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ABSTRACT

Advances in I.T. infrastructure has led to the collection of longer sequences of
time-series. Such sequences are typically non-stationary, exhibiting distribution
shifts over time – a challenging scenario for the forecasting task, due to the prob-
lems of covariate shift, and conditional distribution shift. In this paper, we show
that deep time-index models possess strong synergies with a meta-learning formu-
lation of forecasting, displaying significant advantages over existing neural fore-
casting methods in tackling the problems arising from non-stationarity. These
advantages include having a stronger smoothness prior, avoiding the problem of
covariate shift, and having better sample efficiency. To this end, we propose Deep-
Time, a deep time-index model trained via meta-learning. Extensive experiments
on real-world datasets in the long sequence time-series forecasting setting demon-
strate that our approach achieves competitive results with state-of-the-art methods,
and is highly efficient. Code is attached as supplementary material, and will be
publicly released.

1 INTRODUCTION

Time-series forecasting has important applications across business and scientific domains, such
as demand forecasting (Carbonneau et al., 2008), capacity planning and management (Kim,
2003), and anomaly detection (Laptev et al., 2017). With the advances of I.T. infrastructure,
time-series are collected over longer durations, and at a higher sampling frequency. This has led to
time-series spanning tens-of-thousands to millions of time steps, on which we would like to perform
forecasting on. Such datasets face the unique challenge of non-stationarity, where long sequences
face distribution shifts over time, due to factors like concept drift. This has practical implications
on forecasting models, which face a degradation in performance at test time (Kim et al., 2021) due
to covariate shift, and conditional distribution shift (see Appendix B for formal definitions).
Table 1: Time-index models are defined to be models whose predictions, ŷt, are purely func-
tions of the current time-index features, τt, e.g. relative time-index (1, 2, 3, ...), datetime fea-
tures (minute-of-hour, week-of-day, etc.). Historical-value models, whose predictions of future time
step(s), ŷt+1, are explicit functions of past observations, (yt,yt−1, . . .), and optionally covariates,
(zt+1, zt, zt−1, . . .), which can include exogenous time-series or even datetime features.

Time-index Models Historical-value Models
ŷt = f(τt) ŷt+1 = f(yt,yt−1, . . . ,zt+1, zt, . . .)

E.g.: DeepTime, Prophet, Gaussian process E.g.: N-HiTS, Autoformer, DeepAR

In this work, we posit that deep time-index models exhibit strong synergies with a meta-learning
formulation to tackle the problem of non-stationary forecasting, whereas existing neural forecasting
methods, which are historical-value models, are unable to take full advantage of this formulation,
and are still susceptible to the problem of covariate shift. In the following, we discuss time-index
models and their deep counterparts, highlighting how simple deep time-index models are unable
to perform forecasting (i.e. extrapolate from historical training data). Yet, endowing them with a
meta-learning formulation solves this problem. Thereafter, we demonstrate the advantages of deep
time-index meta-learning for non-stationary forecasting and how they alleviate the issues faced by
historical-value models, which are namely: (i) meta-learning is an effective solution for conditional
distribution shift, (ii) they avoid the problem of covariate shift, (iii) have stronger sample efficiency,
and (iv) that time-index models have a stronger smoothness prior.
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Figure 1: Non-stationary time-series degrade model performance due to covariate shifts and con-
ditional distributional shifts. Such behaviors can be modelled as locally stationary processes, by
which contiguous segments are assumed to be stationary. Meta-learning takes advantage of this as-
sumption to adapt to these locally stationary distributions. Yet, existing methods which model the
conditional distribution, p(yt+1|yt, . . .), are still susceptible to covariate shifts since the meta model
takes time-series values as input.
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(b) With Meta-learning (DeepTime)
Figure 2: (a) A naive deep time-index model. We visualize a reconstruction of the historical training
data, as well as the forecasts. As can be seen, it overfits to historical data and is unable to extrapolate.
This model corresponds to (+Local) Table 3 of our ablations. (b) DeepTime, our proposed approach,
trained via a meta-learning formulation, successfully learns the appropriate function representation
and is able to extrapolate. Visualized here is the last variable of the ETTm2 dataset.

Deep Time-index Models On the one hand, classical time-index methods (Taylor & Letham,
2018; Corani et al., 2021; Ord et al., 2017) rely on predefined parametric representation functions
yt = f(τt) + εt, where εt represents idiosyncratic changes not accounted for by the model and
f could be some polynomial function to represent trend, Fourier series to represent seasonality, or
a composition of seasonal-trend components. While these functions are simple and easy to learn,
the choice of representation function requires strong domain expertise or computationally heavy
cross-validation. Furthermore, predefining the representation function is a strong assumption and
may fail under distribution shifts. On the other hand, while deep time-index models (letting f be
a deep neural network) present a deceptively clear path to approximate the representation function
in a data-driven manner, deep time-index models are too expressive. Trained via straightforward
supervised learning on historical values without any inductive bias, they are unable to extrapolate to
future time steps (visualized in Figure 2), and a meta-learning formulation is required to do so – this
formulation has the added benefit of handling non-stationary forecasting.

Advantages of Deep Time-index Meta-learning Firstly, distribution shift of input statistics
sharply degrade the prediction accuracy of deep learning models (Nado et al., 2020). Historical-
value models, which take past observations as input, suffer from this as an effect of covariate shift.
Time-index models easily sidestep this problem since they take time-index features as input. Next,
meta-learning is an effective solution to tackle the problem of conditional distribution shift – nearby
time steps are assumed to follow a locally stationary distribution (Dahlhaus, 2012; Vogt, 2012) (see
Figure 1), considered to be a task. The base learner adapts to this locally stationary distribution,
while the meta learner generalizes across various task distributions. In principle, historical-value
models are able to take advantage of the meta-learning formulation, however, they still suffer from
the problem of covariate shift and sample efficiency issues. Time-index models are also able to
achieve greater sample efficiency in the meta-learning formulation. Like many existing state-of-
the-art forecasting approaches, time-index models are direct multi-step (DMS) approaches1. For
a lookback window of length L and forecast horizon of length H , a historical-value DMS model
requires N +L+H−1 time steps to construct a support set of size N , whereas a time-index model
only requires N time steps. Not only does this marked increase in sample efficiency mean that

1DMS methods directly predict the entire forecast horizon, and are contrasted with iterative multi-step (IMS)
methods. Further discussion on DMS/IMS, and a taxonomy of forecasting methods in Appendix C.
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time-index models can achieve an improved task generalization error bound (Appendix Q), they are
also better able to adhere to the assumption of a locally stationary distribution since using more time
steps leads to the risk of a non-stationary support set. Finally, time-index models have a stronger
smoothness prior (Bengio et al., 2013), i.e. t ≈ t′ =⇒ τt ≈ τt′ =⇒ f(τt) ≈ f(τt′), whereas
the complicated parameterization of historical-value models provide no such inductive biases.

To this end, we propose DeepTime, a deep time-index model, endowed with a meta-learning formu-
lation. We leverage implicit neural representations (INR) (Sitzmann et al., 2020b) as our choice of
deep time-index models, and also introduce a novel concatenated Fourier features layer to efficiently
learn high frequency patterns. The meta-learning formulation is instantiated as a closed-form ridge
regressor (Bertinetto et al., 2019) to efficiently tackle the meta-learning formulation. DeepTime
manages to overcome the limitations of a naive deep time-index model by learning the appropriate
inductive biases for extrapolation over the forecast horizon. It is also more effective than existing
historical-value methods at non-stationary time-series forecasting by learning a global meta model
shared across tasks and performs adaptation on a locally stationary task, and also sidesteps the
covariate shift problem. To summarize, the key contributions of our work are as follows:

• We introduce a novel forecasting as meta-learning framework for deep time-index models,
enabling them learn the appropriate representation function and tackle the problem of non-
stationary forecasting. This is distinct from existing work which leverages meta-learning
on historical-value models for adapting to new time-series datasets, where tasks are defined
to be the entire time-series (Grazzi et al., 2021).

• We propose DeepTime, leveraging an INR with concatenated Fourier features and closed-
form ridge regressor to achieve a highly efficient forecasting model.

• We conduct extensive experiments on the long sequence time-series forecasting (LSTF)
datasets, demonstrating DeepTime to be extremely competitive. We perform ablation stud-
ies to better understand the contribution of each component of DeepTime, and finally show
that it is highly efficient in terms of runtime and memory.

