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Summary
In reinforcement learning (RL), agents typically learn desired behaviors by maximizing

the (discounted) sum of rewards, making the design of reward functions crucial for aligning
the agent behavior with specific objectives. However, since rewards often carry intrinsic
meanings tied to the task, modifying them can be challenging and may introduce complex
trade-offs in real-world scenarios. In this work, rather than modifying the reward function itself,
we propose leveraging different reward aggregation functions to achieve different behaviors.
By introducing an algebraic perspective on Markov decision processes, we show that the
Bellman equations naturally emerge from the recursive generation and aggregation of rewards.
This perspective enables the generalization of the standard discounted sum to other recursive
aggregation functions, such as discounted max and variance-regularized mean. We empirically
evaluate our approach across diverse environments using value-based, policy-based, and actor-
critic algorithms, demonstrating its effectiveness in optimizing a wide range of objectives.
Furthermore, we apply our method to a real-world portfolio optimization task, showcasing its
potential for practical deployment in decision-making applications where objectives cannot
easily be expressed as the discounted sum of rewards.

Contribution(s)
1. We provide an algebraic perspective on Markov decision process based on algebra fusion

and bidirectional process.
Context: The algebra of recursive functions (Meijer et al., 1991; De Moor, 1994; Bird &
de Moor, 1997; Hutton, 1999) is a well-studied topic in functional programming. The algebra
fusion technique, explored in Hinze et al. (2010), has been applied in dynamic programming.
In the context of RL, the recursive structure of the discounted sum of rewards was studied in
Hedges & Sakamoto (2022). The diagrammatic representation of bidirectional processes for
recursive reward generation and aggregation was inspired by Gavranović (2022).

2. We generalize the Bellman equations and Bellman operators for the standard discounted sum
to other recursive aggregation functions, providing greater flexibility in RL optimization.
Context: The problem of alternative reward aggregations is not entirely new. Prior works
have explored objectives such as optimizing the maximum (Quah & Quek, 2006; Gottipati
et al., 2020; Veviurko et al., 2024), minimum (Cui & Yu, 2023), top-k (Wang et al., 2020),
and Sharpe ratio (Nägele et al., 2024) of rewards. Specifically, the method proposed by
Cui & Yu (2023) is a special case of our framework, where the recursive structure is on the
original reward space, and the update function is order-preserving.

3. We extend existing RL algorithms by incorporating the generalized Bellman operators and
empirically demonstrate their effectiveness across various tasks.
Context: While our method modifies the Bellman operators within the base RL algorithms,
the fundamental structures of Q-learning (Watkins, 1989; Watkins & Dayan, 1992), PPO
(Schulman et al., 2017), and TD3 (Fujimoto et al., 2018) remain unchanged.
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Abstract

In reinforcement learning (RL), aligning agent behavior with specific objectives typically1
requires careful design of the reward function, which can be challenging when the desired2
objectives are complex. In this work, we propose an alternative approach for flexible3
behavior alignment that eliminates the need to modify the reward function by selecting4
appropriate reward aggregation functions. By introducing an algebraic perspective on5
Markov decision processes, we show that the Bellman equations naturally emerge from6
the recursive generation and aggregation of rewards, allowing for the generalization7
of the standard discounted sum to other recursive aggregations, such as discounted8
max and variance-regularized mean. Our approach applies to both deterministic and9
stochastic settings and integrates seamlessly with value-based and policy-based RL10
algorithms. Experimental results demonstrate that our approach effectively optimizes11
diverse objectives, highlighting its versatility and potential for real-world applications.112

1 Introduction13

In reinforcement learning (RL), an agent interacts with an environment modeled as a Markov decision14
process (MDP) to optimize a predefined objective. Traditionally, this objective is formulated as the15
discounted cumulative reward over an episode (Sutton & Barto, 1998; Kaelbling et al., 1996). This16
formulation has been widely adopted across various domains, including Atari games (Mnih et al.,17
2015), stock trading (Wu et al., 2020; Kabbani & Duman, 2022), and autonomous driving (Zhu et al.,18
2020; Kiran et al., 2021), where cumulative rewards effectively capture long-term performance.19

However, in many real-world applications, optimizing solely for cumulative rewards may not fully20
align with the desired objectives. In some cases, the objective focuses on stability, making the21
minimization of reward variance more important than simply maximizing expected returns (Tamar22
et al., 2012; La & Ghavamzadeh, 2013). For instance, in finance, the Sharpe Ratio (Sharpe, 1966)23
prioritizes reducing return variance to improve risk-adjusted performance, while in process control,24
robust optimization (Nilim & El Ghaoui, 2005) is used to mitigate uncertainty and ensure system25
stability. Furthermore, in drug discovery, the goal is often to maximize the peak reward to identify the26
most effective compounds (Quah & Quek, 2006; Gottipati et al., 2020). Risk-sensitive applications27
like autonomous driving prioritize minimizing the worst-case outcome to ensure safety and robustness28
(Wang et al., 2020; Abouelazm et al., 2024). These examples illustrate that different objectives beyond29
cumulative reward optimization are necessary for effective decision-making.30

The traditional approach to tailoring specific objectives in RL is to modify the reward function31
(Moody et al., 1998; Moody & Saffell, 2001; Nägele et al., 2024). However, this approach has several32
drawbacks. It often requires expanding the state space (Mannor & Tsitsiklis, 2011; Wang et al.,33
2020) or altering the underlying MDP structure (Ng et al., 1999), which increases computational34
complexity. Moreover, manually redesigning the reward function is challenging (Leike et al., 2017;35
Hadfield-Menell et al., 2017), making practical implementation difficult and potentially causing36
unintended goal misalignment (Amodei et al., 2016; Christiano et al., 2017).37

1Code of implication: https://anonymous.4open.science/status/RRA-534F.
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Figure 1: Illustration of three deterministic policies in a simple MDP, shown as color-coded paths,
with their rewards on edges. The table on the right shows the aggregated rewards for each policy. We
can observe that different aggregation functions lead to different policy preferences.

Given these challenges, a natural alternative to modifying the reward function is to optimize different38
aggregations of the existing reward signals, rather than relying solely on the standard cumulative39
reward formulation. As illustrated in Fig. 1, different aggregation functions can lead to distinct policy40
preferences in a simple MDP. This suggests that by appropriately choosing the reward aggregation41
method, we can directly influence policy behavior without modifying the reward or MDP structure.42

Motivated by this insight, we propose a more general and flexible framework by leveraging algebraic43
structures that retains the original reward function and state representation while redefining the44
optimization objective. Instead of modifying the reward function or MDP structure, our approach45
extends the standard reward aggregation mechanism by decomposing it into a recursively designed46
statistic and aggregation function. This enables the optimization of various objectives, such as47
minimizing reward variance or maximizing the minimum reward, while maintaining computational48
efficiency. We further derive the corresponding Bellman equations, extend our method to policy49
gradient algorithms, and demonstrate its effectiveness in both discrete and continuous environments.50
Moreover, we show that our approach can be seamlessly integrated into state-of-the-art RL algorithms51
and validate its effectiveness through extensive experiments on various non-cumulative objectives.52

Related work RL traditionally optimizes policies by maximizing cumulative rewards. However,53
in many cases, achieving the desired objective requires optimizing alternative criteria. A common54
approach is to either modify the reward function (Moody et al., 1998; Moody & Saffell, 2001; Nägele55
et al., 2024) or augment the state space (Mannor & Tsitsiklis, 2011; Wang et al., 2020; Veviurko56
et al., 2024), both of which introduce additional complexity and potential inefficiencies.57

Another line of research has focused on modifying the Bellman equation, extending its formulation to58
optimize objectives beyond cumulative rewards. Quah & Quek (2006) introduced a learning rule for59
the maximum reward value function, later refined by Gottipati et al. (2020) to correct technical issues60
related to interchanging expectation and maximum operators. However, their approach is limited to61
deterministic environment. Cui & Yu (2023) further extended the Bellman update to non-cumulative62
rewards, yet their approach struggles with stochastic environment. Veviurko et al. (2024) proposed a63
max-based objective with convergence guarantees for both deterministic and stochastic cases, but64
their method is restricted to max aggregation and requires additional state augmentation. These65
limitations underscore the need for a unified framework that generalizes reward structures while66
ensuring computational efficiency and convergence in both deterministic and stochastic cases.67

Contributions In this paper, we introduce an algebraic perspective on the MDP model, showing68
that the Bellman equations naturally emerge from the recursive generation and aggregation of rewards69
(Section 2). This perspective allows us to generalize the standard discounted sum to other recursive70
aggregation functions, such as discounted max and mean-variance (Section 3), while unifying71
deterministic and stochastic settings within the same framework (Section 4). We provide theoretical72
justification for our approach, which enables the optimization of various objectives beyond cumulative73
rewards while maintaining computational efficiency. Finally, we validate the effectiveness of our74
method in both discrete and continuous environments across various recursive reward aggregation75
functions, showcasing its flexibility and scalability in handling diverse reward structures (Section 5).76
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2 An algebraic perspective on Bellman equations77

In this section, we introduce the standard MDP model (Puterman, 1994) for sequential decision-78
making problems from an algebraic perspective. Using a technique known as fusion in algebra and79
functional programming (Meijer et al., 1991; Hinze et al., 2010), we show that the Bellman equations80
(Bellman, 1966) naturally arise from the recursive generation and aggregation of rewards. This81
perspective reveals opportunities for generalizing to alternative reward aggregation functions.82

In this section, we focus on the standard discounted sum of rewards and deterministic transitions and83
policies. We generalize them to other aggregation functions in Section 3 and stochastic transitions84
and policies in Section 4.85

2.1 Preliminaries86

Notation In this section, S is the set of states, A is the set of actions, and R is the set of rewards,87
which can be finite or infinite. The dynamics of the environment is given by a (deterministic) transition88
function p : S ×A→ S. An agent interacts with the environment by following a (deterministic)89
policy π : S → A that maps states to actions. A reward function r : S ×A→ R assigns a reward90
to each state-action pair. Furthermore, we assume that there is an initial state s0 ∈ S and a subset91
Sω ⊂ S of terminal states, whose indicator function is ω. The horizon Ω of the task can be fixed or92
varying, depending on the terminal condition ω.93

Moreover, {∗} denotes a singleton (any set with a single element ∗). [R] denotes the set of finite lists94
of rewards, defined using the empty list function nil : {∗} → [R], which represents the empty list [ ],95
and the list constructor function cons : R× [R]→ [R], which prepends an element to a list. We have96
cons(r, [ ]) = [r] and cons(rt, [rt+1, . . . , rΩ]) = [rt, rt+1, . . . , rΩ], which we abbreviate as rt:Ω.97

Composite functions Let us introduce some composite functions that are useful for defining the98
recursive generation of states, actions, and rewards. Given a policy π : S → A, the paring function99
⟨idS , π⟩ : S → S ×A = s 7→ (s, π(s)) keeps a copy of the current state s ∈ S and outputs the next100
action π(s) ∈ A.2 Then, pre-composing this function with the transition function p : S ×A→ S101
and the reward function r : S ×A→ R yields two functions:102

(policy-dependent) state transition pπ : S → S := p ◦ ⟨idS , π⟩ = s 7→ p(s, π(s)) and103
(policy-dependent) state reward function rπ : S → R := r ◦ ⟨idS , π⟩ = s 7→ r(s, π(s)).104

We use the subscripts π to explicitly indicate the dependence on the policy π.105

2.2 Recursive generation of rewards106

Using the state transition pπ and reward function rπ , we can generate states and rewards step by step:107

stepπ,p,r,ω : S → {∗}+R× S := s 7→
{
∗ s ∈ Sω,

(rπ(s),pπ(s)) s /∈ Sω.
(1)

Let us take a closer look at this step function. The codomain, {∗}+R× S, is the disjoint union (+)108
of a singleton {∗}, representing termination, and the Cartesian product R× S of rewards and states.109
At each step, the step function either halts by returning the termination signal ∗ if the current state s110
is terminal or continues by returning a pair of the reward rπ(s) ∈ R and the next state pπ(s) ∈ S,111
both determined by the policy π.112

Remark 1 (Terminal condition). By incorporating the terminal condition ω into the step function,113
we can describe both episodic and continuing tasks for any reward aggregation, without relying on114
a special absorbing state and the unit of the aggregation function, e.g., 0 for the discounted sum115
function. See also Sutton & Barto (1998, Section 3.4).116

2For a set C, idC : C → C is the identity function mapping an element c ∈ C to itself. For two functions f : C → A
and g : C → B, their pairing ⟨f, g⟩ : C → A×B is the unique function that applies these two functions to the same input,
mapping an input c ∈ C to a pair (f(c), g(c)) ∈ A×B of outputs.

3



Under review for RLC 2025, to be published in RLJ 2025

Starting from an initial state, by recursively applying this step function and collecting the results, we117
can obtain a sequence of rewards:118

Definition 2.1 (Recursive generation). Given a policy π, a transition function p, a reward function119
r, and a terminal condition ω, a recursive generation function genπ,p,r,ω : S → [R] of rewards is120
defined as follows:121

genπ,p,r,ω : S → [R] := s 7→
{
[ ] s ∈ Sω,

cons(rπ(s), genπ,p,r,ω(pπ(s))) s /∈ Sω.
(2)

2.3 Recursive aggregation of rewards122

Given a sequence of rewards, we can aggregate them into a single value using an aggregation function.123
In the standard MDP setting, the discounted sum sumγ : [R] → R = r1:Ω 7→

∑Ω
t=1 γ

t−1rt of124
rewards is a common choice, where γ ∈ [0, 1] is a discount factor.125

Note that the discounted sum function can be expressed as a recursive function:126

sumγ : [R]→ R :=

{
[ ] 7→ 0,
rt:Ω 7→ rt + γ · sumγ(rt+1:Ω).

