/abs/2405.13609.

Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In International Conference on Machine Learning,
1999. URL https://dl.acm.org/doi/10.5555/645528.657613.

Euan Ong and Petar Veličković. Learnable commutative monoids for graph neural networks. In
Learning on Graphs Conference, 2022. URL https://proceedings.mlr.press/v198
/ong22a.html.

Aleksandar Petrov. Compositional computational systems. Master’s thesis, ETH Zurich, 2020. URL
https://doi.org/10.3929/ethz-b-000463467.

Silviu Pitis. Consistent aggregation of objectives with diverse time preferences requires non-
Markovian rewards. Advances in Neural Information Processing Systems, 2023. URL https:
//proceedings.neurips.cc/paper/2023/hash/08342dc6ab69f23167b4123
086ad4d38-Abstract.html.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, Inc., 1994. URL https://doi.org/10.1002/9780470316887.

Kian Hong Quah and Chai Quek. Maximum reward reinforcement learning: A non-cumulative
reward criterion. Expert Systems with Applications, 31(2):351–359, 2006. URL https:
//doi.org/10.1016/j.eswa.2005.09.054.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-Baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html. https://github.com/DLR-RM/stable-baselines3.

Mitchell Riley. Categories of optics. arXiv preprint, 2018. URL https://arxiv.org/abs/
1809.00738.

https://doi.org/10.1002/(SICI)1099-131X(1998090)17:5/6%3C441::AID-FOR707%3E3.0.CO;2-%23
https://doi.org/10.1002/(SICI)1099-131X(1998090)17:5/6%3C441::AID-FOR707%3E3.0.CO;2-%23
https://dblp.org/rec/conf/icml/MorimuraSKHT10.html
https://dblp.org/rec/conf/icml/MorimuraSKHT10.html
https://icml.cc/2010/papers/652.pdf
https://dblp.org/rec/conf/uai/MorimuraSKHT10.html
https://dblp.org/rec/conf/uai/MorimuraSKHT10.html
https://event.cwi.nl/uai2010/papers/UAI2010_0115.pdf
https://doi.org/10.1007/978-3-319-76526-6
https://doi.org/10.1007/978-3-319-76526-6
https://arxiv.org/abs/2412.05265
https://arxiv.org/abs/2412.05265
https://arxiv.org/abs/2405.13609
https://dl.acm.org/doi/10.5555/645528.657613
https://proceedings.mlr.press/v198/ong22a.html
https://proceedings.mlr.press/v198/ong22a.html
https://doi.org/10.3929/ethz-b-000463467
https://proceedings.neurips.cc/paper/2023/hash/08342dc6ab69f23167b4123086ad4d38-Abstract.html
https://proceedings.neurips.cc/paper/2023/hash/08342dc6ab69f23167b4123086ad4d38-Abstract.html
https://proceedings.neurips.cc/paper/2023/hash/08342dc6ab69f23167b4123086ad4d38-Abstract.html
https://doi.org/10.1002/9780470316887
https://doi.org/10.1016/j.eswa.2005.09.054
https://doi.org/10.1016/j.eswa.2005.09.054
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://github.com/DLR-RM/stable-baselines3
https://arxiv.org/abs/1809.00738
https://arxiv.org/abs/1809.00738

Reinforcement Learning Journal 2025

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In International
Conference on Learning Representations, 2016. URL https://arxiv.org/abs/15
06.02438.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint, 2017. URL https://arxiv.org/abs/1707.0
6347.

William F. Sharpe. Mutual fund performance. The Journal of Business, 39(1):119–138, 1966. URL
http://www.jstor.org/stable/2351741.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap,
Karen Simonyan, and Demis Hassabis. A general reinforcement learning algorithm that
masters chess, shogi, and Go through self-play. Science, 362(6419):1140–1144, 2018. URL
https://doi.org/10.1126/science.aar6404.

Toby St. Clere Smithe. Bayesian updates compose optically. arXiv preprint, 2020. URL
https://arxiv.org/abs/2006.01631.

Matthew J. Sobel. The variance of discounted Markov decision processes. Journal of Applied
Probability, 19(4):794–802, 1982. URL https://doi.org/10.2307/3213832.

Srijan Sood, Kassiani Papasotiriou, Marius Vaiciulis, and Tucker Balch. Deep reinforcement learning
for optimal portfolio allocation: A comparative study with mean-variance optimization. FinPlan,
pp. 21, 2023. URL https://icaps23.icaps-conference.org/papers/finplan
/FinPlan23_paper_4.pdf.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
1998. URL http://incompleteideas.net/book/the-book.html.

Aviv Tamar, Dotan Di Castro, and Shie Mannor. Policy gradients with variance related risk criteria.
In International Conference on Machine Learning, 2012. URL https://dl.acm.org/doi
/10.5555/3042573.3042784. https://icml.cc/2012/papers/489.pdf.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012. URL
https://doi.org/10.1109/IROS.2012.6386109.

Grigorii Veviurko, Wendelin Böhmer, and Mathijs de Weerdt. To the max: Reinventing reward
in reinforcement learning. In International Conference on Machine Learning, 2024. URL
https://proceedings.mlr.press/v235/veviurko24a.html.

Akifumi Wachi, Xun Shen, and Yanan Sui. A survey of constraint formulations in safe reinforcement
learning. In International Joint Conference on Artificial Intelligence, 2024. URL https:
//doi.org/10.24963/ijcai.2024/913.

Ruosong Wang, Peilin Zhong, Simon S Du, Russ R Salakhutdinov, and Lin Yang. Planning with
general objective functions: Going beyond total rewards. In Neural Information Processing
Systems, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/a6a
767bbb2e3513233f942e0ff24272c-Abstract.html.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8:279–292, 1992.
URL https://doi.org/10.1007/BF00992698.

Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD thesis, King’s
College, Cambridge United Kingdom, 1989. URL http://www.cs.rhul.ac.uk/~chris
w/new_thesis.pdf.

https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
http://www.jstor.org/stable/2351741
https://doi.org/10.1126/science.aar6404
https://arxiv.org/abs/2006.01631
https://doi.org/10.2307/3213832
https://icaps23.icaps-conference.org/papers/finplan/FinPlan23_paper_4.pdf
https://icaps23.icaps-conference.org/papers/finplan/FinPlan23_paper_4.pdf
http://incompleteideas.net/book/the-book.html
https://dl.acm.org/doi/10.5555/3042573.3042784
https://dl.acm.org/doi/10.5555/3042573.3042784
https://icml.cc/2012/papers/489.pdf
https://doi.org/10.1109/IROS.2012.6386109
https://proceedings.mlr.press/v235/veviurko24a.html
https://doi.org/10.24963/ijcai.2024/913
https://doi.org/10.24963/ijcai.2024/913
https://proceedings.neurips.cc/paper/2020/hash/a6a767bbb2e3513233f942e0ff24272c-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/a6a767bbb2e3513233f942e0ff24272c-Abstract.html
https://doi.org/10.1007/BF00992698
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf

Recursive Reward Aggregation

Barry Payne Welford. Note on a method for calculating corrected sums of squares and products.
Technometrics, 4(3):419–420, 1962. URL https://doi.org/10.1080/00401706.196
2.10490022.

Harley Wiltzer, Jesse Farebrother, Arthur Gretton, and Mark Rowland. Foundations of multivariate
distributional reinforcement learning. In Neural Information Processing Systems, 2024. URL
https://proceedings.neurips.cc/paper/2024/hash/b76bec34ef5e0c0ce
edff6edfbefc9f5-Abstract.html.

Xing Wu, Haolei Chen, Jianjia Wang, Luigi Troiano, Vincenzo Loia, and Hamido Fujita. Adaptive
stock trading strategies with deep reinforcement learning methods. Information Sciences, 538:
142–158, 2020. URL https://doi.org/10.1016/j.ins.2020.05.066.

Zhixuan Yang and Nicolas Wu. Fantastic morphisms and where to find them: A guide to recursion
schemes. In International Conference on Mathematics of Program Construction, pp. 222–267,
2022. URL https://doi.org/10.1007/978-3-031-16912-0_9.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. In Neural Information Processing Systems, 2017. URL
https://proceedings.neurips.cc/paper/2017/hash/f22e4747da1aa27e3
63d86d40ff442fe-Abstract.html.

Meixin Zhu, Yinhai Wang, Ziyuan Pu, Jingyun Hu, Xuesong Wang, and Ruimin Ke. Safe,
efficient, and comfortable velocity control based on reinforcement learning for autonomous
driving. Transportation Research Part C: Emerging Technologies, 117:102662, 2020. URL
https://doi.org/10.1016/j.trc.2020.102662.

Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy
inverse reinforcement learning. In National Conference on Artificial Intelligence, 2008. URL
https://dl.acm.org/doi/abs/10.5555/1620270.1620297.

https://doi.org/10.1080/00401706.1962.10490022
https://doi.org/10.1080/00401706.1962.10490022
https://proceedings.neurips.cc/paper/2024/hash/b76bec34ef5e0c0ceedff6edfbefc9f5-Abstract.html
https://proceedings.neurips.cc/paper/2024/hash/b76bec34ef5e0c0ceedff6edfbefc9f5-Abstract.html
https://doi.org/10.1016/j.ins.2020.05.066
https://doi.org/10.1007/978-3-031-16912-0_9
https://proceedings.neurips.cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f22e4747da1aa27e363d86d40ff442fe-Abstract.html
https://doi.org/10.1016/j.trc.2020.102662
https://dl.acm.org/doi/abs/10.5555/1620270.1620297

Reinforcement Learning Journal 2025

Supplementary Materials
The following content was not necessarily subject to peer review.

Contents
1 Introduction 1
2 An algebraic perspective on Bellman equations 3

2.1 Preliminaries . 3
2.2 Recursive generation of rewards . 3
2.3 Recursive aggregation of rewards . 4
2.4 Bellman equation for the state value function . 4

3 Recursive reward aggregation functions 5
3.1 Bellman equation for the state statistic function 5
3.2 Policy evaluation: Iterative statistic function estimation 6
3.3 Policy optimization: Optimal policies and optimal value functions 7

4 From deterministic to stochastic Markov decision processes 7
5 Experiments 8

5.1 Grid-world: Value-based methods for discrete planning 8
5.2 Wind-world: Policy improvement methods for trajectory optimization 9
5.3 Physics simulation: Actor-critic methods for continuous control 10
5.4 Real-world application: Sharpe ratio in portfolio optimization 11

6 Conclusion 12
Bibliography 13
A State-action recursion 22

A.1 State-action transition . 22
A.2 State-action step function and generation function 22
A.3 State-action statistic function and value function 22
A.4 Relationship between state and state-action statistic functions 22
A.5 Advantage function . 23

B Algebraic structures in Markov decision process 27
B.1 Algebra fusion . 27
B.2 Bidirectional process . 27
B.3 Non-uniqueness of update function and post-processing function 28

C Metrics and Bellman operators 29
C.1 Preliminaries . 29
C.2 Metrics on statistics and rewards . 29
C.3 Bellman operators . 30
C.4 Existence of fixed points of Bellman operators . 30
C.5 Uniqueness of fixed points of Bellman operators 30

D Orders and Bellman optimality operators 31
D.1 Preliminaries . 31
D.2 Orders on statistics and rewards . 32
D.3 Bellman optimality operators . 32
D.4 Existence of fixed points of Bellman optimality operators 32
D.5 Uniqueness of fixed points of Bellman optimality operators 32

E Stochastic Markov decision process 34
E.1 Composition of stochastic functions . 34
E.2 Stochastic recursion . 35
E.3 Relationship between stochastic state and state-action statistic functions 35
E.4 Expected aggregated rewards vs. aggregated expected rewards 35

Recursive Reward Aggregation

F Proofs 36
G Learning algorithms with recursive reward aggregation 43

G.1 Q-learning . 43
G.2 PPO . 44
G.3 TD3 . 45

H Experiments 46
H.1 Grid-world environment . 46
H.2 Wind-world environment . 46
H.3 Continuous control environments . 46
H.4 Portfolio environment . 49

I Discussion 51

List of Figures
1 Different aggregation functions lead to different policy preferences 2
2 State statistic bidirectional process . 6
3 Expected discounted sum of rewards vs. discounted sum of expected rewards . . . 8
4 Grid-world . 9
5 Wind-world . 9
6 Lunar Lander . 10
7 State statistic bidirectional process τSπ : S → T 25
8 State statistic bidirectional process (with different behavior and target policies) . . 25
9 State statistic bidirectional process (with state as the residual) 25
10 State-action statistic bidirectional process τS×A

π : S ×A→ T 26
11 State-action statistic bidirectional process (with different behavior and target policies) 26
12 State-action statistic bidirectional process (with state-action as the residual) 26
13 Relationship between state and state-action statistic functions 41
14 max− λ range = λmin + (1− λ)max . 46
15 Hopper . 48
16 Ant . 48
17 Sharpe ratio . 50

List of Tables
1 Recursive aggregation functions . 5
2 Sharpe ratio . 11
3 Properties of metrics . 29
4 Properties of orders . 31
5 Fixed points of the Bellman operators and the Bellman optimality operators 33
6 Expected aggregated rewards vs. aggregated expected rewards: maximum as an example 35

List of Algorithms
1 Q-learning (Watkins & Dayan, 1992) with recursive reward aggregation 43
2 PPO (Schulman et al., 2017) with recursive reward aggregation 44
3 TD3 (Fujimoto et al., 2018) with recursive reward aggregation 45

Reinforcement Learning Journal 2025

A State-action recursion

In Section 2, we introduced the recursive generation of rewards by iterating over states S. In this
section, we extend this framework to iterate over state-action pairs S ×A, which is crucial for
defining the state-action value function qπ : S ×A→ R.

