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ABSTRACT
Maximally Smooth Functions (MSFs) are a form of constrained functions in which there are no inflection points or zero crossings
in high-order derivatives. Consequently, they have applications to signal recovery in experiments where signals of interest are
expected to be non-smooth features masked by larger smooth signals or foregrounds. They can also act as a powerful tool
for diagnosing the presence of systematics. The constrained nature of MSFs makes fitting these functions a non-trivial task.
We introduce MAXSMOOTH, an open-source package that uses quadratic programming to rapidly fit MSFs. We demonstrate
the efficiency and reliability of MAXSMOOTH by comparison to commonly used fitting routines and show that we can reduce
the fitting time by approximately two orders of magnitude. We introduce and implement with MAXSMOOTH Partially Smooth
Functions, which are useful for describing elements of non-smooth structure in foregrounds. This work has been motivated by
the problem of foreground modelling in 21-cm cosmology. We discuss applications of MAXSMOOTH to 21-cm cosmology and
highlight this with examples using data from the Experiment to Detect the Global Epoch of Reionization Signature (EDGES)
and the Large-aperture Experiment to Detect the Dark Ages (LEDA) experiments. We demonstrate the presence of a sinusoidal
systematic in the EDGES data with a log-evidence difference of 86.19 ± 0.12 when compared to a pure foreground fit. MSFs are
applied to data from LEDA for the first time in this paper and we identify the presence of sinusoidal systematics. MAXSMOOTH is
pip installable and available for download at https://github.com/htjb/maxsmooth.
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1 IN T RO D U C T I O N

Maximally Smooth Functions (MSFs), functions with no inflection
points or zero crossings in high-order derivatives, were first proposed
by Sathyanarayana Rao et al. (2015) for modelling foregrounds
in experiments to detect spectral signatures from the Epoch of
Recombination. They are designed for modelling smooth structures
in experimental data that are several orders of magnitude larger
than non-smooth signals of interest and to leave behind signals and,
where present, systematics in residuals (see also Sathyanarayana Rao
et al. 2017). MSFs can be considered part of a family of functions,
which we refer to as Derivative Constrained Functions (DCFs)
and include functions with no turning points, Completely Smooth
Functions (CSFs), and functions with a select number of non-zero
crossing high-order derivatives, Partially Smooth Functions (PSFs).
We refer to the high-magnitude smooth components of the data as
foregrounds throughout this paper.

� E-mail: htjb2@cam.ac.uk

Our primary focus here is the application of DCFs to the field
of Global 21-cm cosmology. Shaver et al. (1999) suggested that
reionization of neutral hydrogen in the early Universe would result
in a sharp step in the global spectrum of the sky, and that this
signal should be separable from the smooth spectrum emission that
dominates the sky temperature at radio wavelengths, 70–240 MHz.
Pritchard & Loeb (2010) showed that the foreground emission, if
modelled using a low-order polynomial, could be subtracted from
the global sky spectrum to retrieve signals from the Epoch of
Reionization (EoR) of the order of 100 mK; Harker et al. (2012)
and Bernardi, McQuinn & Greenhill (2015) expounded on this work,
including further instrumental effects.

In comparison to unconstrained polynomials, DCFs are better
able to separate the smooth foreground spectra from the anticipated
EoR signals and instrumental systematics (Sathyanarayana Rao
et al. 2017). This motivates their use in Global 21-cm cosmology
experiments such as REACH (Radio Experiment for the Analysis
of Cosmic Hydrogen, de Lera Acedo 2019), SARAS (Shaped
Antenna measurement of the background RAdio Spectrum, Singh
et al. 2018a), EDGES (Experiment to Detect the Global Epoch
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of Reionization Signature, Bowman et al. 2018), LEDA (Large-
aperture Experiment to Detect the Dark Ages, Price et al. 2018),
PRIZM (Probing Radio Intensity at High-Z from Marion, Philip
et al. 2019), BIGHORNS (Broadband Instrument for Global HydrO-
gen ReioNisation Signal, Sokolowski et al. 2015), SCI-HI (Sonda
Cosmológica de las Islas para la Detección de Hidrógeno Neutro,
Voytek et al. 2014) and MIST (Mapper of the IGM Spin Temperature,
http://www.physics.mcgill.ca/mist/).

Specifically, the Global 21-cm signal is the sky averaged temper-
ature deviation between the cosmic microwave background (CMB)
and the spin temperature of hydrogen gas during the EoR and the
period of cosmic history known as the Cosmic Dawn (CD). The
physics of the Global 21-cm signal has been extensively reviewed and
what follows is a brief summary of the structure-defining processes.
For further details, see Furlanetto, Oh & Briggs (2006), Pritchard &
Loeb (2012), and Barkana (2016).

During the CD, the first stars begin to form in haloes that have
accumulated mass under gravity. In the following EoR, the neutral
hydrogen gas becomes completely ionized by the ultraviolet emission
from the first luminous sources. The structure of the 21-cm signal
is defined by various astrophysical processes including the adiabatic
cooling and collisional coupling of the neutral hydrogen and the gas,
the Wouthuysen–Field (WF) effect, X-ray heating, and ionization.

At high redshifts, during the dark ages of the Universe, collisions
between neutral hydrogen, other hydrogen atoms, electrons, and
protons couple the spin temperature to the gas temperature. The
gas cools adiabatically and at a faster rate than the CMB producing
an absorption against the CMB before the first stars begin to form.
As the Universe expands, the density of baryons reduces and colli-
sional coupling becomes inefficient. The spin temperature is driven
consequently back to the CMB temperature by radiative coupling.

Once the first luminous sources begin to form in the CD, the WF
effect begins to become important. The absorption and re-emission
of Ly α photons from the first luminous sources by neutral hydrogen
causes spin flip transitions and drives the distribution of hydrogen
atoms in the excited and the ground 21-cm states (Wouthuysen
1952; Field 1959). As a result, the spin temperature couples to the
gas temperature again, which has continued to cool adiabatically
producing another absorption trough against the CMB.

X-ray sources heat the gas at later times and, if sufficient heat-
ing occurs, this causes the gas temperature to exceed the CMB
temperature producing an emission above the CMB. The primary
sources of X-ray emission during this epoch are thought to be X-
ray binaries (e.g. Fragos et al. 2013). Finally, at lower redshifts, the
neutral hydrogen gas is ionized by UV emission. As the gas becomes
completely ionized, the signal disappears against the background of
the CMB. The CD, the subsequent reheating, and reionization of the
gas are the focus of the experiments listed above.

The above processes do not occur at independent epochs and do
not start and stop instantaneously. Consequently, the structure of
the signal is determined by the interplay between these mechanisms
and by the change in the dominant processes with time. The exact
timing and intensity of the signal are only broadly understood within
a theoretical parameter space (Cohen et al. 2017, 2020; Singh et al.
2018b; Monsalve et al. 2019). Experiments that search for the Global
21-cm signal are attempting to detect a signal, according to stan-
dard Lambda cold dark matter (�CDM) cosmology, approximately
250 mK in foregrounds of up to 104–105 times brighter.

These high-magnitude foregrounds are dominated by synchrotron
and free–free emission in the Galaxy and extragalactic radio sources
that have smooth power-law structures. Modelling of these fore-
grounds without signal loss is essential for an accurate detection

Figure 1. An example of the abilities of MSFs and MAXSMOOTH using the
publicly available Global 21-cm EDGES low-band experiment data. The top
panel shows the EDGES data (blue), and the bottom panel shows the residuals
after fitting and removing an unconstrained polynomial (orange) and an MSF
(green). The MSF fits the data to a higher degree of accuracy and reveals a
systematic that has been partially removed by the polynomial as part of the
foreground. The polynomial is given by equation (2) of Bowman et al. (2018)
and is taken to be 5th order. We use the best-fitting 11th order MSF from the
built-in library in MAXSMOOTH to illustrate the quality of fit recovered.

and not always possible with unconstrained polynomials. However,
unconstrained polynomials and linear combinations of unconstrained
polynomials remain the traditionally used foreground model in 21-
cm experiments (Bowman et al. 2018; Singh et al. 2018b; Monsalve
et al. 2019).

The bandwidth is determined by the intrinsic frequency of the
21-cm transition, 1420.4 MHz, which is redshifted by the expansion
of the Universe. Studies of Gunn–Peterson troughs in quasar spectra
and of the CMB anisotropies put the end of the EoR at z ≈ 6 (Becker
et al. 2001; Spergel et al. 2007; Planck Collaboration VI 2018). It is
predicted that the onset of star formation occurred at z ∼ 30 (Abel,
Bryan & Norman 2002) and consequently the bandwidth of interest
for 21-cm cosmology is approximately 50–200 MHz.

Fig. 1 shows an example of the application of MSFs to 21-
cm cosmology. Here, we have fitted publicly available data from
the EDGES low-band experiment with an MSF and a 5th order
polynomial of the form given by equation (2) in Bowman et al.
(2018). The MSF is shown to fit the foreground to a higher degree of
precision and potentially reveals a sinusoidal systematic that has
been previously identified in the data (Hills et al. 2018; Singh
& Subrahmanyan 2019; Sims & Pober 2020). A more detailed
discussion of the EDGES data can be found in Section 5.2.

The constrained nature of DCFs, namely that specific derivatives
do not cross zero in the domain of interest, makes fitting these func-
tions a non-trivial task. While this has been historically performed
with optimization routines such as Basin-hopping (Wales & Doye
1997) and Nelder–Mead (Nelder & Mead 1965), we find that the use
of quadratic programming (Nocedal & Wright 2006) is considerably
more computationally efficient and reliable. Our DCF code, MAXS-
MOOTH is therefore based on quadratic programming and uses the
PYTHON-based convex optimization code, CVXOPT (Anderson, Dahl
& Vandenberghe 2018). A discussion of quadratic programming can
be found in Appendix A.

The constraints on a DCF are not explicitly linear but are piecewise
linear with various combinations of positive and negative signs on
the high-order derivatives. For low-order, N, DCFs testing every
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Table 1. The DCF models built-in to MAXSMOOTH along with expressions for their mth order derivatives. For all functions, y0

and x0 are pivot points in the data sets. More details on each DCF function can be found in the text.

Name Function Derivatives

Normalized Polynomial y = y0

N∑
k=0

ak

(
x

x0

)k

(2)
dmy

dxm
= y0

N−m∑
k=0

(m + k)!

k!
am+k

(
xk

xm+k
0

)

Polynomial y =
N∑

k=0

ak xk (3)
dmy

dxm
=

N−m∑
k=0

(m + k)!

k!
am+k xk

Difference Polynomial y =
N∑

k=0

ak(x − x0)k (4)
dmy

dxm
=

N−m∑
k=0

(m + k)!

k!
am+k (x − x0)k

Log Polynomial y =
N∑

k=0

ak log10

(
x

x0

)k

(5)
dmy

d log10(x/x0)m
=

N−m∑
k=0

(m + k)!

k!
am+k log10

(
x

x0

)k

Log Log Polynomial y = 10
∑N

k=0 ak log10(x)k (6)
dm log10(y)

d log10(x)m
=

N−m∑
k=0

(m + k)!

k!
am+k log10(x)k

Legendre y =
N∑

k=0

akPk(z) (7)
dmy

dzm
=

N−m∑
k=0

(−1)m P m
k (z)

(1 − z2)
m
2

Exponential y = y0

N∑
k=0

ak exp

(
−k

x

x0

)
(8)

dmy

dxm
= y0

N∑
k=0

(−k

x0

)m

ak exp

(
−k

x

x0

)

combination of positive and negative signs is a computationally
inexpensive task. However, this becomes increasingly time consum-
ing with increasing N and MAXSMOOTH uses a cascading routine
in combination with a directional exploration to quickly search the
discrete sign spaces.