(3)

In other words, the discounted sum function is uniquely defined by two functions: the base case127
0 ∈ R and the recursive case r + γ · s : R×R→ R. In Section 3, we will show that various other128
aggregation functions can also be defined recursively in this way.129

2.4 Bellman equation for the state value function130

We have introduced the recursive generation and aggregation of rewards in a standard MDP model.131
The generation function genπ,p,r,ω : S → [R] is the producer of rewards, and the discounted sum132
function sumγ : [R]→ R is the consumer of rewards. By composing these two recursive functions,133
we obtain a state value function vπ : S → R, which can also be calculated recursively:134

vπ : S → R := sumγ ◦ genπ,p,r,ω = s 7→
{
0 s ∈ Sω,

rπ(s) + γ · vπ(pπ(s)) s /∈ Sω.
(4)

This recursive calculation of the state value function vπ : S → R is known as the Bellman equation135
(Bellman, 1966), which expresses the value of a state s under a policy π as the sum of the immediate136
reward rπ(s) and the discounted value of the next state pπ(s).137

Remark 2 (State-action recursion). We can define the state-action transition/step/generation functions138
and derive a Bellman equation for the state-action value function qπ : S ×A→ R in a similar way,139
which is omitted here for brevity and discussed in Appendix A.140

Remark 3 (Algebra fusion). For readers familiar with algebra and functional programming, we point141
out that the Bellman equation emerges as a consequence of the fusion law for recursive coalgebras142
(Hinze et al., 2010, Section 4; Yang & Wu, 2022, Section 10), shown in the following diagram:3143

{∗}+R× S {∗}+R× [R] {∗}+R×R

{∗} S [R] R

id{∗} + idR × genπ,p,r,ω

id{∗} + idR ×vπ

id{∗} + idR × sumγ

[nil,cons] [0,r+γ·s]
s0

stepπ,p,r,ω

genπ,p,r,ω

vπ

sumγ

(5)

The left square is the recursive definition of the generation function in Eq. (2), and the right square is144
the recursive definition of the discounted sum function in Eq. (3). Consequently, the whole rectangle145
is the Bellman equation for the state value function in Eq. (4). See Appendix B for more details.146

3For two functions f : A → C and g : B → C, their copairing [f, g] : A+B → C is the unique function defined by
cases, mapping an input x ∈ A+B to f(x) if x ∈ A, to g(x) if x ∈ B.
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Table 1: Recursive aggregation functions

definition initial value update function post-processing
[R]→ R init ∈ T ▷ : R× T → T post : T → R

discounted sum r1 + γr2 + · · ·+ γt−1rt 0 ∈ R (r, s) 7→ r + γ · s idR

discounted max max{r1, γr2, . . . , γt−1rt} −∞ ∈ R (r,m) 7→ max(r, γ ·m) idR

log-sum-exp log(er1 + er2 + · · ·+ ert) −∞ ∈ R (r,m) 7→ log(er + em) idR

min min(r1:t) ∞ ∈ R (r, n) 7→ min(r, n) idR

range max(r1:t)−min(r1:t)
max
min

[
−∞
∞

]
∈ R2

(
r,

[
m
n

])
7→

[
max(r,m)
min(r, n)

] [
m
n

]
7→ m− n

mean r̄ := 1
t

∑t
i=1 ri

length
sum

[
0
0

]
∈
[
N
R

] (
r,

[
n
s

])
7→

[
n+ 1
s+ r

] [
n
s

]
7→ s

n

length
mean

[
0
0

]
∈
[
N
R

] (
r,

[
n
m

])
7→

[
n+ 1
r+n·m
n+1

] [
n
m

]
7→ m

variance
1
t

∑t
i=1(ri − r̄)2

= 1
t

∑t
i=1 r

2
i − r̄2

length
sum
sum square

00
0

 ∈
 N

R
R≥0

 r,

ns
q

 7→
n+ 1
s+ r

q + r2

 ns
q

 7→ q
n −

(
s
n

)2

3 Recursive reward aggregation functions147

In this section, we generalize the discounted sum function in Eq. (3) to other recursive aggregation148
functions that summarize a sequence of rewards into a single value. Our primary goal is to derive a149
generalized Bellman equation extending Eq. (4) and provide theoretical insights for efficient policy150
evaluation and optimization with recursive reward aggregation.151

3.1 Bellman equation for the state statistic function152

First, we observe that many aggregation functions are inherently recursive; however, the recursive153
structure does not always operate directly within the original space. For instance, we can calculate154
the arithmetic mean by calculating both the sum and the length recursively and then dividing the sum155
by the length. Based on this observation, we propose the following definition:156

Definition 3.1 (Recursive aggregation). Let T be a set of statistics. Given an initial value init ∈ T ,157
an update function ▷ : R× T → T , and a post-processing function post : T → R, a recursive158
aggregation function agginit,▷ : [R]→ T of statistics is defined as follows:159

agginit,▷ : [R]→ T :=

{
[ ] 7→ init,
rt:Ω 7→ rt ▷ agginit,▷(rt+1:Ω),

(6)

and a recursive aggregation function post ◦ agginit,▷ : [R]→ R of rewards is the composition of this160
function with the post-processing function post : T → R, shown in the following diagram:161

{∗}+R× [R] {∗}+R× T

[R] T R

id{∗} + idR × agginit,▷

[nil,cons] [init,▷]

agginit,▷ post

(7)

Examples of recursive reward aggregation functions are provided in Table 1. By substituting the162
discounted sum function with a general recursive reward aggregation function, we can generalize the163
Bellman equation in Eq. (4) as follows:164

Theorem 3.2 (Bellman equation for the state statistic function). Given a recursive generation function165
genπ,p,r,ω (Definition 2.1) and a recursive statistic aggregation function agginit,▷ (Definition 3.1),166
their composition, called the state statistic function τπ : S → T , satisfies the following equation:167

τπ : S → T := agginit,▷ ◦ genπ,p,r,ω = s 7→
{
init s ∈ Sω,

rπ(s) ▷ τπ(pπ(s)) s /∈ Sω.
(8)

The state value function vπ : S → R := post ◦ τπ is the composition of the state statistic function168
τπ : S → T with the post-processing function post : T → R.169
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Figure 2: State statistic bidirectional process τπ : S → T and state value function vπ : S → R,
showing the forward process, backward process, and termination.

Remark 4 (Bidirectional process). By combining the recursive generation and aggregation processes,170
we can express the state statistic function τπ : S → T as a composition of bidirectional processes,171
as illustrated in Fig. 2. The forward process S → R× S, parameterized by a policy π, takes a172
state st ∈ S and generates a reward rt+1 ∈ R and the next state st+1 ∈ S. The backward process173
R× T → T takes a statistic τt+1 ∈ T from the future and updates it with the previously generated174
reward rt+1 ∈ R to produce the current statistic τt ∈ T . These bidirectional processes continue175
until a terminal state is reached, at which point its statistic is assigned the initial value init ∈ T .176
Such bidirectional processes (Riley, 2018) have been applied to study supervised learning (Fong &177
Johnson, 2019), Bayesian inference (Smithe, 2020), gradient-based learning (Cruttwell et al., 2022),178
and reinforcement learning (Hedges & Sakamoto, 2022). See Appendix B for more details.179

3.2 Policy evaluation: Iterative statistic function estimation180

Next, we consider how to estimate the state statistic function τπ : S → T for an arbitrary policy π,181
known as the policy evaluation problem (Sutton & Barto, 1998, Sections 4.1 and 11.4). We introduce182
a generalized Bellman operator and prove the uniqueness of its fixed points under certain conditions.183
This result enables iterative statistic/value function estimation used in policy iteration and modern184
actor-critic methods (Barto et al., 1983; Mnih et al., 2016; Haarnoja et al., 2018; Fujimoto et al.,185
2018). Concretely, the Bellman operator is defined as follows:186

Definition 3.3 (Bellman operator). Given a policy π, a transition function p, a reward function r,187
a terminal condition ω, and a recursive statistic aggregation function agginit,▷ (Definition 3.1), the188
Bellman operator Bπ : [S, T ]→ [S, T ] for a function τ : S → T is defined by189

Bπτ : S → T := s 7→
{
init s ∈ Sω,

rπ(s) ▷ τ(pπ(s)) s /∈ Sω.
(9)

According to the Bellman equation in Theorem 3.2, we have Bπτπ = τπ , which means that the state190
statistic function τπ is a fixed point of the Bellman operator. Then, we can generalize the classical191
fixed point theorem under the following condition:192

Definition 3.4 (Contractive update function). An update function ▷ : R× T → T is contractive with193
respect to a premetric dT on statistics T if ∀r ∈ R. ∀t1, t2 ∈ T. dT (r ▷ t1, r ▷ t2) ≤ k · dT (t1, t2),194
where k ∈ [0, 1) is a constant. In other words, r ▷ (−) : T → T is a contraction for all r ∈ R.195

Theorem 3.5 (Uniqueness of fixed points of Bellman operator). Let τ1, τ2 : S → T be fixed points196
of the Bellman operator Bπ (Definition 3.3). If the update function ▷ is contractive with respect to a197
premetric dT on statistics T (Definition 3.4), then dT (τ1(s), τ2(s)) = 0 for all states s ∈ S. If dT is198
a strict premetric, then τ1 = τ2 = τπ .199

This result applies to a broad class of recursive aggregation functions beyond the discounted sum.200
See Appendix C for further discussion on the premetric dT and the Bellman operator Bπ .201
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3.3 Policy optimization: Optimal policies and optimal value functions202

Finally, we consider how to find an optimal policy and compute its statistic/value functions recursively203
based on the Bellman equation in Theorem 3.2:204

Definition 3.6 (Optimal policy). Given a preorder≤T on statistics T , a policy π∗ is an optimal policy205
if ∀π. ∀s ∈ S. τπ(s) ≤T τπ∗

(s), which has the optimal state statistic function τ∗ : S → T := τπ∗
206

and the optimal state value function v∗ : S → R := post ◦ τ∗.207

Theorem 3.7 (Bellman optimality equation for the state statistic function). Given a preorder ≤T on208
statistics T , the optimal state statistic function τ∗ (Definition 3.6) satisfies the following equation:209

τ∗ : S → T := s 7→

init s ∈ Sω,

sup
a∈A

(r(s, a) ▷ τ∗(p(s, a))) s /∈ Sω.
(10)

Definition 3.6 and Theorem 3.7 are analogous to their classical counterparts (Sutton & Barto, 1998,210
Section 3.6), but they extend to arbitrary recursive aggregation functions and allow comparisons211
using a preorder ≤T on statistics. A Bellman optimality operator B∗ can be defined similarly to the212
Bellman operator in Definition 3.3, and we can prove the uniqueness of its fixed points under certain213
conditions. This result enables the value iteration algorithm (Sutton & Barto, 1998, Section 4.4),214
temporal difference methods such as Q-learning (Watkins, 1989), and deep Q-network (DQN) based215
methods (Mnih et al., 2013; Bellemare et al., 2017) to find the optimal policy π∗. See Appendix D216
for further discussion on the preorder ≤T and the Bellman optimality operator B∗.217

4 From deterministic to stochastic Markov decision processes218

In this section, we briefly discuss the extension of our framework to the stochastic setting. We show219
that the deterministic and stochastic settings share a fundamental similarity: all recursive structures220
remain unchanged, except that (deterministic) functions are replaced by stochastic functions, and221
function composition is replaced by marginalization over the intermediate variable, as described by222
the Chapman–Kolmogorov equation (Giry, 1982; Puterman, 1994). The main difference is that the223
stochastic setting allows for a richer class of aggregation functions (Bellemare et al., 2023), where the224
non-commutativity and non-distributivity of certain operations can lead to more complex behaviors.225

Notation Slightly abusing notation, we use the same symbols to denote the measurable spaces226
of states S, actions A, rewards R, and statistics T . For a measurable space C, we write PC for the227
measurable space of all probability measures on C, and we denote by δc ∈ PC the Dirac measure228
concentrated at c ∈ C. An identity stochastic function idC : C → PC : c 7→ δc maps an element229
c ∈ C to the Dirac measure δc ∈ PC. We consider stochastic transition p : S ×A → PS and230
policy π : S → PA, while other functions can be deterministic. We also use the usual conditional231
distribution notation such as p(s′|s, a) and π(a|s).232

Stochastic composite functions In the stochastic setting, we can compose two stochastic functions233
by marginalizing over the intermediate variable. Additionally, we can compose a stochastic function234
with a deterministic one using the pushforward operation, which is equivalent to treating deterministic235
functions as stochastic functions to Dirac measures. For example, we can define236

stochastic state transition pπ : S → PS := p ◦ ⟨idS , π⟩ = s 7→ s′ ∼
∫
A
p(s′|s, a)π(a|s) da and237

stochastic state reward function rπ : S → PR := r ◦ ⟨idS , π⟩ = s 7→ r ∼
∫
A
δr(s,a)(r)π(a|s) da.238

Stochastic recursive functions Analogous to Theorem 3.2, we can derive the recursive calculation239
of the stochastic state statistic function τπ : S → PT , known as the distributional Bellman equation240
(Morimura et al., 2010a;b; Bellemare et al., 2017), for any recursive aggregation function agginit,▷:241

τπ : S → PT = s 7→ τ ∼

δinit s ∈ Sω,

r ▷ τ ′
∣∣∣ r ∼ rπ(r|s), τ ′ ∼

∫
S

τπ(τ
′|s′)pπ(s′|s) ds′ s /∈ Sω.