A.1 State-action transition

First, note that both pre-composing and post-composing the pairing function ⟨idS , π⟩ : S → S ×A
with the transition function p : S ×A→ S yield transition functions:

state transition pSπ : S → S := p ◦ ⟨idS , π⟩ = [s 7→ p(s, π(s))] and
state-action transition pS×A

π : S ×A→ S ×A := ⟨idS , π⟩ ◦ p = [s, a 7→ p(s, a), π(p(s, a))].

We use the superscripts S and S ×A to indicate the domains/codomains of these transition functions.

A.2 State-action step function and generation function

Then, following the definitions of the state step function stepSπ,p,r,ω : S → {∗}+R×S in Eq. (3) and
generation function genSπ,p,r,ω : S → [R] in Eq. (4), we can define the state-action step/generation
functions using the state-action transition pS×A

π and the reward function r:

stepS×A
π,p,r,ω : S ×A→ {∗}+R× (S ×A) :=

[
s, a 7→

{
∗ s ∈ Sω

(r(s, a),pS×A
π (s, a)) s /∈ Sω

]
, (15)

genS×A
π,p,r,ω : S ×A→ [R] :=

[
s, a 7→

{
[] s ∈ Sω

cons(r(s, a), genS×A
π,p,r,ω(p

S×A
π (s, a))) s /∈ Sω

]
. (16)

A.3 State-action statistic function and value function

Applying the same algebraic fusion technique (Hinze et al., 2010) used for the state statistic function
τSπ : S → T in Theorem 3.2, we can define the state-action statistic function τS×A

π : S ×A→ T
and derive its corresponding Bellman equation as follows:

Theorem A.1 (Bellman equation for the state-action statistic function). Given a recursive reward
generation function genS×A

π,p,r,ω and a recursive statistic aggregation function agginit,▷ (Definition 3.1),
their composition, called the state-action statistic function τS×A

π : S → T , satisfies
τS×A
π : S ×A→ T := agginit,▷ ◦ genS×A

π,p,r,ω

=

[
s, a 7→

{
init s ∈ Sω

r(s, a) ▷ τS×A
π (pS×A

π (s, a)) s /∈ Sω

]
. (17)

Similarly, the state-action value function qπ : S ×A→ R := post ◦ τS×A
π is the composition of the

state-action statistic function τS×A
π : S ×A→ T with the post-processing function post : T → R.

A.4 Relationship between state and state-action statistic functions

We can now state the theorem that relates the state and state-action statistic functions:

Theorem A.2 (Relationship between state and state-action statistic functions). Given a recursive
reward generation function genπ,p,r,ω (Definition 2.1) and a recursive statistic aggregation function
agginit,▷ (Definition 3.1), the state statistic function τSπ : S → T in Eq. (10) and the state-action
statistic function τS×A

π : S ×A→ T in Eq. (17) satisfy
τSπ = τS×A

π ◦ ⟨idS , π⟩ : S → T (for all states), (18)

τS×A
π = r ▷ (τSπ ◦ p) : S ×A→ T (for all non-terminal states). (19)

Recursive Reward Aggregation

Corollary A.3 (Relationship between state and state-action value functions). The state value function
vπ : S → R and the state-action value function qπ : S ×A→ R satisfy

vπ = qπ ◦ ⟨idS , π⟩ : S → R. (20)

In summary, the relationships between the state/state-action step, generation, statistic, and value
functions are shown in the following diagram:

{∗}+R× S {∗}+R× [R]

{∗}+R× (S ×A) {∗}+R× T

{∗} S [R]

S ×A T R

[nil,cons]

[init,▷]

s0

step
S
π,p,r,ω

gen
S
π,p,r,ω

⟨idS ,π⟩

τ
S
π

vπ

agginit,▷

step
S×A
π,p,r,ω

gen
S×A
π,p,r,ω

τ
S×A
π

qπ

post

(21)

A.5 Advantage function

The advantage function (Baird, 1994),
απ : S ×A→ R := qπ − vπ ◦ p1 = [s, a 7→ qπ(s, a)− vπ(s)], (22)

is defined as the difference between the state-action value function qπ : S ×A→ R and the state
value function vπ : S → R, where p1 : S ×A→ S is the projection function that extracts the state
from a state-action pair. The advantage function measures the advantage of taking an action a in a
state s over the average value of all actions in that state following the policy π, which is widely used
in RL algorithms.

For a general recursive reward aggregation function post ◦ agginit,▷, the advantage function can be
expressed using the state-action statistic function τS×A

π : S ×A→ T and the state statistic function
τSπ : S → T as follows:

απ : S ×A→ R =
[
s, a 7→ post(τS×A

π (s, a))− post(τSπ (s))
]

(23)

=

[
s, a 7→

{
0 s ∈ Sω

post(r(s, a) ▷ τSπ (p(s, a)))− post(τSπ (s)) s /∈ Sω

]
. (24)

Because the statistic function can be computed recursively, given a sequence of states, rewards, and
statistics, we can obtain a sequence of advantage estimators:

α̂
(1)
t = post(rt ▷ τt+1)− post(τt), (25)

α̂
(2)
t = post(rt ▷ rt+1 ▷ τt+2)− post(τt), (26)

α̂
(3)
t = post(rt ▷ rt+1 ▷ rt+2 ▷ τt+3)− post(τt), (27)

...

Reinforcement Learning Journal 2025

α̂
(1)
t+1 = post(rt+1 ▷ τt+2)− post(τt+1), (28)

α̂
(2)
t+1 = post(rt+1 ▷ rt+2 ▷ τt+3)− post(τt+1), (29)

...

The generalized advantage estimator (GAE) proposed by Schulman et al. (2016) combines these
advantage estimators with a discount factor λ ∈ [0, 1]:

α̂t := α̂
(1)
t + λα̂

(2)
t + λ2α̂

(3)
t + · · · (30)

= 1 (post(rt ▷ τt+1) − post(τt))
+ λ (post(rt ▷ rt+1 ▷ τt+2) − post(τt))

+ λ2 (post(rt ▷ rt+1 ▷ rt+2 ▷ τt+3) − post(τt))
+ · · ·

(31)

The original GAE formulation (Schulman et al., 2016) considered only the discounted sum and an
infinite horizon. For a finite horizon Ω, the advantage estimator can be expressed as follows:

αt = 1 (rt + γvt+1 − vt)

+ λ (rt + γrt+1 + γ2vt+2 − vt)

+ λ2 (rt + γrt+1 + γ2rt+2 + γ3vt+3 − vt)
+ · · ·
+ λΩ−t−1 (rt + γrt+1 + γ2rt+2 + · · · + γΩ−t−1rΩ−1 + γΩ−tvΩ − vt)

(32)

=

Ω−t−1∑
i=0

λiγi

(
1− λΩ−t−i

1− λ
rt+i + γvt+i+1

)
− 1− λΩ−t

1− λ
vt, (33)

which has a recursive form:

αt =
1− λΩ−t

1− λ
(rt + γvt+1 − vt) + λγαt+1. (34)

However, when considering a general recursive reward aggregation function post ◦ agginit,▷, a
recursive expression for the advantage estimator is not always available. Therefore, the advantage
estimator may need to be computed directly using its original definition in Eq. (30).

Recursive Reward Aggregation

S

T

R

S

T

. . .

. . .

{∗}

T

π

p

r

▷

init

st st+1

τt τt+1

rt+1

Figure 7: State statistic bidirectional process τSπ : S → T

S

T

R

S

T

. . .

. . .

{∗}

T

π

p

πθ

r

▷

init

st st+1

τt τt+1

rt+1

Figure 8: State statistic bidirectional process (with different behavior and target policies)

S

T

S

S

T

. . .

. . .

{∗}

T

π

p

πθ

r

▷

init

st st+1

τt τt+1

st

Figure 9: State statistic bidirectional process (with state as the residual)

Reinforcement Learning Journal 2025

S

A

T

R

S

A

T

. . .

. . .

. . .

{∗}

T

p

π

r

▷

init

st st+1

at at+1

τt τt+1

rt+1

Figure 10: State-action statistic bidirectional process τS×A
π : S ×A→ T

S

A

T

R

S

A

T

. . .

. . .

. . .

{∗}

T

p

π

πθ

r

▷

init

st st+1

at at+1

τt τt+1

rt+1

Figure 11: State-action statistic bidirectional process (with different behavior and target policies)

S

A

T

S A

S

A

T

. . .

. . .

. . .

{∗}

T

p

π

πθ

r

▷

init

st st+1

at at+1

τt τt+1

st at

Figure 12: State-action statistic bidirectional process (with state-action as the residual)

Recursive Reward Aggregation

B Algebraic structures in Markov decision process

In this section, we briefly discuss the algebraic structures used in this work. For a tutorial on algebraic
programming, we refer the reader to Hutton (1999). For a theoretical treatment of algebra fusion,
see Hinze et al. (2010). For an accessible and illustrative introduction to bidirectional processes, we
recommend Gavranović (2022).

B.1 Algebra fusion

In this work, we mainly considered algebras and coalgebras of signature {∗}+R× (−), i.e., lists of
rewards. An algebra is a pair (A, f) consisting of a carrier set A and a function f : {∗}+R×A→ A.
A coalgebra is a pair (C, g) consisting of a carrier set C and a function g : C → {∗}+R× C. For
example, the list construction [nil, cons] : {∗}+R× [R]→ [R] is an algebra on the set [R] of lists of
rewards, while the step function stepSπ,p,r,ω : S → {∗}+R× S is a coalgebra on the set S of states.

Note that the list construction [nil, cons] is the initial algebra, the discounted sum function sumγ is
defined as the catamorphism from the initial algebra to the algebra [0,+γ], while the recursive reward
generation function genπ,p,r,ω is defined as the hylomorphism from the coalgebra stepπ,p,r,ω to the
initial algebra. In the field of functional programming, such operations are also known as fold and
unfold (Meijer et al., 1991; Bird & de Moor, 1997; Hutton, 1999; Yang & Wu, 2022).

Due to the recursive nature of the generation and aggregation functions, we can derive the recursive
structure of their composition using the algebra fusion technique (Hinze et al., 2010), which leads to
the Bellman equations for the state statistic function τSπ : S → T in Theorem 3.2 and the state-action
statistic function τS×A

π : S ×A→ T in Theorem A.1.

B.2 Bidirectional process

In Fig. 2, we illustrate the bidirectional processes for the state statistic function and state value function.
In algebra, such bidirectional processes are called lenses and optics (Riley, 2018). Such bidirectional
processes (Riley, 2018) have been applied to study supervised learning (Fong & Johnson, 2019),
Bayesian inference (Smithe, 2020), gradient-based learning (Cruttwell et al., 2022), and reinforcement
learning (Hedges & Sakamoto, 2022).

Note that there is a slight difference between the definitions of step/generation/statistic functions in
Eqs. (3), (4) and (10) and the bidirectional process in Fig. 2 (reproduced in Fig. 7). In Eq. (3), a
state s is duplicated and passed separately to the transition function pπ and the reward function rπ,
requiring the policy π to compute the action a twice. In contrast, in Fig. 7, the state s is passed to the
policy π only once, and the action a is computed only once and then copied to the transition function
p and the reward function r. These two approaches are equivalent only when the following equation
holds:

S

A A

π π

S

A A

π

= (35)

For functions, copying an input and then passing the copies to two identical functions is equivalent to
passing the input to the function once and then copying the output. However, for stochastic functions,
these two approaches are not equivalent, which requires additional care when defining bidirectional
processes for stochastic functions (see also Fritz, 2020, Definition 10.1).