DCFs can be formed from a variety of different basis functions
and MAXSMOOTH has a built-in library. The library is not intended to
be complete, and the user can implement their own basis functions.
For basis functions in which the number of high order derivatives is
not finite, MAXSMOOTH constrains derivatives up to order m = N −
2. MSFs form the basis of the analysis performed in this paper and
we focus on their uses and applications. However, the description of
MSFs can be more broadly applied to DCFs.

In Section 2, we describe MSFs in more detail and give examples
using the built-in DCFs in MAXSMOOTH. In Section 3, we discuss
the application of quadratic programming to DCF fitting with
reference to CVXOPT and the piecewise linear constraints on the
derivatives. Section 4 discusses the fitting algorithm implemented by
MAXSMOOTH and compares its efficiency to alternative optimization
routines. In Section 5, we discuss the use of PSFs in 21-cm
cosmology. This discussion is then followed by the application of the
fitting routine to the EDGES low-band data (Bowman et al. 2018)
and data from LEDA (Price et al. 2018). We conclude in Section 6
highlighting the particular applications of MAXSMOOTH.

2 MA X I M A L LY SM O OTH FU N C T I O N S

MSFs are functions that feature no inflection points or zero crossings
in higher order derivatives (see Sathyanarayana Rao et al. 2015,
2017). The coefficients of the basis functions are constrained such
that the mth order derivative satisfies

dmy

dxm
≥ 0 or

dmy

dxm
≤ 0, (1)

where x and y define the independent and dependent variables and
for MSFs m ≥ 2. More generally for DCFs, m can be greater or
equal to any value or equal to a select set of derivative orders.

MAXSMOOTH features seven built-in DCFs that we use for fitting.
Their functional forms and derivatives are shown in Table 1.

Generally, the DCF functions can be decomposed in terms of basis
functions, φ and parameters, ak as

y =
N∑

k=0

ak φk(x). (9)

For the first DCF shown in Table 1, the Normalized Polynomial
model, the basis functions are given by

φk(x) = y0

(
x

x0

)k

, (10)

where y0 and x0 correspond to a pivot point, defaulted to the mid-
point, in the data sets. The normalized nature of this polynomial
model ensures that the fit parameters, ak, are of order unity. Here, N
is the order of the DCF and can take on any value. However, for a
given model and data set, there is a limiting value beyond which a
further increase in N does not increase the quality of the fit and this
is illustrated in Section 5.2 and Fig. 11. The DCF model will have
powers from 0 to N − 1.

Two more basis functions built-in to MAXSMOOTH are given by
the Polynomial and Difference Polynomial models where the latter
is based on the basis function used in Sathyanarayana Rao et al.
(2017). The built-in set of models is not meant to be complete with
the intention for it to be extended in the future.

The fourth basis function built-in to MAXSMOOTH, Log Polyno-
mial, produces an MSF in y−log10(x) space. MAXSMOOTH is also
capable of fitting a DCF in log10(y)–log10(x) space given in Table 1
as the Log Log Polynomial model. In this instance, the function is
constrained by derivatives in log10(y)–log10(x) space. This can be
advantageous in situations where the foregrounds are expected to
take on a power-law structure.

The penultimate basis function in the MAXSMOOTH library of
models is built from the orthogonal Legendre Polynomials , Pk(z),
where z is a variable of length y over the range [−1, 1]. The mth order
derivatives of this model are determined by the Associated Legendre
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Polynomials, P m
k (z). By definition, the Legendre Polynomials are

a linear combination of the basis functions of the Normalized
Polynomial model. This is true also for the Polynomial model and
less trivially for the Difference Polynomial model.

Typically the basis functions are designed so that equation (9)
has a finite number of high-order derivatives and is consequently
polynomial in nature. However, more elaborate models with an
infinite number of derivatives are plausible if we consider these
functions to be maximally smooth when all derivatives with 2 ≤ m ≤
N − 2 are constrained. The final DCF model built-in to MAXSMOOTH,
the Exponential DCF, is an example of this with exponential basis
functions. This model fails at high N where the exponential cannot
be computationally calculated. However, it is a useful example of a
DCF with infinite derivatives and performs well with low values of N.
The exact value of N at which this basis begins to fail is determined
by the magnitude of the x data. An alternative example of a basis
with infinite derivatives that MAXSMOOTH is capable of fitting would
be a polynomial function with non-integer powers.

Generally, the form of the basis function is important in determin-
ing the quality of the residuals and careful exploration of the basis
functions are needed in order to draw sensible conclusions about the
data set. Again, this is illustrated with an example in Section 5.2.
We also note that DCFs fitted in y–log10(x) space, log10(y)–log10(x)
space, y–x space, or y–z space are not equivalent since the form of
the constraints and the function that we minimize are different in
each case. This is discussed further in Section 3.

With appropriate normalization MAXSMOOTH will be able to
transform any basis function into a ‘standard’ form, which can be
solved easily and transformed back into the initial basis function
choice. Designing and automating such a normalization is the subject
of ongoing work. Provided this ‘standard’ form is chosen well such
that it will always return the best quality fits and is computationally
solvable with quadratic programming, the initial choice of basis
function will largely be negated. Its form will only be determined
by the need of the user to model their foreground using a specific
model. For example, in 21-cm cosmology this specific model may
be a linearized physical model of the data fitted as an MSF. While
normalization remains absent in MAXSMOOTH, the user has the ability
to input normalized x and y data.

For quadratic programming, the method used here to fit MSFs, it is
useful to reformulate equation (9) as a matrix equation. Explicitly we
have discrete data points yi and xi which means that φk(x) forms a two
dimensional matrix, �. The matrix of basis functions has dimensions
(D × N) where D is the length of y and N, as before, is the order of
the function. We write this as

⎡
⎢⎢⎢⎣

y0

...

yD

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

φ00 . . . φ0(N−1)

...
. . .

φD0 φD(N−1)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a0

...

a(N−1)

⎤
⎥⎥⎥⎦, (11)

where φik = φk(xi). We can summarize this as

y = �a, (12)

where a is a column vector of length N representing the parameters.
For the polynomial basis function in equation (3), the element φD0

or φ0(xD), has the form x0
D and φ0(N − 1) has the form x

(N−1)
0 .

Reformulating equation (1) in terms of matrices for quadratic
programming is more complicated. If we take the definition of the
condition with the derivative ≤0 and write this in the form of a matrix

for a given derivative order m, we find⎡
⎢⎢⎢⎢⎣

dmy

dxm 0

...

dmy

dxm D

⎤
⎥⎥⎥⎥⎦ ≤

⎡
⎢⎢⎢⎣

0

...

0

⎤
⎥⎥⎥⎦, (13)

where both matrices are columns of length D. Each row in the
derivative matrix corresponds to an evaluation of the mth order
derivative for a given yi and xi.

We can expand the elements of the derivative matrix out into
a matrix of derivative prefactors, G, and the matrix of parameters
a, as in equation (12), which is useful for implementing quadratic
programming. This is best illustrated with an example, we will look
at the simple case of N = 3 with one constrained derivative m = 2.
We will say that our data sets have a length D = 4 and choose the
simplest functional form for our MSF given by equation (3). In this
case G is given by

Gm
k (xi) = (m + k)!

k!
xk

i , (14)

for the range k = 0 up to but not including N − m. For this problem,
k has only one value 0 which would produce a column matrix of
elements of length D. However, since we need to multiply this by
the column matrix a of length N then the matrix G should have
dimensions of D × N. The additional elements in this instance are 0
so that the product of these elements with the corresponding elements
of a equals 0. For example here the evaluation of the second-order
derivative Ga for the first data element will be

d2y

dx2 0
= a00 + a10 + a2

(2 + 0)!

0!
(x0)0. (15)

Generally if the row elements of G have a position from 0 − (N
− 1) then the elements with position ≤m − 1 will be 0. The matrix
G for our specific problem then becomes

G =

⎡
⎢⎢⎢⎢⎢⎣

0 0 G2
0(x0)

0 0 G2
0(x1)

0 0 G2
0(x2)

0 0 G2
0(x3)

⎤
⎥⎥⎥⎥⎥⎦

, (16)

which when multiplied by a gives us the evaluation of the derivatives
as a column matrix with length D = 4.

For quadratic programming, we need one matrix expression for
all of the constraints on our function. Our definition of G scales with
the order of the DCF so that for N = 4 we have

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 G2
0(x0) G2

1(x0)

0 0 G2
0(x1) G2

1(x1)

0 0 G2
0(x2) G2

1(x2)

0 0 G2
0(x3) G2

1(x3)

0 0 0 G3
0(x0)

0 0 0 G3
0(x1)

0 0 0 G3
0(x2)

0 0 0 G3
0(x3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (17)

which includes the prefactors on both the m = 2 and m = 3 derivatives.
We can, therefore, rewrite equation (1) for ≤0 and equation (13) as

Ga ≤ 0, (18)
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where generally G will have shape (CD) × N and 0 will have a length
CD. Here, C is the total number of constrained derivatives and in the
two examples above C = 1 and C = 2, respectively. We can write
the first case in equation (1) in one of two ways as Ga ≥ 0 or as
−(Ga) ≤ 0. For the implementation of quadratic programming used
in MAXSMOOTH, the second is the most useful and a full discussion
of this can be found in Section 3.

In some cases, we find that a DCF with one or more high-order
derivatives free to cross zero is needed to better fit the data. It is
to this effect that the potential to allow zero crossings to the fit is
built-in to MAXSMOOTH. However, MAXSMOOTH will not force zero
crossings and produce a PSF if it can find a better solution without
the need.

3 FITTING D ERIVATIVE C ONSTRAINED
F U N C T I O N S U S I N G QUA D R AT I C
P RO G R A M M I N G

We provide a brief overview of quadratic programming in Ap-
pendix A and what follows is a discussion of the specific problem of
fitting DCFs with quadratic programming.

When fitting a curve using the least-squares method, we minimize

χ2 =
D∑
k

(yk − yfit,k)2, (19)

where yfit,k denotes the elements of the fitted model. We can substitute
equation (12) for the fitted model and rewrite this in terms of matrices
as

χ2(a) = (y − �a)T (y − �a), (20)

where we are looking for solutions of the parameters a that minimize
χ2(a). When expanded out this becomes

χ2(a) = yTy − 2yT�a + aT�T�a. (21)

Since yTy is a constant, it is irrelevant for the minimization problem
and we can ignore it. We can also divide through by the factor of 2
and this leaves

χ2(a) = 1

2
aTQa + qTa, (22)

where

Q = �T� and qT = −yT�. (23)

As previously discussed in Section 2, the constraint in equation (1)
is not explicitly linear but is two separately testable linear constraints.
The quadratic program solver CVXOPT minimizes equation (22)
subject to equation (18). It requires G and 0 as inputs which explains
the motivation behind defining the stacked matrix of derivatives as
Ga. In CVXOPT, the identity is fixed and we cannot directly constrain
the problem via a greater than or equals inequality.

We can initially force all the derivatives to be positive, the first of
the two conditions in equation (1), by multiplying each element in G
by a negative sign as discussed in the previous section. However, it
will not necessarily be the case that the optimal DCF fit will have an
entirely positive or entirely negative set of derivatives. Rather than
forcing the entire matrices to produce positive derivatives, we can
multiply the elements of Ga corresponding to given derivatives by
a negative sign. Consequently, we have to analyse different discrete
sets of sign combinations in order to find the best fit.