(11)
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PR . . . δ0+ γ
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r

E[r + γ · s]
R

PR

R . . . 0+ γ

E

R

E[r] + γ · E[s] E[s]

r

Figure 3: The recursive structures of the expected discounted sum of rewards E[r + γ · s] and the
discounted sum of expected rewards E[r] + γ · E[s] showing the update function and initial value.

Stochastic aggregation functions Note that this framework also accommodates the traditional242

expected discounted sum of rewards E
[∑Ω

t=1 γ
t−1rt

]
learning objective, by selecting δ0 as init, the243

(pushforward through) discounted addition function r + γ · s : R×R→ R as the update function ▷,244
and the expectation operator E : PR→ R as post. The stochastic statistic function τπ : S → PR in245
Eq. (11), refered to as the value distribution in Bellemare et al. (2017), outputs the distribution of the246
discounted sum of rewards, while the value function outputs its expectation. Since the expectation247
distributes over the discounted addition, by changing the update function and initial value, we can248
recursively calculate the discounted sum of expected rewards

∑Ω
t=1 γ

t−1 E[rt] instead (see Fig. 3),249
which is the traditional approach in RL (Sutton & Barto, 1998). In this case, the statistic function250
and the value function coincide, as no post-processing is required. However, Bellemare et al. (2017)251
have shown that even in the discounted sum setting, the Bellman operator may be a contraction252
in some metrics but not in others, while the Bellman optimality operator is a contraction only in253
expectation and not in any distributional metric, leading to different convergence behaviors. These254
challenges persist and may become unavoidable when using alternative aggregation functions due255
to the inconsistency between expected aggregated rewards and aggregated expected rewards. We256
discuss this further in Appendix E and leave a full investigation for future work.257

5 Experiments258

In this section, we empirically evaluate the proposed recursive reward aggregation technique across a259
variety of environments and optimization objectives to support the following claims:260

Different aggregation functions significantly influence policy preferences. Selecting an appropriate261
aggregation function is an alternative approach to optimizing policies for specific objectives and262
aligning agent behaviors with task-specific goals without modifying rewards (Sections 5.1 to 5.3).263
In challenging real-world applications such as portfolio optimization, our method can directly264
optimize desired evaluation criteria, demonstrating superior performance compared to existing265
approaches and showcasing its practical effectiveness (Section 5.4).266

5.1 Grid-world: Value-based methods for discrete planning267

First, we present illustrative experiments in a simple grid-world environment to demonstrate the268
fundamental impact of different recursive reward aggregation functions on learned policies.269

Environment Fig. 4a shows the results for a 3 × 4 grid environment, where an agent navigates270
from the top-left corner to a fixed goal at the bottom-right corner. As shown in Fig. 4a, the agent271
receives a small negative reward at each step, which varies across states, and a positive reward upon272
reaching the terminal state.273

Method For this discrete environment, we modified the Q-learning algorithm (Watkins, 1989;274
Watkins & Dayan, 1992) using the Bellman optimality operator introduced in Section 3.3 (more275
specifically, the one for the state-action statistic function in Definition D.9). We used four recursive276
aggregation functions: discounted sum, discounted max, min, and mean, as detailed in Table 1. The277
detailed algorithm is provided in Algorithm 1 in Appendix G.278
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Figure 4: Grid-world: Fig. 4a shows the discrete environment and the reward function r(s, a), where
the agent starts from the top-left corner and needs to reach the goal at the bottom-right corner. Figs. 4b
to 4e show the optimal state-action value functions q∗(s, a) under different aggregation functions.
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Figure 5: Wind-world: Fig. 5a shows the continuous environment, where the agent encounters wind
disturbances (visualized with streamlines) and receives higher rewards near the center (depicted with
colored contours). Fig. 5b illustrates the trajectories of agents trained using different aggregation
functions, while Fig. 5c compares the rewards obtained by each agent. Fig. 5d presents the evaluation
metrics, highlighting the impact of aggregation functions on performance.

Results Compared to the standard discounted sum aggregation (Fig. 4b), optimizing for discounted279
max reward (Fig. 4c) makes the agent indifferent to intermediate costs, favoring shorter paths to280
the goal. In contrast, minimum aggregation (Fig. 4d) encourages risk-averse behavior, while mean281
aggregation (Fig. 4e) promotes efficiency by maximizing average reward per step. Further results and282
discussions are provided in Appendix H.1. Overall, these results demonstrate how each aggregation283
function uniquely impacts reward evaluation and policy preferences.284

5.2 Wind-world: Policy improvement methods for trajectory optimization285

Next, we show that the recursive reward aggregation technique can also be seamlessly integrated into286
methods for continuous state and action spaces to optimize trajectories in complex environments.287

Environment Inspired by Dorfman et al. (2021); Ackermann et al. (2024), we designed a two-288
dimensional continuous environment where an agent navigates to a fixed goal amidst varying wind289
disturbances, as shown in Fig. 5a. This setup allows us to evaluate the impact of different aggregation290
functions on trajectory optimization.291

Method For this continuous environment, we utilized the Proximal Policy Optimization (PPO)292
algorithm (Schulman et al., 2017), which is a widely used policy improvement method. We estimated293
the value function using the Bellman operator for the state statistic function in Definition 3.3. The294
detailed algorithm is provided in Algorithm 2 in Appendix G.295

Results The results in Figs. 5b to 5d show that different aggregation functions lead to distinct296
trade-offs in trajectory optimization. Specifically, the max aggregation function prioritizes high-297
reward paths, while the min function ensures more conservative and consistent behavior. The298
variance-regularized mean aggregation provide balanced strategies, demonstrating the flexibility of299
the recursive reward aggregation technique in optimizing diverse objectives.300
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sum!.##

max!.##

min

sum!.## +max!.##

sum!.## − var

Figure 6: Comparison of evaluation metrics for different reward aggregation methods in the Hopper
environment. The radar chart on the left visualizes the performance of different reward aggregation
functions across multiple evaluation metrics over four random seeds. The images on the right illustrate
the learned behavior of the agent for each reward aggregation method.

5.3 Physics simulation: Actor-critic methods for continuous control301

Then, we extend our evaluation to more complex physics simulation environments.302

Environment We conducted experiments on three continuous control environments: Hopper and303
Ant belong to the MuJoCo environment suite (Todorov et al., 2012), while Lunar Lander Continuous304
(Brockman et al., 2016) is from Box2D environment. A detailed description of these environments305
can be found in Appendix H.3.306

Method In these experiments, we employed the Twin Delayed Deep Deterministic Policy Gradient307
(TD3) algorithm (Fujimoto et al., 2018), with a modified recursive version detailed in Algorithm 3308
in Appendix G. To evaluate policy performance, we considered five different reward aggregation309
functions: discounted sum (sum0.99), discounted max (max0.99), min (min), discounted sum plus310
max (sum0.99 +max0.99), and discounted sum minus variance (sum0.99− var).311

Results The result for Hopper are provided in Fig. 6, with results for other environments in312
Appendix H.3. We present the mean values of various metrics across four random seeds using313
radar charts, and visualize agent trajectories to illustrate the impact of aggregation functions on314
the learned policy. The sum0.99 aggregation, serving as the baseline method, demonstrates strong315
overall performance across multiple metrics, as reflected in both the radar chart and motion sequences.316
In contrast, the max0.99 aggregation focuses solely on optimizing max reward, leading to strong317
performance in this specific metric but suboptimal outcomes in others. The corresponding images318
show the agent taking overly aggressive actions to maximize max reward, which causes it to lose319
balance quickly as the torso angle exceeds the allowed range. The min aggregation encourages the320
agent to maximize the minimum reward, which leads to a conservative strategy where the agent321
remains completely still to avoid negative rewards. The sum0.99 +max0.99 aggregation encourages322
the agent to optimize both the total reward and the maximum reward within an episode, leading323
to more aggressive movements and higher overall rewards. While the sum0.99− var aggregation324
prioritizes stability by minimizing the difference between the maximum and minimum rewards,325
resulting in more controlled and consistent behavior at the cost of slightly lower rewards. These326
results highlight how different reward aggregation strategies shape the behavior of the agent and its327
learning outcomes. Demonstration videos are provided in our anonymized code link.328

5.4 Real-world application: Sharpe ratio in portfolio optimization329

Lastly, we evaluated the practical applicability of our method in a real-world application. Portfolio330
optimization is a fundamental real-world application where an agent (or investor) determines the331
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Table 2: Performance comparison of different methods for portfolio optimization using the Sharpe
ratio. The table reports the mean and standard deviation of the Sharpe ratio across five random seeds
during the test period, where a higher value indicates better risk-adjusted returns.

DiffSharpe NCMDP Ours

Sharpe Ratio (Test) 0.29± 1.22 0.48± 0.79 1.12± 0.92

optimal allocation of assets across different investment options. It can be framed as a sequential332
decision-making problem as the agent continuously adjusts the portfolio in response to evolving333
market conditions, fluctuating asset prices, and shifting risk preferences, rather than setting a static334
allocation. Each decision not only influences immediate returns but also conditions future decisions.335

A key metric for evaluating the performance of an investment strategy is the Sharpe ratio (Sharpe,336
1966), which measures the trade-off between return and risk. It is defined as the ratio of the mean337
return to the standard deviation of returns:338

SharpeRatio(r1:t) :=
mean(r1:t)

std(r1:t)
, (12)

where rt := (Pt+1 − Pt)/Pt represents the simple returns, and Pt is the portfolio value at time t.339
Since the Sharpe ratio is non-cumulative, previous RL approaches have relied on the approximate340
differential Sharpe ratio (Moody et al., 1998; Moody & Saffell, 2001) as a reward signal to facilitate341
learning. However, this approach introduces an inconsistency between the learning objective and the342
actual Sharpe ratio, potentially leading to suboptimal policy learning.343

Environment This experiment was conducted in a financial market simulation, where an agent344
learned to optimize portfolio allocations across 11 different S&P 500 sector indices from 2006 to345
2021. The environment is the same as that described by Sood et al. (2023); Nägele et al. (2024), with346
further details provided in Appendix H.4.347

Baselines We considered two baseline methods: (i) DiffSharpe (Moody et al., 1998; Moody &348
Saffell, 2001), which optimizes an approximate differential Sharpe ratio, and (ii) a non-cumulative349
Markov decision process (NCMDP) method proposed by Nägele et al. (2024), which maps NCMDPs350
to standard MDPs and defines per-step rewards based on consecutive differences.351

Method As demonstrated in Table 1, since both mean and variance admit recursive computation,352
the Sharpe ratio can also be expressed and updated in a recursive manner. This property allows our353
method to address the aforementioned inconsistency, aligning the learning objective with the true354
Sharpe ratio. Our method is built upon the PPO (Schulman et al., 2017) algorithm, with specific355
modifications on Bellman equation detailed in Algorithm 2 in Appendix G.356

Results We conducted experiments across five random seeds, reporting the mean and standard357
deviation of test set performance. Since a higher Sharpe ratio reflects superior risk-adjusted returns,358
the results in Table 2 confirm that our method consistently outperforms the baselines by effectively359
balancing risk and reward. These results illustrate that modifying either the local reward signal or the360
global performance measure can create misalignment, leading to inconsistencies in policy training and361
suboptimal learning outcomes. In contrast to the baseline methods, our method maintains the original362
per-step reward structure while estimating and optimizing the exact Sharpe ratio over the entire363
trajectory. This ensures consistency between training and evaluation, allows the agent to capture long-364
term dependencies, and reduces sensitivity to local noise. As a result, our approach achieves superior365
risk-adjusted returns with improved stability and robustness in portfolio management. Moreover,366
its ability to maintain alignment between learning objectives and evaluation metrics suggests strong367
potential for broader applications in various real-world decision-making domains.368
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6 Conclusion369

In this paper, we revealed that the recursive structures in the standard MDP can be generalized370
to a broader class of recursive reward aggregation functions, resulting in generalized Bellman371
equations and operators. Our theoretical analysis on the existence and uniqueness of fixed points372
of the generalized Bellman operators provided a solid foundation for designing RL algorithms373
based on recursive reward aggregation and understanding their convergence properties. Empirical374
evaluations across discrete and continuous environments confirmed that different aggregation375
functions significantly influence policy preferences, and we can align the agent behavior with376
the task requirements by selecting appropriate aggregation functions. These findings highlight the377
flexibility of recursive reward aggregation, paving the way for more versatile RL algorithms that can378
be tailored to complex task requirements.379

Future research could explore several extensions of the proposed recursive reward aggregation380
framework. First, since the framework does not require the outputs of the generation function and381
the inputs of the aggregation function (i.e., the internal states of the bidirectional processes in Fig. 2,382
see also Appendix B) to be real values, one promising direction is to investigate the use of multi-383
dimensional signals, enhancing the flexibility and expressiveness of policy preferences, particularly in384
complex environments with intricate reward structures (Abouelazm et al., 2024). Second, exploring385
the theoretical properties of the generalized Bellman operators in the stochastic setting, especially386
their contraction behavior under different distributional metrics (see also Appendix E), is an important387
area of study (Bellemare et al., 2023). Additionally, applying recursive reward aggregation to388
real-world applications, such as risk-sensitive decision-making, risk-adjusted returns and portfolio389
diversification in finance, and safe, robust, and multi-objective control in robotics, presents promising390
directions (Kober et al., 2013; Kiran et al., 2021; Liu et al., 2024).391
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A State-action recursion696

In Section 2, we introduced the recursive generation of rewards by iterating over states S. In this697
section, we extend this framework to iterate over state-action pairs S ×A, which is crucial for698
defining the state-action value function qπ : S ×A→ R.699

A.1 State-action transition700

First, note that both pre-composing and post-composing the pairing function ⟨idS , π⟩ : S → S ×A701
with the transition function p : S ×A→ S yield transition functions:702

state transition pSπ : S → S := p ◦ ⟨idS , π⟩ = s 7→ p(s, π(s)) and703
state-action transition pS×A

π : S ×A→ S ×A := ⟨idS , π⟩ ◦ p = (s, a) 7→ (p(s, a), π(p(s, a))).704

We use the superscripts S and S ×A to indicate the domains/codomains of these transition functions.705

A.2 State-action step function and generation function706

Then, following the definitions of the state step function stepSπ,p,r,ω : S → {∗}+R× S in Eq. (1) and707

generation function genSπ,p,r,ω : S → [R] in Eq. (2), we can define the state-action step/generation708

functions using the state-action transition pS×A
π and the reward function r:709

stepS×A
π,p,r,ω : S ×A→ {∗}+R× (S ×A) := (s, a) 7→

{
∗ s ∈ Sω,

(r(s, a),pS×A
π (s, a)) s /∈ Sω.

