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ABSTRACT

Sets are a fundamental data structure, and learning their vectorized representations
is crucial for many computational problems. Existing methods typically focus on
intra-set properties such as permutation invariance and cardinality independence.
While effective at preserving basic intra-set semantics, these approaches may be
insufficient in explicitly modeling inter-set correlations, which are critical for tasks
requiring fine-grained comparisons between sets. In this work, we propose SRAL,
a Set Representation Auxiliary Learning framework for capturing inter-set correla-
tions that is compatible with various downstream tasks. SRAL conceptualizes sets
as high-dimensional distributions and leverages the 2-Sliced-Wasserstein distance
to derive their distributional discrepancies into set representation encoding. More
importantly, we introduce a novel adversarial auxiliary learning scheme. Instead of
manipulating the input data, e.g., element dropout/addition, our method introduces
adversarial perturbations at the feature level. Through min-max optimization, we
compel the model to achieve robustness against worst-case perturbations. Our
theoretical analysis shows that this objective, in expectation, directly optimizes for
the set-wise Wasserstein distances, forcing the model to learn highly discriminative
representations. Comprehensive evaluations across four downstream tasks examine
SRAL’s performance relative to baseline methods, showing consistent effective-
ness in both inter-set relation-sensitive retrieval and intra-set information-oriented
processing tasks.

1 INTRODUCTION

Set-structured data are prevalent in practice, as they represent complex data objects composed of
simpler units (Vargas-Calderón, 2025). With the rapid development of machine learning techniques,
learning vectorized representations for sets is crucial (NaderiAlizadeh & Singh, 2025). It not only
benefits a variety of emerging applications, e.g., similar group matching in social networks (Shen et al.,
2012; Tang & Liu, 2022) and object retrieval in vector databases (Lee et al., 2019; Wang et al., 2022),
but also demonstrates learning-based potential in addressing classical data management challenges,
including data cleaning (Hadjieleftheriou et al., 2008; Wang & He, 2019), data integration (Dong &
Rekatsinas, 2018; Ge et al., 2019), and set similarity processing (Li et al., 2021; Zeakis et al., 2022).

Traditional algorithms for retrieving set-structured data are typically rule-based. For example, Set
Similarity Join (Arasu et al., 2006; Mann et al., 2016) computes pairs of sets from data partitions to
filter candidates with a given score threshold. Methods in this area design iterative filter-verification
frameworks (Deng et al., 2017; Zeakis et al., 2022) or propose index-based solutions (Li et al.,
2021) to improve efficiency. However, these algorithm algorithms often lack predictive capability
to generalize from data to make inferences. To address this limitation, Set Representation Learning
has emerged. Unlike naive approaches that merely sum element features, its fundamental goal is to
learn a holistic and fixed-size embedding that captures the intrinsic semantics of the whole unordered
collection. This capability is essential for facilitating complex downstream tasks, for example, in
E-commerce, enabling the model to interpret a product bundle as a cohesive semantic unit, e.g., a
“camping kit”, rather than a loose collection of items, thereby improving recommendation accuracy.
While early machine learning approaches leveraged kernel methods (Jebara et al., 2004; Gretton et al.,
2006; Boiman et al., 2008; Muandet et al., 2012), recent deep learning methods focus on capturing
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Figure 1: SRAL captures inter-set correlations for adversarial optimization (left); normalized ratios
of second-best methods over SRAL are reported due to varying metric scales (right).

diverse set cardinalities and ensuring invariance to element permutations (Xu et al., 2025; Skianis
et al., 2020; Zaheer et al., 2017; Lee et al., 2019; Kim, 2022; Wang et al., 2023). They design a
composition of permutation-equivariant neural network backbones and aggregation mechanisms to
preserve set semantics that outperform traditional feature pooling techniques (Mialon et al., 2021;
Murphy et al., 2018; Zhang et al., 2020). Detailed discussions are reported in Appendix B.

Despite these advancements, existing methods predominantly focus on fulfilling intra-set properties.
While permutation invariance and cardinality independence are essential, these models are often
insufficient for explicitly capturing the rich and complex inter-set correlations. This however is
crucial for comparing set-wise similarities and differences in certain scenarios. For instance, in
set retrieval tasks, identifying the nearest neighbors for a query set inherently relies on a nuanced
understanding of set-to-set relationships (Naderializadeh et al., 2021; Zhang et al., 2020). Similarly,
in E-commerce applications, product bundles with overlapping items appeal to similar customer
segments, where capturing the subtle relationships between different product sets can potentially
enhance recommendation accuracy (Ma et al., 2022). Such set-wise correlation knowledge may not
be naturally inherited through the mere encoding of intra-set properties, thus creating a notable gap
in representation capability.

To bridge this gap, we introduce SRAL, a Set Representation Auxiliary Learning framework designed
to learn representations with a focus to capture inter-set correlations. Our framework formulates
model optimization as a flexible auxiliary objective built upon two synergistic components. ¶ First,
we introduce a novel set encoder grounded in optimal transport theory. By conceptualizing sets
as empirical distributions, this encoder measures the set-wise distributional discrepancy using the
2-Sliced-Wasserstein metric (Lahn et al., 2025; Rabin et al., 2011; Bonneel et al., 2015; Villani, 2009)
and derives such distance information into the set embeddings. · Second, and more critically, we
propose an effective adversarial auxiliary learning scheme to forge discriminative representations by
training the model to resist worst-case encoding perturbations. Specifically, our approach departs
from conventional data manipulation strategies, e.g., element dropout/addition or subset sampling, by
introducing adversarial perturbations directly to the set features. Our theoretical analysis demonstrates
that the learning over such perturbation is, in expectation, equivalent to optimizing for the 2-Sliced-
Wasserstein distances between the underlying perturbed distributions. Then by training the model to
be robust against worst-case perturbations via a min-max optimization, we compel the encoder to
learn high quality set representations. As illustrated in Figure 1(left), these components jointly work
to consolidate the fine-grained learning of inter-set correlations within a unified auxiliary framework.

To validate SRAL, we conduct extensive experiments across four diverse downstream tasks. These
tasks cover both inter-set relation-sensitive retrieval applications, i.e., Learning to Rank Set Similarity
and Bundle Recommendation, and intra-set information-oriented processing ones, i.e., Point Cloud
Classification and Topic Set Expansion. As visualized in Figure 1 (right), SRAL not only excels
at its primary goal of capturing inter-set correlations but also performs well in processing intra-set
information, which underscores the effectiveness and versatility of our framework.

2 PRELIMINARIES

Problem Description. Let S = {S1, S2, · · ·, Sm} be a corpus of m sets. The elements in these sets
are drawn from a finite universe E = {e1, e2, · · ·, en}, which contains n unique elements. Each
element ej ∈ E is associated with a d-dimensional embedding vector zj ∈ {z1, z2, · · · , zn}. In
practice, depending on the availability of raw features, these embeddings zj are either initialized
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using pre-trained feature extractors, e.g., word embeddings, or randomly initialized to be learned from
scratch. The primary objective of Set Representation Learning is to learn an encoder function that
maps any set Si to a fixed-size vector embedding vi, which preserves inter-set correlation information
to facilitate downstream set retrieval and processing tasks. All notations are explained in Appendix C.

Illustrative Example. Take bundle recommendation as a concrete example. A set Si represents
a product bundle, e.g., a "camping kit", containing items such as a tent, a sleeping bag, a kettle,
etc. The necessity of Set Representation Learning lies in its ability to compress these irregular
structures into a unified and fixed-size embedding. This enables downstream systems to interpret the
bundle as a coherent semantic entity that captures the collective information of the items, rather than
treating them as a loose collection of isolated products. Technically, the learned set representations
should accommodate varying cardinalities, i.e., different numbers of items across bundles, and ensure
permutation invariance, meaning the resulting embedding remains identical regardless of the order in
which the items are listed. Beyond the specific e-commerce scenario illustrated above, Set Repre-
sentation Learning has found broad applications across diverse domains. These include computer
vision, for aggregating multi-view images or video frames (Wang et al., 2022), bioinformatics, where
proteins are modeled as sets of residues for property prediction (NaderiAlizadeh & Singh, 2025),
and computational pathology, where whole-slide images are treated as sets of patches for cancer
diagnosis (Ilse et al., 2018; Carbonneau et al., 2018).

Distributional Distance Measurement. Wasserstein distance, derived from optimal transport
(OT), provides a good measure for quantifying distributional distance (Tran et al., 2025; Rabin
et al., 2011; Bonneel et al., 2015; Lv et al., 2024). It measures the minimum “cost” required to
transform one probability distribution into another. Formally, given a probability distribution P , let
the random variableX follow the distribution P , i.e.,X ∼ P ,X ∈ Rd. For the projection function
θ : Rd → R, P θ represents the push-forward of P with θ in a one-dimensional space, defined
as P θ(Y ) = P (x : θ(x) ∈ Y ) = P (θ−1(Y )). The α-Wasserstein distance between P and Q is
defined using Lα transport cost (Villani, 2009):

Dα (P,Q) =
(

inf
g∈Plans(P,Q)

∫
‖x− g(x)‖αdP (x)

) 1
α

, α ≥ 1, (1)

where the infimum is taken over all transport plans between P and Q. If a minimizer exists, denoted
by g+, it is the solution to the OT problem. For one-dimensional distributions, a closed-form tranport
solution for g+ from Q to P exists: g+(x) := F−1

P

(
FQ(x)

)
, where F and F−1

P (x) denote the
cumulative distribution function (CDF) and the quantile function of P , respectively. To prevent
numerical intractability for high-dimensional cases (Kolouri et al., 2019), the alternative metric of
α-Sliced-Wasserstein distance has been recently studied (Rabin et al., 2011; Bonneel et al., 2015;
Deshpande et al., 2019):

SDα (P,Q) =
(∫

Sd−1

(
Dα(P θ, Qθ)

)α
dθ
) 1
α

, α ≥ 1. (2)

Sd−1 denotes the unit d-dimensional hypersphere. The projection is θ(x) = wTx wherew ∈ Sd−1 is
a unit vector in Rd. P θ is the push-forward of P using θ(x). This metric satisfies positive-definiteness,
symmetry, and triangle inequality (Kolouri et al., 2016; 2019), qualifying it for similarity/distance
measurement (Yang et al., 2024; Kantorovich, 1960).