Reinforcement Learning Journal 2025

Strictly speaking, the definitions in Eqs. (3), (4) and (10) correspond to a bidirectional process
illustrated in Fig. 8, where different behavior and target policies can be considered. In this setting,
the target policy πθ, parameterized by θ, is used to compute the reward and is optimized, while the
potentially unknown behavior policy π is passed to the transition function. Further, the internal state
between the forward and backward processes — also known as the residual (Gavranović, 2022) —
can be the state itself rather than the reward, as shown in Fig. 9. Similar considerations extend to the
state-action statistic function, as illustrated in Figs. 10 to 12.

We believe that such bidirectional processes offer a clearer framework for reinforcement learning,
including offline reinforcement learning, inverse reinforcement learning, and imitation learning
(Hussein et al., 2017; Arora & Doshi, 2021; Hedges & Sakamoto, 2022; Murphy, 2024). Further
research is needed to explore the full potential of bidirectional processes in reinforcement learning.

B.3 Non-uniqueness of update function and post-processing function

It is important to note that for a given aggregation function, the corresponding update function
▷ : R× T → T and post-processing function post : T → R are not necessarily unique.

Mean For example, the mean function can be computed recursively in different ways: one approach
updates the sum and the length, while another updates the mean and the length. Each approach has its
own advantages and disadvantages. Updating the sum allows for a straightforward implementation,
but when both the sum and the length are large, numerical instability may arise. In contrast, updating
the mean may require additional computation, but if the rewards are bounded, the mean remains
bounded as well, which can improve numerical stability.

Variance Similarly, the variance can also be computed recursively through multiple formulations.
A common method maintains the sum of squares, the mean, and the length, while a more
numerically stable alternative, Welford’s algorithm (Welford, 1962), updates the variance directly
using incremental differences. Specifically, the update rule is given by:

σ2
t+1 = σ2

t +
t(rt+1 − µt)

2 − (t+ 1)σ2
t

(t+ 1)2
, (36)

where rt, µt, and σ2
t denote the reward observed at time step t, the mean of the rewards up to time

t, and the variance of the rewards up to time t, respectively. To compute the variance iteratively
using this formulation, it is sufficient to maintain and update the length, the mean, and the variance
at each step. This formulation improves numerical stability by preventing catastrophic cancellation
(Goldberg, 1991; Muller et al., 2018), which occurs when subtracting two large and nearly identical
values, leading to significant precision loss in floating-point arithmetic.

Recursive Reward Aggregation

Table 3: Properties of metrics

Premetric Strict premetric Metric

Indiscernibility of identities
(a1 = a2)→ (dA(a1, a2) = 0)

✓ ✓ ✓

Identity of indiscernibles
(dA(a1, a2) = 0)→ (a1 = a2)

✓ ✓

Symmetry
dA(a1, a2) = dA(a2, a1)

✓

Triangle inequality
dA(a1, a3) ≤ dA(a1, a2) + dA(a2, a3)

✓

C Metrics and Bellman operators

In this section, we discuss the metrics on the statistics T and rewards R and the Bellman operators
for the state/state-action statistic functions.

C.1 Preliminaries

Recall the definitions of metrics, as summarized in Table 3:

Definition C.1 (Premetric). A premetric on a set A is a function dA : A × A → [0,∞] such that
∀a ∈ A. dA(a, a) = 0.

Definition C.2 (Strict premetric). A strict premetric on a set A is a function dA : A×A→ [0,∞]
such that ∀a1, a2 ∈ A. (dA(a1, a2) = 0)↔ (a1 = a2).

Given a function to a premetric space, we can define a premetric on the domain by pullback:

Lemma C.3 (Pullback premetric). Let dB : B × B → [0,∞] be a premetric on a set B, and let
f : A→ B be a function. The pullback premetric dA : A×A→ [0,∞] is defined by

∀a1, a2 ∈ A. dA(a1, a2) := dB(f(a1), f(a2)). (37)
If dB is a strict premetric, then dA is also a strict premetric if and only if the function f is injective.

C.2 Metrics on statistics and rewards

By Lemma C.3, we can define a premetric dT on statistics T by pulling back a premetric dR on
rewards R through a post-processing function post : T → R:

∀τ1, τ2 ∈ T. dT (τ1, τ2) := dR(post(τ1),post(τ2)). (38)

However, when rewards R are real-valued while statistics T are multi-dimensional, the pullback
premetric dT may not be a strict premetric, as different statistics may map to the same reward value.

For example, consider the range of rewards, where the statistics T = R2 are the maximum and
minimum of rewards. We can directly define a metric on statistics by

dT

([
m1

n1

]
,

[
m2

n2

])
:=

√
(m1 −m2)

2 + (n1 − n2)
2. (39)

If we use the pullback premetric, we have

dT

([
m1

n1

]
,

[
m2

n2

])
:= dR

(
post

([
m1

n1

])
,post

([
m2

n2

]))
(40)

= dR(m1 − n1,m2 − n2) (41)
= |(m1 − n1)− (m2 − n2)|. (42)

Reinforcement Learning Journal 2025

C.3 Bellman operators

Recall the definition of the Bellman operator for a state statistic function τS : S → T :

Definition 3.4 (Bellman operator). Given a policy π, a transition function p, a reward function r,
a terminal condition ω, and a recursive statistic aggregation function agginit,▷ (Definition 3.1), the
Bellman operator Bπ : [S, T]→ [S, T] for a function τ : S → T is defined by

Bπτ : S → T :=

[
s 7→

{
init s ∈ Sω

rπ(s) ▷ τ(pπ(s)) s /∈ Sω

]
. (11)

We can define a Bellman operator for a state-action statistic function τS×A : S ×A→ T similarly:

Definition C.4 (Bellman operator). Given a policy π, a transition function p, a reward function r,
a terminal condition ω, and a recursive statistic aggregation function agginit,▷ (Definition 3.1), the
Bellman operator BS×A

π : [S ×A, T] → [S ×A, T] for a function τS×A : S ×A → T is defined
by

BS×A
π τS×A : S ×A→ T :=

[
s, a 7→

{
init s ∈ Sω

r(s, a) ▷ τS×A(pS×A
π (s, a)) s /∈ Sω

]
. (43)

C.4 Existence of fixed points of Bellman operators

The existence of fixed points of the Bellman operators BSπ and BS×A
π is established by the Bellman

equations for the state statistic function τSπ : S → T in Theorem 3.2 and the state-action statistic
function τS×A

π : S ×A→ T in Theorem A.1.
Remark 4 (Banach fixed point theorem). Note that the classical fixed point theorem for Bellman
operators typically relies on the Banach fixed point theorem, which requires the underlying space to
be a complete metric space. This is not an issue in the standard discounted sum setting, as the space
R of real numbers has a complete metric structure. However, in our setting, the space T of statistics
may lack such a complete metric structure, posing potential challenges for establishing fixed point
guarantees. That said, the triangle inequality of the metric and the completeness of the space are
only necessary for ensuring the existence of fixed points: the triangle inequality guarantees that the
iterative sequence is a Cauchy sequence, while completeness ensures that the sequence has a limit
within the space. Since the existence of fixed points follows directly from the Bellman equations, our
focus shifts to the uniqueness of fixed points, which only requires the space to be a premetric space.

C.5 Uniqueness of fixed points of Bellman operators

Recall that Theorem 3.6 establishes the uniqueness of fixed points of the Bellman operator BSπ for
state statistic functions τS : S → T :

Theorem 3.6 (Uniqueness of fixed points of Bellman operator). Let τ1, τ2 : S → T be fixed points
of the Bellman operator Bπ (Definition 3.4). If the update function ▷ is contractive with respect to a
premetric dT on statistics T (Definition 3.5), then dT (τ1(s), τ2(s)) = 0 for all states s ∈ S. If dT is
a strict premetric, then τ1 = τ2 = τπ .

Similarly, we can extend this result to the Bellman operator BS×A
π for state-action statistic functions

τS×A : S ×A→ T :

Theorem C.5 (Uniqueness of fixed points of the Bellman operator). Let τS×A
1 , τS×A

2 : S ×A→ T
be fixed points of the Bellman operator BS×A

π (Definition C.4). If the update function ▷ is contractive
with respect to a premetric dT on statistics T (Definition 3.5), then dT (τ

S×A
1 (s, a), τS×A

2 (s, a)) = 0

for all states s ∈ S and actions a ∈ A. If dT is a strict premetric, then τS×A
1 = τS×A

2 = τS×A
π .

Recursive Reward Aggregation

Table 4: Properties of orders

Preorder Partial order Total preorder Total order

Reflexivity
a ≤A a

✓ ✓ ✓ ✓

Transitivity
(a1 ≤A a2) ∧ (a2 ≤A a3)→ (a1 ≤A a3)

✓ ✓ ✓ ✓

Antisymmetry
(a1 ≤A a2) ∧ (a2 ≤A a1)→ (a1 = a2)

✓ ✓

Totality
(a1 ≤A a2) ∨ (a2 ≤A a1)

✓ ✓

D Orders and Bellman optimality operators

In this section, we discuss the orders on the statistics T and rewards R and the Bellman optimality
operators for the state/state-action statistic functions.

D.1 Preliminaries

Recall the definitions of orders, as summarized in Table 4:

Definition D.1 (Preorder). A preorder on a set A is a relation ≤A that is reflexive ∀a ∈ A. a ≤A a
and transitive ∀a1, a2, a3 ∈ A. (a1 ≤A a2) ∧ (a2 ≤A a3)→ (a1 ≤A a3).

Definition D.2 (Partial order). A partial order on a set A is a relation ≤A that is reflexive, transitive,
and antisymmetric ∀a1, a2 ∈ A. (a1 ≤A a2) ∧ (a2 ≤A a1)→ (a1 = a2).

Definition D.3 (Total preorder). A total preorder on a set A is a relation ≤A that is reflexive,
transitive, and total ∀a1, a2 ∈ A. (a1 ≤A a2) ∨ (a2 ≤A a1).

Definition D.4 (Total order). A total order on a set A is a relation ≤A that is reflexive, transitive,
antisymmetric, and total.

Given a function to a preorder space, we can define a preorder on the domain by pullback:

Lemma D.5 (Pullback preorder). Let ≤B be a preorder on a set B, and let f : A→ B be a function.
The pullback preorder ≤A on a set A is defined by

∀a1, a2 ∈ A. (a1 ≤A a2) := (f(a1) ≤B f(a2)). (44)
If ≤B is total, then ≤A is also total. If ≤B is antisymmetric, then ≤A is also antisymmetric if and
only if f is injective.

Given a preorder and a premetric, wen can consider how the premetric preserves the preorder:

Definition D.6 (Preorder-preserving premetric). A premetric dB : B × B → [0,∞] on a set B
preserves a preorder ≤B on the set B if
∀b1, b2, b3 ∈ B. (b1 ≤B b2 ≤B b3)→(dB(b1, b2) ≤ dB(b1, b3))∧(dB(b3, b2) ≤ dB(b3, b1)). (45)

Note that since a premetric is not required to be symmetric, there are in total eight possible inequalities
that we can consider for the preorder preservation of a premetric, which are omitted here for brevity.

Given a preorder-preserving premetric, we can consider an inequality for the supremum of functions:

Lemma D.7 (Preorder-preserving premetric’s supremum inequality). Let dB : B ×B → [0,∞] be
a premetric that preserves a premetric ≤B on a set B. Then, for functions f1, f2 : A → B whose
suprema are attained in B, we have

dB(sup
a∈A

f1(a), sup
a∈A

f2(a)) ≤ sup
a∈A

dB(f1(a), f2(a)). (46)

This lemma is useful for proving the contraction property of the Bellman optimality operator, as we
will see later.

Reinforcement Learning Journal 2025

D.2 Orders on statistics and rewards

By Lemma D.5, we can define a preorder ≤T on statistics T by pulling back a preorder ≤R on
rewards R through a post-processing function post : T → R:

∀τ1, τ2 ∈ T. (τ1 ≤T τ2) := (post(τ1) ≤R post(τ2)). (47)

Since the (pre)order ≤R on rewards R is usually the total order of real numbers, we can guarantee
that the preorder ≤T on statistics T is also total.