2 DEEPTIME

Problem Formulation In time-series forecasting, we consider a time-series dataset
(y1,y2, . . . ,yT ), where yt ∈ Rm is the m-dimension observation at time t. Given a look-
back window Yt−L:t = [yt−L; . . . ;yt−1]

T ∈ RL×m of length L, the goal of forecasting is to
construct a point forecast over a horizon of length H , Yt:t+H = [yt; . . . ;yt+H−1]

T ∈ RH×m.
The goal is to learn a time-index model, f : R → Rm, f : τt 7→ ŷt, where τt is a time-index
feature, to quickly adapt to observations in the lookback window, (τt−L:t,Yt−L:t), by minimizing a
reconstruction loss L : Rm × Rm → R. Then, we can query it over the forecast horizon to obtain
forecasts, Ŷt:t+H = f(τt:t+H).

In the following, we first describe our forecasting as meta-learning framework on time-index mod-
els. We emphasize that this formulation falls within the standard time-series forecasting problem
and requires no extra information. Next, we further elaborate on our proposed model architecture,
and how it uses a differentiable closed-form ridge regression module to efficiently tackle forecasting
as meta-learning problem. Psuedocode of DeepTime is available in Appendix E.

2.1 FORECASTING AS META-LEARNING

In time-index meta-learning, each lookback window and forecast horizon pair, (Yt−L:t,Yt:t+H)
is a task. This task yields a single support and query set, which are the lookback win-
dow and forecast horizon respectively. Each time coordinate and time-series value pair,
(τt+i,yt+i), is an input-output sample, i.e. DS = {(τt−L,yt−L), . . . , (τt−1,yt−1)}, DQ =
{(τt,yt), . . . , (τt+H−1,yt+H−1)}, where τt+i = i+L

L+H−1 is a [0, 1]-normalized time-index. The
time-index model, f , is parameterized by ϕ and θ, the meta and base parameters respectively, and
the bi-level optimization problem can be formalized as:

ϕ∗ = argmin
ϕ

T−H+1∑
t=L+1

H−1∑
j=0

L(f(τt+j ; θ
∗
t , ϕ),yt+j) (1)

s.t. θ∗t = argmin
θ

−1∑
j=−L

L(f(τt+j ; θ, ϕ),yt+j) (2)
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Figure 3: Illustration of DeepTime. A time-series dataset can be split into M tasks as given in the
problem formulation. For a given task, the lookback window represents the support set, and the
forecast horizon represents the query set. gϕ represents the meta model associated with the meta
parameters. ϕ is shared between the lookback window and forecast horizon. Inputs to gϕ are not
normalized due to notation constraints on this illustration. The ridge regressor performs the inner
loop optimization, while outer loop optimization is performed over samples from the horizon. As
illustrated in Figure 3b, DeepTime has a simple overall architecture, comprising of a random Fourier
features layer, an MLP, and a ridge regressor.

Here, the outer summation in Equation (1) over index t represents each lookback-horizon window,
corresponding to each task in meta-learning, and the inner summation over index j represents each
sample in the query set, or equivalently, each time step in the forecast horizon. The summation in
Equation (2) over index j represents each sample in the support set, or each time step in the lookback
window. This is illustrated in Figure 3a.

To understand how our meta-learning formulation helps to learn an appropriate function represen-
tation from data, we examine how the meta-learning process performs a restriction on hypothe-
sis class of the model f . The original hypothesis class of our model, or function representa-
tion, HINR = {f(τ ; θ, ϕ) | θ ∈ Θ, ϕ ∈ Φ}, is too large and provides no guarantees that train-
ing on the lookback window leads to good extrapolation. The meta-learning formulation allows
DeepTime to restrict the hypothesis class of the representation function, from the space of all
K-layered INRs, to the space of K-layered INRs conditioned on the optimal meta parameters,
HDeepTime = {f(τ ; θ, ϕ∗) | θ ∈ Θ}, where the optimal meta parameters, ϕ∗, is the minimizer of
a forecasting loss (as specified in Equation (1)). Given this hypothesis class, local adaptation is
performed over HDeepTime given the lookback window, which is assumed to come from a locally
stationary distribution, resolving the issue of non-stationarity.

2.2 MODEL ARCHITECTURE

Implicit Neural Representations The class of deep models which map coordinates to the value at
that coordinate using a stack of multi-layer perceptrons (MLPs) is known as INRs (Sitzmann et al.,
2020b; Tancik et al., 2020). We make use a of them as they are a natural fit for time-index models,
to map a time-index to the value of the time-series at that time-index. A K-layered, ReLU (Nair &
Hinton, 2010) INR is a function fθ : Rc → Rm which has the following form:

z(0) = τ

z(k+1) = max(0,W (k)z(k) + b(k)), k = 0, . . . ,K − 1

fθ(τ ) = W (K)z(K) + b(K) (3)
where τ ∈ Rc is the time-index. Note that c = 1 for our proposed approach as specified in Sec-
tion 2.1, but we use the notation τ ∈ Rc to allow for generalization to cases where datetime features
are included. Tancik et al. (2020) introduced a random Fourier features layer which allows INRs to
fit to high frequency functions, by modifying z(0) = γ(τ ) = [sin(2πBτ ), cos(2πBτ )]T , where
each entry in B ∈ Rd/2×c is sampled from N (0, σ2) with d is the hidden dimension size of the INR
and σ2 is the scale hyperparameter. [·, ·] is a row-wise stacking operation.
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Concatenated Fourier Features While the random Fourier features layer endows INRs with the
ability to learn high frequency patterns, one major drawback is the need to perform a hyperparam-
eter sweep for each task and dataset to avoid over or underfitting. We overcome this limitation
with a simple scheme of concatenating multiple Fourier basis functions with diverse scale param-
eters, i.e. γ(τ ) = [sin(2πB1τ ), cos(2πB1τ ), . . . , sin(2πBSτ ), cos(2πBSτ )]

T , where elements
in Bs ∈ Rd/2×c are sampled from N (0, σ2

s), and W (0) ∈ Rd×Sd. We perform an analysis in
Section 3.3 and show that the performance of our proposed Concatenated Fourier Features (CFF)
does not significantly deviate from the setting with the optimal scale parameter obtained from a
hyperparameter sweep.

Differentiable Closed-form Solvers One key aspect to tackling forecasting as a meta-learning
problem is efficiency. Optimization-based meta-learning approaches originally perform an expen-
sive bi-level optimization procedure on the entire neural network model by backpropagating through
inner gradient steps (Ravi & Larochelle, 2017; Finn et al., 2017). Since each forecast is now treated
as an inner loop optimization problem, it needs to be sufficiently fast to be competitive with com-
peting methods. We achieve this by restricting the inner loop optimization to only apply to the last
layer of the INR. As a result, we can perform the inner loop optimization on this linear layer using
the closed-form solution of a ridge regressor for the case of mean squared error loss. We note that
our formulation is general, and any differentiable solver can be used instead (Bertinetto et al., 2019).
This means that for a K-layered model, ϕ = {W (0), b(0), . . . ,W (K−1), b(K−1), λ} are the meta
parameters and θ = {W (K)} are the base parameters, following notation from Equation (3). Then
let gϕ : R → Rd be the meta learner where gϕ(τ ) = z(K). For task t with the corresponding
lookback-horizon pair, (Yt−L:t,Yt:t+H), the support set features obtained from the meta learner is
denoted Zt−L:t = [gϕ(τt−L); . . . ; gϕ(τt−1)]

T ∈ RL×d, where [·; ·] is a column-wise concatenation
operation. The inner loop thus solves the optimization problem:

W
(K)∗
t = argmin

W
||Zt−L:tW − Yt−L:t||2 + λ||W ||2

= (ZT
t−L:tZt−L:t + λI)−1ZT

t−L:tYt−L:t (4)

Now, let Zt:t+H = [gϕ(τt); . . . ; gϕ(τt+H−1)]
T ∈ RH×d be the query set features. Then, our

predictions are Ŷt:t+H = Zt:t+HW
(K)∗
t . This closed-form solution is differentiable, which en-

ables gradient updates on the parameters of the meta learner, ϕ. A bias term can be included
for the closed-form ridge regressor by appending a scalar 1 to the feature vector gϕ(τ ). The
end result of training DeepTime on a dataset is the restricted hypothesis class HDeepTime ={
gϕ∗(τ )TW (K) | W (K) ∈ Rd×m

}
. This is illustrated in Figure 3b.

Some confusion regarding DeepTime’s categorization as a time-index model may arise from the
above simplified equation for predictions, since forecasts are now a function the lookback window
due to the closed-form solution of W (K)∗

t . However, we highlight that DeepTime is a meta-learning
algorithm on top of a deep time-index model – it comprises a learning algorithm, A : H×RL×m →
H, specified in Equation (2) (the inner loop optimization step), and the deep time-index model itself,
f ∈ HDeepTime. Thus, forecasts are of the form, ŷt+h = A(f,Yt−L:t)(τt+h), and as can be seen,
while the inner loop optimization step is a function of past observations, the adapted time-index
model it yields is purely a function of time-index features. Further discussion can be found in
Appendix D.