We refer to the combination of signs on G as the MAXS-
MOOTH signs, s, and we can incorporate this into our definition of G
so that it becomes G(s). s is a vector of length C and each element

is either given by 1 for a positive sign or −1 for a negative sign.
For example in equation (17) since both derivatives are negative,
the MAXSMOOTH signs are s = [1, 1]. For an Nth order MSF,
there are N − 2 derivatives with m ≥ 2, consequently, there are
2(N − 2) sign combinations. For low-order N, we can explore this
space exhaustively at reasonable computational cost with CVXOPT.
However, as N becomes larger, the total number of sign combinations
rapidly increases. While N = 4 has four potential sign combinations,
we find that N = 13 has 2048. This would mean performing an
exponentially increasing number of CVXOPT fits that will become
increasingly time consuming. An alternative approach navigating
through the discrete sign spaces is detailed in Section 4.

We can visualize equation (1) by varying the parameters of an
optimal MSF fit over a given range to get a better understanding of
the constraints. In order to perform this analysis, we use a simulated
noiseless Global 21-cm foreground following x−2.5. We perform a 5th

order MSF fit with MAXSMOOTH on this data using equation (3) to
find the optimal foreground parameters. While this fit will not return
the best χ2, as shown in Fig. 2, it is sufficient to allow us to investigate
how variation in the parameters affects the constraints. We vary each
parameter’s value 200 per cent either side of the optimum found and
sample these ranges using 100 points.

Fig. 2, left-hand panel, shows the parameter space for the fit
described above. Black regions in the figure are combinations of
parameters for which the condition in equation (1) is violated. The
coloured regions are regions in which the condition is upheld where
their colour is related to the MAXSMOOTH sign combinations. Each
panel in the figure shows the parameter space for two of the five
parameters and the contour lines show the values of χ2 across the
parameter ranges. While varying the parameters relevant to each
panel, we maintain all others at their optimal values found with
MAXSMOOTH. The contour lines help us to determine correlations
between the parameters and this is particularly useful when fitting a
physically motivated DCF.

Transitions through a region of violation between viable regions
correspond to changes in the MAXSMOOTH sign of one or more of
the derivatives. This is illustrated by the use of different colour
maps across the different viable regions. For example, in the
panel corresponding to variation in a0 and a2 for a2 ≤ 15 s = 1
and for a2 ≥ 25 s = −1 for the m = 2 derivative. The transitions
become more complex when varying parameters a2, a3, and a4

because these parameters affect the magnitude and signs of multiple
high-order derivatives. We also see transitions between regions of
different sign combinations when a4 switches sign. This causes the
final constrained derivative to switch sign because it is a constant
multiplied by a4. There is no region of violation between these viable
regions because a constant value of a4 = 2.5 × 10−4 meets the MSF
constraint as will a constant value of 0 or a4 = −2.5 × 10−4.

The equivalent graph in five dimensions, varying all parameters
around their optimal values, would feature five-dimensional convex
faceted regions in which equation (1) is met with a unique set of
MAXSMOOTH signs. This concept scales up and down to higher and
lower dimensions of parameter space.

The parameters a0 and a1 do not affect the constrained derivatives
of the MSF or the validity of the conditions and the associated
colour map gives the optimum MAXSMOOTH signs. Since the central
sample point of each panel corresponds to the optimum parameters
for the fit, this will always be a viable region and will have the same
MAXSMOOTH sign combination as the panel corresponding to a0 and
a1. Fig. 2 illustrates this point and, where visible, the central viable
sample point always corresponds to derivatives of order m = 2, 3,
and 4 having s = [−1, 1, −1].

MNRAS 502, 4405–4425 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/3/4405/6105349 by U
niversity of C

am
bridge user on 12 M

ay 2023



4410 H. T. J. Bevins et al.

Figure 2. Left: The parameter space of a 5th order MSF of the form given by equation (3), fit to data generated with y = x−2.5. The tested parameter ranges are
taken to be 200 per cent on either side of the optimal results found by MAXSMOOTH. We maintain the optimal parameter values for three of the parameters when
varying the two corresponding to each panel. Black regions of the graph show parameter combinations that violate equation (1) and coloured regions correspond
to viable regions. The central sampled point, highlighted by the white circles (at their centres), in each panel corresponds to the optimum parameters and the
optimum MAXSMOOTH sign combination on the derivatives. Transitions through regions of violation correspond to changes in the sign of one or more high order
derivatives. A change in sign of parameter a4 corresponds to a change in the sign of the final constrained derivative. Since this derivative is a constant there is no
violated region between these two possible sign combinations. Top right: The data and the fitted MSF, where T represents the measured sky temperature and ν

is the frequency. Bottom right: The residuals after subtracting the fitted MSF from the data.

Where the central sample point in each panel is not visible this is
a relic of the sample rate across the parameter space. For example in
the panel corresponding to variation of a0 and a4, between the two
large regions of violation there is a single value of a4, the optimum,
that meets the condition given by equation (1). The tight constraints
around the optimum values in the four panels in the bottom left corner
of the figure are due to the independence of the constraints for an
MSF on a0 and a1 and the strong dependence on a3 and a4.

We performed the equivalent fit with the logarithmic basis that has
derivatives constrained in log10(y)–log10(x) space. The associated
parameter graph can be found in Appendix B, and a comparison
with the graph presented in this section shows that the constraints
are much less severe in logarithmic space. The weak constraints
mean that all of the discrete sign combinations on the derivatives
have similar minimum χ2 values. This becomes a problem when
attempting to quickly search the discrete MAXSMOOTH sign spaces
and is discussed further in Section 4.2.

Generally, the above conclusion will be specific to the data being
fitted here and this analysis is not a complete exploration of the basis
functions available. However, since the basis functions in y–x space
are all related by linear combinations of each other, we find similar
parameter distributions for all. Importantly, the analysis highlights

the effect that the choice of basis function has on the quality of fit
and ease of fitting as well as demonstrating the constrained nature of
MSFs. These plots can be produced using MAXSMOOTH for any DCF
fitting problem.

4 NAV I GATI NG D I SCRETE SI GN SPAC ES

This section discusses in more detail the fitting problem, defines
the MAXSMOOTH algorithm, and compares its efficiency with an
alternative fitting algorithm. To restate concisely the problem being
fitted, we have

min
a, s

1

2
aTQa + qTa,

s.t. G(s)a ≤ 0. (24)

A ‘problem’ in this context is the combination of the data, order,
basis function, and constraints on the DCF.

With MAXSMOOTH, we can test all possible sign combinations.
This is a reliable method and, provided the problem can be solved
with quadratic programming, will always give the correct global
minimum. When the problem we are interested in is ‘well defined’,
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MAXSMOOTH: rapid maximally smooth function fitting 4411

Figure 3. The χ2 values for the discrete sign combinations on the derivatives
for a 10th order MSF fit in y–log (x) space to a simulated 21-cm fore-
ground. Sign combination 0 corresponds to negative derivatives (positive
MAXSMOOTH signs) and 255 corresponds to positive derivatives (negative
MAXSMOOTH signs). The signs and sign combination numbers are related by
the (N − 2) bit binary representation of the number. The global minimum is
shown as a single black data point. In the insert, the distribution around the
global minimum is shown and here the axis has the same meaning as in the
main plot.

we can develop a quicker algorithm that searches or navigates through
the discrete MAXSMOOTH sign spaces to find the global minimum.
Each sign space is a discrete parameter space with its own global
minimum as discussed in Section 3. Using quadratic programming on
a fit with a specific sign combination will find this global minimum,
and we are interested in finding the minimum of these global minima.

A ‘well-defined’ problem is one in which the discrete sign spaces
have large variance in their minimum χ2 values and the sign space
for the global minimum is easily identifiable. In contrast, we can
have an ‘ill-defined’ problem in which the variance in minimum χ2

across all sign combinations is small. This concept of ‘well-defined’
and ‘ill-defined’ problems is explored further in the following two
subsections.

4.1 Well-defined problems and discrete sign space searches

4.1.1 The χ2 distribution

We investigate the distribution of χ2 values, shown in Fig. 3, for a
10th order MSF fit of the form given by equation (5) to a simulated
21-cm foreground, like that shown in Fig. 2. We add Gaussian noise
with a standard deviation of 0.5 to the foreground. For a typical
21-cm experiment, this noise is unrealistic and would mask any
potential signal in the data, however, it illustrates the behaviour of
the MAXSMOOTH algorithm when fitting a difficult problem.

In Fig. 3, a combination of all positive derivatives (negative
signs) and all negative derivatives (positive signs) corresponds to
sign combination numbers 255 and 0, respectively. Specifically, the
MAXSMOOTH signs, s, are related to the sign combination number
by its C bit binary representation, here C = (N − 2). In binary, the
sign combination numbers run from 00000000 to 11111111. Each bit
represents the sign on the mth order derivative with a 1 representing
a negative MAXSMOOTH sign. For example, the sign combinations
surrounding number 25 are shown in Table 2.

Although we note that Fig. 2 corresponds to a different problem,
we would expect a similar parameter space for the fit performed here.
Each region in the equivalent figure would correspond to a single sign

Table 2. The table illustrates the relationship between the binary repre-
sentation of the sign combination number and the MAXSMOOTH signs, s.
A 1 in the (N − 2) bit binary representation for an MSF corresponds to a
negative MAXSMOOTH sign (positive derivative). The signs and their respective
combination numbers are used in the fitting routine and for the visualization
of the χ2 distribution as shown in Fig. 3.

Sign Binary MAXSMOOTH

Combination Signs, s

23 00010111 [+1, +1, +1, −1, +1, −1, −1, −1]
24 00011000 [+1, +1, +1, −1, −1, +1, +1, +1]
25 00011001 [+1, +1, +1, −1, −1, +1, +1, −1]
26 00011010 [+1, +1, +1, −1, −1, +1, −1, +1]
27 00011011 [+1, +1, +1, −1, −1, +1, −1, −1]

combination, and the associated minimum χ2 value in the regions
would give us the data that informs Fig. 3.

The distribution appears to be composed of smooth steps or
shelves; however, when each shelf is studied closer, we find a series of
peaks and troughs. This can be seen in the subplot of Fig. 3 that shows
the distribution in the neighbourhood of the global minimum found
in the large or ‘global’ well. This type of distribution with a large
variance in χ2 is characteristic of a ‘well-defined’ problem. We use
this example χ2 distribution to motivate the MAXSMOOTH algorithm
outlined in the following subsection.

4.1.2 The MAXSMOOTH sign navigating algorithm

Exploration of the discrete sign spaces for high N can be achieved
by exploring the spaces around an iteratively updated optimum sign
combination. The MAXSMOOTH algorithm begins with a randomly
generated set of signs for which the objective function is evaluated
and the optimum parameters are found. We flip each individual sign
one at a time beginning with the lowest order constrained derivative
first. When the objective function is evaluated to be lower than that
for the optimum sign combination, we replace it with the new set
and repeat the process in a ‘cascading’ routine until the objective
function stops decreasing in value.