For example, consider the arithmetic mean of rewards, where the statistics T = N× R are the length
and the sum of rewards. We can compare two statistics (n1, s1) and (n2, s2) by comparing the means
s1
n1

and s2
n2

. This is a total preorder on the statistics T .

D.3 Bellman optimality operators

We can define the Bellman optimality operators as follows:

Definition D.8 (Bellman optimality operator). Given a policy π, a transition function p, a reward
function r, a terminal condition ω, a recursive statistic aggregation function agginit,▷ (Definition 3.1),
and a preorder ≤T on statistics T , the Bellman optimality operator BS∗ : [S, T] → [S, T] for a
function τS : S → T is defined by

BS∗ τS : S → T :=

s 7→
init s ∈ Sω

sup
a∈A

(
r(s, a) ▷ τS(p(s, a))

)
s /∈ Sω

. (48)

Definition D.9 (Bellman optimality operator). Given a policy π, a transition function p, a reward
function r, a terminal condition ω, a recursive statistic aggregation function agginit,▷ (Definition 3.1),
and a preorder≤T on statistics T , the Bellman optimality operator BS×A

∗ : [S ×A, T]→ [S ×A, T]

for a function τS×A : S ×A→ T is defined by

BS×A
∗ τS×A : S ×A→ T :=

s, a 7→
init s ∈ Sω

sup
a
′∈A

(
r(s, a) ▷ τS×A(p(s, a), a′)

)
s /∈ Sω

. (49)

D.4 Existence of fixed points of Bellman optimality operators

Recall that Theorem 3.8 establishes the existence of a fixed point of the Bellman optimality operator
BS∗ for state statistic functions τS : S → T :

Theorem 3.8 (Bellman optimality equation for the state statistic function). Given a preorder ≤T on
statistics T , the optimal state statistic function τ∗ (Definition 3.7) satisfies

τ∗ : S → T :=

s 7→
init s ∈ Sω

sup
a∈A

(r(s, a) ▷ τ∗(p(s, a))) s /∈ Sω

. (12)

We can similarly establish the existence of a fixed point of the Bellman optimality operator BS×A
∗ for

state-action statistic functions τS×A : S ×A→ T :

Theorem D.10 (Bellman optimality equation for the state-action statistic function). Given a preorder
≤T on statistics T , the optimal state-action statistic function τS×A

∗ satisfies

τS×A
∗ : S ×A→ T :=

s, a 7→
init s ∈ Sω

sup
a
′∈A

(
r(s, a) ▷ τS×A

∗ (p(s, a), a′)
)

s /∈ Sω

. (50)

D.5 Uniqueness of fixed points of Bellman optimality operators

Similarly to Theorem 3.6, we can guarantee the uniqueness of fixed points of the Bellman optimality
operators BS∗ and BS×A

∗ under certain conditions:

Recursive Reward Aggregation

Table 5: Fixed points of the Bellman operators and the Bellman optimality operators

Definition Existence Uniqueness

Bellman operator BSπ Definition 3.4 Theorem 3.2 Theorem 3.6
BS×A
π Definition C.4 Theorem A.1 Theorem C.5

Bellman optimality operator BS∗ Definition D.8 Theorem 3.8 Theorem D.11
BS×A
∗ Definition D.9 Theorem D.10 Theorem D.12

Theorem D.11 (Uniqueness of fixed points of Bellman optimality operator). Let τS1 , τ
S
2 : S → T

be fixed points of the Bellman optimality operator BS∗ (Definition D.8). If the update function ▷ is
contractive with respect to a premetric dT on statistics T (Definition 3.5), and the premetric dT
preserves the preorder ≤T on statistics T (Definition D.6), then dT (τ

S
1 (s), τ

S
2 (s)) = 0 for all states

s ∈ S. If dT is a strict premetric, then τS1 = τS2 = τS∗ .

Theorem D.12 (Uniqueness of fixed points of Bellman optimality operator). Let τS×A
1 , τS×A

2 :
S ×A → T be fixed points of the Bellman optimality operator BS×A

∗ (Definition D.9). If the
update function ▷ is contractive with respect to a premetric dT on statistics T (Definition 3.5),
and the premetric dT preserves the preorder ≤T on statistics T (Definition D.6), then
dT (τ

S×A
1 (s, a), τS×A

2 (s, a)) = 0 for all states s ∈ S and actions a ∈ A. If dT is a strict premetric,
then τS×A

1 = τS×A
2 = τS×A

∗ .

In summary, the definitions and results on the fixed points of the Bellman operators and the Bellman
optimality operators are summarized in Table 5.

Reinforcement Learning Journal 2025

E Stochastic Markov decision process

In this section, we discuss the stochastic extension of the deterministic Markov decision processes
introduced in Sections 2 and 3.

E.1 Composition of stochastic functions

The composition rules of stochastic functions and deterministic functions are defined as follows:

Composition of two stochastic functions f : A→ PB and g : B → PC by marginalizing over the
intermediate variable, as described by the Chapman–Kolmogorov equation (Giry, 1982):

(g ◦ f)(c|a) :=
∫
B

g(c|b)f(b|a) db. (51)

A B C

PB PC

PPC

f

f

g◦f

g◦f

g

g

Pg µC

(52)

Composition of a stochastic function f : A→ PB with a deterministic function g : B → C:

(g ◦ f)(c|a) := g∗f(b|a) =
∫
B

δg(b)f(b|a) db. (53)

A B C

PB PC

PPC

f

f

g◦f

g◦f

g

δg

g∗

Pδg µC

(54)

Composition of a deterministic function f : A→ B with a stochastic function g : B → PC:
(g ◦ f)(c|a) := g(c|f(a)). (55)

A B C

PB PC

PPC

f

δf

g◦f

g◦f

g

g

Pg µC

(56)

Recursive Reward Aggregation

Table 6: Expected aggregated rewards vs. aggregated expected rewards: maximum as an example

expected maximum rewards maximum expected rewards

definition Eπ[max(r1, r2, . . . , rΩ)] max(Eπ[r1],Eπ[r2], . . . ,Eπ[rΩ])
statistic T max reward distribution ∈ PR max reward expectation ∈ R
initial value Dirac delta measure δ−∞ ∈ PR reward value −∞ ∈ R
update function pushforward measure update expected value update

PR× PR→ P (R× R) max∗−−−→ PR PR× R
ER × idR−−−−−→ R× R max−−−→ R

post-processing expectation ER : PR→ R identity idR : R→ R

E.2 Stochastic recursion

In Section 4, we introduced the stochastic state transition and statistic functions. Similarly, we can
define the stochastic state-action transition pS×A

π as follows:
pS×A
π : S ×A→ P(S ×A) := ⟨idS , π⟩ ◦ p

=

[
s, a 7→

(
s′ ∼ p(s′|s, a), a′ ∼

∫
S

π(a′|s′)p(s′|s, a) ds′
)]

. (57)

The stochastic state-action statistic function τS×A
π satisfies the following recursive equation:

τS×A
π : S ×A→ PT

=

s, a 7→ τ ∼

δinit s ∈ Sω

r(s, a) ▷ τ ′
∣∣∣ τ ′ ∼ ∫

S×A

τS×A
π (τ ′|s′, a′)pS×A

π (s′, a′|s, a) ds′ da′ s /∈ Sω

.
(58)

Further characterizations of stochastic state/state-action statistic functions, including the (pre)metrics
and (pre)orders on statistics, as well as the contractivity of stochastic Bellman (optimality) operators,
are left for future work.

E.3 Relationship between stochastic state and state-action statistic functions

In the stochastic setting, the state/state-action statistic functions are related by the following equations,
which are analogous to Theorem A.2:

τSπ (τ |s) =
∫
A

τS×A
π (τ |s, a)π(a|s) da (for all states), (59)

τS×A
π (τ |s, a) = r(s, a) ▷

∫
S

τSπ (τ |s′)p(s′|s, a) ds′ (for all non-terminal states). (60)

E.4 Expected aggregated rewards vs. aggregated expected rewards

As discussed in Section 4, the expected discounted sum of rewards equals the discounted sum of
expected rewards. However, the expected aggregated rewards and the aggregated expected rewards
are not equal in general. For example, the expected maximum reward is not equal to the maximum
expected reward because the expectation operator does not distribute over the maximum operator, as
shown in Table 6. This issue was also raised by Gottipati et al. (2020); Cui & Yu (2023); Veviurko et al.
(2024). However, we argue that even though the expected aggregated rewards and the aggregated
expected rewards are not equal, they are both valid and useful learning objectives for different
purposes, and the choice between them depends on the specific application. If we want to optimize
the expected aggregated rewards, a more straightforward approach is to estimate the distributions
of the aggregated rewards, using distributional reinforcement learning (Morimura et al., 2010a;a;
Bellemare et al., 2017; 2023). Further theoretical and empirical investigations are left for future work.

Reinforcement Learning Journal 2025

F Proofs

In this section, we present the proofs of the theorems and lemmas introduced in the main text.

In some derivations, we use
::::::::
underwave

:::::::
notation to highlight the specific subterm being rewritten or

replaced. This syntactic marking corresponds to substituting one path in a commutative diagram with
another path sharing the same source and target:

f
::

= h ◦ g or f
::

(a) = h(g(a)) means
B

A C

h

f

g (61)

Theorem 3.2 (Bellman equation for the state statistic function). Given a recursive reward
generation function genπ,p,r,ω (Definition 2.1) and a recursive statistic aggregation function agginit,▷
(Definition 3.1), their composition, called the state statistic function τπ : S → T , satisfies

τπ : S → T := agginit,▷ ◦ genπ,p,r,ω =

[
s 7→

{
init s ∈ Sω

rπ(s) ▷ τπ(pπ(s)) s /∈ Sω

]
. (10)

Proof. Similarly to the diagram in Eq. (7), the state statistic function τπ : S → T can be represented
using the following diagram:

{∗}+R× S {∗}+R× [R] {∗}+R× T

S [R] T

id{∗} + idR × genπ,p,r,ω

id{∗} + idR ×τπ

id{∗} + idR ×agginit,▷

[nil,cons] [init,▷]stepπ,p,r,ω

genπ,p,r,ω

τπ

agginit,▷

which can be non-rigorously interpreted as a “combination” of the following two diagrams:

{∗} {∗} {∗}

S [R] T

id{∗}

id{∗}

id{∗}

nil initeS

genπ,p,r,ω

τπ

agginit,▷

R× S R× [R] R× T

S [R] T

idR × genπ,p,r,ω

idR ×τπ

idR ×agginit,▷

cons ▷⟨rπ,pπ⟩
genπ,p,r,ω

τπ

agginit,▷

where eS : S → {∗} is the unique function from states to the singleton set, and ⟨rπ,pπ⟩ : S → R×S
is the pairing of the reward and transition functions, which constitute the step function stepπ,p,r,ω .

The left diagram shows that when a state s ∈ Sω is terminal,
τπ(s) = agginit,▷(genπ,p,r,ω

::::::::

(s)) (by definition of τπ) (62)

= agginit,▷
::::::

(nil) (by terminal condition of genπ,p,r,ω) (63)

= init . (by initial condition of agginit,▷) (64)
The right diagram shows that when a state s /∈ Sω is non-terminal,
τπ(s) = agginit,▷(genπ,p,r,ω

::::::::

(s)) (by definition of τπ) (65)

= agginit,▷(cons
:::::::::::

(rπ(s), genπ,p,r,ω(pπ(s)))) (by recursive definition of genπ,p,r,ω) (66)

= rπ(s) ▷ agginit,▷(genπ,p,r,ω
:::::::::::::::

(pπ(s))) (by recursive definition of agginit,▷) (67)

= rπ(s) ▷ τπ(pπ(s)). (by definition of τπ) (68)
By combining Eq. (64) and Eq. (68), we obtain the desired result in Eq. (10).

We omit the proof for Theorem A.1 as the derivation is similar to that of Theorem 3.2.

Recursive Reward Aggregation

Lemma C.3 (Pullback premetric). Let dB : B × B → [0,∞] be a premetric on a set B, and let
f : A→ B be a function. The pullback premetric dA : A×A→ [0,∞] is defined by

∀a1, a2 ∈ A. dA(a1, a2) := dB(f(a1), f(a2)). (37)
If dB is a strict premetric, then dA is also a strict premetric if and only if the function f is injective.