3 EXPERIMENTS

We evaluate DeepTime on both synthetic datasets, and a variety of real-world data. We ask the
following questions: (i) Is DeepTime, trained on a family of functions following the same parametric
form, able to perform extrapolation on unseen functions? (ii) How does DeepTime compare to
other forecasting models on real-world data? (iii) What are the key contributing factors to the good
performance of DeepTime?

3.1 EXPERIMENTS ON SYNTHETIC DATA

We first consider DeepTime’s ability to extrapolate on the following functions specified by some
parametric form: (i) the family of linear functions, y = ax + b, (ii) the family of cubic functions,
y = ax3+bx2+cx+d, and (iii) sums of sinusoids,

∑
j Aj sin(ωjx+φj). Parameters of the functions
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Figure 4: Predictions of DeepTime on three unseen functions for each function class. The orange
line represents the split between lookback window and forecast horizon.

Table 2: Multivariate forecasting benchmark on long sequence time-series forecasting. Best results
are highlighted in bold, and second best results are underlined.

Methods DeepTime NS Transformer N-HiTS ETSformer FEDformer Autoformer Informer LogTrans GP

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

2 96 0.166 0.257 0.192 0.274 0.176 0.255 0.189 0.280 0.203 0.287 0.255 0.339 0.365 0.453 0.768 0.642 0.442 0.422
192 0.225 0.302 0.280 0.339 0.245 0.305 0.253 0.319 0.269 0.328 0.281 0.340 0.533 0.563 0.989 0.757 0.605 0.505
336 0.277 0.336 0.334 0.361 0.295 0.346 0.314 0.357 0.325 0.366 0.339 0.372 1.363 0.887 1.334 0.872 0.731 0.569
720 0.383 0.409 0.417 0.413 0.401 0.426 0.414 0.413 0.421 0.415 0.422 0.419 3.379 1.388 3.048 1.328 0.959 0.669

E
C

L

96 0.137 0.238 0.169 0.273 0.147 0.249 0.187 0.304 0.183 0.297 0.201 0.317 0.274 0.368 0.258 0.357 0.503 0.538
192 0.152 0.252 0.182 0.286 0.167 0.269 0.199 0.315 0.195 0.308 0.222 0.334 0.296 0.386 0.266 0.368 0.505 0.543
336 0.166 0.268 0.200 0.304 0.186 0.290 0.212 0.329 0.212 0.313 0.231 0.338 0.300 0.394 0.280 0.380 0.612 0.614
720 0.201 0.302 0.222 0.321 0.243 0.340 0.233 0.345 0.231 0.343 0.254 0.361 0.373 0.439 0.283 0.376 0.652 0.635

E
xc

ha
ng

e 96 0.081 0.205 0.111 0.237 0.092 0.211 0.085 0.204 0.139 0.276 0.197 0.323 0.847 0.752 0.968 0.812 0.136 0.267
192 0.151 0.284 0.219 0.335 0.208 0.322 0.182 0.303 0.256 0.369 0.300 0.369 1.204 0.895 1.040 0.851 0.229 0.348
336 0.314 0.412 0.421 0.476 0.371 0.443 0.348 0.428 0.426 0.464 0.509 0.524 1.672 1.036 1.659 1.081 0.372 0.447
720 0.856 0.663 1.092 0.769 0.888 0.723 1.025 0.774 1.090 0.800 1.447 0.941 2.478 1.310 1.941 1.127 1.135 0.810

Tr
af

fic

96 0.390 0.275 0.612 0.338 0.402 0.282 0.607 0.392 0.562 0.349 0.613 0.388 0.719 0.391 0.684 0.384 1.112 0.665
192 0.402 0.278 0.613 0.340 0.420 0.297 0.621 0.399 0.562 0.346 0.616 0.382 0.696 0.379 0.685 0.390 1.133 0.671
336 0.415 0.288 0.618 0.328 0.448 0.313 0.622 0.396 0.570 0.323 0.622 0.337 0.777 0.420 0.733 0.408 1.274 0.723
720 0.449 0.307 0.653 0.355 0.539 0.353 0.632 0.396 0.596 0.368 0.660 0.408 0.864 0.472 0.717 0.396 1.280 0.719

W
ea

th
er 96 0.166 0.221 0.173 0.223 0.158 0.195 0.197 0.281 0.217 0.296 0.266 0.336 0.300 0.384 0.458 0.490 0.395 0.356

192 0.207 0.261 0.245 0.285 0.211 0.247 0.237 0.312 0.276 0.336 0.307 0.367 0.598 0.544 0.658 0.589 0.450 0.398
336 0.251 0.298 0.321 0.338 0.274 0.300 0.298 0.353 0.339 0.380 0.359 0.359 0.578 0.523 0.797 0.652 0.508 0.440
720 0.301 0.338 0.414 0.410 0.351 0.353 0.352 0.388 0.403 0.428 0.419 0.419 1.059 0.741 0.869 0.675 0.498 0.450

IL
I

24 2.425 1.086 2.294 0.945 1.862 0.869 2.527 1.020 2.203 0.963 3.483 1.287 5.764 1.677 4.480 1.444 2.331 1.036
36 2.231 1.008 1.825 0.848 2.071 0.969 2.615 1.007 2.272 0.976 3.103 1.148 4.755 1.467 4.799 1.467 2.167 1.002
48 2.230 1.016 2.010 0.900 2.346 1.042 2.359 0.972 2.209 0.981 2.669 1.085 4.763 1.469 4.800 1.468 2.961 1.180
60 2.143 0.985 2.178 0.963 2.560 1.073 2.487 1.016 2.545 1.061 2.770 1.125 5.264 1.564 5.278 1.560 3.108 1.214

(i.e. a, b, c, d, Aj , ωj , φj) are sampled randomly (further details in Appendix F) to construct distinct
tasks. A total of 400 time steps are sampled, with a lookback window length of 200 and forecast
horizon of 200. Figure 4 demonstrates that DeepTime is able to perform extrapolation on unseen test
functions/tasks after being trained via our meta-learning formulation. It demonstrates an ability to
approximate and adapt, based on the lookback window, linear and cubic polynomials, and even sums
of sinusoids. Next, we evaluate DeepTime on real-world datasets, against state-of-the-art baselines.

3.2 EXPERIMENTS ON REAL-WORLD DATA

Experiments are performed on 6 real-world datasets – Electricity Transformer Temperature (ETT),
Electricity Consuming Load (ECL), Exchange, Traffic, Weather, and Influenza-like Illness (ILI)
with full details in Appendix G. We evaluate the performance of our proposed approach using two
metrics, the mean squared error (MSE) and mean absolute error (MAE) metrics. The datasets are
split into train, validation, and test sets chronologically, following a 70/10/20 split for all datasets
except for ETTm2 which follows a 60/20/20 split, as per convention. The univariate benchmark
selects the last index of the multivariate dataset as the target variable, following previous work (Xu
et al., 2021). Preprocessing on the data is performed by standardization based on train set statistics.
Hyperparameter selection is performed on only one value, the lookback length multiplier, L = µ∗H ,
which decides the length of the lookback window. We search through the values µ = [1, 3, 5, 7, 9],
and select the best value based on the validation loss. Further implementation details on DeepTime
are reported in Appendix H, and detailed hyperparameters are reported in Appendix I. Reported
results for DeepTime are averaged over three runs, and standard deviation is reported in Appendix K.

Results We compare DeepTime to the following baselines for the multivariate setting, N-HiTS
(Challu et al., 2022), ETSformer (Woo et al., 2022), Fedformer (Zhou et al., 2022) (we report the
best score for each setting from the two variants they present), Autoformer (Xu et al., 2021), In-
former (Zhou et al., 2021), LogTrans (Li et al., 2019), Non-stationary (NS) Transformer (Liu et al.,
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Table 3: Ablation study on variants of DeepTime. Starting from the original version, we add (+)
or remove (-) some component from DeepTime. RR stands for the differentiable closed-form ridge
regressor, removing it refers to replacing this module with a simple linear layer trained via gradient
descent across all training samples (i.e. without meta-learning formulation). Local refers to training
an INR from scratch via gradient descent for each lookback window (RR is not used here, and there
is no training phase). Datetime refers to datetime features. Further model details can be found in
Appendix O.1.