(13)

genS×A
π,p,r,ω : S ×A→ [R] := (s, a) 7→

{
[ ] s ∈ Sω,

cons(r(s, a), genS×A
π,p,r,ω(p

S×A
π (s, a))) s /∈ Sω.

(14)

A.3 State-action statistic function and value function710

Applying the same algebraic fusion technique (Hinze et al., 2010) used for the state statistic function711
τSπ : S → T in Theorem 3.2, we can define the state-action statistic function τS×A

π : S ×A→ T712
and derive its corresponding Bellman equation as follows:713

Theorem A.1 (Bellman equation for the state-action statistic function). Given a recursive generation714
function genS×A

π,p,r,ω and a recursive statistic aggregation function agginit,▷ (Definition 3.1), their715

composition, called the state-action statistic function τS×A
π : S → T , satisfies the following equation:716

τS×A
π : S ×A→ T := agginit,▷ ◦ genS×A

π,p,r,ω

= (s, a) 7→
{
init s ∈ Sω,

(r(s, a) ▷ τS×A
π (pS×A

π (s, a))) s /∈ Sω.
(15)

Similarly, the state-action value function qπ : S ×A→ R := post ◦ τS×A
π is the composition of the717

state-action statistic function τS×A
π : S ×A→ T with the post-processing function post : T → R.718

A.4 Relationship between state and state-action statistic functions719

We can now state the theorem that relates the state and state-action statistic functions:720

Theorem A.2 (Relationship between state and state-action statistic functions). Given a recursive721
generation function genπ,p,r,ω (Definition 2.1) and a recursive statistic aggregation function agginit,▷722

(Definition 3.1), the state statistic function τSπ : S → T in Eq. (8) and the state-action statistic723
function τS×A

π : S ×A→ T in Eq. (15) satisfy the following equations:724
τSπ = τS×A

π ◦ ⟨idS , π⟩ : S → T (for all states), (16)

τS×A
π = r ▷ (τSπ ◦ p) : S ×A→ T (for all non-terminal states). (17)
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Corollary A.3 (Relationship between state and state-action value functions). The state value function725
vπ : S → R and the state-action value function qπ : S ×A→ R satisfy the following equation:726

vπ = qπ ◦ ⟨idS , π⟩ : S → R. (18)

In summary, the relationships between the state/state-action step, generation, statistic, and value727
functions are shown in the following diagram:728

{∗}+R× S {∗}+R× [R]

{∗}+R× (S ×A) {∗}+R× T

{∗} S [R]

S ×A T R

[nil,cons]

[init,▷]

s0

step
S
π,p,r,ω

gen
S
π,p,r,ω

⟨idS ,π⟩

τ
S
π

vπ

agginit,▷

step
S×A
π,p,r,ω

gen
S×A
π,p,r,ω

τ
S×A
π

qπ

post

(19)

A.5 Advantage function729

The advantage function (Baird, 1994; Schulman et al., 2016),730
απ : S ×A→ R := qπ − vπ ◦ p1 = (s, a) 7→ qπ(s, a)− vπ(s), (20)

is defined as the difference between the state-action value function qπ : S ×A→ R and the state731
value function vπ : S → R, where p1 : S ×A→ S is the projection function that extracts the state732
from a state-action pair. The advantage function measures the advantage of taking an action a in733
a state s over the average value of all actions in that state following the policy π, which is used734
widely in RL algorithms such as Asynchronous Advantage Actor-Critic (A3C) (Mnih et al., 2016)735
and Proximal Policy Optimization (PPO) (Schulman et al., 2017).736

For a general recursive statistic aggregation function agginit,▷ and a post-processing function post,737

the advantage function can be expressed using the state-action statistic function τS×A
π : S ×A→ T738

and the state statistic function τSπ : S → T as follows:739
απ : S ×A→ R = (s, a) 7→ post(τS×A

π (s, a))− post(τSπ (s)) (21)

= (s, a) 7→
{
0 s ∈ Sω,

post(r(s, a) ▷ τSπ (p(s, a)))− post(τSπ (s)) s /∈ Sω.
(22)

21



Under review for RLC 2025, to be published in RLJ 2025

S

T

R

S

T

. . .

. . .

{∗}

T

π

p

r

▷

init

st st+1

τt τt+1

rt+1
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Figure 8: State statistic bidirectional process (with different behavior and target policies)

S

T

S

S

T

. . .

. . .

{∗}

T

pSπ

π

p

rπ

πθ

r

▷

init

st st+1

τt τt+1

st

Figure 9: State statistic bidirectional process (with state as the residual)
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Figure 11: State-action statistic bidirectional process (with different behavior and target policies)
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B Algebraic structures in Markov decision process740

In this section, we briefly discuss the algebraic structures used in this work. For a tutorial on algebraic741
programming, we refer the reader to Hutton (1999). For a theoretical treatment of algebra fusion,742
see Hinze et al. (2010). For an accessible and illustrative introduction to bidirectional processes, we743
recommend Gavranović (2022).744

B.1 Algebra fusion745

In this work, we mainly considered algebras and coalgebras of signature {∗}+R× (−), i.e., lists of746
rewards. An algebra is a pair (A, f) consisting of a carrier set A and a function f : {∗}+R×A→ A.747
A coalgebra is a pair (C, g) consisting of a carrier set C and a function g : C → {∗}+R× C. For748
example, the list construction [nil, cons] : {∗}+R× [R]→ [R] is an algebra on the set [R] of lists of749
rewards, while the step function stepSπ,p,r,ω : S → {∗}+R× S is a coalgebra on the set S of states.750

Note that the list construction [nil, cons] is the initial algebra, the discounted sum function sumγ751
is defined as the catamorphism (algebra homomorphism) from the initial algebra to the algebra752
[0, r + γ · s], while the recursive generation function genπ,p,r,ω is defined as the hylomorphism753
(coalgebra homomorphism) from the coalgebra stepπ,p,r,ω to the initial algebra. In the field of754
functional programming, such operations are also known as fold and unfold (Meijer et al., 1991;755
Bird & de Moor, 1997; Hutton, 1999; Yang & Wu, 2022).756

Due to the recursive nature of the generation and aggregation functions, we can derive the recursive757
structure of their composition using the algebra fusion technique (Hinze et al., 2010), which leads to758
the Bellman equations for the state statistic function τSπ : S → T in Theorem 3.2 and the state-action759
statistic function τS×A

π : S ×A→ T in Theorem A.1.760

B.2 Bidirectional process761

In Fig. 2, we illustrate the bidirectional processes for the state statistic function and state value762
function. In algebra, such bidirectional processes are called lenses and optics (Riley, 2018).763

Note that there is a slight difference between the definitions of step/generation/statistic functions in764
Eqs. (1), (2) and (8) and the bidirectional process in Fig. 2 (reproduced in Fig. 7). In Eq. (1), a state s765
is duplicated and passed separately to the transition function pπ and the reward function rπ , requiring766
the policy π to compute the action a twice. In contrast, in Fig. 7, the state s is passed to the policy π767
only once, and the action a is computed only once and then copied to the transition function p and768
the reward function r. These two approaches are equivalent only when the following equation holds:769

S

A A

π π

S

A A

π

= (23)

For functions, copying an input and then passing the copies to two identical functions is equivalent to770
passing the input to the function once and then copying the output. However, for stochastic functions,771
these two approaches are not equivalent, which requires additional care when defining bidirectional772
processes for stochastic functions (see also Fritz, 2020, Definition 10.1).773

Strictly speaking, the definitions in Eqs. (1), (2) and (8) correspond to a bidirectional process774
illustrated in Fig. 8, where different behavior and target policies can be considered. In this setting,775
the target policy πθ, parameterized by θ, is used to compute the reward and is optimized, while the776
potentially unknown behavior policy π is passed to the transition function. Further, the internal state777
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between the forward and backward processes — also known as the residual (Gavranović, 2022) —778
can be the state itself rather than the reward, as shown in Fig. 9. Similar considerations extend to the779
state-action statistic function, as illustrated in Figs. 10 to 12.780

We believe that such bidirectional processes offer a clearer framework for reinforcement learning,781
including offline reinforcement learning, inverse reinforcement learning, and imitation learning782
(Hussein et al., 2017; Arora & Doshi, 2021; Hedges & Sakamoto, 2022; Murphy, 2024). Further783
research is needed to explore the full potential of bidirectional processes in reinforcement learning.784

B.3 Non-uniqueness of update function and post-processing function785

It is important to note that for a given aggregation function, the corresponding update function786
▷ : R× T → T and post-processing function post : T → R are not necessarily unique. For example,787
as shown in Table 1, the mean function can be computed recursively in different ways: one approach788
updates the sum and the length, while another updates the mean and the length. Each approach has its789
own advantages and disadvantages. Updating the sum allows for a straightforward implementation,790
but when both the sum and the length are large, numerical instability may arise. In contrast, updating791
the mean may require additional computation, but if the rewards are bounded, the mean remains792
bounded as well, which can improve numerical stability.793
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Table 3: Properties of metrics

Premetric Strict premetric Metric

Indiscernibility of identities
(a1 = a2)→ (dA(a1, a2) = 0)

✓ ✓ ✓

Identity of indiscernibles
(dA(a1, a2) = 0)→ (a1 = a2)

✓ ✓

Symmetry
dA(a1, a2) = dA(a2, a1)

✓

Triangle inequality
dA(a1, a3) ≤ dA(a1, a2) + dA(a2, a3)

✓

C Metrics and Bellman operators794

In this section, we discuss the metrics on the statistics T and rewards R and the Bellman operators795
for the state/state-action statistic functions.796

C.1 Preliminaries797

Recall the definitions of metrics, as summarized in Table 3:798

Definition C.1 (Premetric). A premetric on a set A is a function dA : A × A → [0,∞] such that799
∀a ∈ A. dA(a, a) = 0.800

Definition C.2 (Strict premetric). A strict premetric on a set A is a function dA : A×A→ [0,∞]801
such that ∀a1, a2 ∈ A. (dA(a1, a2) = 0)↔ (a1 = a2).802

Given a function to a premetric space, we can define a premetric on the domain by pullback:803

Lemma C.3 (Pullback premetric). Let dB : B × B → [0,∞] be a premetric on a set B, and let804
f : A→ B be a function. The pullback premetric dA : A×A→ [0,∞] is defined by805

∀a1, a2 ∈ A. dA(a1, a2) := dB(f(a1), f(a2)). (24)
If dB is a strict premetric, then dA is also a strict premetric if and only if the function f is injective.806

C.2 Metrics on statistics and rewards807

By Lemma C.3, we can define a premetric dT on statistics T by pulling back a premetric dR on808
rewards R through a post-processing function post : T → R:809

∀t1, t2 ∈ T. dT (t1, t2) := dR(post(t1),post(t2)). (25)

However, when rewards R are real-valued while statistics T are multi-dimensional, the pullback810
premetric dT may not be a strict premetric, as different statistics may map to the same reward value.811

For example, consider the range of rewards, where the statistics T = R2 are the maximum and812
minimum of rewards. We can directly define a metric on statistics by813

dT

([
m1

n1

]
,

[
m2

n2

])
:=

√
(m1 −m2)

2 + (n1 − n2)
2. (26)

If we use the pullback premetric, we have814

dT

([
m1

n1

]
,

[
m2

n2

])
:= dR

(
post

([
m1

n1

])
,post

([
m2

n2

]))
(27)

= dR(m1 − n1,m2 − n2) = |(m1 − n1)− (m2 − n2)|. (28)

26



Recursive Reward Aggregation

C.3 Bellman operators815

Recall the definition of the Bellman operator for a state statistic function τS : S → T :816

Definition 3.3 (Bellman operator). Given a policy π, a transition function p, a reward function r,817
a terminal condition ω, and a recursive statistic aggregation function agginit,▷ (Definition 3.1), the818
Bellman operator Bπ : [S, T ]→ [S, T ] for a function τ : S → T is defined by819

Bπτ : S → T := s 7→
{
init s ∈ Sω,

rπ(s) ▷ τ(pπ(s)) s /∈ Sω.
(9)

We can define a Bellman operator for a state-action statistic function τS×A : S ×A→ T similarly:820

Definition C.4 (Bellman operator). Given a policy π, a transition function p, a reward function r,821
a terminal condition ω, and a recursive statistic aggregation function agginit,▷ (Definition 3.1), the822

Bellman operator BS×A
π : [S ×A, T ] → [S ×A, T ] for a function τS×A : S ×A→ T is defined823

by824

BS×A
π τS×A : S ×A→ T := (s, a) 7→

{
init s ∈ Sω,

r(s, a) ▷ τS×A(pS×A
π (s, a)) s /∈ Sω.