Proof. The pullback premetric dA is a premetric because
∀a ∈ A. dA(a, a) := dB(f(a), f(a)) = 0. (69)

If dB is a strict premetric, we have
∀a1, a2 ∈ A. (dA(a1, a2) := dB(f(a1), f(a2)) = 0)→ (f(a1) = f(a2)). (70)

For the pullback premetric dA to be a strict premetric, we require that
∀a1, a2 ∈ A. (f(a1) = f(a2))→ (a1 = a2), (71)

which is equivalent to the injectivity of the function f .

Lemma D.5 (Pullback preorder). Let ≤B be a preorder on a set B, and let f : A→ B be a function.
The pullback preorder ≤A on a set A is defined by

∀a1, a2 ∈ A. (a1 ≤A a2) := (f(a1) ≤B f(a2)). (44)
If ≤B is total, then ≤A is also total. If ≤B is antisymmetric, then ≤A is also antisymmetric if and
only if f is injective.

Proof. The pullback preorder ≤A is reflexive because
∀a ∈ A. (a ≤A a) := (f(a) ≤B f(a)). (72)

The pullback preorder ≤A is transitive because
∀a1, a2, a3 ∈ A. (a1 ≤A a2) ∧ (a2 ≤A a3) := (f(a1) ≤B f(a2)) ∧ (f(a2) ≤B f(a3)) (73)

→(f(a1) ≤B f(a3)) =: (a1 ≤A a3). (74)
If ≤B is total, then ≤A is also total because

∀a1, a2 ∈ A. (a1 ≤A a2) ∨ (a2 ≤A a1) := (f(a1) ≤B f(a2)) ∨ (f(a2) ≤B f(a1)). (75)
If ≤B is antisymmetric, we have

∀a1, a2 ∈ A. (a1 ≤A a2) ∧ (a2 ≤A a1) := (f(a1) ≤B f(a2)) ∧ (f(a2) ≤B f(a1)) (76)
→(f(a1) = f(a2)). (77)

For the pullback preorder ≤A to be antisymmetric, we require that
∀a1, a2 ∈ A. (f(a1) = f(a2))→ (a1 = a2), (78)

which is equivalent to the injectivity of the function f .

Lemma D.7 (Preorder-preserving premetric’s supremum inequality). Let dB : B ×B → [0,∞] be
a premetric that preserves a premetric ≤B on a set B. Then, for functions f1, f2 : A → B whose
suprema are attained in B, we have

dB(sup
a∈A

f1(a), sup
a∈A

f2(a)) ≤ sup
a∈A

dB(f1(a), f2(a)). (46)

Proof. By assumption, the functions f1 and f2 have suprema in B. We denote a1 = arg supa∈A f1(a)
and a2 = arg supa∈A f2(a). Then, f1(a1) = supa∈A f1(a) and f2(a2) = supa∈A f2(a).

If f1(a1) ≤B f2(a2), we have f1(a2) ≤B f1(a1) ≤B f2(a2). By the preorder preservation of the
premetric dB , we have

dB(f1(a1), f2(a2)) ≤ dB(f1(a2), f2(a2)) ≤ sup
a∈A

dB(f1(a), f2(a)). (79)

Similarly, if f2(a2) ≤B f1(a1), we have f2(a1) ≤B f2(a2) ≤B f1(a1). By the preorder preservation
of the premetric dB , we have

dB(f1(a1), f2(a2)) ≤ dB(f1(a1), f2(a1)) ≤ sup
a∈A

dB(f1(a), f2(a)). (80)

Therefore, we have dB(supa∈A f1(a), supa∈A f2(a)) ≤ supa∈A dB(f1(a), f2(a)).

Reinforcement Learning Journal 2025

We use the following lemmas to prove Theorem 3.6.

Lemma F.1 (Induced premetric on a set of functions). Let dB : B ×B → [0,∞] be a premetric on
a set B. For functions f, f ′ : A→ B, define d[A,B] : [A,B]× [A,B]→ [0,∞] as follows:

d[A,B](f, f
′) := sup

a∈A
dB(f(a), f

′(a)). (81)

Then, d[A,B] is also a premetric. Moreover, if dB is a strict premetric, d[A,B] is also a strict premetric.

Proof. d[A,B] is a premetric because d[A,B](f, f) = supa∈A dB(f(a), f(a)) = 0. For two functions
f, f ′ : A→ B, d[A,B](f, f

′) = supa∈A dB(f(a), f
′(a)) = 0 implies that dB(f(a), f

′(a)) = 0 for
all a ∈ A. If dB is a strict premetric, then dB(f(a), f

′(a)) = 0 implies f(a) = f ′(a) for all a ∈ A,
which means that f = f ′, hence if dB is a strict premetric, d[A,B] is also a strict premetric.

Lemma F.2 (Data processing inequality). Let d[A,B] be the induced premetric defined in Lemma F.1.
For functions f, f ′ : A→ B and g : A→ A, we have

d[A,B](f ◦ g, f ′ ◦ g) ≤ d[A,B](f, f
′). (82)

Proof. d[A,B](f ◦ g, f ′ ◦ g) := supa∈A dB(f(g(a)), f
′(g(a))) = supa′∈g(A) dB(f(a

′), f ′(a′))

≤ supa′∈A dB(f(a
′), f ′(a′)) =: d[A,B](f, f

′).

Lemma F.3 (Uniqueness of fixed points of a premetric contraction). Let a1 and a2 be fixed points of
a function f : A→ A. If the function f is contractive with respect to a premetric dA on the set A,
then dA(a1, a2) = 0. Moreover, if dA is a strict premetric, then a1 = a2.

Proof. Because a1 and a2 are fixed points of f , and f is contractive with respect to dA, there exists a
constant k ∈ [0, 1) such that

dA(a1, a2) = dA(f(a1), f(a2)) ≤ k · dA(a1, a2). (83)
Given that dA(a1, a2) ≥ 0, the only possible solution is dA(a1, a2) = 0. If dA is a strict premetric,
then dA(a1, a2) = 0 implies a1 = a2. In other words, a premetric contraction has unique fixed points
up to premetric indiscernibility, while a strict premetric contraction has a unique fixed point.

Lemma F.4 (Contraction of Bellman operator). If the update function ▷ is contractive with respect
to a premetric dT on statistics T (Definition 3.5), then the Bellman operator BSπ (Definition 3.4) is
contractive with respect to the induced premetric d[S,T] defined in Lemma F.1.

Proof. For any functions τS1 , τ
S
2 : S → T , we have

d[S,T](BSπ τS1 ,BSπ τS2) = sup
s∈S

dT ((BSπ τS1)(s), (BSπ τS2)(s)). (84)

When a state s ∈ Sω is terminal, for any k ∈ [0, 1), we have
dT ((BSπ τS1)(s), (BSπ τS2)(s)) (85)

= dT (init, init) (by definition of Bπ) (86)

= 0 ≤ k · dT (τS1 (pSπ(s)), τS2 (pSπ(s))) (dT is a premetric) (87)
When a state s /∈ Sω is non-terminal, there exists a constant k ∈ [0, 1) such that

dT ((BSπ τS1)(s), (BSπ τS2)(s)) (88)

= dT (rπ(s) ▷ τ
S
1 (p

S
π(s)), rπ(s) ▷ τ

S
2 (p

S
π(s))) (by definition of BSπ) (89)

≤ k · dT (τS1 (pSπ(s)), τS2 (pSπ(s))) (by contractivity of ▷) (90)
Then, we have

d[S,T](BSπ τS1 ,BSπ τS2) (91)

≤ k · sup
s∈S

dT (τ
S
1 (p

S
π(s)), τ

S
2 (p

S
π(s))) (by monotonicity and homogeneity of sup) (92)

= k · d[S,T](τ
S
1 ◦ pSπ , τS2 ◦ pSπ) (by definition of d[S,T]) (93)

≤ k · d[S,T](τ
S
1 , τ

S
2) (Lemma F.2) (94)

Therefore, the Bellman operator BSπ is contractive with respect to the premetric d[S,T].

Recursive Reward Aggregation

Theorem 3.6 (Uniqueness of fixed points of Bellman operator). Let τ1, τ2 : S → T be fixed points
of the Bellman operator Bπ (Definition 3.4). If the update function ▷ is contractive with respect to a
premetric dT on statistics T (Definition 3.5), then dT (τ1(s), τ2(s)) = 0 for all states s ∈ S. If dT is
a strict premetric, then τ1 = τ2 = τπ .

Proof. Let d[S,T] be the induced premetric defined in Lemma F.1. By Lemmas F.3 and F.4, we have
d[S,T](τ1, τ2) = sup

s∈S
dT (τ1(s), τ2(s)) = 0, (95)

which means that dT (τ1(s), τ2(s)) = 0 for all states s ∈ S. When dT is a strict premetric, we have
τ1 = τ2, which means that τπ is the unique fixed point of the Bellman operator Bπ .

We omit the proof for Theorem C.5 as the derivation is similar to that of Theorem 3.6.

Theorem 3.8 (Bellman optimality equation for the state statistic function). Given a preorder ≤T on
statistics T , the optimal state statistic function τ∗ (Definition 3.7) satisfies

τ∗ : S → T :=

s 7→
init s ∈ Sω

sup
a∈A

(r(s, a) ▷ τ∗(p(s, a))) s /∈ Sω

. (12)

Proof. When a state s ∈ Sω is terminal, we have τ∗(s) = init. When a state s /∈ Sω is non-terminal,
we have
τ∗(s) := τπ∗

(s) (by definition of τ∗) (96)

= rπ∗
(s) ▷ τ∗(pπ∗

(s)) (by recursive definition of τπ∗
) (97)

= r(s, π∗(s)) ▷ τ∗(p(s, π∗(s))) (by definitions of rπ∗
and pπ∗

) (98)

= sup
a∈A

(r(s, a) ▷ τ∗(p(s, a))). (pointwise maximization) (99)

Theorem D.10 (Bellman optimality equation for the state-action statistic function). Given a preorder
≤T on statistics T , the optimal state-action statistic function τS×A

∗ satisfies

τS×A
∗ : S ×A→ T :=

s, a 7→
init s ∈ Sω

sup
a
′∈A

(
r(s, a) ▷ τS×A

∗ (p(s, a), a′)
)

s /∈ Sω

. (50)

Proof. When a state s ∈ Sω is terminal, we have τS×A
∗ (s, a) = init for all actions a ∈ A. When a

state s /∈ Sω is non-terminal, we have
τS×A
∗ (s, a) := τS×A

π∗
(s, a) (by definition of τS×A

∗) (100)

= r(s, a) ▷ τS×A
∗ (pS×A

π∗
(s, a)) (by recursive definition of τS×A

π∗
) (101)

= r(s, a) ▷ τS×A
∗ (p(s, a), π∗(p(s, a))) (by definition of pS×A

π∗
) (102)

= sup
a
′∈A

(
r(s, a) ▷ τS×A

∗ (p(s, a), a′)
)
. (pointwise maximization) (103)

Reinforcement Learning Journal 2025

Similarly to Lemma F.4 and Theorem 3.6, we use the following lemma to prove Theorem D.11.

Lemma F.5 (Contraction of Bellman optimality operator). If the update function ▷ is contractive with
respect to a premetric dT on statistics T (Definition 3.5), and the premetric dT preserves the preorder
≤T on statistics T (Definition D.6), then the Bellman optimality operator BS∗ (Definition D.8) is
contractive with respect to the induced premetric d[S,T] defined in Lemma F.1.