3 SRAL FRAMEWORK

3.1 OVERVIEW

Our SRAL framework is designed to capture inter-set correlations through the auxiliary learning
objective, which seamlessly integrates with various downstream set-based tasks. The overall learning
objective combines a scenario-specific main task loss LMain with our auxiliary loss LAux, weighted
by a hyper-parameter λ1. The complete objective function is:

L = LMain + λ1LAux + λ2||Ξ||22, (3)
where ||Ξ||22 is an L2-regularizer on all trainable parameters Ξ to prevent over-fitting. The core of
SRAL consists of two synergistic components. First, we introduce a novel set encoder based on the
2-Sliced-Wasserstein distance, which represents sets as empirical distributions and embeds them
based on their distance to a learned reference. Second, we propose a potent adversarial auxiliary
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Figure 2: SFE module illustrations: a macro and micro views of set representation encoding.

learning scheme that perturbs the set features and encoding. By training the model to be robust against
worst-case perturbations, this scheme forces the encoder to learn highly discriminative representations
that capture fine-grained inter-set relationships.

3.2 2-SLICED-WASSERSTEIN SET REPRESENTATION ENCODING

Our approaches begins by treating each set Si as an empirical distribution. Specifically, a set Si
is represented by a list of feature vectors of its elements, Vi = [zi,k ∈ Rd]|Si|k=1, where zi,k is the
embedding of element ei,k ∈ Si. We assume these feature vectors are sampled from an underlying
true data distribution Pi, and the observed features Vi define the empirical distribution P̂i. In this
work, we consider P̂i to be a valid approximation of Pi and unify them as Pi to simplify notation.
To learn stable and discriminative set representations, our encoder leverages the distributional
distance between an input set and a learnable reference distribution O. This reference design,
characterized by H trainable embeddings VO = [zh ∈ Rd]Hh=1, as a strategy shared by several
previous methods (Naderializadeh et al., 2021; Guo et al., 2021a; Mialon et al., 2021), serves as a
learnable “origin” in the set embedding space. Specifically, these embeddings are initialized as model
parameters and are updated via backpropagation during the training process, adapting globally to
minimize the overall objective function.

3.2.1 SET FEATURE ENCODER (SFE)

Feature Mapping via Optimal Transport. Directly computing the Wasserstein distance between
high-dimensional distributions Pi and O is computational intractable. Therefore, we employ the
2-Sliced-Wasserstein distance, which circumvents this issue by slicing the high-dimensional distribu-
tions into multiple one-dimensional ones. Each slice is defined by a linear projection θ(x) = wTx,
where the unit vectorw is uniformly sampled from the hypersphere Sd−1. This projection reduces Pi
and O to their one-dimensional counterpart Piθ and Oθ. Recall the early introduction in § 2, these
sliced one-dimensional distributions are compatible with the closed-form solution. As stated in Peyré
et al. (2019); Kolouri et al. (2019); Naderializadeh et al. (2021); Deshpande et al. (2019), the optimal
transport map g+, from the reference slice Oθ to the input slice Piθ can be defined as:

g+(xθ|V θi ) = F−1
Piθ

(
FOθ (x

θ)
)

where xθ ∈ V θO, (4)

where V θi = [wTzi,k]
|Si|
k=1 and V θO = [wTzh]Hh=1 denote the sliced features of Piθ andOθ, respectively.

Here the CDF of Oθ is: FOθ (x) = 1
H

∑H
h=1δ(x ≥ wTzh), where δ returns 1 for zero input and 0

otherwise. We include the formal statement of Eq. (4) for readability in Appendix D.

For empirical distributions defined by samples, this theoretical solution can be intuitively interpreted
as a rank-matching procedure. The term FOθ (x

θ) essentially computes the rank percentile of xθ

within the sorted values of V θO, and F−1
Piθ

(·) then finds the value with the corresponding rank percentile
in V θi . This leads to the practical implementation of g+ detailed as follows: ∀xθ ∈ V θO, let τ(x|V ) be
the rank of value x in the ordered set V . The mapping procedure for g+ is executed as:

g+(xθ|V θi ) = arg min
x′∈V θi

(
τ(x′|V θi ) ≥ |Si|

H
· τ(xθ|V θO)

)
. (5)

We provide its derivation in Appendix D. The indicator function τ(·) can be pre-processed using
the argsort function for V θi and the sort function for V θO. Note that to accommodate cardinality
differences of set features (i.e., when H 6= |Si| in the second case of Eq. (3), we employ linear
interpolation, which effectively preserves the data continuity.
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Constructing SFE Module. To avoid the infinite projections as required by theory in Eq. (2), we
employ a Monte Carlo approximation (Kingma et al., 2013; Metropolis et al., 1953) with R random
projections. Let Θ = [wr]

R
r=1 denote all R sampled projection vectors. Consequently, our Set

Feature Encoder (SFE) module constructs the set embedding vi by aggregating the results from all
projections. For each projection wr, we implement the map g+(wT

r zh|V θri ) for every point zh in
the reference set. Following these implementations with illustration in Figure 2, SFE concatenates
along the innermost dimension to output the set embedding vi as follows:

SFE(Vi, VO|Θ) = Concat
r=1..R;h=1..H

(
g+(wT

r zh|V θri )
)
. (6)

By capturing the inter-set distributional correlations, this SFE module provides the critical encoding
process that we leverage in our adversarial auxiliary learning framework.

3.3 ADVERSARIAL SET ENCODING PERTURBATION AND OPTIMIZATION

To provide adaptability across downstream tasks, we incorporate the auxiliary learning objective
LAux within a self-supervised paradigm. The central idea is to produce stable representations when
the constituent distribution is slightly perturbed. Rather than using simple random noise, we employ
an adversarial framework that compels the model to be robust against worst-case perturbations,
forcing it to learn more informative inter-set information.

3.3.1 SELF-PERTURBATION ON SET FEATURE ENCODING

We begin by generating perturbed samples for each set. For the input set Si with features Vi =

[zi,k]
|Si|
k=1, the perturbation is constructed by adding small random noise to the element embeddings,

where the norm of the noise is bounded by a hyper-parameter π:
z′i,k = zi,k + ε′i,k, where ε′i,k is drawn from ‖ε‖2 ≤ π. (7)

Based on the modification of zi,k, we generate a series of perturbed distribution features, i.e., V ′i
= [z′i,k ∈ Rd]|Si|k=1. By feeding this perturbed set of elements into SFE, we obtain a perturbed set
embedding v′i = SFE(V ′i , VO|Θ). This would allow for a more fine-grained simulation of feature
variations, thereby providing high-quality perturbated samples for the subsequent learning process.

3.3.2 ADVERSARIAL MIN-MAX OPTIMIZATION

With the perturbed embeddings, we employ a self-supervised learning paradigm for optimization. To
achieve this, we firstly construct two perturbed views for each set Si, yielding a pair of positive set
embeddings v′i and v′′i . We then implement with the InfoNCE loss (Oord et al., 2018) as follows:

Lwd =
∑
Si∈S

− log
exp(−||v′i − v′′i ||2/ψ)∑

Sj∈S exp(−||v′i − v′′j ||2/ψ)
, (8)

where ψ is a hyper-parameter. Typically, this loss term promotes consistency between the perturbed
representations of the same set Si, while maximizing the Euclidean distance between embeddings of
different sets, e.g., Si and Sj . This however raises a question: does this learning objective, which
operates on perturbed embeddings, disrupt the SFE module’s fundamental capability derived from the
Sliced-Wasserstein metric? Therefore, we introduce Remark 1, which demonstrates that optimizing
this objective is, in expectation, equivalent to optimizing the objective directly on the underlying
distributional distances, thus consolidating the learning capability of our set embedding approach.
Remark 1. Let P ′i and P ′′i denote two perturbed distributions corresponding to the input set Si,
yielding perturbed set embeddings v′i and v′′i . S , ψ, SD2 denote the set database, a hyper-parameter,
and the 2-Sliced-Wasserstein distance. For ∀Si ∈ S, we have:

E

[
exp(−||v′i − v′′i ||2/ψ)∑

Sj∈S exp(−||v′i − v′′j ||2/ψ)

]
=

exp(−||(SD2(P ′i , P
′′
i ))||2/ψ)∑

Sj∈S exp(−||(SD2(P ′i , P
′′
j ))||2/ψ)

. (9)

With proofs in Appendix D, Remark 1 demonstrates that, the Euclidean distance between the perturbed
set embeddings is positively correlated in expectation with 2-Sliced-Wasserstein distance between
their underlying distributions. This suggests that: by minimizing Lwd in the embedding space, we
are implicitly optimizing for the alignment of distributional distances between sets, thereby enabling
the model to capture fine-grained, distribution-based inter-set correlations.
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To further enhance representation robustness, we go beyond merely resisting noise but actively seek
“worst-case” perturbations that maximally disrupts the representation consistency. To this end, we
elevate the self-supervised objective to an adversarial min-max problem. Specifically, we seek an
adversarial perturbation increment σ; σ is shared and applied to the perturbed features V ′i and V ′′i
that are generated earlier from Eq. (7). Our goal is to find a “worst-case” perturbation that maximizes
the loss in Eq. (8). Consequently, let Ξ denote the all trainable parameters, our final auxiliary learning
objective, LAux = max‖σ‖2≤π Lwd(Ξ,σ), is to be minimized under such worst-case perturbation.
This derives the min-max optimization problem as follows:

min
Ξ

max
‖σ‖2≤π

Lwd(Ξ,σ) = min
Ξ

max
‖σ‖2≤π

Lwd({vσi }Si∈S), where vσi = SFE(V ′i + σ, VO|Θ). (10)

However, in practice, it could be computational infeasible to exactly solve the min-max problem in
Eq. (10). Therefore, we employ a first-order approximation (Goodfellow et al., 2015) to efficiently
estimate the optimal perturbation. We linearize the loss function Lwd by taking its first-order Taylor
expansion around σ = 0:

Lwd(Ξ,σ) ≈ Lwd(Ξ,0) + σT∇εLwd(Ξ; ε)
∣∣
ε=0

. (11)
Maximizing this linear approximation under the norm constraint has a closed-form solution where the
perturbation σ is aligned with the gradient direction. This motivates us to approximate the worst-case
perturbation with a single step of gradient ascent and thus decompose the min-max problem with the
following two alternating steps:

1. Inner Maximization to Find σ: With the model parameters Ξ fixed, we compute the gradient of
the loss with respect to a small perturbation ε evaluated at ε = 0:

gσ = ∇εLwd(Ξ; ε)
∣∣
ε=0

. (12)
We then update the perturbation along the gradient direction to obtain an initial adversarial
perturbation σ̂ as σ̂ = η · gσ , where η is the ascent step size. To satisfy the constraint, we project
this perturbation back onto the `2 ball of radius π:

σ = σ̂ ·min

(
1,

π

‖σ̂‖2

)
. (13)

2. Outer Minimization to Update Ξ: After identifying the adversarial perturbation increment σ,
we apply it to generate the final perturbed embeddings, e.g., vσi = SFE(V ′ + σ, VO|Θ). Then,
we compute the adversarial loss based on these examples, which is further combined with the
main task loss Lmain. With β as the learning rate, the entire model’s parameters Ξ are updated
via the gradient descent:

Ξ← Ξ− β · ∇Ξ(LMain + λ1Ladv + λ2||Ξ||22). (14)

Through this procedure, our method learns to acquire stable set representations from deliberate feature
perturbation, with the following remark to formalize this intuition (proofs are in Appendix D).
Remark 2. Our min-max optimization objective in Eq. (10) is approximately equivalent to an implicit
regularization of the SFE’s local Lipschitz continuity for representation stability.

Generally, our method differentiates from conventional methods by adversarial perturbing the encod-
ing process, and thus showcases its effectiveness and convergence efficiency in § 4.3.2.

4 EXPERIMENTS

4.1 SETUPS

Tasks and Datasets. To thoroughly evaluate our proposed SRAL framework, we conduct compre-
hensive experiments across four diverse downstream tasks. These tasks are selected to span two
primary categories: inter-set relation-sensitive tasks, i.e., Set Similarity Ranking, Bundle Recom-
mendation, which require a deep understanding of correlations between different sets, and intra-set
information-oriented tasks, i.e., Point Cloud Classification, Topic Set Expansion, which focus on
processing the internal contents of a single set. All tasks and datasets conducted in our experiments
are in a supervised setting. Due to the page limit, we supplement the detailed introduction of tasks
and datasets in Appendix E.

• Task 1: Learning to Rank Set Similarity. This task evaluates the model’s ability to learn from
known similar set pairs and predict new associations by ranking sets based on the Euclidean

6
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Table 1: Performance comparison for Tasks 1 (left) and 2 (right). Best and second-best cases are
highlighted. Statistically significant improvements (p < 0.05) are marked with ∗.

Task 1: Set Similarity Learning

Model Friendster LIVEJ
R@20 N@20 R@100 N@100 R@20 N@20 R@100 N@100

SAP 72.41 68.13 85.32 72.15 79.86 77.75 86.94 85.34
SMP 70.78 68.99 81.61 72.22 78.95 76.70 86.83 84.65
DeepSet 63.20 60.75 76.60 69.89 75.45 74.55 83.31 79.76
RepSet 80.63 76.56 86.49 74.92 82.15 79.63 88.41 83.12
SAtt 77.52 71.92 87.51 75.21 83.79 81.73 91.39 85.07
PoT 82.44 81.85 86.96 81.47 83.18 84.25 89.33 86.45
Set2Box 67.35 69.73 73.46 70.33 77.24 75.89 85.12 82.34
OTKE 79.53 73.68 86.64 79.59 81.45 79.82 87.95 85.10
DIEM 82.49 81.40 88.36 81.56 83.95 84.92 89.88 87.15
PSWE 83.05 84.26 88.59 85.77 83.52 84.61 89.48 86.67
FSPool 79.90 81.96 87.76 84.41 85.36 87.17 93.07 90.29
FSW 83.58 84.39 88.52 85.81 84.19 85.04 89.95 87.23
SRAL 91.57 92.22 94.53 93.01 87.56 89.31 92.93 91.25
Gain 9.56%∗ 9.28%∗ 6.71%∗ 8.39%∗ 2.58%∗ 2.46%∗ -0.15% 1.06%∗

Task 2: Bundle Recommendation

Model Youshu NetEase
R@20 N@20 R@100 N@100 R@20 N@20 R@100 N@100

MFBPR 19.97 11.67 44.33 17.95 5.21 2.98 14.15 4.92
DSBRec 20.46 12.03 45.34 18.12 5.51 3.04 14.76 5.14
DAM 20.83 11.99 45.58 18.38 5.54 3.11 14.98 5.12
BundleNet 22.85 11.90 47.84 19.19 6.17 3.44 16.26 5.83
BGCN 25.22 14.54 49.38 21.18 7.04 3.91 17.25 6.51
CrossCBR 26.41 16.55 51.90 23.30 7.21 4.08 18.32 6.77
SRAL+ 26.92 16.95 52.18 23.64 7.37 4.21 18.66 7.01
Gain 1.93%∗ 2.42%∗ 0.54%∗ 1.46%∗ 2.22%∗ 3.19%∗ 1.86%∗ 3.54%∗

distance of their learned embeddings. We use two large-scale, real-world social network datasets:
Friendster (Yang & Leskovec, 2015) and LIVEJ (Mislove et al.).

• Task 2: Bundle Representation Learning for Recommendation. In this e-commerce scenario,
the goal is to recommend bundles (sets of items) to users. Effective bundle representation is crucial
for prediction accuracy. Experiments are conducted on the Youshu (Chen et al., 2019) book bundle
dataset and the NetEase (Cao et al., 2017) for music playlist recommendation.

• Task 3: Point Cloud Processing. A point cloud is a set of 3D data points representing an object’s
surface. This task aims to classify the object category based on its point cloud representation. We
utilize the standard ModelNet40 (Wu et al., 2015) benchmark dataset.

• Task 4: Topic Set Expansion. Given a small seed set of keywords describing a topic, the objective
is to expand this set with other semantically related keywords from a vocabulary. We use the
LDA-1k, LDA-3k, and LDA-5k datasets (Zaheer et al., 2017) with different sizes and scopes.

Implementation Configurations. For all tasks, we employ a consistent procedure for data prepara-
tion and training: we partition the datasets into training and testing sets with an 8:2 ratio. The training
set is then further subdivided into training and validation subsets using an 8:2 split to facilitate hyper-
parameter tuning. All reported results are the average of five independent runs. Hyper-parameters
and experiment configurations for reproducing are reported in Appendix E.1-E.2.

Competing Methods. We compare SRAL against a comprehensive list of baselines for four tasks.
For the general set representation tasks, i.e., Set Similarity, Point Cloud Classification, and Topic Set
Expansion, we include classic pooling methods SAP (Lin et al., 2013), SMP (Lin et al., 2013) and
state-of-the-art deep learning models such as DeepSet (Zaheer et al., 2017), RepSet (Skianis et al.,
2020), SAtt (Lee et al., 2019), PoT (Guo et al., 2021a), Set2Box (Lee et al., 2022), OTKE (Mialon et al.,
2021), DIEM (Kim, 2022), FSPool (Zhang et al., 2020), PSWE (Naderializadeh et al., 2021), and
FSW (Amir & Dym, 2025). For the specialized Bundle Recommendation task, we compare against
established and recent recommendation models: MFBPR (Rendle et al., 2012), DSBRec (Zaheer et al.,
2017), DAM (Chen et al., 2019), BundleNet (Deng et al., 2020), BGCN (Chang et al., 2020), and
the state-of-the-art CrossCBR (Ma et al., 2022). For this task, we integrate SRAL into CrossCBR
to enhance its bundle embedding module, denoting it as SRAL+. Detailed descriptions are in
Appendix E.

4.2 EVALUATION RESULTS AND DISCUSSIONS

Task 1: Learning to Rank Set Similarity. We evaluate all models on Task 1, where sets are ranked
based on Euclidean distance in their embedding space. The results for Recall (R@k) and NDCG
(N@k) are summarized in Table 1(left) with threefold observations. ¶ Deep set encoders, e.g.,
DeepSet, RepSet, sAtt, generally outperform conventional pooling methods like SAP and SMP.
Moreover, general OT-based methods, e.g., PoT and OTKE, and particularly Sliced-Wasserstein-
based methods such as PSWE and FSW, further elevate the overall performance. · Our proposed
SRAL consistently achieves state-of-the-art performance across nearly all metrics and datasets. On
the Friendster dataset, SRAL improvements over the best baseline ranging from 6.71% to 9.56%. On
LIVEJ, it also demonstrates advantages, particularly in capturing top-ranked items with gains of 2.58%
in R@20 and 2.46% in N@20. ¸ The vast majority of SRAL’s performance gains are statistically
significant, confirmed by a Wilcoxon signed-rank test (Conover, 1999) at a 95% confidence level.
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Table 2: Performance comparison for Task 3: Point Cloud Processing.
Backbone SAP SMP RepSet SAtt PoT Set2Box OTKE DIEM PSWE FSPool FSW SRAL Gains

MLP 57.65 86.35 83.45 85.89 85.20 82.15 85.92 85.58 86.41 85.76 86.38 86.53 +0.14%
ISAB 85.45 86.82 86.05 86.78 86.55 85.88 86.70 86.72 86.85 86.88 86.93 87.31 +0.44%∗

Table 3: Performance comparison for Task 4: Topic Set Expansion.
Data SAP SMP DeepSet RepSet SAtt PoT Set2Box OTKE DIEM PSWE FSPool FSW SRAL Gains

LDA-1k 54.34 67.21 54.98 57.32 58.55 58.94 50.59 62.95 63.58 58.36 75.67 64.56 80.94 +6.96%∗
LDA-3k 51.95 74.40 51.96 58.33 77.48 73.40 64.98 77.59 75.67 78.44 70.57 79.67 87.93 +10.37%∗
LDA-5k 51.34 80.65 52.05 61.39 74.59 75.11 65.67 72.57 76.96 78.81 71.16 80.94 86.20 +6.50%∗

This highlights the stability and reliability of our model’s improvements. For complete results
including standard deviations, please refer to Appendix E.3.3.