(29)

C.4 Existence of fixed points of Bellman operators825

The existence of fixed points of the Bellman operators BSπ and BS×A
π is established by the Bellman826

equations for the state statistic function τSπ : S → T in Theorem 3.2 and the state-action statistic827
function τS×A

π : S ×A→ T in Theorem A.1.828

Remark 5 (Banach fixed point theorem). Note that the classical fixed point theorem for Bellman829
operators typically relies on the Banach fixed point theorem, which requires the underlying space to830
be a complete metric space. This is not an issue in the standard discounted sum setting, as the space831
R of real numbers has a complete metric structure. However, in our setting, the space T of statistics832
may lack such a complete metric structure, posing potential challenges for establishing fixed point833
guarantees. That said, the triangle inequality of the metric and the completeness of the space are834
only necessary for ensuring the existence of fixed points: the triangle inequality guarantees that the835
iterative sequence is a Cauchy sequence, while completeness ensures that the sequence has a limit836
within the space. Since the existence of fixed points follows directly from the Bellman equations, our837
focus shifts to the uniqueness of fixed points, which only requires the space to be a premetric space.838

C.5 Uniqueness of fixed points of Bellman operators839

Recall that Theorem 3.5 establishes the uniqueness of fixed points of the Bellman operator BSπ for840
state statistic functions τS : S → T :841

Theorem 3.5 (Uniqueness of fixed points of Bellman operator). Let τ1, τ2 : S → T be fixed points842
of the Bellman operator Bπ (Definition 3.3). If the update function ▷ is contractive with respect to a843
premetric dT on statistics T (Definition 3.4), then dT (τ1(s), τ2(s)) = 0 for all states s ∈ S. If dT is844
a strict premetric, then τ1 = τ2 = τπ .845

Similarly, we can extend this result to the Bellman operator BS×A
π for state-action statistic functions846

τS×A : S ×A→ T :847

Theorem C.5 (Uniqueness of fixed points of the Bellman operator). Let τS×A
1 , τS×A

2 : S ×A→ T848
be fixed points of the Bellman operator BS×A

π (Definition C.4). If the update function ▷ is contractive849
with respect to a premetric dT on statistics T (Definition 3.4), then dT (τ

S×A
1 (s, a), τS×A

2 (s, a)) = 0850
for all states s ∈ S and actions a ∈ A. If dT is a strict premetric, then τS×A

1 = τS×A
2 = τS×A

π .851
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Table 4: Properties of orders

Preorder Partial order Total preorder Total order

Reflexivity
a ≤A a

✓ ✓ ✓ ✓

Transitivity
(a1 ≤A a2) ∧ (a2 ≤A a3)→ (a1 ≤A a3)

✓ ✓ ✓ ✓

Antisymmetry
(a1 ≤A a2) ∧ (a2 ≤A a1)→ (a1 = a2)

✓ ✓

Totality
(a1 ≤A a2) ∨ (a2 ≤A a1)

✓ ✓

D Orders and Bellman optimality operators852

In this section, we discuss the orders on the statistics T and rewards R and the Bellman optimality853
operators for the state/state-action statistic functions.854

D.1 Preliminaries855

Recall the definitions of orders, as summarized in Table 4:856

Definition D.1 (Preorder). A preorder on a set A is a relation ≤A that is reflexive ∀a ∈ A. a ≤A a857
and transitive ∀a1, a2, a3 ∈ A. (a1 ≤A a2) ∧ (a2 ≤A a3)→ (a1 ≤A a3).858

Definition D.2 (Partial order). A partial order on a set A is a relation ≤A that is reflexive, transitive,859
and antisymmetric ∀a1, a2 ∈ A. (a1 ≤A a2) ∧ (a2 ≤A a1)→ (a1 = a2).860

Definition D.3 (Total preorder). A total preorder on a set A is a relation ≤A that is reflexive,861
transitive, and total ∀a1, a2 ∈ A. (a1 ≤A a2) ∨ (a2 ≤A a1).862

Definition D.4 (Total order). A total order on a set A is a relation ≤A that is reflexive, transitive,863
antisymmetric, and total.864

Given a function to a preorder space, we can define a preorder on the domain by pullback:865

Lemma D.5 (Pullback preorder). Let ≤B be a preorder on a set B, and let f : A→ B be a function.866
The pullback preorder ≤A on a set A is defined by867

∀a1, a2 ∈ A. (a1 ≤A a2) := (f(a1) ≤B f(a2)). (30)
If ≤B is total, then ≤A is also total. If ≤B is antisymmetric, then ≤A is also antisymmetric if and868
only if f is injective.869

Given a preorder and a premetric, wen can consider how the premetric preserves the preorder:870

Definition D.6 (Preorder-preserving premetric). A premetric dB : B × B → [0,∞] on a set B871
preserves a preorder ≤B on the set B if872
∀b1, b2, b3 ∈ B. (b1 ≤B b2 ≤B b3)→(dB(b1, b2) ≤ dB(b1, b3))∧(dB(b3, b2) ≤ dB(b3, b1)). (31)

Note that since a premetric is not required to be symmetric, there are in total eight possible inequalities873
that we can consider for the preorder preservation of a premetric, which are omitted here for brevity.874

Given a preorder-preserving premetric, we can consider an inequality for the supremum of functions:875

Lemma D.7 (Preorder-preserving premetric’s supremum inequality). Let dB : B ×B → [0,∞] be876
a premetric that preserves a premetric ≤B on a set B. Then, for functions f1, f2 : A → B whose877
suprema are attained in B, we have878

dB(sup
a∈A

f1(a), sup
a∈A

f2(a)) ≤ sup
a∈A

dB(f1(a), f2(a)). (32)

This lemma is useful for proving the contraction property of the Bellman optimality operator, as we879
will see later.880
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D.2 Orders on statistics and rewards881

By Lemma D.5, we can define a preorder ≤T on statistics T by pulling back a preorder ≤R on882
rewards R through a post-processing function post : T → R:883

∀t1, t2 ∈ T. (t1 ≤T t2) := (post(t1) ≤R post(t2)). (33)

Since the (pre)order ≤R on rewards R is usually the total order of real numbers, we can guarantee884
that the preorder ≤T on statistics T is also total.885

For example, consider the arithmetic mean of rewards, where the statistics T = N× R are the length886
and the sum of rewards. We can compare two statistics (n1, s1) and (n2, s2) by comparing the means887
s1
n1

and s2
n2

. This is a total preorder on the statistics T .888

D.3 Bellman optimality operators889

We can define the Bellman optimality operators as follows:890

Definition D.8 (Bellman optimality operator). Given a policy π, a transition function p, a reward891
function r, a terminal condition ω, a recursive statistic aggregation function agginit,▷ (Definition 3.1),892

and a preorder ≤T on statistics T , the Bellman optimality operator BS∗ : [S, T ] → [S, T ] for a893
function τS : S → T is defined by894

BS∗ τS : S → T := s 7→

init s ∈ Sω,

sup
a∈A

(
r(s, a) ▷ τS(p(s, a))

)
s /∈ Sω.

(34)

Definition D.9 (Bellman optimality operator). Given a policy π, a transition function p, a reward895
function r, a terminal condition ω, a recursive statistic aggregation function agginit,▷ (Definition 3.1),896

and a preorder≤T on statistics T , the Bellman optimality operator BS×A
∗ : [S ×A, T ]→ [S ×A, T ]897

for a function τS×A : S ×A→ T is defined by898

BS×A
∗ τS×A : S ×A→ T := (s, a) 7→

init s ∈ Sω,

sup
a
′∈A

(
r(s, a) ▷ τS×A(p(s, a), a′)

)
s /∈ Sω.

(35)

D.4 Existence of fixed points of Bellman optimality operators899

Recall that Theorem 3.7 establishes the existence of a fixed point of the Bellman optimality operator900
BS∗ for state statistic functions τS : S → T :901

Theorem 3.7 (Bellman optimality equation for the state statistic function). Given a preorder ≤T on902
statistics T , the optimal state statistic function τ∗ (Definition 3.6) satisfies the following equation:903

τ∗ : S → T := s 7→

init s ∈ Sω,

sup
a∈A

(r(s, a) ▷ τ∗(p(s, a))) s /∈ Sω.
(10)

We can similarly establish the existence of a fixed point of the Bellman optimality operator BS×A
∗ for904

state-action statistic functions τS×A : S ×A→ T :905

Theorem D.10 (Bellman optimality equation for the state-action statistic function). Given a preorder906
≤T on statistics T , the optimal state-action statistic function τS×A

∗ satisfies the following equation:907

τS×A
∗ : S ×A→ T := (s, a) 7→

init s ∈ Sω,

sup
a
′∈A

(
r(s, a) ▷ τS×A

∗ (p(s, a), a′)
)

s /∈ Sω.
(36)

D.5 Uniqueness of fixed points of Bellman optimality operators908

Similarly to Theorem 3.5, we can guarantee the uniqueness of fixed points of the Bellman optimality909
operators BS∗ and BS×A

∗ under certain conditions:910
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Table 5: Fixed points of the Bellman operators and the Bellman optimality operators.

Definition Existence Uniqueness

Bellman operator BSπ Definition 3.3 Theorem 3.2 Theorem 3.5
BS×A
π Definition C.4 Theorem A.1 Theorem C.5

Bellman optimality operator BS∗ Definition D.8 Theorem 3.7 Theorem D.11
BS×A
∗ Definition D.9 Theorem D.10 Theorem D.12

Theorem D.11 (Uniqueness of fixed points of Bellman optimality operator). Let τS1 , τ
S
2 : S → T911

be fixed points of the Bellman optimality operator BS∗ (Definition D.8). If the update function ▷ is912
contractive with respect to a premetric dT on statistics T (Definition 3.4), and the premetric dT913
preserves the preorder ≤T on statistics T (Definition D.6), then dT (τ

S
1 (s), τ

S
2 (s)) = 0 for all states914

s ∈ S. If dT is a strict premetric, then τS1 = τS2 = τS∗ .915

Theorem D.12 (Uniqueness of fixed points of Bellman optimality operator). Let τS×A
1 , τS×A

2 :916
S ×A→ T be fixed points of the Bellman optimality operator BS×A

∗ (Definition D.9). If the917
update function ▷ is contractive with respect to a premetric dT on statistics T (Definition 3.4),918
and the premetric dT preserves the preorder ≤T on statistics T (Definition D.6), then919
dT (τ

S×A
1 (s, a), τS×A

2 (s, a)) = 0 for all states s ∈ S and actions a ∈ A. If dT is a strict premetric,920
then τS×A

1 = τS×A
2 = τS×A

∗ .921

In summary, the definitions and results on the fixed points of the Bellman operators and the Bellman922
optimality operators are summarized in Table 5.923
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E Stochastic Markov decision process924

In this section, we discuss the stochastic extension of the deterministic Markov decision processes925
introduced in Sections 2 and 3.926

E.1 Composition of stochastic functions927

The composition rules of stochastic functions and deterministic functions are defined as follows:928

Composition of two stochastic functions f : A→ PB and g : B → PC by marginalizing over the929
intermediate variable, as described by the Chapman–Kolmogorov equation (Giry, 1982):930

(g ◦ f)(c|a) :=
∫
B

g(c|b)f(b|a) db. (37)
931

A B C

PB PC

PPC

f

f

g◦f

g◦f

g

g

Pg µC

(38)

Composition of a stochastic function f : A→ PB with a deterministic function g : B → C:932

(g ◦ f)(c|a) := g∗f(b|a) =
∫
B

δg(b)f(b|a) db. (39)
933

A B C

PB PC

PPC

f

f

g◦f

g◦f

g

δg

g∗

Pδg µC

(40)

Composition of a deterministic function f : A→ B with a stochastic function g : B → PC:934
(g ◦ f)(c|a) := g(c|f(a)). (41)935

A B C

PB PC

PPC

f

δf

g◦f

g◦f

g

g

Pg µC

(42)
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Table 6: Expected aggregated rewards vs. aggregated expected rewards: maximum as an example

expected maximum rewards maximum expected rewards

definition Eπ[max(r1, r2, . . . , rΩ)] max(Eπ[r1],Eπ[r2], . . . ,Eπ[rΩ])
statistic T max reward distribution ∈ PR max reward expectation ∈ R
initial value Dirac delta measure δ−∞ ∈ PR reward value −∞ ∈ R
update function pushforward measure update expected value update

PR× PR→ P (R× R) max∗−−−→ PR PR× R
ER × idR−−−−−→ R× R max−−−→ R

post-processing expectation ER : PR→ R identity idR : R→ R

E.2 Stochastic recursion936

In Section 4, we introduced the stochastic state transition and statistic functions. Similarly, we can937
define the stochastic state-action transition pS×A

π as follows:938
pS×A
π : S ×A→ P(S ×A) := ⟨idS , π⟩ ◦ p

= (s, a) 7→
(
s′ ∼ p(s′|s, a), a′ ∼

∫
S

π(a′|s′)p(s′|s, a) ds′
)
. (43)

The stochastic state-action statistic function τS×A
π satisfies the following recursive equation:939

τS×A
π : S ×A→ PT

= (s, a) 7→ τ ∼

δinit s ∈ Sω,

r(s, a) ▷ τ ′
∣∣∣ τ ′ ∼ ∫

S×A

τS×A
π (τ ′|s′, a′)pS×A

π (s′, a′|s, a) ds′ da′ s /∈ Sω.
(44)

Further characterizations of stochastic state/state-action statistic functions, including the (pre)metrics940
and (pre)orders on statistics, as well as the contractivity of stochastic Bellman (optimality) operators,941
are left for future work.942

E.3 Relationship between stochastic state and state-action statistic functions943

In the stochastic setting, the state/state-action statistic functions are related by the following equations,944
which are analogous to Theorem A.2:945

τSπ (τ |s) =
∫
A

τS×A
π (τ |s, a)π(a|s) da (for all states), (45)

τS×A
π (τ |s, a) = r(s, a) ▷

∫
S

τSπ (τ |s′)p(s′|s, a) ds′ (for all non-terminal states). (46)