The local minima shown in Fig. 3 mean that the cascading
algorithm is not sufficient to consistently find the global minimum.
We can demonstrate this by performing 100 separate runs of the
cascading algorithm on the simulated 21-cm foreground, and we use
equation (5) with N = 10 to model the MSF as before. We find the
true global minimum 79 times and a second local minimum 21 times.
For an MSF fit to this simulated date, the difference in these local
minima is insignificant, 	χ2 = 0.12. However, we see the same
behaviour with real data sets from EDGES and LEDA, and when
performing joint fits of foregrounds and signals of interest 	χ2 can
greatly increase.

The abundance of local minima is determined by the magnitude
and presence of signals, systematics, and noise in the data. When
jointly fitting a signal/systematic model with a DCF foreground, the
signal/systematic parameters are estimated by another fitting routine
in which MAXSMOOTH is wrapped. The initial parameter guess will
not be a perfect representation of any real systematic or signal. This,
along with a large noise, can produce a large difference between
the true foreground and the ‘foreground’ being fitted causing the
presence of local minima to become more severe.

To prevent the routine terminating in a local minimum, we perform
a complete search of the sign spaces surrounding the minimum found
after the cascading routine. We refer to this search as a directional
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4412 H. T. J. Bevins et al.

Figure 4. The cascading and directional exploration algorithm in practice
against the entire χ2 distribution for the fit to the simulated 21-cm experiment
data. The red arrows show the approximate path of the cascade and directional
exploration. The limits on the directional exploration are also shown as dashed
grey lines. The point (1a) shows the initial random starting point and point (1b)
shows a rejected sign combination in the cascade routine from (1a) to (2).
Point (2) is an accepted step through the cascade with a χ2 value smaller
than the previous minimum. Point (3) marks the end of the cascade and the
start of the left directional exploration. Finally, point (4) illustrates the end of
the right directional exploration when the χ2 value exceeds the limit on the
directional exploration. The black dots mark the entirety of the searched sign
combinations.

exploration and impose limits on its extent. In each direction, we
limit the number of sign combinations to explore and we limit
the maximum allowed increase in χ2 value. We prevent repeated
calculations of the minimum for given signs and treat the minimum
of all tested signs as the global minimum.

We run the consistency test again, with the full MAXSMOOTH al-
gorithm, and find that for all 100 trial fits we find the same χ2

found when testing all sign combinations. In Fig. 4, the red arrows
show the approximate path taken through the discrete sign spaces
against the complete distribution of χ2. Point (1a) shows the random
starting point in the algorithm, and point (1b) shows a rejected sign
combination evaluated during the cascade from point (1a) to (2).
Point (2), therefore, corresponds to a step through the cascade.
Point (3) marks the end of the cascade and the start of the left
directional exploration. Finally, point (4) shows the end of the right
directional exploration where the calculated χ2 value exceeds the
limit on the directional exploration.

The global well tends to be associated with signs that are all
positive, all negative or alternating. We see this in Fig. 3 where the
minimum falls at sign combination number 169 and number 170,
characteristic of the derivatives for the simulated 21-cm foreground,
corresponds to alternating positive and negative derivatives from
order m = 2. Standard patterns of derivative signs can be seen for
all data following approximate power laws. All positive derivatives,
all negative and alternating signs correspond to data following the
approximate power laws y ≈ xk, y ≈ −xk, y ≈ x−k, and y ≈ −x−k (see
Appendix C).

The MAXSMOOTH algorithm assumes that the global well is present
in the χ2 distribution and this is often the case. The use of DCFs
is primarily driven by a desire to constrain previously proposed
polynomial models to foregrounds. As a result, we would expect
that the data being fitted could be described by one of the four
approximate power laws highlighted above and that the global
minimum will fall around an associated sign combination. In rare

Figure 5. Top panel: The χ2 distribution found when fitting simulated
21-cm experiment data with the logarithmic basis function, equation (6).
The distribution has a noise like structure and is difficult to solve with the
MAXSMOOTH sign navigating algorithm. However, the global minimum can
be found by testing all sign combinations with MAXSMOOTH. The symmetric
nature of the distribution stems from the symmetric nature about 0 of the
high-order derivatives in logarithmic space. Bottom panel: The same as
above using a Normalized Polynomial given by equation (2). The distribution
is clearly defined and easily searchable with the sign navigating routine. The
difference between this result and that shown above can be used to understand
what makes a problem ‘ill defined’.

cases, the global well is not clearly defined and this is described in
the following subsection.

4.2 Ill-defined problems and their identification

We can illustrate an ‘ill-defined’ problem, with a small variation in
χ2 across the MAXSMOOTH sign spaces, by adding a 21-cm signal into
the foreground model and fitting this with a 10th order logarithmic
MSF defined by equation (6). We take an example signal model
from Cohen et al. (2017) and add an additional noise of 20 mK more
typical of a 21-cm experiment. The resultant χ2 distribution with its
global minimum is shown in the top panel of Fig. 5.

The global minimum, shown as a black data point, cannot be
found using the MAXSMOOTH algorithm. The cascading algorithm
may terminate in any of the approximately equal minima and the
directional exploration will then quickly terminate because of the
limits imposed.

If we repeat the above fit and perform it with equation (2), we
find that the problem is well defined with a larger χ2 variation across
sign combinations. This is shown in the bottom panel of Fig. 5. The
results, when using equation (6), are significantly better than when
using equation (2) meaning it is important to be able to solve ‘ill
defined’ problems. This can be done by testing all MAXSMOOTH signs
but knowing when this is necessary is important if you are expecting
to run multiple DCF fits to the same data set. We can focus on
diagnosing whether a DCF fit to the data is ‘ill defined’ because a
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MAXSMOOTH: rapid maximally smooth function fitting 4413

Figure 6. The approximated first derivatives, blue lines, of the mock 21-
cm experiment data in logarithmic, top panel, and linear, bottom panel,
spaces that correspond to DCF fits performed using equations (6) and (2),
respectively. Also shown as orange lines are the approximate first derivatives
of the respective best fits for comparison. The large variance of the first
derivative of the data in logarithmic space highlights that there are many
different ways to fit this data set ‘well’ producing the χ2 distribution we see
in Fig. 5.

joint fit to the same data set of a DCF and signal of interest will also
feature an ‘ill-defined’ χ2 distribution.

We can identify an ‘ill-defined’ problem by producing the equiv-
alent of Fig. 5 using MAXSMOOTH and visually assessing the χ2

distribution for a DCF fit. Alternatively, we can use the parameter
space plots to identify whether the constraints are weak or not, and
if a local minima is returned from the sign navigating routine then
the minimum in these plots will appear off centre.

Assessment of the first derivative of the data can also help to
identify an ‘ill-defined’ problem. For the example problem, this
is shown in Fig. 6 where the derivatives have been approximated
using 	y/	x. Higher order derivatives of the data will have similarly
complex or simplistic structures in the respective spaces. There are
many combinations of parameters that will provide smooth fits with
similar χ2 values in logarithmic space leading to the presence of local
minima. This issue will also be present in any data set where the noise
or signal of interest are of a similar magnitude to the foreground in
y–x space.

4.3 Comparison with Basin-hopping and Nelder–Mead
methods

For comparison of the two methods, testing all sign combinations
and navigating through sign spaces, we generate a signal y with
polynomial dependence on the coordinate x and a Gaussian random
noise with a standard deviation of 0.5

y = 0.6 + 2 x + 4x3 + 9x4 + noise. (25)

We fit this data with a 10th order MSF of the form described by
equation (2) and assess the χ2 distribution to find that the problem is
well defined. This is as expected since the data follow an approximate
xk power law and we are fitting in linear space.

The algorithm run time becomes a significant issue when perform-
ing joint fits of foregrounds, signals of interest, and/or systematics

Figure 7. The time taken by MAXSMOOTH to fit MSFs of varying order N to
the data described by equation (25) using the two built-in quadratic program-
ming methods. For comparison, the time taken by a Basin-hopping/Nelder–
Mead routine is also shown up to N = 7 after which the routine fails to find the
optimum solutions without adjustments to the routine parameters. All of the
fits were performed with equation (2) and on the same computing hardware.

in which multiple DCF fits have to be performed. The time taken to
perform both in-built MAXSMOOTH routines is shown in Fig. 7. It is
quicker to partially sample the available spaces for high N than testing
all sign combinations and as discussed for ‘well-defined’ problems
this will return the minimum χ2.

The runtime of the sign navigating routine is dependent on the
starting sign combination, the limits imposed on the directional
exploration (which is the dominating factor) and the width of the
global well. There is no consistent measure of the difference in time
taken to fit the data between the two MAXSMOOTH methods. However,
for the sign navigating routine we are inevitably fitting for a smaller
number of the sign combinations than when testing all.

Fig. 7 also shows the time taken to fit the data with equation (2) us-
ing a Basin-hopping routine followed by a Nelder–Mead algorithm,
hereafter referred to as BHNM. These two algorithms have been
previously used either separately or in conjunction for fitting MSFs
(Sathyanarayana Rao et al. 2015, 2017; Singh & Subrahmanyan
2019). We find that the BHNM method is approximately 2 orders of
magnitude slower than MAXSMOOTH. Between N = 3 and 7, we find
a maximum percentage difference in χ2 of ≈ 0.04 per cent when
comparing the BHNM method with the results from MAXSMOOTH.

The primary difference in the approaches comes from the division
of the parameter space into discrete sign spaces. The BHNM method
attempts to search the entire parameter space and penalizes parameter
combinations that violate equation (1). However, assessment of
Fig. 2 highlights that this is not a convenient method because across
the whole parameter space there are multiple local minima with
different sign combinations and transitioning from one ‘basin’ to
another is not trivial for a heavily constrained parameter space. By
dividing the space up into discrete sign spaces with MAXSMOOTH,
we can test the entirety of the parameter space, unlike when using
the BHNM method, guaranteeing we find the global minimum. We
could perform the same division of the space and in each discrete
sign space perform a Nelder–Mead or equivalent routine however
we use quadratic programming because it is designed specifically
for fast and robust constrained optimization.

For the BHNM method, we show here only fits up to N =
7 after which it begins to fail without further adjustment of the
routine parameters. The freedom to adjust these parameters can be
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4414 H. T. J. Bevins et al.

considered a disadvantage that leaves the user to determine whether
the routine parameters they have chosen produce a true global
minimum. In contrast, MAXSMOOTH is designed to reliably give the
optimum result, with the only adjustable routine parameters being
the total number of CVXOPT iterations and the directional exploration
limits.

All of the fits performed in this section were done using the same
computing hardware.

5 A P P L I C AT I O N S F O R 2 1 - C M C O S M O L O G Y

5.1 The recovery of model 21-cm signals

A discussion of MSFs and a comparison to unconstrained polynomi-
als for Global 21-cm cosmology can be found in Sathyanarayana Rao
et al. (2017). Foreground modelling with high-order MSFs is shown
to accurately recover Global 21-cm signals in simulated data and
unconstrained polynomials are shown to introduce additional turning
points, when compared to those in a mock signal. The number of
additional turning points is shown to increase with polynomial order.
The addition of extra turning points can obscure the signal of interest
and lead to the false identification of systematics. In the following
subsections, we look at fitting foregrounds for 21-cm experiments
with DCFs and compare these to unconstrained polynomial fits.

Deviations from a smooth structure can be induced in data by
experimental systematics or they can be intrinsic to the foreground.
In the case of a smooth foreground, by using PSFs we can correct for
non-smooth structure directly with our foreground model rather than
separately fitting out systematics. PSFs allow for zero crossings in the
high-order derivatives but remain more constrained than traditionally
used polynomial fits. However, lifting constrains on a DCF model
has the potential to also result in signal loss where the level of signal
loss is dependent on the presence of non-smooth structure in the
foreground and the number of lifted constraints.