Methods DeepTime + Datetime - RR
- RR

+ Local
+ Local

+ Datetime + Datetime

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

2 96 0.166 0.257 0.226 0.303 3.072 1.345 3.393 1.400 0.251 0.331 0.250 0.327
192 0.225 0.302 0.309 0.362 3.064 1.343 3.269 1.381 0.322 0.371 0.323 0.366
336 0.277 0.336 0.341 0.381 2.920 1.309 3.442 1.401 0.370 0.412 0.367 0.396
720 0.383 0.409 0.453 0.447 2.773 1.273 3.400 1.399 0.443 0.449 0.455 0.461

Table 4: Ablation study on backbone models. DeepTime refers to our proposed approach, an INR
with random Fourier features sampled from a range of scales. MLP refers to replacing the random
Fourier features with a linear map from input dimension to hidden dimension. SIREN refers to an
INR with periodic activations as proposed by Sitzmann et al. (2020b). RNN refers to an autore-
gressive recurrent neural network (inputs are the time-series values, yt). All approaches include
differentiable closed-form ridge regressor. Further model details can be found in Appendix O.2.

Methods DeepTime MLP SIREN RNN

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

2 96 0.166 0.257 0.186 0.284 0.236 0.325 0.233 0.324
192 0.225 0.302 0.265 0.338 0.295 0.361 0.275 0.337
336 0.277 0.336 0.316 0.372 0.327 0.386 0.344 0.383
720 0.383 0.409 0.401 0.417 0.438 0.453 0.431 0.432

2022), and Gaussian Process (GP) (Rasmussen, 2003). For the univariate setting, we include ad-
ditional univariate forecasting models, N-BEATS (Oreshkin et al., 2020), DeepAR (Salinas et al.,
2020), Prophet (Taylor & Letham, 2018), and ARIMA. Baseline results are obtained from the re-
spective papers. Table 2 and Table 9 (in Appendix J for space) summarizes the multivariate and
univariate forecasting results respectively. DeepTime achieves state-of-the-art performance on 20
out of 24 settings in MSE, and 17 out of 24 settings in MAE on the multivariate benchmark, and also
achieves competitive results on the univariate benchmark despite its simple architecture compared
to the baselines comprising complex fully connected architectures and computationally intensive
Transformer architectures.

3.3 ABLATION STUDIES

We perform an ablation study to understand how various training schemes and input features affect
the performance of DeepTime. Table 3 presents these results. First, we observe that our meta-
learning formulation is a critical component to the success of DeepTime. We note that DeepTime
without meta-learning may not be a meaningful baseline since the model outputs are always the same
regardless of the input lookback window. Including datetime features helps alleviate this issue, yet
we observe that the inclusion of datetime features generally lead to a degradation in performance.
In the case of DeepTime, we observed that the inclusion of datetime features lead to a much lower
training loss, but degradation in test performance – this is a case of meta-learning memorization (Yin
et al., 2020) due to the tasks becoming non-mutually exclusive (Rajendran et al., 2020). Finally, we
observe that the meta-learning formulation is indeed superior to training a model from scratch for
each lookback window.

In Table 4 we perform an ablation study on various backbone architectures, while retaining the
differentiable closed-form ridge regressor. We observe a degradation when the random Fourier
features layer is removed, due to the spectral bias problem which neural networks face (Rahaman
et al., 2019; Tancik et al., 2020). DeepTime outperforms the SIREN variant of INRs which is
consistent with observations INR literature. Finally DeepTime outperforms the RNN variant which
is the model proposed in Grazzi et al. (2021). This is a direct comparison between IMS historical-
value models and time-index models, and highlights the benefits of a time-index models.
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Table 5: Comparison of CFF against the optimal and pessimal scales as obtained from the hyper-
parameter sweep. We also calculate the change in performance between CFF and the optimal and
pessimal scales, where a positive percentage refers to a CFF underperforming, and negative percent-
age refers to CFF outperforming, calculated as % change = (MSECFF −MSEScale)/MSEScale.

CFF Optimal Scale (% change) Pessimal Scale (% change)

Metrics MSE MAE MSE MAE MSE MAE

E
T

T
m

2 96 0.166 0.257 0.164 (1.20%) 0.257 (-0.05%) 0.216 (-23.22%) 0.300 (-14.22%)
192 0.225 0.302 0.220 (1.87%) 0.301 (0.25%) 0.275 (-18.36%) 0.340 (-11.25%)
336 0.277 0.336 0.275 (0.70%) 0.336 (-0.22%) 0.340 (-18.68%) 0.375 (-10.57%)
720 0.383 0.409 0.364 (5.29%) 0.392 (4.48%) 0.424 (-9.67%) 0.430 (-4.95%)
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Figure 5: Computational efficiency benchmark on the ETTm2 multivariate dataset, on a batch size
of 32. Runtime is measured for one iteration (forward + backward pass). Left: Runtime/Memory
usage as lookback length varies, horizon is fixed to 48. Right: Runtime/Memory usage as horizon
length varies, lookback length is fixed to 48. Further model details can be found in Appendix P.

Lastly, we perform a comparison between the optimal and pessimal scale hyperparameter for the
vanilla random Fourier features layer, against our proposed CFF. We first report the results on each
scale hyperparameter for the vanilla random Fourier features layer in Table 13, Appendix N. As with
the other ablation studies, the results reported in Table 13 is based on performing a hyperparameter
sweep across lookback length multiplier, and selecting the optimal settings based on the validation
set, and reporting the test set results. Then, the optimal and pessimal scales are simply the best and
worst results based on Table 13. Table 5 shows that CFF achieves extremely low deviation from the
optimal scale across all settings, yet retrains the upside of avoiding this expensive hyperparameter
tuning phase. We also observe that tuning the scale hyperparameter is extremely important, as CFF
obtains up to a 23.22% improvement in MSE over the pessimal scale hyperparameter.

3.4 COMPUTATIONAL EFFICIENCY

Finally, we analyse DeepTime’s efficiency in both runtime and memory usage, with respect to both
lookback window and forecast horizon lengths. The main bottleneck in computation for DeepTime
is the matrix inversion operation in the ridge regressor, canonically of O(n3) complexity. This is a
major concern for DeepTime as n is linked to the length of the lookback window. As mentioned in
Bertinetto et al. (2019), the Woodbury formulation,

W ∗ = ZT (ZZT + λI)−1Y

is used to alleviate the problem, leading to an O(d3) complexity, where d is the hidden size hyper-
parameter, fixed to some value (see Appendix I). Figure 5 demonstrates that DeepTime is highly
efficient, even when compared to efficient Transformer models, recently proposed for the long se-
quence time-series forecasting task, as well as fully connected models.
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4 RELATED WORK

Neural Forecasting Neural forecasting Benidis et al. (2020) methods have seen great success
in recent times. One related line of research are Transformer-based methods for LSTF (Li et al.,
2019; Zhou et al., 2021; Xu et al., 2021; Woo et al., 2022; Zhou et al., 2022) which aim to not
only achieve high accuracy, but to overcome the vanilla attention’s quadratic complexity. Fully
connected methods (Oreshkin et al., 2020; Challu et al., 2022) have also shown success, with Challu
et al. (2022) introducing hierarchical interpolation and multi-rate data sampling for the LSTF task.
Meta-learning with the use of a differentiable closed-form solver has been explored in time-series
forecasting (Grazzi et al., 2021), but for the meta-forecasting setting which adapts to new time-series
datasets rather than to tackle non-stationarity, using an IMS historical-value backbone model.

Time-index Models Time-index models take as input time-index features such as datetime
features to predict the value of the time-series at that time step. They have been well explored as
a special case of regression analysis (Hyndman & Athanasopoulos, 2018; Ord et al., 2017), and
many different predictors have been proposed for the classical setting,including linear, polynomial,
and piecewise linear trends, and dummy variables indicating holidays. Of note, Fourier terms have
been used to model periodicity, or seasonal patterns, and is also known as harmonic regression
(Young et al., 1999). Prophet (Taylor & Letham, 2018) is a popular classical approach which uses a
structural time-series formulation, specialized for business forecasting. Another classical approach
of note are Gaussian Processes (Rasmussen, 2003; Corani et al., 2021) which are non-parametric
models, often requiring complex kernel engineering. Godfrey & Gashler (2017) introduced an
initial attempt at using time-index based neural networks to fit a time-series for forecasting. Yet,
their work is more reminiscent of classical methods, manually specifying periodic and non-periodic
activation functions, analogous to the representation functions.