E.4 Expected aggregated rewards vs. aggregated expected rewards946

As discussed in Section 4, the expected discounted sum of rewards equals the discounted sum of947
expected rewards. However, the expected aggregated rewards and the aggregated expected rewards948
are not equal in general. For example, the expected maximum reward is not equal to the maximum949
expected reward because the expectation operator does not distribute over the maximum operator, as950
shown in Table 6. This issue was also raised by Cui & Yu (2023); Veviurko et al. (2024). However,951
we argue that even though the expected aggregated rewards and the aggregated expected rewards are952
not equal, they are both valid and useful learning objectives for different purposes, and the choice953
between them depends on the specific application. If we want to optimize the expected aggregated954
rewards, a more straightforward approach is to estimate the distributions of the aggregated rewards,955
using distributional reinforcement learning (Morimura et al., 2010a;a; Bellemare et al., 2017; 2023).956
Further theoretical and empirical investigations are left for future work.957
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F Proofs958

Theorem 3.2 (Bellman equation for the state statistic function). Given a recursive generation function959
genπ,p,r,ω (Definition 2.1) and a recursive statistic aggregation function agginit,▷ (Definition 3.1),960
their composition, called the state statistic function τπ : S → T , satisfies the following equation:961

τπ : S → T := agginit,▷ ◦ genπ,p,r,ω = s 7→
{
init s ∈ Sω,

rπ(s) ▷ τπ(pπ(s)) s /∈ Sω.
(8)

Proof. Similarly to the diagram in Eq. (5), the state statistic function τπ : S → T can be represented962
using the following diagram:963

{∗}+R× S {∗}+R× [R] {∗}+R× T

S [R] T

id{∗} + idR × genπ,p,r,ω

id{∗} + idR ×τπ

id{∗} + idR × agginit,▷

[nil,cons] [init,▷]stepπ,p,r,ω

genπ,p,r,ω

τπ

agginit,▷

which can be non-rigorously interpreted as a “combination” of the following two diagrams:964

{∗} {∗} {∗}

S [R] T

id{∗}

id{∗}

id{∗}

nil initeS

genπ,p,r,ω

τπ

agginit,▷

R× S R× [R] R× T

S [R] T

idR × genπ,p,r,ω

idR ×τπ

idR × agginit,▷

cons ▷⟨rπ,pπ⟩
genπ,p,r,ω

τπ

agginit,▷

where eS : S → {∗} is the unique function from states to the singleton set, and ⟨rπ,pπ⟩ : S → R× S965
is the pairing of the reward and transition functions, which constitute the step function stepπ,p,r,ω .966

The left diagram shows that when a state s ∈ Sω is terminal,967
τπ(s) = agginit,▷(genπ,p,r,ω

::::::::

(s)) (by definition of τπ) (47)

= agginit,▷
::::::

(nil) (by terminal condition of genπ,p,r,ω) (48)

= init . (by initial condition of agginit,▷) (49)
The right diagram shows that when a state s /∈ Sω is non-terminal,968
τπ(s) = agginit,▷(genπ,p,r,ω

::::::::

(s)) (by definition of τπ) (50)

= agginit,▷(cons
:::::::::::

(rπ(s), genπ,p,r,ω(pπ(s)))) (by recursive definition of genπ,p,r,ω) (51)

= rπ(s) ▷ agginit,▷(genπ,p,r,ω
:::::::::::::::

(pπ(s))) (by recursive definition of agginit,▷) (52)

= rπ(s) ▷ τπ(pπ(s)). (by definition of τπ) (53)
By combining Eq. (49) and Eq. (53), we obtain the desired result in Eq. (8).969

We omit the proof for Theorem A.1 as the derivation is similar to that of Theorem 3.2.970
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Lemma C.3 (Pullback premetric). Let dB : B × B → [0,∞] be a premetric on a set B, and let971
f : A→ B be a function. The pullback premetric dA : A×A→ [0,∞] is defined by972

∀a1, a2 ∈ A. dA(a1, a2) := dB(f(a1), f(a2)). (24)
If dB is a strict premetric, then dA is also a strict premetric if and only if the function f is injective.973

Proof. The pullback premetric dA is a premetric because974
∀a ∈ A. dA(a, a) := dB(f(a), f(a)) = 0. (54)

If dB is a strict premetric, we have975
∀a1, a2 ∈ A. (dA(a1, a2) := dB(f(a1), f(a2)) = 0)→ (f(a1) = f(a2)). (55)

For the pullback premetric dA to be a strict premetric, we require that976
∀a1, a2 ∈ A. (f(a1) = f(a2))→ (a1 = a2), (56)

which is equivalent to the injectivity of the function f .977

Lemma D.5 (Pullback preorder). Let ≤B be a preorder on a set B, and let f : A→ B be a function.978
The pullback preorder ≤A on a set A is defined by979

∀a1, a2 ∈ A. (a1 ≤A a2) := (f(a1) ≤B f(a2)). (30)
If ≤B is total, then ≤A is also total. If ≤B is antisymmetric, then ≤A is also antisymmetric if and980
only if f is injective.981

Proof. The pullback preorder ≤A is reflexive because982
∀a ∈ A. (a ≤A a) := (f(a) ≤B f(a)). (57)

The pullback preorder ≤A is transitive because983
∀a1, a2, a3 ∈ A. (a1 ≤A a2) ∧ (a2 ≤A a3) := (f(a1) ≤B f(a2)) ∧ (f(a2) ≤B f(a3)) (58)

→(f(a1) ≤B f(a3)) =: (a1 ≤A a3). (59)
If ≤B is total, then ≤A is also total because984

∀a1, a2 ∈ A. (a1 ≤A a2) ∨ (a2 ≤A a1) := (f(a1) ≤B f(a2)) ∨ (f(a2) ≤B f(a1)). (60)
If ≤B is antisymmetric, we have985

∀a1, a2 ∈ A. (a1 ≤A a2) ∧ (a2 ≤A a1) := (f(a1) ≤B f(a2)) ∧ (f(a2) ≤B f(a1)) (61)
→(f(a1) = f(a2)). (62)

For the pullback preorder ≤A to be antisymmetric, we require that986
∀a1, a2 ∈ A. (f(a1) = f(a2))→ (a1 = a2), (63)

which is equivalent to the injectivity of the function f .987

Lemma D.7 (Preorder-preserving premetric’s supremum inequality). Let dB : B ×B → [0,∞] be988
a premetric that preserves a premetric ≤B on a set B. Then, for functions f1, f2 : A → B whose989
suprema are attained in B, we have990

dB(sup
a∈A

f1(a), sup
a∈A

f2(a)) ≤ sup
a∈A

dB(f1(a), f2(a)). (32)

Proof. By assumption, the functions f1 and f2 have suprema in B. We denote a1 = arg supa∈A f1(a)991
and a2 = arg supa∈A f2(a). Then, f1(a1) = supa∈A f1(a) and f2(a2) = supa∈A f2(a).992

If f1(a1) ≤B f2(a2), we have f1(a2) ≤B f1(a1) ≤B f2(a2). By the preorder preservation of the993
premetric dB , we have994

dB(f1(a1), f2(a2)) ≤ dB(f1(a2), f2(a2)) ≤ sup
a∈A

dB(f1(a), f2(a)). (64)

Similarly, if f2(a2) ≤B f1(a1), we have f2(a1) ≤B f2(a2) ≤B f1(a1). By the preorder preservation995
of the premetric dB , we have996

dB(f1(a1), f2(a2)) ≤ dB(f1(a1), f2(a1)) ≤ sup
a∈A

dB(f1(a), f2(a)). (65)

Therefore, we have dB(supa∈A f1(a), supa∈A f2(a)) ≤ supa∈A dB(f1(a), f2(a)).997
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We use the following lemmas to prove Theorem 3.5.998

Lemma F.1 (Induced premetric on a set of functions). Let dB : B ×B → [0,∞] be a premetric on999
a set B. For functions f, f ′ : A→ B, define d[A,B] : [A,B]× [A,B]→ [0,∞] as follows:1000

d[A,B](f, f
′) := sup

a∈A
dB(f(a), f

′(a)). (66)

Then, d[A,B] is also a premetric. Moreover, if dB is a strict premetric, d[A,B] is also a strict premetric.1001

Proof. d[A,B] is a premetric because d[A,B](f, f) = supa∈A dB(f(a), f(a)) = 0. For two functions1002
f, f ′ : A→ B, d[A,B](f, f

′) = supa∈A dB(f(a), f
′(a)) = 0 implies that dB(f(a), f

′(a)) = 0 for1003
all a ∈ A. If dB is a strict premetric, then dB(f(a), f

′(a)) = 0 implies f(a) = f ′(a) for all a ∈ A,1004
which means that f = f ′, hence if dB is a strict premetric, d[A,B] is also a strict premetric.1005

Lemma F.2 (Data processing inequality). Let d[A,B] be the induced premetric defined in Lemma F.1.1006
For functions f, f ′ : A→ B and g : A→ A, we have1007

d[A,B](f ◦ g, f ′ ◦ g) ≤ d[A,B](f, f
′). (67)

Proof. d[A,B](f ◦ g, f ′ ◦ g) := supa∈A dB(f(g(a)), f
′(g(a))) = supa′∈g(A) dB(f(a

′), f ′(a′))1008

≤ supa′∈A dB(f(a
′), f ′(a′)) =: d[A,B](f, f

′).1009

Lemma F.3 (Uniqueness of fixed points of a premetric contraction). Let a1 and a2 be fixed points of1010
a function f : A→ A. If the function f is contractive with respect to a premetric dA on the set A,1011
then dA(a1, a2) = 0. Moreover, if dA is a strict premetric, then a1 = a2.1012

Proof. Because a1 and a2 are fixed points of f , and f is contractive with respect to dA, there exists a1013
constant k ∈ [0, 1) such that1014

dA(a1, a2) = dA(f(a1), f(a2)) ≤ k · dA(a1, a2). (68)
Given that dA(a1, a2) ≥ 0, the only possible solution is dA(a1, a2) = 0. If dA is a strict premetric,1015
then dA(a1, a2) = 0 implies a1 = a2. In other words, a premetric contraction has unique fixed points1016
up to premetric indiscernibility, while a strict premetric contraction has a unique fixed point.1017

Lemma F.4 (Contraction of Bellman operator). If the update function ▷ is contractive with respect1018
to a premetric dT on statistics T (Definition 3.4), then the Bellman operator BSπ (Definition 3.3) is1019
contractive with respect to the induced premetric d[S,T ] defined in Lemma F.1.1020

Proof. For any functions τS1 , τ
S
2 : S → T , we have1021

d[S,T ](BSπ τS1 ,BSπ τS2 ) = sup
s∈S

dT ((BSπ τS1 )(s), (BSπ τS2 )(s)). (69)

When a state s ∈ Sω is terminal, for any k ∈ [0, 1), we have1022

dT ((BSπ τS1 )(s), (BSπ τS2 )(s)) (70)
= dT (init, init) (by definition of Bπ) (71)

= 0 ≤ k · dT (τS1 (pSπ(s)), τS2 (pSπ(s))) (dT is a premetric) (72)
When a state s /∈ Sω is non-terminal, there exists a constant k ∈ [0, 1) such that1023

dT ((BSπ τS1 )(s), (BSπ τS2 )(s)) (73)

= dT (rπ(s) ▷ τ
S
1 (p

S
π(s)), rπ(s) ▷ τ

S
2 (p

S
π(s))) (by definition of BSπ ) (74)

≤ k · dT (τS1 (pSπ(s)), τS2 (pSπ(s))) (by contractivity of ▷) (75)
Then, we have1024

d[S,T ](BSπ τS1 ,BSπ τS2 ) (76)

≤ k · sup
s∈S

dT (τ
S
1 (p

S
π(s)), τ

S
2 (p

S
π(s))) (by monotonicity and homogeneity of sup) (77)

= k · d[S,T ](τ
S
1 ◦ pSπ , τS2 ◦ pSπ) (by definition of d[S,T ]) (78)

≤ k · d[S,T ](τ
S
1 , τ

S
2 ) (Lemma F.2) (79)

Therefore, the Bellman operator BSπ is contractive with respect to the premetric d[S,T ].1025
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Theorem 3.5 (Uniqueness of fixed points of Bellman operator). Let τ1, τ2 : S → T be fixed points1026
of the Bellman operator Bπ (Definition 3.3). If the update function ▷ is contractive with respect to a1027
premetric dT on statistics T (Definition 3.4), then dT (τ1(s), τ2(s)) = 0 for all states s ∈ S. If dT is1028
a strict premetric, then τ1 = τ2 = τπ .1029

Proof. Let d[S,T ] be the induced premetric defined in Lemma F.1. By Lemmas F.3 and F.4, we have1030
d[S,T ](τ1, τ2) = sup

s∈S
dT (τ1(s), τ2(s)) = 0, (80)

which means that dT (τ1(s), τ2(s)) = 0 for all states s ∈ S. When dT is a strict premetric, we have1031
τ1 = τ2, which means that τπ is the unique fixed point of the Bellman operator Bπ .1032

We omit the proof for Theorem C.5 as the derivation is similar to that of Theorem 3.5.1033

Theorem 3.7 (Bellman optimality equation for the state statistic function). Given a preorder ≤T on1034
statistics T , the optimal state statistic function τ∗ (Definition 3.6) satisfies the following equation:1035

τ∗ : S → T := s 7→

init s ∈ Sω,

sup
a∈A

(r(s, a) ▷ τ∗(p(s, a))) s /∈ Sω.
(10)

Proof. When a state s ∈ Sω is terminal, we have τ∗(s) = init. When a state s /∈ Sω is non-terminal,1036
we have1037
τ∗(s) := τπ∗