In the following analysis, the quality of the fit in terms of the RMS
is of secondary importance. An unconstrained high order polynomial
will generally produce residuals with a lower RMS than a DCF.
However, a correctly constrained DCF will leave behind the structure
of a signal in the residuals meaning it can be identified easily. As
a measure of signal structure in the residuals we take the number
of turning points, p as used by Sathyanarayana Rao et al. (2017).
The Global 21-cm signal is expected to have a distinct number of
turning points, 2–3, across the bandwidth 40–200 MHz determined
by various astrophysical processes (see Section 1). The successful
application of DCFs in identifying Global signals, being reliant on the
presence of non-smooth structure in the data, is therefore bandwidth
dependent. However, a comparison of the number of turning points
in a mock signal to the residuals after removing a DCF fit from
simulated data including the same mock signal will help to identify
the degree to which DCFs preserve signals.

5.1.1 DCFs and 21-cm cosmology

To compare the performance of DCFs and unconstrained polynomi-
als, we use the sample of 264 signal models, S(ν) over the bandwidth
ν = 40–200 MHz, presented in Cohen et al. (2017) and used by Singh
et al. (2018b). The models are provided by A. Fialkov and are publicly
available at https://people.ast.cam.ac.uk/∼afialkov/Collab.html. We
add to these models a foreground given by a ν−2.5 to produce
simplistic mock data sets. The data sets are noiseless and while this is
unrealistic, we would not expect the addition of noise to obscure any

larger signal structure present in the data from a 21-cm experiment
with a low radiometer noise. We fit each simulated data set with an
MSF, low-order unconstrained polynomials and a set of PSFs. All
of the fitted DCF foreground models are 13th order and of the form
given by equation (6). We test all sign combinations for the DCF
fits in this section for reasons that were explained in Section 4.2 and
find that the chosen DCF model and order provides the best fits after
testing the built-in MAXSMOOTH models.

Fig. 8, left-hand panel, shows the difference in the number of
turning points, 	p for the residuals, pFit Residuals, and for the signal,
pSignal, using four different foreground models as a function of the
maximum brightness temperature, Tmax, and minimum temperature,
Tmin, of the simulated signal. Each data point corresponds to one of
the 264 mock data sets and 	p = 0 signifies that the residuals have
the same number of turning points as the signal. The unconstrained
polynomial fits have the same functional form as the DCFs.

We can quantify the probability of returning residuals with the
same number of turning points as the model signals. Table 3 shows
the total number of residuals for each fit type that returned the same
p as the simulated signals and 1 or 2 additional turning points. The
MSF fits return pSignal for 44 per cent of the mock data sets and
99 per cent of the time it returns at most pSignal plus two additional
turning points. They are the most likely, of the tested foreground
models to return the correct number of turning points. The equivalent
figures for the 5th order logarithmic unconstrained polynomial, one
of the most frequently used foreground fits in 21-cm cosmology,
are 0 per cent and 64 per cent and for the PSF with m ≥ 3 they are
0.004 per cent and 85 per cent. The statistics suggest that modelling
foregrounds with MSFs and well-constrained PSFs can frequently
result in residuals that closely follow the structure of the signal. We
include in the statistics the cases with one or two additional turning
points because the signals should still be identifiable in the residuals.
A joint fit of foreground model plus a signal model in these instances
should return an approximately correct parametrization of the signal
model.

5.1.2 Example residuals

Also shown in Fig. 8, right-hand panel, is an example of the fits
for a given model and this is akin to fig. 7 in Sathyanarayana Rao
et al. (2017). We see that an MSF, top panel, while not identically
recovering the signal but rather a smooth baseline subtracted version
does preserves the three turning points of the model signal as
expected. The example residuals from unconstrained polynomial
fits shown in the bottom right-hand panel of Fig. 8 show a larger
disparity with the structure of the model 21-cm signal than the MSF
fit. The PSF with derivatives of order m ≥ 3 constrained, middle
panel, produces residuals with one additional turning point. The
behaviour at low frequency of the DCF fits is consistent across all
of the 264 tested models. It is a byproduct of the basis choice, the
frequency of data sampling and the steep nature of the foreground at
low frequencies. We can alleviate some of these issues by increasing
the sampling rate of our mock experiment and by reducing the
bandwidth. However, the dominant cause is the basis function choice.

In logarithmic space, any non-smooth variations in the data and
derivatives are amplified as shown in Section 4.2. Since the mock data
set here is noiseless, the only non-smooth structure comes from the
signal. However, the data is predominately smooth at high frequency
and so the optimum fit tends to be an accurate representation of
the foreground in this region and poorer at lower frequencies. The
additional turning points when comparing the MSF and PSFs are
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Figure 8. Left: The difference in the number of turning points between the fit residuals and the simulated signal, 	p = pFit Residuals − pSignal, as a function of
the maximum and minimum temperatures of the signal for a smooth foreground model. This is shown for four different foreground models and in each panel
the data points correspond to one of the 264 mock data sets. The graph shows that the MSF fit is the most likely model to return the structure of the signal
and that a correctly constrained PSF can more frequently preserve the signal than an unconstrained low-order polynomial. It also shows that the fit quality is
dependent on the maximum and minimum temperatures of the signal. All of the DCF fits used to produce this graph were logarithmic and 13th order. Right:
Shown are examples of how the addition of allowed zero crossings in the high-order derivatives of a DCF can affect the residuals and how accurately they
preserve the turning points of any signal present. We use a signal model, blue line in all panels, from the theoretically motivated set presented in Cohen et al.
(2017) along with a model of a 21-cm experiment foreground. Fits with an MSF and polynomials are also shown for comparison with the number of turning
points, p, displayed for each of the residuals (see legend for details). While the residuals after fitting and removing an MSF do not identically match the signal
it is the best representation of the tested foreground models. In this case, the residuals represent a smooth baseline subtracted version of the signal as discussed
in Sathyanarayana Rao et al. (2017).

Table 3. The table shows the total number of fits, using one of four
foreground models, to the smooth foreground plus signal simulations from
Cohen et al. (2017) that have residuals with the same number of turning points
as the signal, pSignal. The data corresponds to that shown in the left-hand panel
of Fig. 8. We also show instances where the recovered residuals have one or
two additional turning points.

m ≥ 2 m ≥ 3 m ≥ 4 N = 5
(MSF) (PSF) (PSF) (Poly)

pSignal 116 1 0 0
pSignal + 1 132 135 15 52
pSignal + 2 14 88 147 116

also seen at low frequencies for the same reason. Despite the above,
we maintain the full bandwidth, the same sampling rate and the
logarithmic basis function in this analysis. We do this because this
basis function gives us the best-fitting DCF models and in a real
experiment our knowledge of any present signal of interest will be
too poor to constrain the bandwidth.

We have not analysed the full family of possible PSFs or
unconstrained polynomials. Removing constraints on the lower
order derivatives first will have the largest effect on the structure
of the residuals and consequently we have extensively analysed
the effects of lifting the restrictions on the 2nd and 3rd order
derivatives. We have, however, found evidence to suggest that MSFs

and well-constrained PSFs can recover signal structure to a higher
degree of accuracy than unconstrained polynomials in the case of a
smooth foreground. If the foreground features additional non-smooth
structure, we may expect that an appropriately constrained PSF will
act as an MSF. Determination of the appropriate constraints on a PSF
will depend on the structure of the data, the expected structure of the
signal in the data and the quality of the fit in terms of χ2.

5.1.3 Identifiable 21-cm signals and limitations of DCFs

The left-hand panel of Fig. 8 is useful for 21-cm cosmology, in
characterizing the signals most likely to be detectable using DCFs.
We find that MSFs and m ≥ 3 PSFs will best recover signals with
approximately Tmin ≥ −225 mK and Tmax ≥ 0 mK. We would
expect this to be true generally because these signal models have
complex structures and feature the strongest deviations from the
smooth foreground. For the coldest models with Tmin ≤ −225 mK
and Tmax ≤ 0 mK, X-ray heating is negligible and the spin temperature
is always seen in absorption against the CMB. Consequently, they
have the simplest structure, a weak deviation from the smooth
foreground and are likely to be fitted out as part of the foreground
modelling.

Comparison to restrictions placed on the most probable structure
of the Global 21-cm signal from experimental data will help identify
whether DCFs can recover these signals. For example Singh et al.
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Figure 9. A comparison of the quality of MSF fit produced using the sign navigating algorithm and the different built-in MAXSMOOTH basis as a function of
order N for three mock 21-cm experiment data sets with no signal, a wide Gaussian signal and a narrow Gaussian signal. The Difference Polynomial model,
equation (4) of order N = 15 is shown to be the optimal model for fitting these data sets. Beyond N = 15, the quality of fit does not improve any further and
additional terms in the model have coefficients ak ≥ 14 ≈ 0.

(2018b) ruled out models with low X-ray heating and Tmax < 0 mK,
this is supported by results presented in Monsalve et al. (2019). This
suggests that DCFs are well suited to identify the most probable
21-cm signals. However, X-ray heating is only one of the structure
defining processes. A more thorough exploration of this in terms of
signal model parameters, such as star formation efficiency and X-ray
luminosity, is needed to fully understand the types of theoretical 21-
cm signals that DCFs are sensitive to. This is out of the scope of this
paper and will be the subject of future work.

Smooth systematics, like smooth 21-cm signals, in the data
will be removed or fitted out as part of the foreground. However,
unless independent modelling of systematics is required, this can
be considered an advantage. Modelling foregrounds with DCFs
will help to identify non-smooth systematics in data sets where
unconstrained polynomials have the potential to fit these out.
This is particularly important in 21-cm cosmology where these
types of systematics need to be identified and instrumentation
needs to be iteratively improved to increase the chances of a
detection.

5.1.4 Smooth signal models

For 21-cm cosmology, it is also important to consider how the Global
21-cm signal is modelled when performing joint fits. Typically
the signal is modelled as a Gaussian, flattened Gaussian or using
physically motivated models. If a Gaussian model is jointly fit with a
DCF foreground, then the fit is biased towards returning a ‘smooth’
Gaussian signal with a large variance, σ , or full width at half max,
FWHM = 2

√
2 log(2) σ , even if such a signal is not real. Similarly,

incorrectly constrained DCFs can fit out ‘smooth’ signals in data
sets. This can cause uncertainty in the presence of such signals and
the point is furthered in Section 5.2.

We can illustrate this by generating three different data sets all
with foregrounds following ν−2.5 and the same Gaussian noise with
a standard deviation of 20 mK. Into two of the three data sets, we
add mock Gaussian signals with central frequencies νc = 100 MHz
and generated using

T21 = −A exp

(
− (ν − νc)2

2σ 2

)
, (26)

where A is the amplitude. The first mock signal has an amplitude
of 200 mK and a variance of 30 MHz representing a realistic wide
or smooth Gaussian 21-cm signal. The second represents a narrow
Gaussian signal with an amplitude of 230 mK and a variance of
10 MHz. The final data set has no additional signal in the band of
60–200 MHz.