Implicit Neural Representations INRs have recently gained popularity in the area of neural ren-
dering (Tewari et al., 2021). They parameterize a signal as a continuous function, mapping a coor-
dinate to the value at that coordinate. A key finding was that positional encodings (Mildenhall et al.,
2020; Tancik et al., 2020) are critical for ReLU MLPs to learn high frequency details, while another
line of work introduced periodic activations (Sitzmann et al., 2020b). Meta-learning on via INRs
have been explored for various data modalities, typically over images or for neural rendering tasks
(Sitzmann et al., 2020a; Tancik et al., 2021; Dupont et al., 2021), using both hypernetworks and
optimization-based approaches. Yüce et al. (2021) show that meta-learning on INRs is analogous to
dictionary learning. In time-series, Jeong & Shin (2022) explored using INRs for anomaly detection,
opting to make use of periodic activations and temporal positional encodings.

5 DISCUSSION

In this paper, we proposed DeepTime, a deep time-index based model trained via a meta-learning
formulation to automatically learn a representation function from time-series data, rather than man-
ually defining the representation function as per classical methods. The meta-learning formulation
further enables DeepTime to be utilized for non-stationary time-series by adapting to the locally sta-
tionary distribution. Importantly, we use a closed-form ridge regressor to tackle the meta-learning
formulation to ensure that predictions are computationally efficient. Our extensive empirical anal-
ysis shows that DeepTime, while being a much simpler model architecture compared to prevailing
state-of-the-art methods, achieves competitive performance across forecasting benchmarks on real
world datasets. We perform substantial ablation studies to identify the key components contributing
to the success of DeepTime, and also show that it is highly efficient.

Limitations & Future Work Despite having verified DeepTime’s effectiveness, we expect some
under-performance in cases where the lookback window contains significant anomalies, or an abrupt
change point which violates the locally stationary assumption. Next, while out of scope for our
current work, a limitation that DeepTime faces is that it does not consider holidays and events. We
leave the consideration of such features as a potential future direction, along with the incorporation
of exogenous covariates and datetime features, whilst avoiding the incursion of the meta-learning
memorization problem. Finally, time-index models are a natural fit for missing value imputation,
as well as other time-series intelligence tasks for irregular time-series – this is another interesting
future direction to extend deep time-index models towards.
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A EXTENDED RELATED WORK

Non-stationarity and Distribution Shift Switching state-space models (Ghahramani & Hinton,
2000) generalizes and combines hidden Markov models and state-space models, where the dynam-
ics in each regime is typically represented by a linear model (linear dynamic system) and switches
between regimes, controlled by hidden transition probabilities of a Markov process. They can be
applied to non-stationary time-series, but makes additional assumptions that the time-series has
a predefined number of regimes or generating distributions. Sequential Neural Processes (Singh
et al., 2019) incorporates a temporal state-transition model of stochastic processes, extending Neu-
ral Process framework to dynamic stochastic processes. Importantly, SNPs use a ”black-box meta-
learning” approach, while DeepTime uses an ”optimization-based meta-learning” approach. Fur-
ther differences include that the standard SNP setting requires knowledge of task boundaries, and
multiple support/query sets per task. Du et al. (2021) tackled temporal covariate shift by distri-
bution matching, an approach popularly used in domain adaptation. They introduce the Temporal
Distribution Characterization module which divides a given time-series into regions with different
disribution, and a Temporal Distribution Matching module reduces distribution mismatch in the
time-series. Their approach is built on top of an RNN architecture. Kim et al. (2021) introduced
a learnable instance normalization method to tackle the covariate shift problem. Their approach is
ad-hoc and can be attached to any existing architecture. Most relevant to our work is Non-stationary
Transformers (Liu et al., 2022), which introduced an instance normalization method for the LSTF
task. Rather than proposing a generic module, their approach is specialized for Transformer-based
architectures and performs normalization on each layer to tackle the non-stationarity of intermediate
representations, rather than just the inputs and outputs.

B NON-STATIONARITY AND DISTRIBUTION SHIFT

In our work, we tackle the problem of non-stationarity in time-series data, which has been a well
explored problem in the context of classical time-series analysis. We map this problem to the modern
setting of deep learning for time-series forecasting. As mentioned in Section 1, long time-series
datasets collected due to the advances of I.T. infrastructure has been plagued by the problem of non-
stationarity. In particular, we tackle the problems of covariate shift, and conditional distribution
shift which arise from it.
Definition 1. (Covariate Shift) Given a stochastic process {Yt}Tt=1 and let p(yt, yt−1, . . . , yt−L+1)
be the unconditional joint distribution of a length L segment. The stochastic process is said
to experience covariate shift if any two segments are drawn from different distributions, i.e.
p(yt, yt−1, . . . , yt−L) ̸= p(yt′ , yt′−1, . . . , yt′−L), ∀ t ̸= t′.

Definition 2. (Conditional Distribution Shift) Given a stochastic process {Yt}Tt=1 and let
p(yt+1|yt, yt−1, . . . , yt−L+1) be the conditional distribution of Yt+1 on a length L segment of
previous time steps. The stochastic process is said to experience a conditional distribution shift
if any two segments have different conditional distributions, i.e. p(yt+1|yt, yt−1, . . . , yt−L+1) ̸=
p(yt′+1|yt′ , yt′−1, . . . , yt′−L+1), ∀ t ̸= t′
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C CATEGORIZATION OF FORECASTING METHODS

Table 6: Categorization of time-series forecasting methods over the dimensions of time-index vs
historical-value methods, and DMS vs IMS methods.

Time-index Historical-value

D
M

S

DeepTime N-HiTS
Prophet FEDformer

Gaussian process ETSformer
Time-series regression Autoformer

Informer
N-BEATS

IM
S

-
DeepAR
ARIMA

ETS

Multi-step Forecasts Forecasting over a horizon (multiple time steps) can be achieved via two
strategies, direct multi-step, or iterative multi-step (Marcellino et al., 2006; Chevillon, 2007; Taieb
et al., 2012), or even a mixture of both, but this has been less explored:

• Direct Multi-step (DMS): A DMS forecaster directly predicts forecasts for the entire hori-
zon. For example, to achieve a multi-step forecast of H time steps, a DMS forecaster
simply outputs H values in a single forward pass.

• Iterative Multi-step (IMS): An IMS forecaster iteratively predicts one step ahead, and
consumes this forecast to make a subsequent prediction. This is performed iteratively, until
the desired length is achieved.

D FURTHER DISCUSSION ON DEEPTIME AS A TIME-INDEX MODEL

We first reiterate our definitions of time-index and historical-value models from Section 1. Time-
index models are models whose predictions are purely functions of current time-index features. To
perform forecasting (i.e. make predictions over some forecast horizon), time-index models make the
predictions ŷt+h = f(τt+h) for h = 0, . . . ,H − 1. Historical-value models predict the time-series
value of future time step(s) as a function of past observations, and optionally, covariates.

Time-index Models

ŷt = f(τt)

Historical-value Models

ŷt+1 = f(yt,yt−1, . . . ,zt+1, zt, . . .)

Next, we further discuss some subtleties of how time-index models interact with past observations.
Astute readers may have noticed DeepTime to be a function of the past observations. In particular,
that Equations (3) and (4) indicate that forecasts from DeepTime are in fact linear in the lookback
window. However, we highlight that this is not in contradiction with our definition of time-index and
historical-value models. Here, we differentiate between the model, f and the learning algorithm,
A. The learning algorithm A : H × RL×m → H takes as input a model from the hypothesis class
H and, past observations, returning a model minimizing the loss function L. A time-index model is
thus, still only a function of time-index features, while the learning algorithm is a function of past
observations, i.e. f, f0 ∈ H, f : Rc → Rm, f = A(f0,Yt−L:t). DeepTime as a forecaster, is a
deep time-index model endowed with a meta-learning algorithm. In order to perform forecasting,
it has to perform an inner loop optimization step defined by the learning algorithm, as highlighted
in Equation (2). For the special case where we use the closed-form ridge regressor, the inner loop
learning algorithm reduces to a form which is linear in the lookback window. Still, the deep time-
index model is only a function of time-index features.
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E DEEPTIME PSEUDOCODE

Algorithm 1 PyTorch-Style Pseudocode of Closed-Form Ridge Regressor
mm: matrix multiplication, diagonal: returns the diagonal elements of a matrix, add : in-place addition
linalg.solve computes the solution of a square system of linear equations with a unique solution.