(s) (by definition of τ∗) (81)

= rπ∗
(s) ▷ τ∗(pπ∗

(s)) (by recursive definition of τπ∗
) (82)

= r(s, π∗(s)) ▷ τ∗(p(s, π∗(s))) (by definitions of rπ∗
and pπ∗

) (83)

= sup
a∈A

(r(s, a) ▷ τ∗(p(s, a))). (pointwise maximization) (84)

1038

Theorem D.10 (Bellman optimality equation for the state-action statistic function). Given a preorder1039
≤T on statistics T , the optimal state-action statistic function τS×A

∗ satisfies the following equation:1040

τS×A
∗ : S ×A→ T := (s, a) 7→

init s ∈ Sω,

sup
a
′∈A

(
r(s, a) ▷ τS×A

∗ (p(s, a), a′)
)

s /∈ Sω.
(36)

Proof. When a state s ∈ Sω is terminal, we have τS×A
∗ (s, a) = init for all actions a ∈ A. When a1041

state s /∈ Sω is non-terminal, we have1042
τS×A
∗ (s, a) := τS×A

π∗
(s, a) (by definition of τS×A

∗ ) (85)

= r(s, a) ▷ τS×A
∗ (pS×A

π∗
(s, a)) (by recursive definition of τS×A

π∗
) (86)

= r(s, a) ▷ τS×A
∗ (p(s, a), π∗(p(s, a))) (by definition of pS×A

π∗
) (87)

= sup
a
′∈A

(
r(s, a) ▷ τS×A

∗ (p(s, a), a′)
)
. (pointwise maximization) (88)

1043
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Similarly to Lemma F.4 and Theorem 3.5, we use the following lemma to prove Theorem D.11.1044

Lemma F.5 (Contraction of Bellman optimality operator). If the update function ▷ is contractive with1045
respect to a premetric dT on statistics T (Definition 3.4), and the premetric dT preserves the preorder1046
≤T on statistics T (Definition D.6), then the Bellman optimality operator BS∗ (Definition D.8) is1047
contractive with respect to the induced premetric d[S,T ] defined in Lemma F.1.1048

Proof. For any functions τS1 , τ
S
2 : S → T , we have1049

d[S,T ](BS∗ τS1 ,BS∗ τS2 ) = sup
s∈S

dT ((BS∗ τS1 )(s), (BS∗ τS2 )(s)). (89)

When a state s ∈ Sω is terminal, for any k ∈ [0, 1), we have1050

dT ((BS∗ τS1 )(s), (BS∗ τS2 )(s)) (90)

= dT (init, init) (by definition of BS∗ ) (91)

= 0 ≤ k · sup
a∈A

dT (τ
S
1 (p(s, a)), τ

S
2 (p(s, a))) (dT is a premetric) (92)

When a state s /∈ Sω is non-terminal, there exists a constant k ∈ [0, 1) such that1051

dT ((BS∗ τS1 )(s), (BS∗ τS2 )(s)) (93)

= dT (sup
a∈A

(r(s, a) ▷ τS1 (p(s, a))), sup
a∈A

(r(s, a) ▷ τS2 (p(s, a)))) (by definition of B∗) (94)

≤ sup
a∈A

dT (r(s, a) ▷ τ
S
1 (p(s, a)), r(s, a) ▷ τ

S
2 (p(s, a))) (by monotonicity of dT ) (95)

≤ sup
a∈A

k · dT (τS1 (p(s, a)), τS2 (p(s, a))) (by contractivity of ▷) (96)

= k · sup
a∈A

dT (τ
S
1 (p(s, a)), τ

S
2 (p(s, a))) (by homogeneity of sup) (97)

Then, we have1052
d[S,T ](BS∗ τ1,BS∗ τ2) (98)

≤ k · sup
s∈S

sup
a∈A

dT (τ
S
1 (p(s, a)), τ

S
2 (p(s, a))) (by monotonicity and homogeneity of sup) (99)

= k · sup
a∈A

sup
s∈S

dT (τ
S
1 (p(s, a)), τ

S
2 (p(s, a))) (by commutativity of sup) (100)

= k · sup
a∈A

d[S,T ](τ
S
1 ◦ p(−, a), τS2 ◦ p(−, a)) (by definition of d[S,T ]) (101)

≤ k · d[S,T ](τ
S
1 , τ

S
2 ) (Lemma F.2) (102)

Therefore, the Bellman optimality operator BS∗ is contractive with respect to the premetric d[S,T ].1053

Theorem D.11 (Uniqueness of fixed points of Bellman optimality operator). Let τS1 , τ
S
2 : S → T1054

be fixed points of the Bellman optimality operator BS∗ (Definition D.8). If the update function ▷ is1055
contractive with respect to a premetric dT on statistics T (Definition 3.4), and the premetric dT1056
preserves the preorder ≤T on statistics T (Definition D.6), then dT (τ

S
1 (s), τ

S
2 (s)) = 0 for all states1057

s ∈ S. If dT is a strict premetric, then τS1 = τS2 = τS∗ .1058

Proof. Let d[S,T ] be the induced premetric defined in Lemma F.1. By Lemmas F.3 and F.5, we have1059

d[S,T ](τ1, τ2) = sup
s∈S

dT (τ
S
1 (s), τ

S
2 (s)) = 0, (103)

which means that dT (τ
S
1 (s), τ

S
2 (s)) = 0 for all states s ∈ S. When dT is a strict premetric, we have1060

τS1 = τS2 , which means that τS∗ is the unique fixed point of the Bellman optimality operator BS∗ .1061

We omit the proof for Theorem D.12 as the derivation is similar to that of Theorem D.11.1062
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Figure 13: τSπ = τS×A
π ◦ ⟨idS , π⟩ and τS×A

π = r ▷ (τSπ ◦ p)

Theorem A.2 (Relationship between state and state-action statistic functions). Given a recursive1063
generation function genπ,p,r,ω (Definition 2.1) and a recursive statistic aggregation function agginit,▷1064

(Definition 3.1), the state statistic function τSπ : S → T in Eq. (8) and the state-action statistic1065
function τS×A

π : S ×A→ T in Eq. (15) satisfy the following equations:1066
τSπ = τS×A

π ◦ ⟨idS , π⟩ : S → T (for all states), (16)

τS×A
π = r ▷ (τSπ ◦ p) : S ×A→ T (for all non-terminal states). (17)

Proof. Notice the following relation:1067
pS×A
π ◦ ⟨idS , π⟩

:::::::::::::
= ⟨idS , π⟩ ◦ p ◦ ⟨idS , π⟩ = ⟨idS , π⟩ ◦ pSπ

::::::::::
: S → S ×A. (104)

We can show that when a state s ∈ Sω is terminal,1068 (
genS×A

π,p,r,ω ◦ ⟨idS , π⟩
)
(s) = genSπ,p,r,ω(s) = [ ], (105)

and when a state s /∈ Sω is non-terminal,1069 (
genS×A

π,p,r,ω ◦ ⟨idS , π⟩
)
(s) =

(
cons ◦ ⟨r, genS×A

π,p,r,ω ◦ pS×A
π ⟩ ◦ ⟨idS , π⟩

::::::::::::::::::::::::::

)
(s) (106)

=

(
cons ◦ ⟨r ◦ ⟨idS , π⟩

:::::::::
, genS×A

π,p,r,ω ◦ pS×A
π ◦ ⟨idS , π⟩

:::::::::::::
⟩
)
(s) (107)

=

(
cons ◦ ⟨rπ, genS×A

π,p,r,ω ◦ ⟨idS , π⟩
::::::::::::::::

◦ pSπ⟩
)
(s), (108)

which shows that genS×A
π,p,r,ω ◦ ⟨idS , π⟩ satisfies the same recursive equation as genSπ,p,r,ω in Eq. (2).1070

Due to the uniqueness of the recursive coalgebra (Hinze et al., 2010, Eq. (5)), we can conclude that1071
genSπ,p,r,ω = genS×A

π,p,r,ω ◦ ⟨idS , π⟩ : S → [R]. (109)

Given Eq. (109), we have1072
τSπ := agginit,▷ ◦ genSπ,p,r,ω = agginit,▷ ◦ genS×A

π,p,r,ω ◦ ⟨idS , π⟩ = τS×A
π ◦ ⟨idS , π⟩ : S → T . (110)

Next, for a non-terminal state s /∈ Sω and an action a ∈ A, we have1073

τS×A
π (s, a) =

(
r ▷

(
τS×A
π ◦ pS×A

π
::::

))
(s, a) (111)

=

(
r ▷

(
τS×A
π ◦ ⟨idS , π⟩

:::::::::::::
◦ p

))
(s, a) (112)

=
(
r ▷

(
τSπ ◦ p

))
(s, a). (113)

However, for a terminal state s ∈ Sω and an action a ∈ A, the equation τS×A
π = r ▷ (τSπ ◦p) may not1074

always hold and could require additional conditions on the transition function p, the reward function1075
r, the initial value init, and the update function ▷.1076

Intuitively, Eqs. (16) and (17) arise from the decomposition of the bidirectional process, as illustrated1077
in Fig. 13.1078
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Remark 6. In fact, we can derive Eq. (109) directly from the relation between the state step function1079
stepSπ,p,r,ω and the state-action step function stepS×A

π,p,r,ω .1080

When a state s ∈ Sω is terminal,1081 (
stepS×A

π,p,r,ω ◦ ⟨idS , π⟩
)
(s) =

(
id{∗} ◦ stepSπ,p,r,ω

)
(s) = ∗, (114)

and when a state s /∈ Sω is non-terminal,1082 (
stepS×A

π,p,r,ω ◦ ⟨idS , π⟩
)
(s) =

(
⟨r,pS×A

π ⟩ ◦ ⟨idS , π⟩
::::::::::::::::

)
(s) (115)

=

(
⟨r ◦ ⟨idS , π⟩
:::::::::

,pS×A
π ◦ ⟨idS , π⟩

:::::::::::::
⟩
)
(s) (116)

=

(
⟨rπ, ⟨idS , π⟩ ◦ pSπ⟩
::::::::::::::

)
(s) (117)

=

(
(idR×⟨idS , π⟩) ◦ ⟨rπ,pSπ⟩

::::::

)
(s) (118)

=
(
(idR×⟨idS , π⟩) ◦ stepSπ,p,r,ω

)
(s). (119)

We can conclude that1083
stepS×A

π,p,r,ω ◦ ⟨idS , π⟩ =
(
id{∗} + idR×⟨idS , π⟩

)
◦ stepSπ,p,r,ω : S → {∗}+R× (S ×A), (120)

which means that ⟨idS , π⟩ is a coalgebra homomorphism from the state step function stepSπ,p,r,ω1084

to the state-action step function stepS×A
π,p,r,ω. Then, by the coalgebra fusion law (Hinze et al., 2010,1085

Eq. (7)), we can get the result in Eq. (109).1086
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G Learning algorithms with recursive reward aggregation1087

In this section, we list the RL algorithms with recursive reward aggregation used in our experiments.1088
The colored lines indicate modifications compared to the standard discounted sum version.1089

G.1 Q-learning1090

Algorithm 1 Q-learning (Watkins & Dayan, 1992) with recursive reward aggregation

Input: transition function p : S ×A→ S, reward function r : S ×A→ R, terminal condition ω,
recursive reward aggregation function post ◦ agginit,▷ : [R]→ R
Parameters: learning rate α ∈ (0, 1], exploration parameter ϵ ∈ (0, 1)
Initialize state-action statistic function τ : S ×A→ T with initial value init ∈ T
for each episode do

Initialize state s
while s is not terminal do

Compute state-action value function q(s, a) = post(τ(s, a)) for state s and all actions a
Select action a using ϵ-greedy policy based on value function q(s, a)
Execute action a, observe next state s′ and reward r according to p and r
Update statistic function τ :

τ(s, a)← τ(s, a) + α

(
max
a
′∈A

(
r ▷ τ(s′, a′)

)
− τ(s, a)

)
,

where max
a
′∈A

(
r ▷ τ(s′, a′)

)
= r ▷ τ(s′, a∗) and a∗ = argmax

a
′∈A

post
(
r ▷ τ(s′, a′)

)
Update state s← s′

end while
end for
Output: estimated optimal statistic function τ , optimal value function q(s, a) = post(τ(s, a)),
and optimal policy π(s) = argmaxa∈A q(s, a)
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G.2 PPO1091

Algorithm 2 PPO (Schulman et al., 2017) with recursive reward aggregation

Input: transition function p : S ×A→ S, reward function r : S ×A→ R, terminal condition ω,
recursive reward aggregation function post ◦ agginit,▷ : [R]→ R
Parameters: bias-variance trade-off parameter λ ∈ [0, 1], clipping parameter ϵ, critic loss
coefficient c1, entropy regularization coefficient c2
Initialize parameterized policy function (actor) πθ : S → A
Initialize parameterized state statistic function (critic) τϕ : S → T
for each iteration do

Initialize state s
Collect trajectories of states and rewards following policy πθ till the end of the horizon Ω

Compute statistics τ̂ (i)t = rt ▷ rt+1 ▷ · · · ▷ rt+i−1 ▷ τϕ(st+i) for i = 1, . . . ,Ω− t
Compute state value function vϕ(st) = post(τϕ(st))

Compute advantage estimates α̂(i)
t = post(τ̂

(i)
t )− vϕ(st) for i = 1, . . . ,Ω− t

Use one of the following as advantage α̂t:
α̂
(1)
t = post(rt ▷ τϕ(st+1))− vϕ(st)

α̂
(Ω−t)
t = post(rt ▷ rt+1 ▷ · · · ▷ τϕ(sΩ))− vϕ(st)

generalized advantage estimates (GAE) (Schulman et al., 2016) (1− λ)