We assess the best basis from the MAXSMOOTH library for fitting
these data sets and this is shown in Fig. 9. The graph shows the
minimum χ2 values when fitting MSFs of a particular form, detailed
in the legend, using the MAXSMOOTH sign navigating algorithm with
a given order N to the three data sets. We find that for all three data
sets the best basis choice is the Difference Polynomial, equation (4),
with order N = 15. We consequently proceed to fit each data set with
this MSF model. We compare the resultant residuals for each data
set to those from a joint fit of an MSF, of the same functional form,
and a Gaussian 21-cm signal model. We perform the joint fits by
using MAXSMOOTH with the PYTHON implementation of the nested
sampling software MULTINEST (Feroz & Hobson 2008; Buchner et al.
2014; Feroz et al. 2019). Here, MULTINEST estimates the Gaussian
signal parameters, MAXSMOOTH fits the foreground model to the
data minus the estimated Gaussian signal at each iteration and
MULTINEST minimizes the data minus the foreground model plus
the signal model. We also perform the equivalent fits with a 5th order
unconstrained polynomial given by equation (6) using a Lavenberg–
Marquardt (Levenberg 1944; Marquardt 1963) algorithm in place of
MAXSMOOTH. We perform this analysis ten times generating a new
noise distribution each time. An example result is shown in Fig. 10
where we have provided the same theoretically motivated priors on
all of the Gaussian 21-cm models. Respectively from top to bottom
the rows in Fig. 10 show the residuals after just an MSF fit and
after a joint fit for comparison, the equivalent for the unconstrained
polynomial fits, the change in foreground between the foreground
fit and the joint fit and the recovered signal in comparison to the
actual signal. The columns correspond to the case of no signal, a
wide Gaussian signal and a narrow Gaussian signal from left to
right.

We can see that in the absence of a signal jointly fitting with
a Gaussian model and MSF returns an absorption trough. This
recovered absorption trough is approximately the same as the change
in the foreground model when fitting with just an MSF and the
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MAXSMOOTH: rapid maximally smooth function fitting 4417

Figure 10. The top row shows the resultant residuals when using an MSF to fit just a foreground and to jointly fit a foreground and Gaussian signal model
to three mock data sets with no signal, a wide Gaussian signal and a narrow Gaussian signal from left to right. The second row shows the equivalent for an
unconstrained polynomial fit. The third row shows the change in foreground, δTfg, between the pure foreground fit, Tfg, fore, and joint fit, Tfg, joint, for both
foreground models and all three signal models. The bottom row shows the recovered signals for both foreground models alongside the true signal models in the
data sets. The figure appears to show that unconstrained polynomials are better behaved than MSFs, however we would note that the signal models used here are
simplistic in nature. We would expect the signals to be more complex, including emission, as with those used in Fig. 8 for which we showed the use of DCFs to
be advantageous.

change in RMS is small. This is illustrated in Table 4 which shows
the average results across the 10 repeats of this analysis. If this were
a real experiment the fitted model could easily be misinterpreted as
a real signal that had been fitted out as part of the foreground model.
However, there is a very small change in log evidence between the
pure foreground and joint fit that would suggest that the signal is not
truly present in the data.

In Table 4, the values for the log evidence for each fit and the
change in log evidence, 	log(Z), between the foreground and joint
fits for each data set and each foreground model are reported. While
MULTINEST returns a log evidence for the joint fits, MAXSMOOTH is not
a Bayesian algorithm. However, assuming a Gaussian likelihood, we
can use MULTINEST to calculate the evidence for our pure foreground
fits by having it estimate the noise and calculate the likelihood.

When jointly fitting in the presence of a wide Gaussian signal with
an MSF, we see a similar result to the case with no additional signal
and we could not confidently say that the signal is present in the data
if we had no prior knowledge. In fact, the joint fit has recovered a
poor representation of the Gaussian signal because the smooth signal
in both instances, pure foreground fit and joint, has been absorbed in
the foreground modelling.

Finally, we see that in the case of a narrow Gaussian signal in the
data set with an MSF we get an almost exact recovery after a joint fit.

There is a larger discrepancy between the difference in foreground
models and the recovered signal, as shown in Table 4, and the reduc-
tion in RMS is more significant giving us confidence that the signal is
truly present. Importantly, the change in log evidence is much larger
than in the other two cases indicating the presence of the signal.

For the unconstrained polynomial, in the case where there is no
signal in the data, we appear to recover a very smooth Gaussian
signal. However, again the change in log evidence between the
pure foreground fit and the joint fit tells us that neither scenario
is more likely and consequently we would conclude that the signal
is not present. For the other two cases, the unconstrained polynomial
behaves well. However, we note that the signals induced here are
simplistic representations of a Global 21-cm signal. We would expect
the signal to have a much more complicated structure including
emission at high frequencies and similar to the signals used in Fig. 8
for which we showed DCFs to be advantageous.

When attempting to identify the wide Gaussian signal using DCFs
we also note it will be advantageous to fit using a CSF with derivatives
of order m ≥ 1 constrained. For 21-cm cosmology, we find that
CSFs and MSFs are generally equivalent. However, in this case the
only significant non-smooth structure in the signal, aside from the
inflection point, is the turning point and where an MSF may fit this
out a CSF will not.
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4418 H. T. J. Bevins et al.

Table 4. The table shows the average, across 10 repeats with different random noise, maximum difference between the
recovered signals and the change in foreground for the polynomial and MSF pure foreground and joint fits, (δTfg −
Tsig)max, to the three simulated 21-cm experiment data sets with no signal, a wide signal and a narrow Gaussian signal.
Also shown are the average changes in RMS, 	RMS, between the pure foreground and joint fits for both foreground
models and all three data sets. We also provide weighted average log evidences and values for the change in log evidence,
	log (Z), between the joint and pure foreground fits with errors calculated from the error in each recovered log (Z).
The comparatively large change in log evidence for the narrow Gaussian signal data set when using MSFs provides
confidence that the recovered signal is truly present in the data. Unconstrained polynomials appear to perform better
than MSFs in this analysis. However, the signals used here are simplistic and we have shown in Fig. 8 that DCFs behave
far better for complex theoretically motivated signals that include emission.

Model (δTfg − Tsig)max 	RMS log (Zfore) log (Zjoint) 	log (Z)
(mK) (mK)

No signal
MSF 6.6 0.2 606.42 ± 0.03 606.85 ± 0.03 0.08 ± 0.04
Poly 4.5 0.1 604.28 ± 0.03 603.38 ± 0.03 0.51 ± 0.04

Wide Gaussian signal
MSF 6.0 0.2 606.46 ± 0.03 606.57 ± 0.03 0.17 ± 0.04
Poly 17.5 2.6 575.02 ± 0.03 597.85 ± 0.05 22.98 ± 0.05

Narrow Gaussian signal
MSF 18.4 1.7 588.40 ± 0.03 593.42 ± 0.05 7.44 ± 0.06
Poly 81.4 20.3 432.69 ± 0.03 589.88 ± 0.06 157.10 ± 0.07

The problem of identifying and misidentifying smooth signals
becomes even more prominent, particularly in the absence of any
signal in the data, when modelling the foreground with a DCF in
T–log(ν) space. Here, the sample rate is non-uniform and higher at
higher log(ν). This makes the problem harder to fit in this region
and also ‘smooths’ any signals present at low log(ν). Together these
effects can make it difficult to detect signals that can already be
considered ‘smooth’ in linear space. Similarly, in the absence of any
signal in the data, when jointly fitting with a Gaussian signal model
and large prior ranges, the routine estimating the Gaussian parameters
will tend to favour ‘smooth’ signals at high frequencies in linear space
because of the non-uniformity of sampling in logarithmic space.

5.2 MSFs and the EDGES data

In 2018, the EDGES team reported the detection of an absorption
trough at 78 MHz which could be interpreted as a Global 21-
cm signal (Bowman et al. 2018). The reported signal is ≈2 times
the maximum magnitude predicted by current cosmological models
(Cohen et al. 2017), and, in order to explain the signal as a 21-
cm signal, interactions between dark matter and baryons (Barkana
et al. 2018; Berlin et al. 2018; Kovetz et al. 2018; Muñoz & Loeb
2018; Slatyer & Wu 2018) or a higher radio background (Bowman
et al. 2018; Ewall-Wice et al. 2018; Feng & Holder 2018; Fialkov &
Barkana 2019; Jana, Nath & Biermann 2019; Mirocha & Furlanetto
2019) are needed.

While a higher radio background has been suggested by the results
of the ARCADE-2 experiment (Fixsen et al. 2011) and confirmed by
measurements from LWA (Dowell & Taylor 2018), there are concerns
about the analysis of the EDGES data (Hills et al. 2018; Singh &
Subrahmanyan 2019; Sims & Pober 2020). These studies and the
following work presented here use the publicly available integrated
spectrum from the EDGES Low Band experiment that can be found
at https://loco.lab.asu.edu/edges/edges-data-release/.

Hills et al. (2018) found that recovering the absorption profile using
the ‘physically motivated’ foreground model in Bowman et al. (2018)
produces unphysical negative values for the ionospheric electron
temperature and optical depth. This suggests that the treatment of

the foreground in Bowman et al. (2018) absorbs part of an unknown
systematic. It was also found that a large change in foreground was
needed when just fitting a ‘physical’ foreground to the data and
when jointly fitting with a flattened Gaussian 21-cm signal profile.
In Hills et al. (2018), the authors identify the potential presence of a
sinusoidal function in the EDGES data with an amplitude of ≈60 mK
and a period of ≈12.5 MHz.

Sims & Pober (2020) fit a range of models to the EDGES data
varying the 21-cm models between a Gaussian model, a flattened
Gaussian model as used by Bowman et al. (2018) and physical
simulations from the ARES code (Mirocha 2014). They vary the
unconstrained polynomial order for the foreground model and
examine likelihoods with and without an additional noise term
and a damped sinusoidal function. They use Bayesian Evidence
to quantify the most likely scenarios of an atlas of 128 models.
The 21 highest evidence models all feature damped sinusoidal
functions all with a consistent amplitude of ≈60 mK and a period of
≈12.5 MHz.

An MSF fit to the foreground should leave a periodic sinusoidal
function behind in the residuals if it is present in the data because it is
non-smooth in nature. This has previously been shown to be the case
by Singh & Subrahmanyan (2019, hereafter S19), who identified a
sinusoidal feature with an amplitude of 60 ± 10 mK and a period
of 12.3 ± 0.1 MHz. We attempt here to re-create this analysis to
illustrate the abilities of MAXSMOOTH. The fitting routine used and
choice of basis function are the only differences between the results
presented here and in S19. The use of MAXSMOOTH means that our
joint fit of the data and a systematic model will be computationally
quicker and more reliable than the Nelder–Mead-based approach to
fitting taken in S19, as demonstrated in Section 4.

We begin first by assessing the quality of fits using the various
basis functions built-in to MAXSMOOTH. S19 used a basis function
constrained in T–log10(ν) space and although the functional form
is not explicitly stated in S19 it is derived from the models in
Sathyanarayana Rao et al. (2017) and so is similar to, if not identical
to, equation (5). Fig. 11 shows the resultant χ2 as a function of
MSF order for fits with varying basis functions using MAXSMOOTH.
This figure again shows how the choice of basis function can affect
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MAXSMOOTH: rapid maximally smooth function fitting 4419

Figure 11. The resultant χ2 as a function of MSF order, N, for the
MAXSMOOTH built-in basis functions fitted to the EDGES data using the
MAXSMOOTH sign navigating algorithm. The Legendre, Difference Polyno-
mial, the Polynomial and Normalized Polynomial models lie on top of each
other in this figure. The occasional increase in χ2 with N for the logarithmic
model is because this basis is increasingly unstable with higher N and requires
all sign combinations to be tested.

the quality of the fit. Of note is that our T–log10(ν) space model
cannot achieve the same RMS as that found by S19 with a similar
model. With an N = 7 MSF constrained in logarithmic frequency
space S19 return an RMS of 44 mK, whereas with equation (5)
MAXSMOOTH returns an RMS of 87 mK. We believe this is due to the
lack of normalization in MAXSMOOTH and as previously discussed
this is an ongoing area of development.