Task 2: Bundle Representation Learning for Recommendation. The problem of this task is
formulated with a prediction function between bundle and user embeddings. Our analyses from
Table 1(right) yield three key findings. ¶ SRAL+ consistently outperforms baseline models on both
Youshu and NetEase datasets, where the improvements are statistically significant across all metrics.
· We attribute this to the strength of CrossCBR backbone, which already excels at capturing user-
bundle collaborative filtering signals (Rendle et al., 2012; He et al., 2017). Our SRAL+ enhances this
by providing a complementary signal, an explicit and semantically rich representation of the internal
bundle structure. ¸ We recognize that this task ultimately aims to predict the user-bundle matching
probability via learning the user-bundle interactions; therefore, this suggests that a more integrated
learning framework is a promising direction for future work, where the both bundle semantics and
collaborative patterns are co-optimized.

Task 3: Point Cloud Processing. We evaluate various set encoding methods on top of two distinct
backbones: a Multi-layer Perceptron (MLP) and the more advanced Induced Set Attention Block
(ISAB) (Lee et al., 2019). The test accuracies are reported in Table 2. ¶ We observe that SRAL
achieves favorable results when paired with both backbones. With the standard MLP, SRAL yields a
competitive accuracy of 86.53%. When the ISAB backbone is employed, the performance margin
widens, and SRAL further reaches a statistically significant improvement of +0.44% over the second-
best model FSW. · While using ISAB backbone clearly improves performance for all methods,
SRAL provides an additional performance lift in both settings. This indicates that SRAL is effective
with less impact from the backbone model selection and compatible with different feature extractors.

Task 4: Topic Set Expansion. With vocabularies encoded by word2vec (Mikolov, 2013), models
classify elements based on their semantic similarity to a given query set. As shown in Table 3,
SRAL consistently outperforms baselines in distinguishing intra-set semantics for topic expansion
with AUC improvements ranging from 6.50% to 10.37%, demonstrating its effectiveness in capturing
latent set semantics for classification. More importantly, in addition to its competitive performance
on inter-set relation-sensitive applications (Task 1 & 2), SRAL also achieves superior results in
intra-set information-oriented ones (Task 3 & 4), demonstrating its versatility as a good auxiliary
representation learner.

4.3 EMPIRICAL ANALYSES OF SRAL

In this section, we delve into the design choices of SRAL, through a series of empirical analyses. We
use the Friendster dataset from Task 1 as the primary testbed for these studies.

4.3.1 STUDY OF SRAL SET ENCODING DESIGN

Comparison with Other Designs. The design of our Set Feature Encoding (SFE) module is
fundamentally based on the Wasserstein distance, which benefits from its implicit regularization
to the embedding distance. To validate this design choice, we compare its performance against
other common distributional distance metrics, namely the Kullback-Leibler (KL) Divergence, Jensen-
Shannon (JS) Divergence, and the Sinkhorn Distance. Implementation details are reported in
Appendix E.7. The results in Figure 3(A) lead to two primary conclusions. ¶ SRAL and the Sinkhorn-
based method emerge as the most competitive approaches. This highlights the overall superiority of
the Wasserstein distance for this task. Furthermore, SRAL achieves the best performance, which we
attribute to our novel SFE module that can capture complex set similarities more effectively than
simpler methods. · We observe that our method incurs a relatively higher computational cost, i.e.,
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(B) Results of varying SSL losses (C) Loss curves

Best Val. before 
early stop

(A) Results of varying perturbation approaches
Figure 4: Results of varying (A) perturbation approaches, (B) SSL losses, and (C) loss curves.

Table 4: Ablation study.
Variant Task 1 Task 2 Task 3 Task 4

R@20 N@20 R@20 N@20 M-ACC I-ACC AUC
w/o SFE 67.02 (-26.81%) 69.38 (-24.77%) 25.31 (-5.98%) 15.14 (-10.68%) 66.45 (-23.20%) 72.48 (-16.99%) 73.39 (-16.54%)
w/o LI 75.45 (-17.60%) 74.29 (-19.44%) 25.96 (-3.57%) 15.83 (-6.61%) 74.77 (-13.59%) 79.75 (-8.66%) 72.44 (-17.62%)

w/o AEPO 77.13 (-15.77%) 79.42 (-13.88%) 26.22 (-2.60%) 16.38 (-3.36%) 86.56 (+0.03%) 86.46 (-0.97%) 66.21 (-24.70%)
w/o AL 87.38 (-4.58%) 88.86 (-3.64%) 26.94 (+0.07%) 16.97 (+0.11%) 86.37 (-0.18%) 87.27 (-0.04%) 83.53 (-5.00%)
SRAL 91.57 92.22 26.92 16.95 86.53 87.31 87.93

time cost per training epoch. However, considering the performance improvement it delivers, we
view this as an acceptable trade-off between model effectiveness and computational efficiency.

Setting R and H . We investigate the impact of Monte Carlo trials R and the reference feature

(B)  varying R, H (A) Varying distance metrics

Figure 3: Results of varying (A) distance metrics
and (B) R and H values.

length H , with the results presented in Fig-
ure 3(B). ¶ As observed, the model’s perfor-
mance improves as both R and H increase. The
performance is particularly sensitive to the R.
For instance, when fixing H at 32, increasing
R from 4 to 32 leads to a significant rise in
Recall@20 from 41.23% to 91.57%, which is at-
tributed to a more accurate approximation of the
cumulative distribution. But the performance
improvement shows diminishing marginal re-
turns at larger parameter values, especially as
the performance curve begins to plateau for R>32. · We also notice that varying H based on fixed
R provide less significant impact. Therefore, we select H=32 and R=128 as our final configuration
to strike an ideal balance between model performance and resource consumption.

4.3.2 STUDY OF ADVERSARIAL ENCODING PERTURBATION AND OPTIMIZATION

Perturbation Approaches. We introduce: ¶ Element-level Perturbation as random dropout or
addition of set elements (DRA), and element replacement (EP). · Set-level Perturbation as subset
sampling (SS) (Yun et al., 2019), and set feature mixing (SFM) (Zhang et al., 2017). ¸ Noise Injection
as direct injection of noise (DIJ) into the encoded set embeddings. As shown in Figure 4(A), both
SRAL and SFM achieve competitive performance, outperforming simple data manipulation methods
like EP and SS. This suggests that perturbing the set features yields more fine-grained and effective
augmentations. Furthermore, compared to DIJ that directly perturbs final set embeddings, our strategy
of perturbing the intermediate encoding process demonstrates superior effectiveness. Finally, while
SRAL’s performance is on par with SFM, it is slightly more efficient (5.7min vs. 5.9min). This is
because our approach perturbs individual sets, whereas SFM requires mixing multiple sets, allowing
SRAL to achieve an better balance between performance and efficiency.

Implementation of Self-supervised Learning Loss. While the specific self-supervised learning
(SSL) objective in Eq. (8) is not the primary focus of this paper, we investigate the flexibility of
our framework with other loss functions. We tested several alternatives, including Set Triplet Loss,
Soft-Nearest Neighbors Loss (Frosst et al., 2019), and Barlow Twins Loss (Zbontar et al., 2021). The
detailed formulations of these objectives can be found in the Appendix appendix E.7. As presented in
Figure 4(B), the results demonstrate that our framework is compatible with various SSL objective
functions, as these variants achieve competitive performance.

Convergence Analysis of Adversarial Encoding Optimization. Figure 4(C) presents the loss
curves to illustrate model convergence. Although SRAL may have a higher complexity, compared to
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its ablated version without adversarial learning (“w/o AL”), we observe that SRAL converges faster
and deeper in practice, reaching its best validation performance early in training (we continued the
training after this point to provide complete loss trajectories). The baseline method while requires
a longer training duration and exhibits greater volatility. This experiment demonstrates SRAL’s
practical efficiency, effectively mitigating potential concerns about its computational overhead due to
its rapid convergence. A more detailed analysis of model scalability is provided in Appendix E.8.

4.3.3 ABLATION STUDY

We evaluate several ablation variants across four tasks. Due to space constraints, we report results
for Friendster, Youshu, LDA-3k on Tasks 1, 3 (R@20 and N@20) and Task 4 (AUC), while Task 2
reports accuracy with MLP and ISAB backbones (M-ACC and I-ACC). From Table 4, we observe
that: ¶ replacing SFE module with mean-pooling (“w/o SFE”) results in substantial performance
degradation despite the auxiliary learning with our encoding perturbation. This clearly validates the
effectiveness and necessity of our SFE for capturing complex set features. · Substituting linear
interpolation in Eq. (3) with a two-layer MLP (“w/o LI”) yields less reliable dimension completion
compared to our implementation. ¸ Variant “w/o AEPO” retains the auxiliary learning objective but
disables the adversarial optimization step. Specifically, we utilize the inner InfoNCE loss but remove
the min-max strategy that generates worst-case perturbations via gradient ascent. The results show
that it negatively impacts performance, particularly on Task 4 where the AUC drops by 24.70%. ¹
In contrast, removing the entire auxiliary learning (“w/o AL”) by training the model solely with the
main task supervision, results in a marginal performance improvement for Task 2.

We attribute this to the specific nature of SRAL+, where its backcone model CrossCBR’s graph
structure is already highly optimized for capturing user-bundle collaborative signals. Our adversarial
learning, which focuses on the bundle-side representation by modeling inter-bundle relationships,
may provide limited complementary information for interaction prediction goal. This suggests a
more integrated framework for this interaction-centric scenario.