# X: inputs, shape: (n samples, n dim)
# Y: targets, shape: (n samples, n out)
# lambd: scalar value representing the regularization coefficient

n samples, n dim = X.shape

# add a bias term by concatenating an all−ones vector
ones = torch.ones(n samples, 1)
X = cat([X, ones], dim=−1)

if n samples >= n dim:
# standard formulation
A = mm(X.T, X)
A.diagonal().add (softplus(lambd))
B = mm(X.T, Y)
weights = linalg.solve(A, B)

else:
# Woodbury formulation
A = mm(X, X.T)
A.diagonal().add (softplus(lambd))
weights = mm(X.T, linalg.solve(A, Y))

w, b = weights[:−1], weights[−1:]
return w, b

Algorithm 2 PyTorch-Style Pseudocode of DeepTIMe
rearrange: einops style tensor operations
mm: matrix multiplication

# x: input time−series, shape: (lookback len, multivariate dim)
# lookback len: scalar value representing the length of the lookback window
# horizon len: scalar value representing the length of the forecast horizon
# inr: implicit neural representation

time index = linspace(0, 1, lookback len + horizon len) # shape: (lookback len + horizon len)
time index = rearrange(time index, 't −> t 1') # shape: (lookback len + horizon len, 1)
time reprs = inr(time index) # shape: (lookback len + horizon len, hidden dim)

lookback reprs = time reprs[:lookback len]
horizon reprs = time reprs[−horizon len:]
w, b = ridge regressor(lookback reprs, x)
# w.shape = (hidden dim, multivariate dim), b.shape = (1, multivariate dim)
preds = mm(horizon reprs, w) + b
return preds
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F SYNTHETIC DATA

The training set for each synthetic data experiment consists 1000 functions/tasks, while the test set
contains 100 functions/tasks. We ensure that there is no overlap between the train and test sets.

Linear Samples are generated from the function y = ax + b for x ∈ [−1, 1]. This means that
each function/task consists of 400 evenly spaced points between -1 and 1. The parameters of each
function/task (i.e. a, b) are sampled from a normal distribution with mean 0 and standard deviation
of 50, i.e. a, b ∼ N (0, 502).

Cubic Samples are generated from the function y = ax3 + bx2 + cx+ d for x ∈ [−1, 1] for 400
points. Parameters of each task are sampled from a continuous uniform distribution with minimum
value of -50 and maximum value of 50, i.e. a, b, c, d ∼ U(−50, 50).

Sums of sinusoids Sinusoids come from a fixed set of frequencies, generated by sampling ω ∼
U(0, 12π). We fix the size of this set to be five, i.e. Ω = {ω1, . . . , ω5}. Each function is then
a sum of J sinusoids, where J ∈ {1, 2, 3, 4, 5} is randomly assigned. The function is thus y =∑J

j=1 Aj sin(ωrjx+ φj) for x ∈ [0, 1], where the amplitude and phase shifts are freely chosen via
Aj ∼ U(0.1, 5), φj ∼ U(0, π), but the frequency is decided by rj ∈ {1, 2, 3, 4, 5} to randomly
select a frequency from the set Ω.

G DATASETS

ETT2 Zhou et al. (2021) - Electricity Transformer Temperature provides measurements from an
electricity transformer such as load and oil temperature. We use the ETTm2 subset, consisting
measurements at a 15 minutes frequency.

ECL3 - Electricity Consuming Load provides measurements of electricity consumption for 321
households from 2012 to 2014. The data was collected at the 15 mintue level, but is aggregated
hourly.

Exchange4 Lai et al. (2018) - a collection of daily exchange rates with USD of eight countries
(Australia, United Kingdom, Canada, Switzerland, China, Japan, New Zealand, and Singapore)
from 1990 to 2016.

Traffic5 - dataset from the California Department of Transportation providing the hourly road occu-
pancy rates from 862 sensors in San Francisco Bay area freeways.

Weather6 - provides measurements of 21 meteorological indicators such as air temperature, hu-
midity, etc., every 10 minutes for the year of 2020 from the Weather Station of the Max Planck
Biogeochemistry Institute in Jena, Germany.

ILI7 - Influenza-like Illness measures the weekly ratio of patients seen with ILI and the total number
of patients, obtained by the Centers for Disease Control and Prevention of the United States between
2002 and 2021.

2https://github.com/zhouhaoyi/ETDataset
3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
4https://github.com/laiguokun/multivariate-time-series-data
5https://pems.dot.ca.gov/
6https://www.bgc-jena.mpg.de/wetter/
7https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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G.1 NON-STATIONARITY OF REAL-WORLD DATASETS

Table 7: Summary of real-world datasets, results of Chow test, and Augmented Dickey-Fuller (ADF)
test. The statistical tests are performed on each dimension separately, since they are designed for
univariate time-series. We report the number of dimensions which reject/fail to reject the null hy-
pothesis, depending on which indicates non-stationarity. These are reported at significance levels
of 0.1, 0.05, and 0.01. Larger values for the Chow test statistic indicate more non-stationarity, and
larger (less negative) values for the ADF test statistic indicates more non-stationarity.

Dataset ETTm2 ECL Exchange Traffic Weather ILI
Dimensions 7 321 8 862 21 7
Timesteps 57,600 26,304 7,588 17,544 52,696 966

Sampling Frequency 15 minutes 1 hour 1 day 1 hour 10 minutes 1 week

Chow Test: # dims reject null hypothesis @ 0.1 7 321 6 792 19 5
Chow Test: # dims reject null hypothesis @ 0.05 7 320 5 771 19 5
Chow Test: # dims reject null hypothesis @ 0.01 7 317 4 734 19 3

Chow Test: average Chow test statistic 49.13 23.55 21.25 16.93 25.39 2.77

ADF Test: # dims fail to reject @ 0.1 2 139 8 807 9 0
ADF Test: # dims fail to reject @ 0.05 2 120 8 739 7 0
ADF Test: # dims fail to reject @ 0.01 2 103 8 657 6 0
ADF Test: average ADF test statistic -4.48 -5.24 -2.40 -3.29 -4.49 -6.89

Real-world datasets used in long sequence time-series forecasting suffers from non-stationarity. We
first verify this qualitatively by visualizing histogram values across some dimensions for each dataset
in Figure 6. This simple visualization already gives us a strong confirmation on the distribution
mismatch between the training and testing phases. We further verify this quantitatively via two
statistical tests, the Chow test, and Augmented Dickey-Fuller (ADF) test. The Chow test is a test of
whether the true coefficients in two linear regressions on different data sets are equal. Rejecting the
null hypothesis of equality of regression coefficients in the two periods indicates that the train and
test regions are generated from different distributions. The ADF test tests the null hypothesis that
a unit root is present in a time series sample. Not rejecting the null hypothesis indicates that a unit
root is present, and is thus non-stationary. Presented in Table 7 along with some dataset statistics,
we report the results of both tests and the number of dimensions which meet the criteria for non-
stationarity (rejecting the null hypothesis for Chow test, and not rejecting the null hypothesis for
the ADF test) over various significance levels. We observe that the real-world datasets exhibit high
levels of non-stationarity across dimensions based on both tests.
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Figure 6: Histograms of time-series values from each real-world dataset presented in experiments.
Visualized are the histograms of the train and test splits, verifying that even on the distribution of
the marginals are different across time, signifying non-stationarity.
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H DEEPTIME IMPLEMENTATION DETAILS

Optimization We train DeepTime with the Adam optimizer (Kingma & Ba, 2014) with a learning
rate scheduler following a linear warm up and cosine annealing scheme. Gradient clipping by norm
is applied. The ridge regressor regularization coefficient, λ, is trained with a different, higher learn-
ing rate than the rest of the meta parameters. We use early stopping based on the validation loss, with
a fixed patience hyperparameter (number of epochs for which loss deteriorates before stopping). All
experiments are performed on an Nvidia A100 GPU.

Model The ridge regression regularization coefficient is a learnable parameter constrained to pos-
itive values via a softplus function. We apply Dropout (Srivastava et al., 2014), then LayerNorm (Ba
et al., 2016) after the ReLU activation function in each INR layer. The size of the random Fourier
feature layer is set independently of the layer size, in which we define the total size of the random
Fourier feature layer – the number of dimensions for each scale is divided equally.

I DEEPTIME HYPERPARAMETERS

Table 8: Hyperparameters used in DeepTime.

Hyperparameter Value

O
pt

im
iz

at
io

n

Epochs 50
Learning rate 1e-3
λ learning rate 1.0
Warm up epochs 5
Batch size 256
Early stopping patience 7
Max gradient norm 10.0

M
od

el

Layers 5
Layer size 256
λ initialization 0.0
Scales [0.01, 0.1, 1, 5, 10, 20, 50, 100]
Fourier features size 4096
Dropout 0.1
Lookback length multiplier, µ µ ∈ {1, 3, 5, 7, 9}

J UNIVARIATE FORECASTING BENCHMARK

Table 9: Univariate forecasting benchmark on long sequence time-series forecasting. Best results
are highlighted in bold, and second best results are underlined.