We use Fig. 11 to inform our choice of basis function and MSF
order and proceed using an 11th order MSF of the form given by
equation (4). We find residuals with an RMS of ≈40.4 mK and a
log evidence of 216.80 ± 0.09 as shown in Fig. 1. We note that this
is in approximate agreement to results shown in S19. We also find

troughs at ≈70 and ≈85 MHz which correspond to those found in
all of the reported sinusoidal functions.

We jointly fit the data with an 11th order MSF and a sinusoidal
function of the form

Tsys = p0 sin(p1 ν − p2), (27)

and the resultant residuals are shown in the left-hand panel of
Fig. 12. Note we have not included a model 21-cm signal in this fit.
We use MAXSMOOTH along with a Lavenberg–Marquardt algorithm
implemented with SCIPY to perform this joint fit and with initial
parameters of p0 = 60 mK, p1 ≈ (2π )/12.5 MHz−1, and p2 = 0 rad.
We find that the results change with the initial parameters when using
the Lavenberg–Marquardt algorithm, however, the chosen initial
parameters are well informed by the previous work outlined above.
We return parameters of p0 ≈ 56.6 mK, p1 ≈ 0.52 MHz−1 or a period
of ≈12.1 MHz and p2 ≈ 1.1 rad in close agreement with previous
analysis. We use MULTINEST to approximate the evidence for this fit
assuming a Gaussian likelihood and return log(Z) = 302.99 ± 0.08.
This is a significant increase in log evidence when compared to the
pure foreground fit and would suggest strongly that the systematic is
present in the data.

We find an RMS value of 20.1 mK, in close agreement with the
result of 22.9 mK found in S19 when jointly fitting an MSF and the
sinusoidal function. However, we note that the RMS of the joint fit
in the left-hand panel of Fig. 12 is equivalent to the RMS found by
S19 when jointly fitting an MSF foreground, a sinusoidal systematic,
and Gaussian 21-cm signal model. Their proposed Gaussian 21-cm
signal model fits with standard predictions. However, the RMS of
our joint fit without a Gaussian signal model may highlight some of
the difficulties in detecting ‘smooth’ Gaussian signals discussed in
Section 5.1.3.

We perform a joint fit of a Gaussian 21-cm signal, a sinusoidal
systematic and MSF. Due to the increased complexity of the fit
and uncertainty in the fit parameters for the Gaussian model, we
perform our fit using MAXSMOOTH and MULTINEST. We provide

Figure 12. Left: The residuals with an RMS of 20.1 mK and log evidence of 302.99 ± 0.08, black, found after subtracting from the EDGES data a jointly
fit MSF and a sinusoidal systematic. We recover a parametrization of the systematic, shown in blue, that is consistent with previous work as discussed in the
text. The red line, bottom panel, illustrates the residuals after just removing the fitted foreground from the data. Right: A joint fit of a Gaussian 21-cm model
signal with a sinusoidal systematic and an MSF foreground to the EDGES data. The recovered 21-cm signal is smooth and the addition of the signal model has
caused a large change in the recovered foreground, Tfg, illustrated by the decreased amplitude in the bottom panel around 70 MHz when compared to that in the
left figure. The RMS, 20.0 mK, is also similar in magnitude to that found for the fit in the left-hand panel and the log evidence has reduced to 292.67 ± 0.17.
Consequently, it is unlikely the model signal is real and it is probable that it is produced artificially by the change in foreground.
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prior ranges of 30–80 mK for the amplitude, 0–25 MHz for the
period, and 0–2π for the phase shift of the sinusoidal systematic.
For our Gaussian, we set realistic priors on the amplitude of 0–
250 mK, on the central frequency of 50–100 MHz, and on σ of
0–20 MHz. For the sinusoid, we find an amplitude of 56.5 mK, a
period of approximately 12.1 MHz, and a phase of 1.1 rad. These
results, using a more extensive search of the parameter space, are
consistent with our previously found sinusoid further indicating that
when performing the fit shown in the left-hand panel of Fig. 12
our initial parameters were well chosen. We return an amplitude of
206 mK for the Gaussian with a central frequency of 73 MHz and a
FWHM ≈18 MHz. MULTINEST returns a noise parameter of 20 mK
and our resultant fit, shown in the right-hand panel of Fig. 12, has
an RMS of approximately 20.0 mK. This is much wider and deeper
than the signal reported in Singh & Subrahmanyan (2019) which has
a depth of 133 ± 60 mK and FWHM of 9 ± 3 MHz however we
return the same central frequency of 73 MHz.

Noting the discussion of plausibly detectable 21-cm signals when
using DCFs and the bias towards ‘detection’ of ‘smooth’ Gaussian
signals in Section 5.1.3, we assess the feasibility of the returned
model signal. Here the notion of ‘smoothness’ is relative to the
bandwidth. In Section 5.1.3, a Gaussian with FWHM ≈ 24 MHz is
confidently identifiable as a real signal but the bandwidth is much
larger than that for the EDGES data. We can see by comparison of
the bottom panels of Fig. 12, showing the data minus the foreground
from the joint fits, that there is a large change in foreground when
we include the Gaussian model as part of our joint fit. This may be
because in our initial fit, without the Gaussian model, the foreground
model was fitting out the smooth signal. Alternatively, the signal may
not be present and the fitting routine has returned a smooth signal by
extracting it from the foreground component of the fit. The reduction
in RMS when the joint fit includes a Gaussian is 0.054 mK and it is
consequently challenging to determine whether or not the signal is
present in the data. However, we can conclude from the log evidence,
which for this fit has a value of 292.67 ± 0.17 and is smaller than that
for the joint fit of the systematic and foreground, that the Gaussian
is not likely to be real.

5.3 MSFs and the LEDA data

LEDA, like EDGES, is a radiometer-based Global 21-cm experiment
analysing the band 30–88 MHz and aiming to detect the anticipated
absorption feature (Greenhill & Bernardi 2012). The design and
calibration approach of LEDA is detailed in Price et al. (2018).
In contrast to EDGES, the LEDA experiment is comprised of five
dual-polarization radiometer antennas that are part of a larger 256-
antenna interferometric array. This approach is intended to allow
inter-antenna comparison and in situ measurement of the antenna
gain response. Similar to other radiometry experiments with absolute
calibration, LEDA uses two noise diode references to calibrate the
measured antenna temperature into units of Kelvin. Corrections are
then applied to account for the impedance of the antenna and receiver,
derived from vector network analyser (VNA) measurements.

As shown in Price et al. (2018), data are seen to vary between
antennas, which are not perfectly identical, and this is attributed
to minor differences in terrain, analogue component response, and
physical construction. While calibrated spectra are presented, it is
suggested that there are unidentified systematics in the data; work
has been undertaken to better characterize and update the LEDA
system with iterative improvements. Further measurements were
taken in 2017 and 2018, which are under analysis (Gardsen et al., in
preparation).

Figure 13. The LEDA data from antenna 252A taken in 2016 and averaged
over 1 h of LST shown in the top panel. Also shown, bottom panel, are the
residuals after fitting the LEDA data with a 9th order MSF of the form given
in equation (4) with a log evidence of −185.45 ± 0.09. We see evidence of a
damped sinusoidal systematic in the data set.

Here, we fit MSFs to data from the LEDA 2016 campaign (Price
et al. 2018; Spinelli et al., in preparation). This is the first time
MSFs have been applied to LEDA data. Specifically, we fit data from
antenna 252A, taken on January 26th 2016 in the LST range 11:00–
12:00. In this LST range, the Galactic contribution to the antenna
temperature is at a minimum. The data are binned into 1.008 MHz
channels, spanning 40–85 MHz.

We fit an MSF of the form given in equation (4) to the data as we
find that this basis function returns the best fit consistently for N ≥
8. Shown in Fig. 13 are the resultant residuals from an N = 9 MSF
fit with an RMS of ≈15 K and a log evidence of −185.45 ± 0.09.
The resultant residuals are large and would obscure a cosmological
21-cm signal. We note that as per equation (4) in Price et al. (2018)
the radiometer noise is expected to be ≈0.5 K.

The residuals from the MSF fit clearly feature a damped sinusoidal
systematic. We proceed to fit a systematic model given by

Tsys =
(

ν

ν0

)−p0

p1 sin(p2 ν − p3), (28)

along with a 9th order MSF by using MAXSMOOTH and MULTINEST.
ν0 is chosen to be the central frequency of the band. We provide a
prior on the power of 0–3 for weak damping. Prior ranges of 25–
75 K for the amplitude of the sinusoidal function, 0–1 MHz−1 for the
period, P, which is fitted as p2 = (2π )/P, 0–2π for the phase shift and
a log uniform prior on the noise of 10−2 to 101 K are also provided.
The results of this fit are shown in the left-hand panel of Fig. 14.
We return optimal parameters of an exponent of ≈2.7, an amplitude
of ≈27.9 K, a period of 21.7 MHz, and a phase shift of 3.7 rad.
The residuals have an RMS of ≈8.8 K and MULTINEST returns a
noise parameter of ≈7.7 K. We also see an increase in log evidence,
which has a value of −175.50 ± 0.19, when compared to the pure
foreground fit suggesting the systematic is present in the data.

Price et al. (2018) suggest, from analysis of the 2016 LEDA data,
that the systematic in the data is caused by the direction-dependent
gain of the antenna. A frequency-dependent group delay may also
be caused by a bandpass filter that could contribute unaccounted
for reflections. The pattern of oscillations that form the systematic
has also been found to change after rainfall. This systematic may
then be caused by moisture in the surrounding soil or by changes in
the electric length of the dipoles caused by moisture on the dipole
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MAXSMOOTH: rapid maximally smooth function fitting 4421

Figure 14. Left: The residuals, black, after jointly fitting the LEDA data with an MSF and damped sinusoidal systematic with a log evidence of −175.50 ± 0.19.
The centre panel shows the recovered systematic model (blue), and the bottom panel shows the residuals (red), after just subtracting the fitted foreground model.
The addition of the systematic model has reduced the RMS of the fit when compared to Fig. 13. Right: The resultant residuals (black), with a log evidence
of −168 ± 0.19 found when fitting the LEDA data with an MSF foreground, damped sinusoidal (blue) and additional sinusoidal systematic (purple). Again
the bottom panel shows the residuals (red) after just subtracting the fitted foreground model from the data. The further reduction in RMS and increase in log
evidence suggests that both these systematics are present in the data and indicates that the larger systematics in the LEDA data may be represented by the leading
order terms in a damped Fourier series.

itself. We also highlight the similarities in structure of the systematic
with that in the EDGES data. Both have sinusoidal structures and
so similarities between the experimental set-ups and calibration
processes may hint at larger causes of systematics across 21-cm
cosmology experiments. The systematic is not likely to be associated
with the sky because of the difference in periodicity and amplitude
found by both experiments. EDGES does not have a bandpass
filter, it could still be affected by moisture in the surrounding
environment however we note that this experiment is in a typically
dry location (MRAO, Australia).

The residuals shown in the top left-hand panel of Fig. 14 show a
further sinusoidal structure after removal of the leading order damped
sinusoidal systematic. We therefore attempt a joint fit to the data using
an MSF foreground, a damped sinusoid, and an additional sinusoid
described by equation (27). We maintain the same priors on the
original damped sinusoidal function and provide a prior of 10–30 K
on the amplitude, 0–1 MHz−1 on the period, and 0–2π on the phase
shift of the additional sinusoidal systematic.