5 CONCLUSION AND FUTURE WORK

We introduced SRAL, an effective auxiliary learning framework for Set Representation Learning that
is compatible with set-based retrieval and processing problems. We first introduce a set encoder based
on the 2-Sliced-Wasserstein distance, which effectively captures distributional discrepancies between
sets. We then propose a adversarial learning paradigm that strengthens representations by generating
and optimizating worst-case perturbations to set features and encoding. Experiments demonstrate the
performance superiority of SRAL over competing methods and the efficacy of its constituent design
components. A promising future direction is to investigate the integration of SRAL with approximate
nearest neighbor search algorithms, such as set-vector index construction algorithm and index-based
search approaches (Johnson et al., 2019), for efficient online retrieval settings. Another direction is
to explore the synergy with Large Language Models (LLMs), such as utilizing context-aware LLM
representations as element features, or employing SRAL as a structural adapter to generate compact
soft prompts for LLM-based set reasoning.

STATEMENT

Ethics Statement. This research fully adheres to the ICLR Code of Ethics (https://iclr.cc/
public/CodeOfEthics). We are committed to contributing to society and human well-being
by developing AI methods that enhance drug safety assessment, ultimately benefiting public health.
We have carefully considered potential harm and implemented safeguards to minimize negative
consequences, particularly with regard to patient privacy and data protection. All datasets used are
properly licensed (CC-BY-SA 4.0), and we have ensured appropriate attribution to original creators.

Reproducibility Statement. To ensure full reproducibility of our results, we provide comprehensive
implementation details throughout the paper and appendices. Section 4 and Appendix E contains com-
plete specifications of all experimental details, including data splits, hyperparameters, and optimizer
configurations. We report error bars and statistical significance measures for all experimental results
to ensure robust evaluation. Computational resource requirements, including hardware specifications,
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memory usage, and execution times, are also reported to facilitate reproduction on similar systems.
The codes are available here: https://anonymous.4open.science/r/SRAL_code-69
1E/.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this manuscript, we employed a Large Language Model (LLM) as an assistive tool
mainly for refining prose for grammar, clarity, and conciseness. The LLM did not contribute to
research conception, methodological development, result analysis, or scientific conclusions. All
content, including final text and code, was thoroughly reviewed, edited, and validated by the authors,
who retain full responsibility for the work’s accuracy and integrity.

B EXTENDED RELATED WORK

Set Representation Learning. Traditional set-based problems, e.g., Set Similarity Join (Arasu et al.,
2006; Mann et al., 2016) and Exact Set Similarity Search (Li et al., 2021), leverage rule-based
algorithms to process set data (Deng et al., 2017; Zeakis et al., 2022). For predictive capability, early
machine learning approaches consider kernel-based methods (Jebara et al., 2004; Gretton et al., 2006;
Boiman et al., 2008; Muandet et al., 2012). Other approaches learn permutation-invariant mapping
into a Hilbert space with pooling operations (Zaheer et al., 2017; Skianis et al., 2020; Murphy et al.,
2018; Lee et al., 2019; Zhang et al., 2020; 2019). While some models learn predictive optimal set
permutation (Zhang et al., 2019; Rezatofighi et al., 2018), Zhang et al. (2020) defines canonical
ordering via sorting techniques. Lee et al. (2019) leverages Transformer (Vaswani et al., 2017) for
sets and Jaegle et al. (2021) designs pooling operations using multi-head attention where cross-
attention serves as the permutation-invariant function. Mialon et al. (2021) learns set embeddings
by reducing differences between references and inputs. Lee et al. (2022) leverages box embedding
for sets and Xu et al. (2025) considers the fuzzy set representation concept. Additionally, (Skianis
et al., 2020) is one of the earliest approaches to explicitly incorporate Optimal Transport into set
representation learning. To capture complex set structures, RepSet generates embeddings by solving
a Bipartite Matching problem that optimally aligns the elements of an input set with a collection of
learnable hidden sets. However, unlike this high-dimensional formulation, our SRAL employs the
2-Sliced-Wasserstein metric to bypass the computational bottleneck of exact matching via effective
approximation. Recent models consider meta-learning in addition (Guo et al., 2021a; Lee et al., 2023)
and (Naderializadeh et al., 2021) proposes an effective pooling mechanism to achieve state-of-the-art
performance. Amir & Dym (2025) proposes the FSW embedding to rigorously provide injective
or bi-Lipschitz representations for multisets and measures. Vargas-Calderón (2025) proposes the
quantum deep set modeling and NaderiAlizadeh & Singh (2025) leverages set representations for
protein language modeling.

Self-supervised Learning. It generates augmented data samples and derives supervision signals
to guide learning. Early methods (Chen et al., 2020c; He et al., 2020; Dwibedi et al., 2021; Chen
et al., 2020a;b) establish contrastive frameworks to encourage similar views to cluster while pushing
dissimilar ones apart. Non-contrastive methods effectively learn meaningful representations without
feature collapse. For example, Grill et al. (2020) uses dual networks with a momentum encoder to
minimize positive pair distances; Zbontar et al. (2021) optimizes cross-correlation matrices between
views to approximate identity matrices. While most approaches manipulate input data, recent work
modifies latent space representations directly, potentially reducing bias with less efforts (Yüksel
et al., 2021; Yu et al., 2022). Our work investigates perturbating the set encoding process, providing
theoretical guarantees and outperforming existing augmentation designs.

Distributional Distance Measurement. Existing approaches for quantifying distributional differ-
ences include Kullback-Leibler Divergence (Kullback & Leibler, 1951), Jensen-Shannon Diver-
gence (Endres & Schindelin, 2003)) and Hellinger distance (Hellinger, 1909), etc. The Wasserstein
metric (Kantorovich, 1960), due to its strong theoretical properties, has gained attention recently (Ar-
jovsky et al., 2017; Tolstikhin et al., 2018). However, computing Wasserstein distances becomes
computationally intractable for high-dimensional distributions. While optimization-based solutions
exist (Cuturi, 2013; Solomon et al., 2015), the Sliced-Wasserstein distance (Bonneel et al., 2015;
Kolouri et al., 2019) offers superior efficiency by projecting high-dimensional distributions onto
multiple one-dimensional spaces and leveraging closed-form solutions. This approach has been
successfully applied to numerous domains (Kolouri et al., 2016; Liutkus et al., 2019; Naderializadeh
et al., 2021) and forms the foundation of our method for modeling inter-set distributional similarities.
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C NOTATION EXPLANATIONS

We explain the key notations in Table 1.

Table 1: Notation Table.

Notation Description
Basic Sets and Elements
E = {e1, · · · , en} All elements.
S = {S1, · · · , Sm} A corpus of sets.
Si = {ei,k ∈ E}|Si|k=1 Set Si containing |Si| elements.
Vi = [zi,k ∈ Rd]|Si|k=1 Features for the input set Si.
vi The final vector embedding for the set Si.
Distributions and Optimal Transport
Pi The underlying distribution of elements for set Si.
O A trainable reference distribution.
VO = [zh ∈ Rd]Hh=1 Features for the reference distribution O.
Pg The push-forward distribution of P by function g.
Dα (P,Q) The α-Wasserstein distance between distributions P and Q.
SDα (P,Q) The α-Sliced-Wasserstein Distance between P and Q.
g+ The optimal transport plan.
Sd−1 The unit d-dimensional hypersphere.
Set Feature Encoder (SFE)
θ(x) = w>x A linear projection function parameterized byw ∈ Sd−1.
P θi , O

θ 1D distributions obtained by projecting Pi and O using θ.
V θi = [wTzi,k]

|Si|
k=1 Sliced features of P θi .

V θO = [wTzh]Hh=1 Sliced features of Oθ .
FP (·) The Cumulative Distribution Function (CDF) of a distribution P .
F−1
P (·) The quantile function (inverse CDF) of a distribution P .
τ(xθ|V θO) The rank of a projected value xθ within the sorted values of V θO .
g+(xθ|V θi ) The optimal transport solver from reference slice Oθ to input slice P θi .
SFE(Vi, VO|Θ) The Set Feature Encoder function.
Adversarial Perturbation and Optimization
P ′i , P

′′
i Two perturbed distributions generated from the input set Si.

V ′i Perturbed feature matrix of set Si.
v′i,v

′′
i A pair of perturbed set embeddings for set Si.

ε′i,k Random noise vector added to an element embedding.
σ The adversarial perturbation increment vector.
σ̂ The initial adversarial perturbation before projection.
gσ The gradient of the loss with respect to the perturbation.
vσi The final adversarially perturbed set embedding.
Losses and Hyperparameters
LMain The main loss for the downstream task.
LAux The auxiliary loss from our framework.
Lwd The InfoNCE-based loss for self-supervised learning.
Ξ The set of all trainable model parameters.
R,H Number of distribution slices and feature size of the reference distribution.
π The norm constraint (radius) for perturbations.
η, β Step size for inner maximization and learning rate for outer minimization.
ψ The temperature hyperparameter for the InfoNCE loss.
λ1, λ2 Hyperparameters to balance the main loss, auxiliary loss, and regularizer.

D THEORETICAL PROOFS

Complete Formulation for Eq. (4). Let V θi = [wTzi,k]
|Si|
k=1 and V θO = [wTzh]Hh=1 denote the sliced

features of Piθ and Oθ, respectively. Let any projected input xθ ∈ V θO, the OT solver is formulated
as:

g+(xθ|V θi ) = F−1
Piθ

(
FOθ (x

θ)
)
. (1)
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Proof. The transport distance, as one candidate plan for the α-Wasserstein distance (Eq.(1) in § 2),
can be computed as:

Distance(g+) =
(∫

R
‖xθ − g+(xθ|V θi )‖αdOθ(xθ)

) 1
α

=
(∫

R
‖xθ − F−1

Piθ

(
FOθ (x

θ)
)
‖αdOθ(xθ)

) 1
α

=
(∫ 1

0

‖F−1
Oθ

(y)− F−1
Piθ

(y)‖αdy
) 1
α

= Dα(Oθ, Pi
θ),

(2)

which equals to Dα(Pi
θ, Oθ) because of the symmetry property. This proves to be the optimal

distance for these two slices.

Mapping Procedure for g+. ∀xθ ∈ V θO, let τ(x|V ) be the rank of value x in the ordered set V . The
mapping procedure for g+ is executed as follows:

g+(xθ|V θi ) =


arg min
x′∈V θi

(
τ(x′|V θi ) = τ(xθ|V θO)

)
if H = |Si|;

arg min
x′∈V θi

(
τ(x′|V θi ) ≥ |Si|

H
· τ(xθ|V θO)

)
if H 6= |Si|.