Methods DeepTime N-HiTS ETSformer Fedformer Autoformer Informer N-BEATS DeepAR Prophet ARIMA GP

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

2 96 0.065 0.186 0.066 0.185 0.080 0.212 0.063 0.189 0.065 0.189 0.088 0.225 0.082 0.219 0.099 0.237 0.287 0.456 0.211 0.362 0.125 0.273
192 0.096 0.234 0.087 0.223 0.150 0.302 0.102 0.245 0.118 0.256 0.132 0.283 0.120 0.268 0.154 0.310 0.312 0.483 0.261 0.406 0.154 0.307
336 0.138 0.285 0.106 0.251 0.175 0.334 0.130 0.279 0.154 0.305 0.180 0.336 0.226 0.370 0.277 0.428 0.331 0.474 0.317 0.448 0.189 0.338
720 0.186 0.338 0.157 0.312 0.224 0.379 0.178 0.325 0.182 0.335 0.300 0.435 0.188 0.338 0.332 0.468 0.534 0.593 0.366 0.487 0.318 0.421

E
xc

ha
ng

e 96 0.086 0.226 0.093 0.223 0.099 0.230 0.131 0.284 0.241 0.299 0.591 0.615 0.156 0.299 0.417 0.515 0.828 0.762 0.112 0.245 0.165 0.311
192 0.173 0.330 0.230 0.313 0.223 0.353 0.277 0.420 0.273 0.665 1.183 0.912 0.669 0.665 0.813 0.735 0.909 0.974 0.304 0.404 0.649 0.617
336 0.539 0.575 0.370 0.486 0.421 0.497 0.426 0.511 0.508 0.605 1.367 0.984 0.611 0.605 1.331 0.962 1.304 0.988 0.736 0.598 0.596 0.592
720 0.936 0.763 0.728 0.569 1.114 0.807 1.162 0.832 0.991 0.860 1.872 1.072 1.111 0.860 1.890 1.181 3.238 1.566 1.871 0.935 1.002 0.786
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K DEEPTIME STANDARD DEVIATION

Table 10: DeepTime main benchmark results with standard deviation. Experiments are performed
over three runs.

(a) Multivariate benchmark.

Metrics MSE (SD) MAE (SD)

E
T

T
m

2 96 0.166 (0.000) 0.257 (0.001)
192 0.225 (0.001) 0.302 (0.003)
336 0.277 (0.002) 0.336 (0.002)
720 0.383 (0.007) 0.409 (0.006)

E
C

L

96 0.137 (0.000) 0.238 (0.000)
192 0.152 (0.000) 0.252 (0.000)
336 0.166 (0.000) 0.268 (0.000)
720 0.201 (0.000) 0.302 (0.000)

E
xc

ha
ng

e 96 0.081 (0.001) 0.205 (0.002)
192 0.151 (0.002) 0.284 (0.003)
336 0.314 (0.033) 0.412 (0.020)
720 0.856 (0.202) 0.663 (0.082)

Tr
af

fic

96 0.390 (0.001) 0.275 (0.001)
192 0.402 (0.000) 0.278 (0.000)
336 0.415 (0.000) 0.288 (0.001)
720 0.449 (0.000) 0.307 (0.000)

W
ea

th
er 96 0.166 (0.001) 0.221 (0.002)

192 0.207 (0.000) 0.261 (0.000)
336 0.251 (0.000) 0.298 (0.001)
720 0.301 (0.001) 0.338 (0.001)

IL
I

24 2.425 (0.058) 1.086 (0.027)
36 2.231 (0.087) 1.008 (0.011)
48 2.230 (0.144) 1.016 (0.037)
60 2.143 (0.032) 0.985 (0.016)

(b) Univariate benchmark.

Metrics MSE (SD) MAE (SD)

E
T

T
m

2 96 0.065 (0.000) 0.186 (0.000)
192 0.096 (0.002) 0.234 (0.003)
336 0.138 (0.001) 0.285 (0.001)
720 0.186 (0.002) 0.338 (0.002)

E
xc

ha
ng

e 96 0.086 (0.000) 0.226 (0.000)
192 0.173 (0.004) 0.330 (0.003)
336 0.539 (0.066) 0.575 (0.027)
720 0.936 (0.222) 0.763 (0.075)
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L LOOKBACK LENGTH SENSITIVITY ANALYSIS

Table 11: Sensitivity analysis on the lookback window length. Results presented on the ETTm2
dataset across various values of the lookback length multiplier, µ. Best results are highlighted in
bold.

Horizon 96 192 336 720

µ MSE MAE MSE MAE MSE MAE MSE MAE

1 0.192 0.287 0.255 0.332 0.294 0.354 0.383 0.409
3 0.172 0.264 0.228 0.304 0.277 0.336 0.371 0.403
5 0.168 0.259 0.225 0.302 0.275 0.337 0.389 0.420
7 0.166 0.257 0.223 0.300 0.279 0.343 0.440 0.451
9 0.165 0.258 0.223 0.301 0.285 0.350 0.409 0.434

M ADDITIONAL ABLATION STUDY

Table 12: Additional ablation study on variants of DeepTime. + Finetune refers to training an INR
via gradient descent for each lookback window on top of having a training phase. Full MAML refers
to performing the full meta-learning formulation on the whole model rather than just the last layer,
using gradient-based optimization.

Methods DeepTime + Finetune
+ Finetune

Full MAML+ Datetime

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

2 96 0.166 0.257 3.028 1.328 3.242 1.365 0.235 0.326
192 0.225 0.302 3.043 1.341 3.385 1.391 0.295 0.361
336 0.277 0.336 2.950 1.331 3.367 1.387 0.348 0.392
720 0.383 0.409 2.721 1.253 3.476 1.407 0.491 0.484

N RANDOM FOURIER FEATURES SCALE HYPERPARAMETER SENSITIVITY
ANALYSIS

Table 13: Results from hyperparameter sweep on the scale hyperparameter. Best scores are high-
lighted in bold, and worst scores are highlighted in bold red.

Scale Hyperparam 0.01 0.1 1 5 10 20 50 100

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

2 96 0.216 0.300 0.189 0.285 0.173 0.268 0.168 0.262 0.166 0.260 0.165 0.258 0.165 0.259 0.164 0.257
192 0.275 0.340 0.264 0.333 0.239 0.317 0.225 0.301 0.225 0.303 0.224 0.302 0.224 0.304 0.220 0.301
336 0.340 0.375 0.319 0.371 0.292 0.351 0.275 0.337 0.277 0.336 0.282 0.345 0.278 0.342 0.280 0.344
720 0.424 0.430 0.405 0.420 0.381 0.412 0.364 0.392 0.375 0.408 0.410 0.430 0.396 0.423 0.406 0.429

O ABLATION STUDIES DETAILS

In this section, we list more details on the models compared to in the ablation studies section. Unless
otherwise stated, we perform the same hyperparameter tuning for all models in the ablation studies,
and use the same standard hyperparameters such as number of layers, layer size, etc.

O.1 ABLATION STUDY ON VARIANTS OF DEEPTIME

RR Removing the ridge regressor module refers to replacing it with a simple linear layer, Linear :
Rd → Rm, where Linear(x) = Wx + b, x ∈ Rd,W ∈ Rm×d, b ∈ Rm. This corresponds to a
straight forward INR, which is trained across all lookback-horizon pairs in the dataset.

Local For models marked “Local”, we similarly remove the ridge regressor module and replace
it with a linear layer. Yet, the model is not trained across all lookback-horizon pairs in the dataset.
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Instead, for each lookback-horizon pair in the validation/test set, we fit the model to the lookback
window via gradient descent, and then perform prediction on the horizon to obtain the forecasts.
A new model is trained from scratch for each lookback-horizon window. We perform tuning on
an extra hyperparameter, the number of epochs to perform gradient descent, for which we search
through {10, 20, 30, 40, 50}.

Datetime Features As each dataset comes with a timestamps for each observation, we are able to
construct datetime features from these timestamps. We construct the following features:

1. Quarter-of-year
2. Month-of-year
3. Week-of-year
4. Day-of-year
5. Day-of-month
6. Day-of-week
7. Hour-of-day
8. Minute-of-hour
9. Second-of-minute

Each feature is initially an integer value, e.g. month-of-year can take on values in {0, 1, . . . , 11},
which we subsequently normalize to a [0, 1] range. Depending on the data sampling frequency, the
appropriate features can be chosen. For the ETTm2 dataset, we used all features except second-of-
minute since it is sampled at a 15 minute frequency.

O.2 ABLATION STUDY ON BACKBONE MODELS

For all models in this section, we retain the differentiable closed-form ridge regressor, to identify
the effects of the backbone model used.

MLP The random Fourier features layer is a mapping from coordinate space to latent space γ :
Rc → Rd. To remove the effects of the random Fourier features layer, we simply replace it with a
with a linear map, Linear : Rc → Rd.