We find best-fitting parameters for the leading damped sinusoid
of ≈1.8 for the exponent, ≈30 K for the amplitude, a period of
≈19 MHz, and a phase shift of ≈6.2 rad. For the additional sinusoidal
systematic, we find an amplitude of ≈17 K, a period of ≈16 MHz,
and a phase shift of ≈1.5 rad. MULTINEST returns a noise of ≈7.2 K
and the fit shown in the right-hand panel of Fig. 14 has an RMS of
≈7.2 K. We find a log evidence for this fit of −168.34 ± 0.19.

Distinctions between the two systematics have been made in the
middle right-hand panel of Fig. 14 for clarity. The RMS of the resid-
uals after removal of these two systematics is still significantly larger
than the radiometer noise for this experiment, ≈0.5 K. However, the
decrease in the RMS when these systematics are included in the fit
and increase in log evidence would strongly suggest that both are
present in the data. A further addition of sinusoidal systematics will
inevitably reduce the RMS of the residuals in the same way that
the residuals after foreground removal could accurately be described
by a Fourier series. Higher order terms in the series would feature

smaller periods until the periodicity of the terms matched that of the
noise. However, the systematics present in the data may have a form
described by the leading-order terms in a damped Fourier series as
found here. We leave more rigorous investigation of the additional
oscillatory structure in the residuals, top right-hand panel of Fig. 14,
to future work.

6 C O N C L U S I O N S

Derivative Constrained Functions (DCFs) generally are advanta-
geous for experiments in which the desired signal is masked by higher
magnitude smooth signals or foregrounds. A ‘smooth’ foreground
is one that follows a power-law structure and DCFs are designed to
accurately replicate this by constraining individual high-order deriva-
tives to be entirely negative or positive across the band of interest.
They are particularly useful when the signal of interest is expected to
be several orders of magnitude smaller than the foregrounds, similar
in magnitude to the experimental noise and non-smooth in struc-
ture (i.e. having high-order derivatives that cross zero in the band of
interest).

We have introduced MAXSMOOTH as a fast and robust tool for
fitting DCFs and demonstrated its abilities with examples from 21-cm
cosmology. MAXSMOOTH features a library of example DCF models
that is designed to be extended. Further work into the normalization
of DCF models for MAXSMOOTH is required with the aim to improve
the quality of fitting and efficiency of the software.

In Sathyanarayana Rao et al. (2017), the authors fit Maximally
Smooth Functions (MSFs) using a Nelder–Mead routine to simulated
sky data with Global 21-cm signals. They demonstrate that their
fitting routine recovers the same residuals for 7th, 10th, and 20th

order MSFs. MAXSMOOTH is shown, however, to be capable of
producing good fits ≈2 orders of magnitude faster than a Basin-
hopping/Nelder–Mead-based algorithm. This is an important im-
provement when jointly fitting signals, systematics, and foregrounds
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using a Bayesian likelihood loop as in nested sampling (Anstey, de
Lera Acedo & Handley 2020).

MAXSMOOTH is also designed to be able to cover the entire avail-
able parameter space, unlike a Basin-hopping/Nelder–Mead-based
routine, by dividing it into discrete parameter spaces based on the
different allowed combinations of signs, positive and negative, on the
constrained derivatives. The extensive exploration of the parameter
space provides confidence in the results and the employment of
quadratic programming, a robust method for solving constrained
optimization problems, allows MAXSMOOTH to remain an efficient
algorithm.

We have reproduced analysis of the EDGES data using MAXS-
MOOTH and analysed data from the LEDA experiment with MSFs
for the first time. We have highlighted limitations of DCFs when
jointly fitting for 21-cm signals and illustrated this using the EDGES
data. We have shown that in the presence of a smooth signal or no
signal DCFs can incorrectly recover signals that are smooth across
the band when jointly fitted with signal models. However, this is not
a problem that is unique to DCFs and we have illustrated that it is of
equal prevalence when using unconstrained polynomials.

We show, also, that MSFs preserve turning points of 21-cm
signals more consistently than commonly used low-order logarithmic
unconstrained polynomial models. This is particularly true of 21-
cm signals with maximum brightness temperatures, Tmax ≥ 0 mK,
and minimum temperatures, Tmin ≥ −225 mK, which feature the
strongest deviations, a distinct absorption trough and emission above
the background CMB, from the smooth foreground approximated by
a ν−2.5 power law. A more detailed exploration of the signal parameter
space is needed to fully understand the types of ‘detectable’ or re-
producible 21-cm signals when using DCFs with varying constraints
to model the foreground.

Through the EDGES data and LEDA data, we have illustrated that
MSFs are useful in identifying non-smooth and periodic experimen-
tal systematics. This is advantageous for two reasons: it allows for
better identification of any Global 21-cm signal present in the data
and it allows the causes of the systematics to be better identified
leading to iterative improvements in experimental set-ups. Where
systematics with a smooth structure across the bandwidth of interest
are also present, we expect that these will be fitted out by DCF
foreground models.

In the LEDA data, we have identified the presence of a damped
sinusoidal systematic and additional sinusoid. We suggest that the
similarities between the structure of systematics in the EDGES
data and the LEDA data could highlight a larger issue in 21-
cm experimentation. Further work is needed to identify a prob-
able cause for such systematics and exploration of similarities
between the approaches of the two experiments could help identify
these causes with DCFs being the primary tool for foreground
modelling.

We suggest here that DCFs may also be used as a tool for
identifying low-level Radio Frequency Interference, weak spectral
lines, and, as illustrated for MSFs by Sathyanarayana Rao et al.
(2015), signals from the Epoch of Recombination. In all cases,
the signals of interest are non-smooth features masked by higher
magnitude smooth signals that can be modelled and removed with
DCFs. Applications of DCFs in these fields is left for future
work.
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APPENDIX A : C V X O P T A N D QUA D R AT I C
P RO G R A M M I N G

Quadratic programs are a special family of convex optimization
problem in which the objective function is quadratic and the con-
ditions are affine in nature (Boyd & Vandenberghe 2004; Nocedal &
Wright 2006). CVXOPT is a PYTHON package for solving a quadratic
optimization problem subject to linear constraints. In Section 3,
we write the least-squares problem that we are solving in terms
of matrices as

χ2(a) = 1

2
aTQa + qTa, (A1)

where

Q = �T� and qT = −yT�, (A2)

subject to a constraint

Ga ≤ h. (A3)

This is known as the primal problem when using quadratic program-
ming to solve least squares. For the constraints on a DCF, h = 0.

The problem is solved using the Karush–Kuhn–Tucker (KKT)
theorem (Kuhn & Tucker 1951; Karush 2014) that re-phrases the

above problem in terms of a Lagrangian given in this instance by

L(a,μ) = χ2(a) + μTg(a), (A4)

where g(a) = G a − h and μ is the Lagrange multiplier.
From the Lagrangian, we can define the Lagrangian dual function

to be

l(μ) = min
x

L(a,μ), (A5)

which leads to the dual problem minimizing l(μ) subject to μ ≥ 0.
The condition on the dual problem that μ ≥ 0 is derived from the

definition of the condition on the primal problem and the definition
of g(a). The condition is known as complementary slackness and is
given by

μg(a) = 0. (A6)

Since g(a) ≤ 0, by definition this implies

μ ≥ 0. (A7)

The theorem states that if the point given by (a∗, μ∗) is a saddle
point in the Lagrangian in the domain with μ ≥ 0 then a∗ is a solution
to the optimization problem. This is known as strong duality and can
be re-phrased as

χ2(a∗) = l(μ∗). (A8)

By taking the gradient of the Lagrangian and setting this equal to
zero, since we are looking for a stationary point, we find

∇χ2(a∗) −
∑

i

μ∗
i ∇gi(a∗) = 0, (A9)

where the sum is over the total number of different constraints. An
optimal solution of the primal problem will be a stationary point
with ∇χ2(a∗) = 0 and consequently we have

∑
i μ

∗
i ∇gi(a∗) = 0 by

equation (A9) leading to the required saddle point.
The algorithm consequently looks for solutions a∗ for which a non-

negative μ∗ can be found and the KKT conditions can be satisfied.
To summarize, the conditions are as follows:

(i) Stationary condition: The optimal solution of the prime and
dual problems will produce a saddle point in the Lagrangian.

(ii) Complementary slackness: μ∗g(a∗) = 0 holds.
(iii) Primal feasibility: The condition given by equation (A3) is

satisfied by a∗.
(iv) Dual feasibility: The Lagrangian multiplier satisfies the in-

equality μ∗ ≥ 0.

APPENDI X B: V I SUA LI ZI NG C ONSTRAINTS IN
PARAMETER SPAC E: ALTERNATI VE BAS IS

Fig. B1 shows the resultant parameter spaces when fitting a fifth-order
MSF to data of the form y = x−2.5 using the logarithmic basis function
given by equation (6). As discussed in Section 3, the parameter
space presented here is unique to the data set and DCF model used.
However, it highlights the importance behind the choice of basis and
illustrates the differences in the constraints produced when defining
the DCF in a different data spaces.
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Figure B1. Left: The equivalent of the left-hand panel in Fig. 2 using a fifth-order MSF of the form given by equation (6) and constrained in log10(y)–log10(x)
space. As with Fig. 2, black regions show regions in which the MSF condition is violated and the coloured regions illustrate sign combinations for which the
constraints are upheld. The ranges on the parameters are determined to be 200 per cent on either side of the optimal values from the MSF fit. In each panel,
two of the parameters are varied while the others are maintained at their optimal values. Here, the regions for which the conditions are violated are narrow and
consequently multiple discrete sign spaces are found to produce similar χ2 values. This strongly suggests that the problem is ill defined and hard to solve using
the sign space navigation described in Section 4. Top right: The mock 21-cm experiment data and the MSF fit for which the parameter space is analysed. T
refers to the averaged sky temperature and ν to the frequency. Bottom right: The residuals after subtracting the MSF fit from the data set.

A P P E N D I X C : STA N DA R D D E R I VAT I V E SI G N
PAT T E R N S

In Section 4, we introduce the concept of standard derivative sign
patterns for particular polynomial structures. To reiterate and enforce
this point, Fig. C1 illustrates that the derivatives of a polynomial of
the form y ≈ xk are all positive, y ≈ −xk are all negative, y ≈ x−k

are alternating negative to positive from m = 1, and y ≈ −x−k are
alternating positive to negative from m = 1. Since, as discussed in

Section 3, CVXOPT constrains the derivatives, Ga subject to equation
(18) we would expect the optimum MAXSMOOTH signs for an MSF fit
to y ≈ xk to be approximately all negative. Similarly for an MSF fit
to a polynomial of the form y ≈ −x−k we would expect the optimum
signs to be alternating positive to negative for m ≥ 2.

Note that these standard derivative sign patterns are defined in y–x
space. The patterns in y–z space will have similar structures and in
logarithmic space they are expected to be different however they will
still subscribe to a regular structure.
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Figure C1. Standard derivative sign patterns associated with four possible standard polynomial data structures. The first row shows example power laws
following y ≈ x−k, y ≈ xk, y ≈ −x−k, and y ≈ −xk. The second row shows the derivatives of those power laws up to m = 3 and the associated patterns in
derivative sign. Note these are not the MAXSMOOTH signs and this is discussed in the associated text.
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