(3)

Proof. The empirical distributions of V θi and V θO, e.g.,

FOθ (x
θ) =

1

H

∑H

h=1
δ(xθ ≥ wT · zh), (4)

are monotonically increasing. If H = |Si|, we can firstly modify the original form of the optimal
transport map F−1

Piθ

(
FOθ (x

θ)
)

to:

g+(xθ|V θi ) = arg min
x′∈V θi

(
FPiθ (x

′) = y
)

where y = FOθ (x
θ). (5)

τ(xθ|V θO) is the ranking of each input xθ in the ascending sorting of V θO, and then we can quantita-
tively replace the term FPiθ (·).

g+(xθ|V θi ) = arg min
x′∈V θi

(
τ(x′|V θi ) = τ(xθ|V θO)

)
if H = |Si|. (6)

If H 6= |Si|, in this work, we applies the linear interpolation to the sorted positions. Therefore, |Si|H
is set as the interpolation point to complete the proof.

Remark 1. Let P ′i and P ′′i denote two perturbed distributions corresponding to the input set Si,
yielding perturbed set embeddings v′i and v′′i . S , ψ, SD2 denote the set dataset, a hyper-parameter,
and the 2-Sliced-Wasserstein distance. For ∀Si ∈ S, we have the following expected equation:

E

[
exp(−||v′i − v′′i ||2/ψ)∑

Sj∈S exp(−||v′i − v′′j ||2/ψ)

]
=

exp(−||(SD2(P ′i , P
′′
i ))||2/ψ)∑

Sj∈S exp(−||(SD2(P ′i , P
′′
j ))||2/ψ)

. (7)

Proof of Remark 1. Let vθrj denote the intermediate embedding derived by the function θr. || denotes
the concatenation operation. Firstly, after setting α=2, we have:

‖v′i − v′′j ‖2∝
∥∥∥ 1

R

∑R

r=1

1

H

∑H

h=1

(
g+(wT

r zh|V ′θri )− g+(wT
r zh|V ′′θrj )

)2 ∥∥∥
2

=
∥∥∥ 1

R

∑R

r=1

1

H

∑H

h=1

(
F−1
P ′i
θr

(
FOθr (wT

r zh)
)
− F−1

P ′′j
θr

(
FOθr (wT

r zh)
))2 ∥∥∥

2

(8)

The inner summation is substituted by recognizing the relationship between the sample mean and the
integral for an empirical distribution. Given an empirical distribution P (x) = 1

H

∑H
h=1 δ(x ≥ Xh),
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the sample mean equals the integral: 1
H

∑H
h=1 f(Xh) =

∫
f(x)dP (x). Then we apply this to the

inner summation, with t = wT
r zh being a sample from Oθr .

1

H

∑H

h=1

(
F−1
P ′i
θr

(
FOθr (t)

)
− F−1

P ′′j
θr

(
FOθr (t)

))2

=

∫ (
F−1
P ′i
θr

(
FOθr (t)

)
− F−1

P ′′j
θr

(
FOθr (t)

))2

dOθr (t)

(9)

For the outer summation, as R→∞, we apply the Law of Large Numbers for integration over the
hypersphere: 1

R

∑R
r=1 f(θr) =

∫
Sd−1 f(θ)dθ. This indicates that the continuous form in expectation

of above formulation can be derived as:

=
(∫

Sd−1

∫
R

(
F−1
P ′i
θ

(
FOθ (t)

)
− F−1

P ′′j
θ

(
FOθ (t)

))2

dOθ(t)dθ
)1/2

=
(∫

Sd−1

∫ 1

0

(
F−1
P ′i
θ (y)− F−1

P ′′j
θ (y)

)2
dydθ

)1/2

=
(∫

Sd−1

D2(P ′i
θ
, P ′′j

θ
)2dθ

)1/2

= SD2(P ′i , P
′′
j ).

(10)

And the computation for P ′i , P
′′
i , and P ′′j are independent which thus complete the proofs.

Remark 2. Our min-max optimization objective in Eq. (10) is approximately equivalent to an implicit
regularization of the SFE’s local Lipschitz continuity for representation stability.

Proof of Remark 2. To find the perturbation ε that maximizes the linear approximation under the
constraint ||σ||2 ≤ π, we align the perturbation σ with the gradient direction. This yields the optimal
perturbation as:

σ = π · gσ
‖gσ‖2

= π · ∇εLwd(Ξ; ε)|ε=0

||∇εLwd(Ξ; ε)|ε=0||2
. (11)

Substituting this σ back into the Taylor expansion of Eq. (11) gives the approximate value of the
maximized loss as follows:

max
‖σ‖2≤π

Lwd(Ξ,σ) ≈ Lwd(Ξ,0) + π · ||∇εLwd(Ξ; ε)|ε=0||2. (12)

Thus, the original min-max objective can be approximated by the following minimization problem:

min
Ξ

(Lwd(Ξ,0) + π||∇εLwd(Ξ;0)||2) . (13)

This formulation explicitly shows that the adversarial objective encourages the minimization of not
only the standard loss Lwd, but also penalizes the norm of the loss’s gradient ||∇εLwd(Ξ;0)||2. This
second term encourages the model to be less sensitive to input perturbations.

As for ∇εLwd term, the loss Lwd is essentially a function of the set embeddings, e.g., vi, which
depend on the perturbation ε via the SFE module: vi(ε) = SFE(V ′ + ε, VO|Θ). We can apply
the multivariable chain rule to decompose the gradient. For simplicity, we consider the gradient’s
dependence on a single embedding vi(ε). The total derivative of Lwd with respect to ε, evaluted at
ε = 0, can be expressed as:

∇εLwd(Ξ;0) =
∑
i∈Batch

(JSFE(V ′i ))T∇viLwd. (14)

Here ∇viLwd is the loss gradient with respect to the vector embedding vi, and JSFE(V ′i ) is the
Jacobian matrix of the SFE function with respect to its input features. The regularizer in Eq. (13)
penalizes the norm of this sum. For this norm to be small, the model is incentivized to reduce the
norms of its constituent components, most notably the spectral norm of the SFE Jacobian, ‖JSFE‖2.

This penalty on the Jacobian norm is directly related to the local Lipschitz continuity of the SFE
function. For a differentiable function, its local Lipschitz constant L over a region V is bounded by
the supremum of the spectral norm of its Jacobian within that region:

L(SFE,V) = sup
V ∈V
||JSFE(V )||2. (15)
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By encouraging a smaller Jacobian norm, our adversarial optimization implicitly regularizes the SFE
to have a smaller local Lipschitz constant. A smaller constant ensures that for any two nearby feature
sets Vi and Vj , the distance between their embeddings is bounded:

||SFE(Vi)− SFE(Vj)||2 ≤ L(SFE) · ||Vi − Vj ||2. (16)

This property means that small, non-semantic perturbations to the input features will only result in
small, bounded changes to the output embedding, which defines the representation stability Donchev
& Farkhi (1998).

E SUPPLEMENTARY DETAILS OF EXPERIMENTS

E.1 HYPER-PARAMETER SETTINGS

We report all hyper-parameter settings in Table 2.

Table 2: Hyper-parameter settings.
Task 1 Task 2 Task 3 Task 4

Friendster LIVEJ Youshu NetEase MLP ISAB LDA-1k LDA-3k LDA-5k
d 128 128 32 32 256 256 128 128 128
H 128 128 32 32 1024 1024 128 128 128
R 32 32 64 128 256 256 32 32 32
π 5 · 10−2 1 · 10−1 5 · 10−1 1 · 10−1 1 · 10−1 1 · 10−2 5 · 10−1 5 · 10−1 5 · 10−1

ψ 1 · 10−1 1 · 10−1 5 · 10−2 1 · 10−1 5 · 10−1 5 · 10−1 1 · 10−1 1 · 10−1 1 · 10−1

η 1 · 10−3 1 · 10−2 1 · 10−1 1 · 10−1 1 · 10−1 1 · 10−2 1 · 10−1 1 · 10−1 1 · 10−1

β 5 · 10−3 1 · 10−2 1 · 10−3 1 · 10−3 1 · 10−3 1 · 10−3 1 · 10−3 1 · 10−3 5 · 10−3

λ1 1 · 10−3 1 · 10−3 1 · 10−2 1 · 10−1 1 · 10−3 1 · 10−2 5 · 10−1 5 · 10−1 5 · 10−1

λ2 1 · 10−4 1 · 10−4 1 · 10−5 1 · 10−4 1 · 10−5 1 · 10−5 1 · 10−4 1 · 10−4 1 · 10−4

E.2 EXPERIMENT CONFIGURATIONS

We implement all models by Python 3.8 and PyTorch 1.12.0 with non-distributed training. We run
on a Linux machine with 4 NVIDIA A100-PCIE-40GB GPUs and 10 vCPU Intel Xeon Processor
(Skylake, IBRS). We adhere to the officially reported hyperparameter settings of all baselines and
conduct a grid search to models without prescribed configurations. The learning rate is tuned in
the range {10−4, 10−3, 10−2}. Optimization for all models is performed using the default Adam
optimizer (Kingma & Ba, 2015). All results are averaged based on five-fold evaluations.

E.3 TASK 1: LEARNING TO RANK SET SIMILARITY

E.3.1 DATASET DESCRIPTIONS

We incorporate two large real-world datasets, i.e., Friendster (Yang & Leskovec, 2015) and
LIVEJ (Mislove et al.) for set similarity learning evaluation. We filter out sets with fewer than
three elements. Specifically, Friendster is the dataset from an online social gaming site1 where
each set corresponds to a group membership. LIVEJ is a dataset from a free online community
LiveJournal2.