Ω−t∑
i=1

λi−1α̂
(i)
t

Compute critic loss: Lc(ϕ) =

Ω∑
t=1

(
vϕ(st)− post(τ̂

(Ω−t)
t )

)2

Compute actor loss La(θ) with clipping or penalty using advantage α̂t (Schulman et al., 2017)
Compute entropy regularization H(θ)
Optimize La(θ)− c1Lc(ϕ) + c2H(θ)

end for
Output: estimated optimal statistic function τϕ and optimal policy πθ
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G.3 TD31092

Algorithm 3 TD3 (Fujimoto et al., 2018) with recursive reward aggregation

Input: transition function p : S ×A→ S, reward function r : S ×A→ R, terminal condition ω,
recursive reward aggregation function post ◦ agginit,▷ : [R]→ R
Parameters: exploration noise parameter σ, target noise parameter σ̃, target clipping parameter c,
soft target update rate λ ∈ (0, 1), maximum action limit amax

Initialize parameterized policy function (actor) πθ : S → A
Initialize two parameterized state-action statistic functions (critics) τϕ1

, τϕ2
: S ×A→ T

Initialize targets πθ
′ ← πθ, τϕ′

1
← τϕ1

, τϕ′
2
← τϕ2

, and replay buffer D
for each iteration do

Observe state s and select action a = πθ(s) + ϵ with exploration noise ϵ ∼ N (0, σ)
Observe next state s′, reward r, and done signal d (whether s′ is terminal)
Store transition tuple (s, a, r, s′, d) in buffer D
if s′ is terminal then

Reset environment state
end if
if update critics then

Randomly sample a batch of transitions B = {(s, a, r, s′, d)} from D
Compute target actions ã = clip(πθ

′(s′) + ϵ,−amax, amax), ϵ ∼ clip(N (0, σ̃),−c, c)
Update target critic τtarget:

τtarget ←


init d = 1,

ri ▷ τϕ′
1
(s′, ã) post(ri ▷ τϕ′

1
(s′, ã)) ≤ post(ri ▷ τϕ′

2
(s′, ã)),

ri ▷ τϕ′
2
(s′, ã) post(ri ▷ τϕ′

2
(s′, ã)) ≤ post(ri ▷ τϕ′

1
(s′, ã)).

Update critics τϕi
by one step of gradient descent:

∇ϕi

1

|B|
∑

(s,a,r,s
′
,d)∈B

(
post(τϕi

(s, a))− post(τtarget)
)2

for i = 1, 2

end if
if update actor then

Update actor by one step of gradient ascent using

∇θ

1

|B|
∑

(s,a,r,s
′
,d)∈B

post
(
τϕ1

(s, πθ(s))
)

Update targets with
τϕ′

i
← λτϕi

+ (1− λ)τϕ′
i

for i = 1, 2

πθ
′ ← λπθ + (1− λ)πθ

′

end if
end for
Output: estimated optimal statistic functions τϕ1

and τϕ2
, and optimal policy πθ
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Figure 14: max− α range = αmin + (1− α)max.
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Figure 15: mean− α std and Sharpe ratio mean/std.

H Experiments1093

In this section, we provide detailed descriptions of the environments used in our experiments and1094
the specific configurations and hyperparameters employed for each task. We also present additional1095
results for the grid-world and continuous control environments.1096

H.1 Grid-world environment1097

Implementation We implemented the environment and the Q-learning (Watkins & Dayan, 1992)1098
algorithm using NumPy (Harris et al., 2020).1099

Hyperparameters We used a fixed exploration parameter of 0.3. We trained agents for total1100
training timesteps of 10 000.1101

Additional results Similarly to Fig. 4, which showed the policy preferences of discounted sum,1102
discounted max, min, and mean, Fig. 14 shows the policy preferences range-regularized max, which1103
is an interpolation between min and max. Meanwhile, Fig. 15 shows the policy preferences of1104
standard-deviation-regularized mean and Sharpe ratio.1105

H.2 Wind-world environment1106

Implementation We implemented the environment and the PPO (Schulman et al., 2017) algorithm1107
using JAX (Bradbury et al., 2018) and gymnax (Lange, 2022).1108

Hyperparameters The PPO clipping parameter was set to 0.2. We used a critic loss coefficient of1109
0.5 and an entropy regularization coefficient of 0.01. We trained agents using 64 parallel environments1110
for total training timesteps of 500 000.1111

H.3 Continuous control environments1112

The Hopper environment is a classic continuous control task from the MuJoCo physics simulation1113
suite (Todorov et al., 2012), where a 2D one-legged robot must learn to balance and move forward1114
efficiently. The agent controls three joints (thigh, knee, and foot) to generate locomotion while1115
maintaining stability. The reward function in Hopper consists of three key components: (i) healthy1116
reward, which incentivizes the agent to remain upright; (ii) forward reward, which encourages the1117
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agent to move forward; and (iii) control cost, which penalizes excessive energy use. Then, the total1118
reward function is given by:1119

reward = healthy reward + forward reward− control cost. (121)
The Hopper environment terminates when the agent is deemed unhealthy or reaches the predefined1120
episode length limit. The agent is considered unhealthy if its state variables exceed the allowed range,1121
its height falls below a certain threshold, or its torso angle deviates beyond a specified limit, indicating1122
a loss of stability. If none of these conditions occur, the episode continues until the maximum duration1123
is reached.1124

The Ant environment is also from the MuJoCo physics simulation suite (Todorov et al., 2012), where1125
the four-legged quadrupedal robot must learn to efficiently balance and move forward. The agent1126
controls eight joints (two per leg) to generate stable locomotion while adapting to dynamic interactions1127
with the environment. The reward function in the Ant environment is designed to encourage forward1128
movement while maintaining stability and efficiency. It consists of four key components: (i) a healthy1129
reward, which provides a fixed bonus as long as the agent remains upright; (ii) a forward reward,1130
which encourages movement in the positive x-direction; (iii) a control cost, which penalizes excessive1131
actions to promote energy efficiency; and (iv) a contact cost, which discourages large external contact1132
forces. The total reward is calculated by summing the healthy and forward rewards while subtracting1133
the penalties for control effort and contact forces:1134

reward = healthy reward + forward reward− control cost− contact cost. (122)
In some versions of the environment, the contact cost may be excluded from the reward calculation.1135
The Ant environment terminates when the agent is deemed unhealthy or when the episode reaches1136
its maximum duration of 1000 timesteps. The agent is considered unhealthy if any of its state space1137
values become non-finite or if its torso height falls outside a predefined range, indicating a loss of1138
stability. If neither of these conditions occur, the episode continues until it reaches the time limit.1139

The Lunar Lander Continuous environment, part of the Box2D physics simulation suite (Brockman1140
et al., 2016), involves controlling a lunar lander to safely land on a designated landing pad. The agent1141
has continuous thrust control over the main engine and two side thrusters, which it must use efficiently1142
to achieve a stable landing while minimizing fuel consumption. The reward function is designed to1143
encourage precise and efficient landings. The agent receives positive rewards for (i) moving closer1144
to the landing pad, (ii) achieving a soft landing, and (iii) staying upright. Conversely, penalties are1145
applied for (i) excessive fuel usage, (ii) high-impact landings, and (iii) drifting too far from the target.1146
The episode terminates if the lander successfully lands within the designated zone, crashes, or drifts1147
out of bounds. If none of these conditions occur, the episode continues until reaching the time limit.1148

Implementation We conducted experiments using a modified version of the TD3 (Fujimoto et al.,1149
2018) implementation from Stable-Baselines3 (Raffin et al., 2021).1150

Hyperparameters Our agent performed 100 gradient updates per training episode and used a1151
learning rate of 3× 10−4 to ensure stable learning. Apart from these, our training setup adheres to1152
the default hyperparameters and network architecture of Stable-Baselines3.1153

Computational resource Training a single agent takes approximately 1 hour on an NVIDIA RTX1154
2080 GPU, with a single CPU core used for environment simulation.1155

Additional results: Ant We provide additional results for the Ant environment, with corresponding1156
animations available at https://anonymous.4open.science/status/RRA-534F.1157

The experimental results in the Ant environment demonstrate the impact of different reward1158
aggregation strategies on agent behavior and performance. The discounted sum (sum0.99) aggregation,1159
serving as the baseline, achieves balanced performance across multiple metrics, effectively promoting1160
stable and efficient locomotion. In contrast, the discounted max (max0.99) aggregation prioritizes1161
obtaining the highest possible reward at an individual time step, leading to highly aggressive1162
movements. As a result, the agent exhibits excessive speed, which ultimately causes instability and1163
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Figure 16: Comparison of evaluation metrics for different reward aggregation methods in the Ant
environment. The radar chart on the left visualizes the performance of different reward aggregation
functions across multiple evaluation metrics over four random seeds. The images on the right illustrate
the learned behavior of the agent for each reward aggregation method.

results in the agent losing control and rolling over. The min (min) aggregation prioritizes minimizing1164
the risk of low rewards, leading to an overly conservative strategy. Instead of efficient locomotion,1165
the agent adopts passive or static behavior, often staying close to the ground to avoid unfavorable1166
rewards. This lack of exploration and controlled movement results in instability, ultimately causing1167
the agent to collapse and terminate early due to height constraints. Moreover, the discounted sum1168
plus max (sum0.99 +max0.99) aggregation drives the agent to optimize both cumulative and peak1169
rewards, resulting in highly aggressive movements. As seen in the motion sequence, the agent1170
exhibits rapid and unstable locomotion, frequently pushing its limits for immediate gains. While this1171
reduces stability, it does not significantly hinder performance, as shown in the radar chart, where1172
reward-related metrics remain high. This suggests that despite instability and occasional failures, the1173
agent achieves strong overall performance at the cost of higher energy consumption and inconsistency.1174
Finally, the discounted sum minus variance (sum0.99− var) aggregation prioritizes stability by1175
penalizing reward fluctuations, leading to more controlled and consistent locomotion. As seen in1176
the motion sequence, the agent maintains a steady gait and avoids overly aggressive movements,1177
unlike the sum0.99 +max0.99 aggregation. This leads to longer episode durations, as reflected in1178
the radar chart. However, while reducing variance enhances stability, it also limits the ability of1179
agent to explore high-reward strategies, leading to robust locomotion at the cost of suboptimal overall1180
performance.1181

Additional results: Lunar Lander Continuous We provide additional results for the Lunar Lander1182
Continuous environment, with corresponding animations available at https://anonymous.4o1183
pen.science/status/RRA-534F.1184

The experimental results in Lunar Lander Continuous, a goal-reaching environment, demonstrate1185
the impact of different reward aggregation strategies on the agent’s landing behavior and overall1186
performance in this specific task. With the sum0.99 aggregation, which serves as the baseline, the1187
agent learns a balanced landing strategy, effectively managing thrust control to achieve a smooth1188
descent while minimizing fuel consumption. The max0.99 aggregation encourages the agent to1189
seek high instantaneous rewards, leading to aggressive thrusting behaviors. As a consequence, the1190
lander may exhibit erratic flight patterns, either applying excessive thrust to maximize immediate1191
reward or failing to decelerate properly, which increases the likelihood of hard landings, instability,1192
or even complete mission failure. This outcome underscores the risk of optimizing for short-term1193
reward spikes at the expense of long-term stability and control. The min aggregation demonstrates1194
its effectiveness in risk-averse tasks, as it prioritizes maximizing the worst-case outcomes rather1195
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Figure 17: Comparison of evaluation metrics for different reward aggregation methods in the Lunar
Lander Continuous environment. The radar chart on the left visualizes the performance of different
reward aggregation functions across multiple evaluation metrics over four random seeds. The images
on the right illustrate the learned behavior of the agent for each reward aggregation method.

than accumulate reward. As shown in the motion sequence, the lander exhibits a cautious descent,1196
avoiding high-impact crashes by limiting drastic thrust adjustments. Furthermore, since goal-reaching1197
tasks inherently align cumulative and peak rewards, the sum0.99 +max0.99 aggregation performs1198
similarly to sum0.99, as both encourage stable and efficient landings without introducing significant1199
behavioral differences. Finally, in the sum0.99− var aggregation, the lander remains airborne,1200
ultimately leading to mission termination. This occurs because both successful and failed landings1201
yield large positive or negative rewards, the agent attempts to avoid these extremes, increasing1202
variance and leading to hesitant and inefficient control. This failure underscores the mismatch1203
between variance minimization and goal-reaching tasks. In environments like Lunar Lander, where1204
success requires decisive control and strategic thrusting, minimizing reward variance conflicts with1205
the primary objective, as it discourages the high-reward actions necessary for effective landings.1206
These results highlight the importance of selecting an appropriate aggregation strategy based on1207
task-specific objectives.1208

H.4 Portfolio environment1209

In our experiment, we trained agents using five different random seeds over a rolling 5-year window,1210
with a total of 10 training periods. Specifically, for each training period, training begins on January 11211
of a given year and continues for five years, ending on December 31 of the fifth year. Each training1212
period starts one year after the previous one, resulting in overlapping but not identical training1213
datasets. Following the training phase, we evaluate the performance of agents in the subsequent year,1214
immediately following the training period. Finally, we assess their generalization performance in1215
the test phase, which takes place in the year after the evaluation period. This design allows us to1216
systematically analyze the agents’ performance across different temporal contexts while leveraging1217
historical data in a structured and overlapping manner.1218

Implementation We conducted experiments using a modified version of the PPO (Schulman et al.,1219
2017) implementation from Stable-Baselines3 (Raffin et al., 2021).1220

Computational resource Training a single agent takes approximately 1.5 hours on an NVIDIA1221
RTX 2080 GPU, with the environment running in parallel on 10 CPU cores to accelerate data1222
collection.1223
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