Proof. For any functions τS1 , τ
S
2 : S → T , we have

d[S,T](BS∗ τS1 ,BS∗ τS2) = sup
s∈S

dT ((BS∗ τS1)(s), (BS∗ τS2)(s)). (104)

When a state s ∈ Sω is terminal, for any k ∈ [0, 1), we have
dT ((BS∗ τS1)(s), (BS∗ τS2)(s)) (105)

= dT (init, init) (by definition of BS∗) (106)

= 0 ≤ k · sup
a∈A

dT (τ
S
1 (p(s, a)), τ

S
2 (p(s, a))) (dT is a premetric) (107)

When a state s /∈ Sω is non-terminal, there exists a constant k ∈ [0, 1) such that
dT ((BS∗ τS1)(s), (BS∗ τS2)(s)) (108)

= dT (sup
a∈A

(r(s, a) ▷ τS1 (p(s, a))), sup
a∈A

(r(s, a) ▷ τS2 (p(s, a)))) (by definition of B∗) (109)

≤ sup
a∈A

dT (r(s, a) ▷ τ
S
1 (p(s, a)), r(s, a) ▷ τ

S
2 (p(s, a))) (by monotonicity of dT) (110)

≤ sup
a∈A

k · dT (τS1 (p(s, a)), τS2 (p(s, a))) (by contractivity of ▷) (111)

= k · sup
a∈A

dT (τ
S
1 (p(s, a)), τ

S
2 (p(s, a))) (by homogeneity of sup) (112)

Then, we have
d[S,T](BS∗ τ1,BS∗ τ2) (113)

≤ k · sup
s∈S

sup
a∈A

dT (τ
S
1 (p(s, a)), τ

S
2 (p(s, a))) (by monotonicity and homogeneity of sup) (114)

= k · sup
a∈A

sup
s∈S

dT (τ
S
1 (p(s, a)), τ

S
2 (p(s, a))) (by commutativity of sup) (115)

= k · sup
a∈A

d[S,T](τ
S
1 ◦ p(−, a), τS2 ◦ p(−, a)) (by definition of d[S,T]) (116)

≤ k · d[S,T](τ
S
1 , τ

S
2) (Lemma F.2) (117)

Therefore, the Bellman optimality operator BS∗ is contractive with respect to the premetric d[S,T].

Theorem D.11 (Uniqueness of fixed points of Bellman optimality operator). Let τS1 , τ
S
2 : S → T

be fixed points of the Bellman optimality operator BS∗ (Definition D.8). If the update function ▷ is
contractive with respect to a premetric dT on statistics T (Definition 3.5), and the premetric dT
preserves the preorder ≤T on statistics T (Definition D.6), then dT (τ

S
1 (s), τ

S
2 (s)) = 0 for all states

s ∈ S. If dT is a strict premetric, then τS1 = τS2 = τS∗ .

Proof. Let d[S,T] be the induced premetric defined in Lemma F.1. By Lemmas F.3 and F.5, we have

d[S,T](τ1, τ2) = sup
s∈S

dT (τ
S
1 (s), τ

S
2 (s)) = 0, (118)

which means that dT (τ
S
1 (s), τ

S
2 (s)) = 0 for all states s ∈ S. When dT is a strict premetric, we have

τS1 = τS2 , which means that τS∗ is the unique fixed point of the Bellman optimality operator BS∗ .

We omit the proof for Theorem D.12 as the derivation is similar to that of Theorem D.11.

Recursive Reward Aggregation

S

T

S

A

T

S

T

. . .

. . .

π

p

r

▷

st st st+1

τt τt τt+1

at

Figure 13: τSπ = τS×A
π ◦ ⟨idS , π⟩ and τS×A

π = r ▷ (τSπ ◦ p)

Theorem A.2 (Relationship between state and state-action statistic functions). Given a recursive
reward generation function genπ,p,r,ω (Definition 2.1) and a recursive statistic aggregation function
agginit,▷ (Definition 3.1), the state statistic function τSπ : S → T in Eq. (10) and the state-action
statistic function τS×A

π : S ×A→ T in Eq. (17) satisfy
τSπ = τS×A

π ◦ ⟨idS , π⟩ : S → T (for all states), (18)

τS×A
π = r ▷ (τSπ ◦ p) : S ×A→ T (for all non-terminal states). (19)

Proof. Notice the following relation:
pS×A
π ◦ ⟨idS , π⟩

:::::::::::::
= ⟨idS , π⟩ ◦ p ◦ ⟨idS , π⟩ = ⟨idS , π⟩ ◦ pSπ

::::::::::
: S → S ×A. (119)

We can show that when a state s ∈ Sω is terminal,(
genS×A

π,p,r,ω ◦ ⟨idS , π⟩
)
(s) = genSπ,p,r,ω(s) = [], (120)

and when a state s /∈ Sω is non-terminal,(
genS×A

π,p,r,ω ◦ ⟨idS , π⟩
)
(s) =

(
cons ◦ ⟨r, genS×A

π,p,r,ω ◦ pS×A
π ⟩ ◦ ⟨idS , π⟩

::::::::::::::::::::::::::

)
(s) (121)

=

(
cons ◦ ⟨r ◦ ⟨idS , π⟩

:::::::::
, genS×A

π,p,r,ω ◦ pS×A
π ◦ ⟨idS , π⟩

:::::::::::::
⟩
)
(s) (122)

=

(
cons ◦ ⟨rπ, genS×A

π,p,r,ω ◦ ⟨idS , π⟩
::::::::::::::::

◦ pSπ⟩
)
(s), (123)

which shows that genS×A
π,p,r,ω ◦ ⟨idS , π⟩ satisfies the same recursive equation as genSπ,p,r,ω in Eq. (4).

Due to the uniqueness of the recursive coalgebra (Hinze et al., 2010, Eq. (5)), we can conclude that
genSπ,p,r,ω = genS×A

π,p,r,ω ◦ ⟨idS , π⟩ : S → [R]. (124)

Given Eq. (124), we have
τSπ := agginit,▷ ◦ genSπ,p,r,ω = agginit,▷ ◦ genS×A

π,p,r,ω ◦ ⟨idS , π⟩ = τS×A
π ◦ ⟨idS , π⟩ : S → T. (125)

Next, for a non-terminal state s /∈ Sω and an action a ∈ A, we have

τS×A
π (s, a) =

(
r ▷

(
τS×A
π ◦ pS×A

π
::::

))
(s, a) (126)

=

(
r ▷

(
τS×A
π ◦ ⟨idS , π⟩

:::::::::::::
◦ p
))

(s, a) (127)

=
(
r ▷
(
τSπ ◦ p

))
(s, a). (128)

However, for a terminal state s ∈ Sω and an action a ∈ A, the equation τS×A
π = r ▷ (τSπ ◦p) may not

always hold and could require additional conditions on the transition function p, the reward function
r, the initial value init, and the update function ▷.

Intuitively, Eqs. (18) and (19) arise from the decomposition of the bidirectional process, as illustrated
in Fig. 13.

Remark 5. In fact, we can derive Eq. (124) directly from the relation between the state step function
stepSπ,p,r,ω and the state-action step function stepS×A

π,p,r,ω .

Reinforcement Learning Journal 2025

When a state s ∈ Sω is terminal,(
stepS×A

π,p,r,ω ◦ ⟨idS , π⟩
)
(s) =

(
id{∗} ◦ stepSπ,p,r,ω

)
(s) = ∗, (129)

and when a state s /∈ Sω is non-terminal,(
stepS×A

π,p,r,ω ◦ ⟨idS , π⟩
)
(s) =

(
⟨r,pS×A

π ⟩ ◦ ⟨idS , π⟩
::::::::::::::::

)
(s) (130)

=

(
⟨r ◦ ⟨idS , π⟩
:::::::::

,pS×A
π ◦ ⟨idS , π⟩

:::::::::::::
⟩
)
(s) (131)

=

(
⟨rπ, ⟨idS , π⟩ ◦ pSπ⟩
::::::::::::::

)
(s) (132)

=

(
(idR×⟨idS , π⟩) ◦ ⟨rπ,pSπ⟩

::::::

)
(s) (133)

=
(
(idR×⟨idS , π⟩) ◦ stepSπ,p,r,ω

)
(s). (134)

We can conclude that
stepS×A

π,p,r,ω ◦ ⟨idS , π⟩ =
(
id{∗} + idR×⟨idS , π⟩

)
◦ stepSπ,p,r,ω : S → {∗}+R× (S ×A), (135)

which means that ⟨idS , π⟩ is a coalgebra homomorphism from the state step function stepSπ,p,r,ω
to the state-action step function stepS×A

π,p,r,ω. Then, by the coalgebra fusion law (Hinze et al., 2010,
Eq. (7)), we can get the result in Eq. (124).

Recursive Reward Aggregation

G Learning algorithms with recursive reward aggregation

In this section, we list the RL algorithms with recursive reward aggregation used in our experiments.
The colored lines indicate modifications compared to the standard discounted sum version.

G.1 Q-learning

Algorithm 1 Q-learning (Watkins & Dayan, 1992) with recursive reward aggregation

Input: transition function p : S ×A→ S, reward function r : S ×A→ R, terminal condition ω,
recursive reward aggregation function post ◦ agginit,▷ : [R]→ R
Parameters: learning rate α ∈ (0, 1], exploration parameter ϵ ∈ (0, 1)
Initialize state-action statistic function τ : S ×A→ T with initial value init ∈ T
for each episode do

Initialize state s
while s is not terminal do

Compute state-action value function q(s, a) = post(τ(s, a)) for state s and all actions a
Select action a using ϵ-greedy policy based on value function q(s, a)
Execute action a, observe next state s′ and reward r
Update state-action statistic function τ :

τ(s, a)← τ(s, a) + α

(
max
a
′∈A

(
r ▷ τ(s′, a′)

)
− τ(s, a)

)
,

where max
a
′∈A

(
r ▷ τ(s′, a′)

)
= r ▷ τ(s′, a∗) and a∗ = argmax

a
′∈A

post(r ▷ τ(s′, a′))

Update state s← s′

Output: estimated optimal statistic function τ and optimal policy π(s) = argmaxa∈A q(s, a),
where q(s, a) = post(τ(s, a))

Reinforcement Learning Journal 2025

G.2 PPO

Algorithm 2 PPO (Schulman et al., 2017) with recursive reward aggregation

Input: transition function p : S ×A→ S, reward function r : S ×A→ R, terminal condition ω,
recursive reward aggregation function post ◦ agginit,▷ : [R]→ R
Parameters: bias-variance trade-off parameter λ ∈ [0, 1], critic loss coefficient c1, entropy
regularization coefficient c2
Initialize parameterized policy function (actor) πθ : S → A
Initialize parameterized state statistic function (critic) τϕ : S → T
for each episode do

Initialize state s
Collect trajectories of states and rewards following policy πθ till the end of the horizon Ω

Compute statistics τ̂ (i)t = rt ▷ rt+1 ▷ · · · ▷ rt+i−1 ▷ τϕ(st+i) for i = 1, . . . ,Ω− t
Compute state value function vϕ(st) = post(τϕ(st))

Compute advantage estimates α̂(i)
t = post(τ̂

(i)
t)− vϕ(st) for i = 1, . . . ,Ω− t

Use one of the following as advantage α̂t:
α̂
(1)
t = post(rt ▷ τϕ(st+1))− vϕ(st)

α̂
(Ω−t)
t = post(rt ▷ rt+1 ▷ · · · ▷ τϕ(sΩ))− vϕ(st)

generalized advantage estimates (GAE) (Schulman et al., 2016) (1− λ)

Ω−t∑
i=1

λi−1α̂
(i)
t

Compute critic loss: Lc(ϕ) =

Ω∑
t=1

(
vϕ(st)− post(τ̂

(Ω−t)
t)

)2
Compute actor loss La(θ) with clipping or penalty using advantage α̂t (Schulman et al., 2017)
Compute entropy regularization H(θ)
Optimize La(θ)− c1Lc(ϕ) + c2H(θ)

Output: estimated optimal statistic function τϕ and optimal policy πθ

Recursive Reward Aggregation

G.3 TD3

Algorithm 3 TD3 (Fujimoto et al., 2018) with recursive reward aggregation

Input: transition function p : S ×A→ S, reward function r : S ×A→ R, terminal condition ω,
recursive reward aggregation function post ◦ agginit,▷ : [R]→ R

Parameters: action variance σ2, soft target update rate λ ∈ (0, 1)
Initialize parameterized policy function (actor) πθ : S → A
Initialize two parameterized state-action statistic functions (critics) τϕ1

, τϕ2
: S ×A→ T

Initialize targets θ′ ← θ, ϕ′
1 ← ϕ1, ϕ′

2 ← ϕ2 , and replay buffer D
for each episode do

Initialize state s
while s is not terminal do

Select action a ∼ N (πθ(s), σ
2) (optionally with clipping)

Execute action a, observe next state s′ and reward r
Store transition tuple (s, a, r, s′) in buffer D

Compute state-action value functions qϕi
(s, a) = post(τϕi

(s, a)) for i = 1, 2
if update critics then

Sample a batch of transitions B = {(s, a, r, s′)} from buffer D
Select target action ã ∼ N (πθ

′(s′), σ2) (optionally with clipping)
Compute target statistic τtarget:

τtarget =

{
init s ∈ Sω

min
i=1,2

r ▷ τϕ′
i
(s′, ã) s /∈ Sω

where min
i=1,2

r ▷ τϕ′
i
(s′, ã) =

{
r ▷ τϕ′

1
(s′, ã) post(r ▷ τϕ′

1
(s′, ã)) ≤ post(r ▷ τϕ′

2
(s′, ã))

r ▷ τϕ′
2
(s′, ã) otherwise

Update critics τϕi
by gradient descent:

∇ϕi

1

|B|
∑

(s,a,r,s
′
)∈B

(
qϕi

(s, a)− post(τtarget)
)2

for i = 1, 2

if update actor then
Update actor by gradient ascent:

∇θ

1

|B|
∑

(s,a,r,s
′
)∈B

qϕ1
(s, πθ(s))

Update targets:
ϕ′
i ← λϕi + (1− λ)ϕ′

i for i = 1, 2
θ′ ← λθ + (1− λ)θ′

Output: estimated optimal statistic functions τϕ1
and τϕ2

and optimal policy πθ

Reinforcement Learning Journal 2025

-10.0

-3.0

-10.0 -4.0

-10.0

-3.0

-10.0 -4.0

-10.0

-3.0

-10.0 -4.0

-10.0

-3.0

-10.0 -4.0

-5.0

-2.0

-10.0 -6.0

-5.0

-2.0

-10.0 -6.0

-5.0

-2.0

-10.0 -6.0

-5.0

-2.0

-10.0 -6.0

-3.0

-10.0

-10.0 -2.0

-3.0

-10.0

-10.0 -2.0

-3.0

-10.0

-10.0 -2.0

-3.0

-10.0

-10.0 -2.0

-10.0

-6.0

-5.0 -2.0

-10.0

-6.0

-5.0 -2.0

-10.0

-6.0

-5.0 -2.0

-10.0

-6.0

-5.0 -2.0

-4.0

-2.0

-3.0 -7.0

-4.0

-2.0

-3.0 -7.0

-4.0

-2.0

-3.0 -7.0

-4.0

-2.0

-3.0 -7.0

-6.0

-10.0

-2.0 -2.0

-6.0

-10.0

-2.0 -2.0

-6.0

-10.0

-2.0 -2.0

-6.0

-10.0

-2.0 -2.0

-10.0

-7.0

-4.0 -2.0

-10.0

-7.0

-4.0 -2.0

-10.0

-7.0

-4.0 -2.0

-10.0

-7.0

-4.0 -2.0

-2.0

-2.0

-6.0 -1.0

-2.0

-2.0

-6.0 -1.0

-2.0

-2.0

-6.0 -1.0

-2.0

-2.0

-6.0 -1.0

-7.0

-10.0

-2.0 10.0

-7.0

-10.0

-2.0 10.0

-7.0

-10.0

-2.0 10.0

-7.0

-10.0

-2.0 10.0

-10.0

-1.0

-2.0 -10.0

-10.0

-1.0

-2.0 -10.0

-10.0

-1.0

-2.0 -10.0

-10.0

-1.0

-2.0 -10.0

-2.0

10.0

-7.0 -10.0

-2.0

10.0

-7.0 -10.0

-2.0

10.0

-7.0 -10.0

-2.0

10.0

-7.0 -10.0

(a) min

-4.0

0.9

-4.0 0.2

-4.0

0.9

-4.0 0.2

-4.0

0.9

-4.0 0.2

-4.0

0.9

-4.0 0.2

-0.5

1.6

-4.0 -1.2

-0.5

1.6

-4.0 -1.2

-0.5

1.6

-4.0 -1.2

-0.5

1.6

-4.0 -1.2

0.9

-4.0

-4.0 1.6

0.9

-4.0

-4.0 1.6

0.9

-4.0

-4.0 1.6

0.9

-4.0

-4.0 1.6

-4.0

-1.2

-0.5 1.6

-4.0

-1.2

-0.5 1.6

-4.0

-1.2

-0.5 1.6

-4.0

-1.2

-0.5 1.6

0.2

1.6

0.9 -1.9

0.2

1.6

0.9 -1.9

0.2

1.6

0.9 -1.9

0.2

1.6

0.9 -1.9

-1.2

-4.0

1.6 1.6

-1.2

-4.0

1.6 1.6

-1.2

-4.0

1.6 1.6

-1.2

-4.0

1.6 1.6

-4.0

-1.9

0.2 1.6

-4.0

-1.9

0.2 1.6

-4.0

-1.9

0.2 1.6

-4.0

-1.9

0.2 1.6

1.6

1.6

-1.2 2.3

1.6

1.6

-1.2 2.3

1.6

1.6

-1.2 2.3

1.6

1.6

-1.2 2.3

-1.9

-4.0

1.6 10.0

-1.9

-4.0

1.6 10.0

-1.9

-4.0

1.6 10.0

-1.9

-4.0

1.6 10.0

-4.0

2.3

1.6 -4.0

-4.0

2.3

1.6 -4.0

-4.0

2.3

1.6 -4.0

-4.0

2.3

1.6 -4.0

1.6

10.0

-1.9 -4.0

1.6

10.0

-1.9 -4.0

1.6

10.0

-1.9 -4.0

1.6

10.0

-1.9 -4.0

(b) 0.7min+0.3max

2.0

4.8

2.0 4.4

2.0

4.8

2.0 4.4

2.0

4.8

2.0 4.4

2.0

4.8

2.0 4.4

4.0

5.2

2.0 3.6

4.0

5.2

2.0 3.6

4.0

5.2

2.0 3.6

4.0

5.2

2.0 3.6

4.8

2.0

2.0 5.2

4.8

2.0

2.0 5.2

4.8

2.0

2.0 5.2

4.8

2.0

2.0 5.2

2.0

3.6

4.0 5.2

2.0

3.6

4.0 5.2

2.0

3.6

4.0 5.2

2.0

3.6

4.0 5.2

4.4

5.2

4.8 3.2

4.4

5.2

4.8 3.2

4.4

5.2

4.8 3.2

4.4

5.2

4.8 3.2

3.6

2.0

5.2 5.2

3.6

2.0

5.2 5.2

3.6

2.0

5.2 5.2

3.6

2.0

5.2 5.2

2.0

3.2

4.4 5.2

2.0

3.2

4.4 5.2

2.0

3.2

4.4 5.2

2.0

3.2

4.4 5.2

5.2

5.2

3.6 5.6

5.2

5.2

3.6 5.6

5.2

5.2

3.6 5.6

5.2

5.2

3.6 5.6

3.2

2.0

5.2 10.0

3.2

2.0

5.2 10.0

3.2

2.0

5.2 10.0

3.2

2.0

5.2 10.0

2.0

5.6

5.2 2.0

2.0

5.6

5.2 2.0

2.0

5.6

5.2 2.0

2.0

5.6

5.2 2.0

5.2

10.0

3.2 2.0

5.2

10.0

3.2 2.0

5.2

10.0

3.2 2.0

5.2

10.0

3.2 2.0

(c) 0.4min+0.6max

8.0

8.7

8.0 8.6

8.0

8.7

8.0 8.6

8.0

8.7

8.0 8.6

8.0

8.7

8.0 8.6

8.5

8.8

8.0 8.4

8.5

8.8

8.0 8.4

8.5

8.8

8.0 8.4

8.5

8.8

8.0 8.4

8.7

8.0

8.0 8.8

8.7

8.0

8.0 8.8

8.7

8.0

8.0 8.8

8.7

8.0

8.0 8.8

8.0

8.4

8.5 8.8

8.0

8.4

8.5 8.8

8.0

8.4

8.5 8.8

8.0

8.4

8.5 8.8

8.6

8.8

8.7 8.3

8.6

8.8

8.7 8.3

8.6

8.8

8.7 8.3

8.6

8.8

8.7 8.3

8.4

8.0

8.8 8.8

8.4

8.0

8.8 8.8

8.4

8.0

8.8 8.8

8.4

8.0

8.8 8.8

8.0

8.3

8.6 8.8

8.0

8.3

8.6 8.8

8.0

8.3

8.6 8.8

8.0

8.3

8.6 8.8

8.8

8.8

8.4 8.9

8.8

8.8

8.4 8.9

8.8

8.8

8.4 8.9

8.8

8.8

8.4 8.9

8.3

8.0

8.8 10.0

8.3

8.0

8.8 10.0

8.3

8.0

8.8 10.0

8.3

8.0

8.8 10.0

8.0

8.9

8.8 8.0

8.0

8.9

8.8 8.0

8.0

8.9

8.8 8.0

8.0

8.9

8.8 8.0

8.8

10.0

8.3 8.0

8.8

10.0

8.3 8.0

8.8

10.0

8.3 8.0

8.8

10.0

8.3 8.0

(d) 0.1min+0.9max

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

10.0

10.0

10.0 10.0

(e) max

Figure 14: max− λ range = λmin + (1− λ)max

H Experiments

In this section, we provide detailed descriptions of the environments used in our experiments and
the specific configurations and hyperparameters employed for each task. We also present additional
results for the grid-world and continuous control environments.

H.1 Grid-world environment

Implementation We implemented the environment and the Q-learning (Watkins & Dayan, 1992)
algorithm using NumPy (Harris et al., 2020).

Hyperparameters We used a fixed exploration parameter of 0.3. We trained agents for total
training time steps of 10 000. We repeated each experiment with three different random seeds and
observed that all runs consistently converged to the same solution. We therefore present the result
from one representative run.

Additional results Similarly to Fig. 4, Fig. 14 shows the policy preferences for range-regularized
max, which is an interpolation between min and max.

H.2 Wind-world environment

Implementation We implemented the environment and the PPO (Schulman et al., 2017) algorithm
using JAX (Bradbury et al., 2018) and gymnax (Lange, 2022).

Note that because PPO uses a stochastic policy, our algorithm effectively optimizes the aggregated
expected rewards, which is different from the expected aggregated rewards. However, we argue that
the aggregated expected rewards is still a meaningful objective. The extension to expected aggregated
rewards using distributed RL is left for future work. See also Section 4 and Appendix E for details.

Hyperparameters The PPO clipping parameter was set to 0.2. We used a critic loss coefficient of
0.5 and an entropy regularization coefficient of 0.01. Agents were trained for a total of 500 000 time
steps using 64 parallel environments, executed in batch via JAX to enable efficient data collection.

H.3 Continuous control environments

The Lunar Lander Continuous environment, part of the Box2D physics simulation suite (Brockman
et al., 2016), involves controlling a lunar lander to safely land on a designated landing pad. The agent
has continuous thrust control over the main engine and two side thrusters, which it must use efficiently
to achieve a stable landing while minimizing fuel consumption. The reward function is designed to
encourage precise and efficient landings. The agent receives positive rewards for (i) moving closer
to the landing pad, (ii) achieving a soft landing, and (iii) staying upright. Conversely, penalties are
applied for (i) excessive fuel usage, (ii) high-impact landings, and (iii) drifting too far from the target.
The episode terminates if the lander successfully lands within the designated zone, crashes, or drifts
out of bounds. If none of these conditions occur, the episode continues until reaching the time limit.

Recursive Reward Aggregation

We used the Hopper environment (Erez et al., 2012) simulated using MuJoCo (Todorov et al., 2012),
where a 2D one-legged robot must learn to balance and move forward efficiently. The agent controls
three joints (thigh, knee, and foot) to generate locomotion while maintaining stability. The reward
function in Hopper consists of three key components: (i) healthy reward, which incentivizes the agent
to remain upright; (ii) forward reward, which encourages the agent to move forward; and (iii) control
cost, which penalizes excessive energy use. Then, the total reward function is given by

reward = healthy reward + forward reward− control cost. (136)
The Hopper environment terminates when the agent is deemed unhealthy or reaches the predefined
episode length limit. The agent is considered unhealthy if its state variables exceed the allowed range,
its height falls below a certain threshold, or its torso angle deviates beyond a specified limit, indicating
a loss of stability. If none of these conditions occur, the episode continues until the maximum duration
is reached.

We used the Ant environment (Schulman et al., 2016) simulated using MuJoCo (Todorov et al., 2012),
where a four-legged quadrupedal robot must learn to efficiently balance and move forward. The agent
controls eight joints (two per leg) to generate stable locomotion while adapting to dynamic interactions
with the environment. The reward function in the Ant environment is designed to encourage forward
movement while maintaining stability and efficiency. It consists of four key components: (i) a healthy
reward, which provides a fixed bonus as long as the agent remains upright; (ii) a forward reward,
which encourages movement in the positive x-direction; (iii) a control cost, which penalizes excessive
actions to promote energy efficiency; and (iv) a contact cost, which discourages large external contact
forces. The total reward is calculated by summing the healthy and forward rewards while subtracting
the penalties for control effort and contact forces:

reward = healthy reward + forward reward− control cost− contact cost. (137)
In some versions of the environment, the contact cost may be excluded from the reward calculation.
The Ant environment terminates when the agent is deemed unhealthy or when the episode reaches its
maximum duration of 1000 time steps. The agent is considered unhealthy if any of its state space
values become non-finite or if its torso height falls outside a predefined range, indicating a loss of
stability. If neither of these conditions occur, the episode continues until it reaches the time limit.