With coefficients w1−4 randomly sampled from (0, 1), we incorporate four widely-used similarity
metrics, i.e., Jaccard, Cosine, Normalized Overlap (denoted as NOverlap), and Dice, as the score
functions to construct similar sets. Their formulations are reported in in Table 3. Given a set, e.g., si,
its similarity valueM to anther set, e.g., sj , are then computed with the linear weighted sum:

M(si, sj) =w1 · MJaccard(si, sj) + w2 · MCosine(si, sj)+

w3 · MOverlap(si, sj) + w4 · MDice(si, sj).
(17)

This construction process ensures that the evaluation is free from selection bias and captures a wide
spectrum of possible similar set configurations. With # S and # E denoting the numbers of sets and
elements, the result data statistics are reported in Table 4.

1http://www.friendster.com/
2http://www.livejournal.com/
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Table 3: Similarity metrics.
Jaccard Cosine NOverlap Dice
|s1∩s2|
|s1∪s2|

|s1∩s2|√
|s1|·|s2|

|s1∩s2|
max (|s1|,|s2|)

2·|s1∩s2|
|s1|+|s2|

Table 4: Dataset statistics of Task 1.
# S # E # Avg. E/S

Friendster 889,839 5,501,401 11.29
LIVEJ 1,205,816 1,975,812 9.90

Table 5: Detailed performance comparison for Task 1.
Task 1: Set Similarity Learning

Model Friendster LIVEJ
R@20 N@20 R@100 N@100 R@20 N@20 R@100 N@100

SAP 72.41± 0.18 68.13± 0.29 85.32± 0.15 72.15± 0.26 79.86± 0.11 77.75± 0.14 86.94± 0.09 85.34± 0.12
SMP 70.78± 0.28 68.99± 0.30 81.61± 0.11 72.22± 0.25 78.95± 0.12 76.70± 0.08 86.83± 0.10 84.65± 0.09

DeepSet 63.20± 0.67 60.75± 0.69 76.60± 1.64 69.89± 0.60 75.45± 0.09 74.55± 0.11 83.31± 0.05 79.76± 0.06
RepSet 80.63± 0.19 76.56± 0.21 86.49± 0.14 74.92± 0.23 82.15± 0.18 79.63± 0.22 88.41± 0.15 83.12± 0.19

SAtt 77.52± 0.45 71.92± 0.47 87.51± 0.32 75.21± 0.42 83.79± 0.06 81.73± 0.11 91.39± 0.02 85.07± 0.10
PoT 82.44± 0.12 81.85± 0.16 86.96± 0.15 81.47± 0.18 83.18± 0.14 84.25± 0.17 89.33± 0.11 86.45± 0.13

Set2Box 67.35± 0.22 69.73± 0.25 73.46± 0.18 70.33± 0.20 77.24± 0.20 75.89± 0.23 85.12± 0.16 82.34± 0.21
OTKE 79.53± 0.14 73.68± 0.21 86.64± 0.11 79.59± 0.17 81.45± 0.16 79.82± 0.19 87.95± 0.13 85.10± 0.15
DIEM 82.49± 0.16 81.40± 0.13 88.36± 0.09 81.56± 0.15 83.95± 0.12 84.92± 0.15 89.88± 0.08 87.15± 0.11
PSWE 83.05± 0.09 84.26± 0.15 88.59± 0.05 85.77± 0.14 83.52± 0.09 84.61± 0.13 89.48± 0.02 86.67± 0.09
FSPool 79.90± 0.13 81.96± 0.15 87.76± 0.11 84.41± 0.14 85.36± 0.03 87.17± 0.08 93.07± 0.06 90.29± 0.06
FSW 83.58± 0.13 84.39± 0.10 88.52± 0.07 85.81± 0.12 84.19± 0.05 85.04± 0.06 89.95± 0.09 87.23± 0.10

SRAL 91.57± 0.22 92.22± 0.22 94.53± 0.11 93.01± 0.19 87.56± 0.31 89.31± 0.31 92.93± 0.02 91.25± 0.02
Gain 9.56%∗ 9.28%∗ 6.71%∗ 8.39%∗ 2.58%∗ 2.46%∗ -0.15% 1.06%∗

E.3.2 METHOD DESCRIPTIONS

The methods for set similarity learning are introduced as follows:

• SAP (Lin et al., 2013) denotes the classic implementation with global average pooling methodology
for sets.

• SMP (Lin et al., 2013) is the implementation with set max pooling.
• DeepSet (Zaheer et al., 2017) is another classic set embedding method that learns permutation-

invariant functions with deep neural networks. We implement global mean pooling as the
permutation-invariant function of DeepSet.

• RepSet Skianis et al. (2020) extracts set representations by computing the bipartite matching costs
between the input set and a collection of learnable reference sets.

• SAtt (Lee et al., 2019) is a state-of-the-art method to embed set structures with self-attention
mechanism and Transformer architecture.

• PoT (Guo et al., 2021a) introduces a prototype-oriented optimal transport framework that learns set
representations by minimizing the transport distance between the set’s empirical distribution and
learnable global prototypes.

• Set2Box (Lee et al., 2022) maps sets into hyper-rectangular box embeddings to effectively capture
logical relationships and set boundaries.

• OTKE (Mialon et al., 2021) introduces a trainable embedding scheme based on kernelized optimal
transport to aggregate set features.

• DIEM (Kim, 2022) proposes a differentiable framework to learn informative set interactions and
enhance representation distinctiveness.

• FSPool (Zhang et al., 2020) is a representative set embedding framework with carefully-designed
deep learning architecture.

• PSWE (Naderializadeh et al., 2021) is one of the state-of-the-art deep learning model for set
representation learning.

• FSW (Amir & Dym, 2025) is another state-of-the-art model that utilizes the Fourier transform in
the frequency domain for “multisets”.

E.3.3 DETAILED EXPERIMENTAL RESULTS

For completeness, we present the detailed experimental results for Task 1 in Table 5. These results
including mean scores and standard deviations over multiple runs, substantiate the findings discussed
in the main text, where our model SRAL consistently outperforms all baselines.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E.4 TASK 2: BUNDLE REPRESENTATION LEARNING FOR RECOMMENDATION

E.4.1 DATASET DESCRIPTIONS

Following recent works (Ma et al., 2022; Chang et al., 2020; Deng et al., 2020), we include two
real-world datasets: Youshu3 (Chen et al., 2019) for book list recommendation and NetEase (Cao
et al., 2017) for music playlist recommendation. Dataset statistics are reported in Table 6.

Table 6: Data statistics of Task 2. S, U, and E denote sets (bundles), users, and elements.
Dataset # S # U # E # Avg. E/S
Youshu 4,771 8,039 32,770 37.03
NetEase 22,864 18,528 123,623 77.80

E.4.2 METHOD DESCRIPTIONS

We include the following bundle recommender models:

• MFBPR (Rendle et al., 2012) utilizes the Bayesian Personalized Ranking (BPR) loss within a
Matrix Factorization framework to model collaborative filtering between users and bundles.

• DSBRec is a specialized implementation with DeepSet (Zaheer et al., 2017) and optimize with BPR
loss.

• DAM (Chen et al., 2019) attentively captures bundle representations from associated items and
utilizes multi-task learning to optimize interactions between users and both items and bundles.

• BundleNet (Deng et al., 2020) is a traditional framework for bundle recommendation that constructs
a tripartite graph of user-bundle-element relationships and utilizes Graph Convolution Network
(GCN) for representation learning alongside multi-task learning.

• BGCN (Chang et al., 2020), a bundle recommendation method, dissects user-bundle-element
relationships into two distinct perspectives: bundle-view and item-view graphs.

• CrossCBR (Ma et al., 2022) leverages contrastive learning to achieve cross-view alignment in the
latent space.

E.4.3 DETAILED EXPERIMENTAL RESULTS

Table 7 catalogs the precise outcomes on both the Youshu and NetEase datasets, with standard
deviations included to underscore the stability of our findings. The results show that SRAL+

consistently outperforms other rival methods with low standard deviations across all runs.

E.5 TASK 3: POINT CLOUD PROCESSING

E.5.1 DATASET DESCRIPTIONS

For this study, we utilize ModelNet40 dataset (Wu et al., 2015), comprising 3D point clouds extracted
from triangular meshes of 12,311 computer-aided design models across 40 distinct object categories.
Each object is represented by a set of 1024 points, following methodologies outlined in (Guo et al.,
2021b; Qi et al., 2017).

E.5.2 DETAILED EXPERIMENTAL RESULTS

For Task 3, Table 8 summarizes the comparative test accuracies using both MLP and ISAB backbones.
The inclusion of standard deviations further illustrates the stability of these outcomes.

E.6 TASK 4: TOPIC SET EXPANSION

E.6.1 DATASET DESCRIPTIONS

We leverage three datasets4, i.e., LDA-1k, LDA-3k, and LDA-5k, from previous work (Zaheer
et al., 2017) that are originally processed from latent Dirichlet allocation (Blei et al., 2003). They

3https://github.com/mysbupt/CrossCBR/blob/master/dataset.tgz
4https://github.com/manzilzaheer/DeepSets/tree/master/SetExpansion/data

/lda
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Table 7: Detailed performance comparison for Task 2.
Task 2: Bundle Recommendation

Model Youshu NetEase
R@20 N@20 R@100 N@100 R@20 N@20 R@100 N@100

MFBPR 19.97± 0.45 11.67± 0.52 44.33± 0.33 17.95± 0.41 5.21± 0.15 2.98± 0.11 14.15± 0.18 4.92± 0.12
DSBRec 20.46± 0.41 12.03± 0.31 45.34± 0.32 18.12± 0.28 5.51± 0.10 3.04± 0.08 14.76± 0.13 5.14± 0.14

DAM 20.83± 0.36 11.99± 0.22 45.58± 0.26 18.38± 0.33 5.54± 0.13 3.11± 0.09 14.98± 0.16 5.12± 0.10
BundleNet 22.85± 0.35 11.90± 0.25 47.84± 0.22 19.19± 0.31 6.17± 0.12 3.44± 0.07 16.26± 0.11 5.83± 0.08