SIREN We replace the random Fourier features backbone with the SIREN model which is intro-
duced by Sitzmann et al. (2020b). In this model, periodical activation functions are used, i.e. sin(x),
along with specified weight initialization scheme.

RNN We use a 2 layer LSTM with hidden size of 256. Inputs are observations, yt, in an IMS
fashion, predicting the next time step, yt+1.

P COMPUTATIONAL EFFICIENCY EXPERIMENTS DETAILS

Trans/In/Auto/ETS-former We use a model with 2 encoder and 2 decoder layers with a hidden
size of 512, as specified in their original papers.

N-BEATS We use an N-BEATS model with 3 stacks and 3 layers (relatively small compared to
30 stacks and 4 layers used in their orignal paper8), with a hidden size of 512. Note, N-BEATS
is a univariate model and values presented here are multiplied by a factor of m to account for the
multivariate data. Another dimension of comparison is the number of parameters used in the model.
Demonstrated in Table 14, fully connected models like N-BEATS, their number of parameters scales
linearly with lookback window and forecast horizon length, while for Transformer-based and Deep-
Time, the number of parameters remains constant.

8https://github.com/ElementAI/N-BEATS/blob/master/experiments/
electricity/generic.gin
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N-HiTS We use an N-HiTS model with hyperparameters as sugggested in their original paper
(3 stacks, 1 block in each stack, 2 MLP layers, 512 hidden size). For the following hyperparam-
eters which were not specified (subject to hyperparameter tuning), we set the pooling kernel size
to [2, 2, 2], and the number of stack coefficients to [24, 12, 1]. Similar to N-BEATS, N-HiTS is a
univariate model, and values were multiplied by a factor of m to account for the multivariate data.

Table 14: Number of parameters in each model across various lookback window and forecast hori-
zon lengths. The models were instantiated for the ETTm2 multivariate dataset (this affects the
embedding and projection layers in Autoformer. Values for N-HiTS in this table are not multiplied
by m since it is a global model (i.e. a single univariate model is used for all dimensions of the
time-series).

Methods Autoformer N-HiTS DeepTime

L
oo

kb
ac

k

48 10,535,943 927,942 1,314,561
96 10,535,943 1,038,678 1,314,561

168 10,535,943 1,204,782 1,314,561
336 10,535,943 1,592,358 1,314,561
720 10,535,943 2,478,246 1,314,561

1440 10,535,943 4,139,286 1,314,561
2880 10,535,943 7,461,366 1,314,561
5760 10,535,943 14,105,526 1,314,561

H
or

iz
on

48 10,535,943 927,942 1,314,561
96 10,535,943 955,644 1,314,561

168 10,535,943 997,197 1,314,561
336 10,535,943 1,094,154 1,314,561
720 10,535,943 1,315,770 1,314,561

1440 10,535,943 1,731,300 1,314,561
2880 10,535,943 2,562,360 1,314,561
5760 10,535,943 4,224,480 1,314,561
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Q GENERALIZATION BOUND FOR OUR META-LEARNING FRAMEWORK

In this section, we derive a meta-learning generalization bound for DeepTime under the PAC-Bayes
framework (Shalev-Shwartz & Ben-David, 2014). Our formulation follows (Amit & Meir, 2018)
and assumes that all tasks share the same hypothesis space H, sample space Z and loss function
ℓ : H × Z → [0, 1]. We observes n tasks in the form of sample sets D1, . . . ,Dn. The number of
samples in each task is H + L. Each dataset Dk is assumed to be generated i.i.d from an unknown
sample distribution DH+L

k . Each task’s sample distribution Dk is i.i.d. generated from an unknown
meta distribution, E. Particularly, we have Dk = (zk−L, . . . , zk, . . . , zk+H−1), where zt = (τt,yt).
Here, τt is the time coordinate, and yt is the time-series value. For any forecaster h(·) parameterized
by θ, we define the loss function ℓ(hθ, zt). We also define P as the prior distribution over H and
Q as the posterior over H for each task. In the meta-learning setting, we assume a hyper-prior P ,
which is a prior distribution over priors, observes a sequence of training tasks, and then outputs a
distribution over priors, called hyper-posterior Q.
Theorem Q.1. Consider the Meta-Learning framework, given the hyper-prior P , then for any
hyper-posterior Q, any c1, c2 > 0 and any δ ∈ (0, 1] with probability ≥ 1− δ we have,

P

(
er(Q) ≤ c1c2

(1− e−c1)(1− e−c2)
· 1
n

n∑
k=1

êr(Q,Dk) +
c1

1− e−c1
·
KL(P||Q) + log 1

δk

nc1

+
c1c2

(1− e−c2)(1− e−c1)
·
KL(ρ||π) + log 1

δk

n(H + L)c2

)
≥ 1− δ. (5)

Proof. Our proof contains two steps. First, we bound the error within observed tasks due to ob-
serving a limited number of samples. Then we bound the error on the task environment level due to
observing a finite number of tasks. Both of the two steps utilize Catoni’s classical PAC-Bayes bound
(Catoni, 2007) to measure the error. We give here the Catoni’s classical PAC-Bayes bound.

Theorem Q.2. (Catoni’s bound (Catoni, 2007)) Let X be a sample space, P (X) a distribution
over X , Θ a hypothesis space. Given a loss function ℓ(θ,X) : Θ × X → [0, 1] and a collection
of M i.i.d random variables (X1, . . . , XM ) sampled from P (X). Let π be a prior distribution over
hypothesis space. Then, for any δ ∈ (0, 1] and any real number c > 0, the following bound holds
uniformly for all posterior distributions ρ over hypothesis space,

P

(
E

Xi∼P (X),θ∼ρ
[ℓ(θ,Xi)] ≤

c

1− e−c

[ 1

M

M∑
m=1

E
θ∼ρ

[ℓ(θ,Xm)] +
KL(ρ||π) + log 1

δ

Mc

]
,∀ρ

)
≥ 1− δ.

We first utilize Theorem Q.2 to bound the generalization error in each of the observed tasks. Let k
be the index of task, we have the definition of expected error and empirical error as follows,

er(Q, Dk) = E
P∼Q

E
h∼Q(Dk,P )

E
z∼Dk

ℓ(h, z), (6)

êr(Q,Dk) = E
P∼Q

E
h∼Q(Dk,P )

1

H + L

k+H−1∑
j=k−L

ℓ(h, zj). (7)

Then, according to Theorem Q.2, for any δk ∼ (0, 1] and c2 > 0, we have

P

(
er(Q, Dk) ≤

c2
1− e−c2

êr(Q,Dk) +
c2

1− e−c2
·
KL(ρ||π) + log 1

δk

(H + L)c2

)
≥ 1− δk. (8)

Next, we bound the error due to observing a limited number of tasks from the environment. Simi-
larly, we have the definition of expected task error as follows

er(Q) = E
D∼E

E
D∼DH+L

E
P∼Q

E
h∼Q(D,P )

E
z∼D

ℓ(h, z)

= E
D∼E

E
D∼DH+L

er(Q, D). (9)
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Then we have the definition of error across the n tasks,

1

n

n∑
k=1

E
P∼Q

E
h∼Q(Dk,P )

E
z∼Dk

ℓ(h, z) =
1

n

n∑
k=1

er(Q, Dk). (10)

Then Theorem Q.2 says that the following holds for any δ0 ∼ (0, 1] and c1 > 0, we have

P

(
er(Q) ≤ c1

1− e−c1

1

n

n∑
k=1

er(Q, Dk) +
c1

1− e−c1
·
KL(P||Q) + log 1

δk

nc1

)
≥ 1− δ0. (11)

Finally, by employing the union bound, we could bound the probability of the intersection of the
events in Equation (11) and Equation (8) For any δ > 0, set δ0 = δ

2 and δi =
δ
2n for i = 1, . . . , n,

P

(
er(Q) ≤ c1c2

(1− e−c1)(1− e−c2)
· 1
n

n∑
k=1

êr(Q,Dk) +
c1

1− e−c1
·
KL(P||Q) + log 1

δk

nc1

+
c1c2

(1− e−c2)(1− e−c1)
·
KL(ρ||π) + log 1

δk

n(H + L)c2

)
≥ 1− δ. (12)

Theorem Q.1 shows that the expected task generalization error is bounded by the empirical multi-
task error plus two complexity terms. The first term represents the complexity of the environment, or
equivalently, the time-series dataset, converging to zero if we observe an infinitely long time-series
(n → ∞). The second term represents the complexity of the observed tasks, or equivalently, the
lookback-horizon windows. This converges to zero when there are sufficient number of time steps
in each window (H + L → ∞).
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