Implementation We conducted experiments using a modified version of the TD3 (Fujimoto et al.,
2018) implementation from Stable-Baselines3 (Raffin et al., 2021).

Hyperparameters Our agent performed 100 gradient updates per training episode and used a
learning rate of 3× 10−4 to ensure stable learning. Apart from these, our training setup adheres to
the default hyperparameters and network architecture of Stable-Baselines3.

Computational resource Training a single agent takes approximately 1 hour on an NVIDIA RTX
2080 GPU, with a single CPU core used for environment simulation.

Additional results We provide additional results for Hopper and Ant environments. To
comprehensively assess the performance, we present the mean values of various evaluation metrics
across four random seeds using radar charts. Additionally, we visualize the trajectory of the agent
in all environments, providing an intuitive representation of how different aggregation functions
influence the learned policy. Animations for all three environments (Lunar Lander Continuous, Ant,
and Hopper) are also available at https://github.com/Tang-Yuting/recursive-rew
ard-aggregation, offering an intuitive understanding of policy behavior.

For the Hopper environment, we observe distinct behavioral patterns and performance outcomes
under different reward aggregation strategies. The sum0.99 aggregation, serving as the baseline
method, demonstrates strong overall performance across multiple metrics, as reflected in both the
radar chart and motion sequences. In contrast, the max0.99 aggregation focuses solely on optimizing
max reward, leading to strong performance in this specific metric but suboptimal outcomes in others.
The corresponding images show the agent taking overly aggressive actions to maximize max reward,
which causes it to lose balance quickly as the torso angle exceeds the allowed range. The min

https://github.com/Tang-Yuting/recursive-reward-aggregation
https://github.com/Tang-Yuting/recursive-reward-aggregation

Reinforcement Learning Journal 2025

sum!.##

max!.##

min

sum!.## +max!.##

sum!.## − var

Figure 15: Hopper: Comparison of five reward aggregation methods. (Left) Radar plot showing
performance across six evaluation metrics, averaged over four random seeds. (Right) Sample
trajectories illustrating the qualitative behaviors induced by each aggregation method.

sum!.##

max!.##

min

sum!.## +max!.##

sum!.## − var

Figure 16: Ant: Comparison of five reward aggregation methods. (Left) Radar plot showing
performance across six evaluation metrics, averaged over four random seeds. (Right) Sample
trajectories illustrating the qualitative behaviors induced by each aggregation method.

Recursive Reward Aggregation

aggregation encourages the agent to maximize the minimum reward, which leads to a conservative
strategy where the agent remains completely still to avoid negative rewards. The sum0.99 +max0.99
aggregation encourages the agent to optimize both the total reward and the maximum reward within an
episode, leading to more aggressive movements and higher overall rewards. While the sum0.99− var
aggregation prioritizes stability by minimizing the difference between the maximum and minimum
rewards, resulting in more controlled and consistent behavior at the cost of slightly lower rewards.
These results highlight how different reward aggregation strategies shape the behavior of the agent
and its learning outcomes.

For the Ant environment, different aggregation strategies lead to varied agent behaviors and trade-offs
between stability, performance, and exploration. The sum0.99 aggregation, serving as the baseline,
achieves balanced performance across multiple metrics, effectively promoting stable and efficient
locomotion. In contrast, the max0.99 aggregation prioritizes obtaining the highest possible reward
at an individual time step, leading to highly aggressive movements. As a result, the agent exhibits
excessive speed, which ultimately causes instability and results in the agent losing control and rolling
over. The min aggregation prioritizes minimizing the risk of low rewards, leading to an overly
conservative strategy. Instead of efficient locomotion, the agent adopts passive or static behavior,
often staying close to the ground to avoid unfavorable rewards. This lack of exploration and controlled
movement results in instability, ultimately causing the agent to collapse and terminate early due to
height constraints. Moreover, the sum0.99 +max0.99 aggregation encourages aggressive behavior
by jointly optimizing cumulative and peak rewards. The agent exhibits rapid, unstable locomotion,
often pushing for immediate gains. While this reduces stability, reward-related metrics remain high,
indicating strong overall performance at the cost of greater energy use and inconsistency. Finally,
the sum0.99− var aggregation prioritizes stability by penalizing reward fluctuations, leading to more
controlled and steady locomotion. The agent avoids aggressive actions and achieves longer episode
durations. However, while reducing variance enhances stability, it also limits the ability of agent to
explore high-reward strategies, leading to robust but suboptimal overall performance.

H.4 Portfolio environment

In our experiment, we trained agents using five different random seeds over a rolling 5-year window,
with a total of 10 training periods. Specifically, for each training period, training begins on January 1
of a given year and continues for five years, ending on December 31 of the fifth year. Each training
period starts one year after the previous one, resulting in overlapping but not identical training
datasets. Following the training phase, we evaluate the performance of agents in the subsequent year,
immediately following the training period. Finally, we assess their generalization performance in
the test phase, which takes place in the year after the evaluation period. This design allows us to
systematically analyze the agents’ performance across different temporal contexts while leveraging
historical data in a structured and overlapping manner.

Implementation We conducted experiments using a modified version of the PPO (Schulman et al.,
2017) implementation from Stable-Baselines3 (Raffin et al., 2021).

Hyperparameters We trained each agent for a total of 7 500 000 time steps. Compared to the
default settings of PPO in Stable-Baseline3, we made several modifications to better suit our
environment. The learning rate followed a linear decay schedule, starting from 3 × 10−4 and
gradually decreasing to 1× 10−5 over the course of training. We set the discount factor to 0.9 and the
GAE lambda to 0.9 to reduce reliance on long-term returns, and used a slightly wider clipping range
0.25 to allow for greater policy updates. These adjustments were empirically tuned for improved
stability and performance in our setting.

Computational resource Training a single agent takes approximately 1.5 hours on an NVIDIA
RTX 2080 GPU, with the environment running in parallel on 10 CPU cores to accelerate data
collection.

Reinforcement Learning Journal 2025

Figure 17: A year-by-year comparison of Sharpe ratios obtained by different methods during the test
phase across a rolling backtesting window from 2012 to 2021. Each data point represents the mean
performance across five different random seeds, with the shaded regions indicating one standard
deviation to reflect variability. The horizontal dashed lines represent the mean Sharpe ratio across all
years for each method, providing a summary view of their long-term performance.

Results: Sharpe ratio comparison over time Figure 17 presents a comparison of the Sharpe
ratios achieved by three methods during the test phase over the ten-year backtesting period. Each
backtesting period refers to a historical test year following the training and validation phases, during
which the strategy is evaluated on previously unseen data to assess its out-of-sample performance
(Bailey et al., 2015). The red curve represents our method, which not only achieves the highest
mean Sharpe ratio with relatively low variability, but also consistently delivers the best or highly
competitive performance in 8 out of the 10 backtesting periods. This consistency across random
seeds and temporal splits underscores the practical generalization ability of our proposed method and
its suitability for real-world financial decision-making.

Recursive Reward Aggregation

I Discussion

Reward function design vs. aggregation strategies Changing the reward function and adjusting
how rewards are aggregated are two complementary approaches to shaping agent behavior. Rather
than asserting the superiority of one approach over the other, we examine the trade-offs and situational
advantages associated with each.

Reward function modification directly encodes task objectives into the per-step feedback signal
received by the agent. This approach is expressive and flexible, allowing designers to incorporate
domain-specific preferences (Ng et al., 1999; Hadfield-Menell et al., 2017), intermediate goals
(Andrychowicz et al., 2017), or constraints (Achiam et al., 2017). However, designing an effective
reward function often requires careful tuning, may introduce unintended incentives, and can suffer
from reward misspecification, especially in environments with sparse or delayed feedback (Ng et al.,
1999; Ziebart et al., 2008; Hadfield-Menell et al., 2017).

In contrast to modifying the reward function itself, reward aggregation modification keeps the
underlying reward signal fixed and instead alters how rewards are aggregated over time to define the
training objective. This offers a structured way to influence long-term behavior without redefining
the reward signal at each time step. For instance, using the max aggregation emphasizes the highest
reward achieved in a trajectory, thereby promoting risk-seeking behavior, while the min aggregation
emphasizes avoiding the worst-case outcomes, encouraging risk-averse strategies. This approach
is effective when the reward signal provides informative feedback, but the desired policy depends
on how that feedback is interpreted over time. However, limited or ambiguous reward signals may
restrict the ability of any aggregation function to align with the intended behavioral goals.

In practice, modifying the reward and adjusting the aggregation function are not mutually exclusive
and can be combined effectively. The reward function provides the essential feedback for learning,
while the aggregation method influences how this feedback is evaluated over time. The choice of
whether to modify one, the other, or both should be guided by the nature of the task, the clarity and
expressiveness of the reward, and the behavioral patterns desired in the learned policy.

Limitations of sum-based objectives While standard RL typically defines the training objective as
the sum of per-step rewards, this formulation tends to be effective under certain assumptions about
the reward signal and task structure. First, it is generally better suited to tasks where the overall
performance can be approximated by accumulating the reward at each time step. In such cases, the
total return should reflect meaningful progress over time. Second, sum aggregation assumes that the
timing of rewards is not a critical factor. While discounted sums introduce a preference for earlier
rewards, they still impose a fixed temporal structure. Therefore, sum is suited to tasks where the
timing of rewards is relatively neutral and consistent accumulation matters more than when specific
rewards happen. Finally, sum-based objectives are more likely to be effective when the reward
function offers sufficient granularity, providing reliable feedback at each step to support training.

Despite its simplicity and widespread adoption, summing per-step rewards may be less effective in
scenarios where its underlying assumptions are not fully satisfied. In particular, many tasks do not
neatly align with the structure implied by a standard sum-based objective. As a result, the learned
policy may be optimal under the sum semantics but misaligned with the intended behavioral goals.
For example, in safety-critical environments, aggregating rewards via summation might obscure
low-reward outliers, as occasional high rewards could mask dangerous behaviors. Similarly, in peak-
oriented tasks where success depends on achieving exceptional performance at a specific moment,
summation may diminish the significance of these peak events by averaging them with less important
steps. These observations suggest that in such contexts, adjusting how rewards are aggregated over
time may offer additional flexibility for aligning the learning objective with designer intent.

	Introduction
	An algebraic perspective on Bellman equations
	Preliminaries
	Recursive generation of rewards
	Recursive aggregation of rewards
	Bellman equation for the state value function

	Recursive reward aggregation functions
	Bellman equation for the state statistic function
	Policy evaluation: Iterative statistic function estimation
	Policy optimization: Optimal policies and optimal value functions

	From deterministic to stochastic Markov decision processes
	Experiments
	Grid-world: Value-based methods for discrete planning
	Wind-world: Policy improvement methods for trajectory optimization
	Physics simulation: Actor-critic methods for continuous control
	Real-world application: Sharpe ratio in portfolio optimization

	Conclusion
	Bibliography
	State-action recursion
	State-action transition
	State-action step function and generation function
	State-action statistic function and value function
	Relationship between state and state-action statistic functions
	Advantage function

	Algebraic structures in Markov decision process
	Algebra fusion
	Bidirectional process
	Non-uniqueness of update function and post-processing function

	Metrics and Bellman operators
	Preliminaries
	Metrics on statistics and rewards
	Bellman operators
	Existence of fixed points of Bellman operators
	Uniqueness of fixed points of Bellman operators

	Orders and Bellman optimality operators
	Preliminaries
	Orders on statistics and rewards
	Bellman optimality operators
	Existence of fixed points of Bellman optimality operators
	Uniqueness of fixed points of Bellman optimality operators

	Stochastic Markov decision process
	Composition of stochastic functions
	Stochastic recursion
	Relationship between stochastic state and state-action statistic functions
	Expected aggregated rewards vs. aggregated expected rewards

	Proofs
	Learning algorithms with recursive reward aggregation
	Q-learning
	PPO
	TD3

	Experiments
	Grid-world environment
	Wind-world environment
	Continuous control environments
	Portfolio environment

	Discussion