BGCN 25.22± 0.12 14.54± 0.10 49.38± 0.26 21.18± 0.29 7.04± 0.10 3.91± 0.08 17.25± 0.15 6.51± 0.09
CrossCBR 26.41± 0.42 16.55± 0.23 51.90± 0.44 23.30± 0.25 7.21± 0.11 4.08± 0.06 18.32± 0.13 6.77± 0.07
SRAL+ 26.92± 0.09 16.95± 0.08 52.18± 0.19 23.64± 0.06 7.37± 0.11 4.21± 0.05 18.66± 0.01 7.01± 0.06

Gain 1.93%∗ 2.42%∗ 0.54%∗ 1.46%∗ 2.22%∗ 3.19%∗ 1.86%∗ 3.54%∗

Table 8: Test accuracy (%) of SRAL and competing methods for Task 3.
Task 3: Point Cloud Processing

Backbone SAP SMP RepSet SAtt PoT Set2Box OTKE DIEM PSWE FSPool FSW SRAL Gains
MLP 57.65 ± 0.52 86.35 ± 0.43 83.45 ± 0.55 85.89 ± 0.41 85.20 ± 0.48 82.15 ± 0.64 85.92 ± 0.38 85.58 ± 0.42 86.41 ± 0.39 85.76 ± 0.32 86.38 ± 0.35 86.53 ± 0.36 +0.14%
ISAB 85.45 ± 0.16 86.82 ± 0.49 86.05 ± 0.31 86.78 ± 0.28 86.55 ± 0.25 85.88 ± 0.34 86.70 ± 0.29 86.72 ± 0.26 86.85 ± 0.30 86.88 ± 0.53 86.93 ± 0.21 87.31 ± 0.23 +0.44%∗

respectively contain 2,000, 6,000, and 10,000 sets and 17,016, 37,718 and 61,127 vocabulary elements.
Their average elements per set are around 25.

E.6.2 DETAILED EXPERIMENTAL RESULTS

The complete results with standard deviations of Task 4 evaluation are reported in Table 9.

E.7 IMPLEMENTATION OF SELF-SUPERVISED LEARNING LOSS

We implement the following self-supervised learning losses for comparison:

• Set Triplet Loss:
L =

∑
Si,Sj∈S

max
(
d (vi,v

′
i)− d

(
vi,v

′
j

)
+ α, 0

)
. (18)

where α is the hyperparameter.
• Soft-Nearest Neighbors Loss:

L = − log
exp(sim(v′i,v

′′
i )/τ)∑

j 6=i exp(sim(v′i,v
′
j)/τ)

− log
exp(sim(v′′i ,v

′
i)/τ)∑

j 6=i exp(sim(v′′i ,v
′′
j )/τ)

, (19)

where we use inverse Euclidean distance to implement the sim function. For this experiment, it
is important to note that these metrics cannot be directly integrated into our SFE architecture.
Therefore, we made adaptations for them as: for sets of varying sizes, we first aggregate their
element embeddings using mean pooling to obtain a single vector representation for each set.
Subsequently, we employ each respective metric to calculate the distributional distance. The
training objective is to align these distances with the ground-truth similarity rankings from Task 1.

• Barlow Twins Loss:

L =

D∑
k=1

(1− Ckk)2 + λ

D∑
k=1

∑
l 6=k

(Ckl)
2, (20)

where C = 1
BatchSizenorm(V ′)T · norm(V ′′). Here V ′ and V ′′ denote the perturbed batch set

embeddings.

E.8 SCALABILITY STUDY OF SRAL

To assess the scalability of SRAL, we derived nine proportionally-sized sub-datasets from Friendster.
Figure 1 presents a scalability analysis of SRAL on subsets of the Friendster dataset. We have two
main observations. First, the training time per epoch (blue bars, left axis) exhibits a gradually growing
trend as the data volume increases. This prevents prohibitive computational costs on larger datasets
and confirms the model’s acceptable efficiency. Second, the model’s performance, measured by
Recall@20 (orange line, right axis), remains generally consistent with slight fluctuation. These results
demonstrate the effectiveness of our SRAL model, making it a practical solution for large-scale
settings.
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Table 9: AUC results (%) of SRAL and competing methods for Task 4.
Task 4: Topic Set Expansion

Data SAP SMP DeepSet RepSet SAtt PoT Set2Box OTKE DIEM PSWE FSPool FSW SRAL Gains
LDA-1k 54.34 ± 3.91 67.21 ± 6.69 54.98 ± 5.11 57.32 ± 2.34 58.55 ± 2.70 58.94 ± 3.12 50.59 ± 4.05 62.95 ± 3.88 63.58 ± 3.56 58.36 ± 5.49 75.67 ± 4.01 64.56 ± 3.41 80.94 ± 1.38 +6.96%∗
LDA-3k 51.95 ± 1.87 74.40 ± 2.12 51.96 ± 3.91 58.33 ± 1.20 77.48 ± 3.84 73.40 ± 2.45 64.98 ± 3.22 77.59 ± 2.91 75.67 ± 2.15 78.44 ± 2.04 70.57 ± 1.38 79.67 ± 2.35 87.93 ± 1.92 +10.37%∗
LDA-5k 51.34 ± 1.34 80.65 ± 1.18 52.05 ± 1.28 61.39 ± 2.31 74.59 ± 3.37 75.11 ± 2.08 65.67 ± 2.54 72.57 ± 2.76 76.96 ± 2.33 78.81 ± 2.92 71.16 ± 1.78 80.94 ± 2.34 86.20 ± 0.67 +6.50%∗
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Figure 1: Results with varying data sizes.

Table 10: Runtime comparison for Task 1 and Task 2.
Task 1: Set Similarity Learning Runtime

Model Friendster LIVEJ
In Total Per-epoch In Total Per-epoch

PSWE 3.1h 1.6min 5.1h 2.7min
FSPool 2.9h 1.5min 6.5h 2.1min
SRAL 3.9h 5.6min 7.7h 7.9min

Task 2: Bundle Recommendation Runtime

Model Youshu NetEase
In Total Per-epoch In Total Per-epoch

BGCN 12.6min 6.3s 23.4min 9.7s
CrossCBR 10.4min 4.5s 19.5min 8.4s

SRAL+ 24.5min 42.2s 44.8min 57.4s

Table 11: Runtime comparison for Task 3 and Task 4.
Task 3: Point Cloud Processing Runtime

Model MLP ISAB
In Total Per-epoch In Total Per-epoch

PSWE 1.6h 27.4s 1.8h 29.5s
FSPool 1.2h 23.9s 1.6h 26.3s
SRAL 2.3h 1.6min 2.7h 1.7min

Task 4: Topic Set Expansion Runtime

Model LDA-1k LDA-3k LDA-5k
In Total Per-epoch In Total Per-epoch In Total Per-epoch

PSWE 10.5s 0.3s 15.6s 0.3s 18.5s 0.3s
FSPool 9.8s 0.2s 14.4s 0.2s 17.4s 0.3s
SRAL 14.3s 0.5s 23.5s 0.5s 31.6s 0.6s

E.9 COMPUTATION EFFICIENCY ANALYSIS

E.9.1 COMPUTATION COST COMPARISON

We report the training time cost of SRAL and compare it with two most competitively performing
models across all tasks. As shown in Tables 10 and 11, although our SRAL model incurs a higher
"Per-epoch" computational cost compared to the baselines, its "In Total" training time remains
comparable. This is because our proposed Adversarial Encoding Perturbation and Optimization
mechanism well promotes the model convergence, as we analyzed earlier in § 4.3.2.

E.9.2 MODULE COMPUTATION COST

To offer deeper insights into the computational overhead, we break down the per-epoch training time
for individual modules using the Friendster dataset from Task 1 as follows:

As shown in Table 12, the Adversarial Encoding Perturbation and Optimization (AEPO) module
incurs the highest computational cost among all components. This overhead primarily arises from the
adversarial perturbation generation and the iterative min-max optimization process. Nevertheless,
considering its substantial contributions to accelerating convergence and significantly improving
training stability, we believe that this computational expenditure constitutes a worthwhile trade-off.

E.10 COMPARISON WITH VANILLA OT-BASED SOLUTIONS

While Optimal Transport (OT) has been explored in set representation learning, e.g., RepSet Skianis
et al. (2020), our approach distinguishes itself through the utilization of the Sliced-Wasserstein (SW)
distance and a tailored adversarial enhancement mechanism. RepSet formulates the set distance
as a bipartite matching problem, which is equivalent to exact OT, and offers an approximation
variant (ApproxRepSet) by relaxing constraints to a semi-relaxed OT problem. To provide the

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 12: Training time cost of each major module.
SRAL (complete) SRAL (SFE Module) SRAL (AEPO) SRAL (Main Loss)

Youshu 5.6min 1.8min 3.3min 0.1min

comparison, we conducted experiments on the Friendster dataset (Task 1) covering three aspects: (1)
direct performance comparison against RepSet and ApproxRepSet; (2) evaluating RepSet variants as
encoders within our SRAL framework. The results are summarized in Table 13.

Performance Analysis. We observe that our SRAL outperforms the vanilla RepSet baseline; and the
approximation variant ApproxRepSet exhibits inferior performance. We attribute this gap to the nature
of the “semi-relaxed” approximation employed in ApproxRepSet. As noted in Skianis et al. (2020),
dropping constraints to achieve computational efficiency may sacrifice rigorous metric properties,
such as the triangle inequality, and makes the optimization prone to local optima. In contrast, our
SW-based approach preserves key geometric properties while remaining computationally efficient,
resulting in superior representation stability.

Encoder Compatibility. When integrating RepSet as the encoder within our framework, we observe
a performance gain but still falls short of our native SRAL model. This empirical finding validates
our theoretical analysis in Remark 1: our AEPO mechanism is specifically tailored for the Set Feature
Encoder (SFE) based on Sliced-Wasserstein metric. The adversarial perturbations generated by
AEPO aim to maximize discrepancies in the embedding space, which are positively correlated in
expectation with the Sliced-Wasserstein distance. In contrast, such a direct perturbation may not hold
for the bipartite matching objective in RepSet, rendering the adversarial optimization less effective in
capturing distributional semantics.

Table 13: Performance comparison with RepSet and its variants.
RepSet SRAL (RepSet) ApproxRepSet SRAL (ApproxRepSet) SRAL

Recall@20 80.63 82.25 77.81 78.93 91.57
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