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ABSTRACT

Deep reinforcement learning algorithms that learn policies by trial-and-error must
learn from limited amounts of data collected by actively interacting with the en-
vironment. While many prior works have shown that proper regularization tech-
niques are crucial for enabling data-efficient RL, a general understanding of the
bottlenecks in data-efficient RL has remained unclear. Consequently, it has been
difficult to devise a universal technique that works well across all domains. In this
paper, we attempt to understand the primary bottleneck in sample-efficient deep
RL by examining several potential hypotheses such as non-stationarity, excessive
action distribution shift, and overfitting. We perform thorough empirical analysis
on state-based DeepMind control suite (DMC) tasks in a controlled and system-
atic way to show that high temporal-difference (TD) error on the validation set
of transitions is the main culprit that severely affects the performance of deep RL
algorithms, and prior methods that lead to good performance do in fact, control
the validation TD error to be low. This observation gives us a robust principle for
making deep RL efficient: we can hill-climb on the validation TD error by uti-
lizing any form of regularization techniques from supervised learning. We show
that a simple online model selection method that targets the validation TD error is
effective across state-based DMC and Gym tasks.

1 INTRODUCTION

Reinforcement learning (RL) methods, when combined with high-capacity deep neural net function
approximators, have shown promise in domains such as robot manipulation (Andrychowicz et al.,
2020), chip placement (Mirhoseini et al., 2020), games (Silver et al., 2016), and data-center cool-
ing (Lazic et al., 2018). Since every unit of active online data collection comes at an expense (e.g.,
running real robots, chip evaluation using simulation), it is important to develop sample-efficient
deep RL algorithms, that can learn efficiently even with limited amount of experience. Devising
such efficient RL algorithm has been an important thread of research in recent years (Janner et al.,
2019; Chen et al., 2021; Hiraoka et al., 2021).

In principle, off-policy RL methods (e.g., SAC (Haarnoja et al., 2018), TD3 (Fujimoto et al., 2018),
Rainbow (Hessel et al., 2018)) should provide good sample efficiency, because they make it possible
to improve the policy and value functions for many gradient steps per step of data collection. How-
ever, this benefit does not appear to be realizable in practice, as taking too many training steps per
each collected transition actually harms performance in many environments. Several hypotheses,
such as overestimation (Thrun & Schwartz, 1993; Fujimoto et al., 2018), non-stationarities (Lyle
et al., 2022), or overfitting (Nikishin et al., 2022) have been proposed as the underlying causes.
Building on these hypotheses, several mitigation strategies, such as model-based data augmenta-
tion (Janner et al., 2019), the use of ensembles (Chen et al., 2021), network regularizations (Hi-
raoka et al., 2021), and periodically reseting the RL agent from scratch while keeping the replay
buffer (Nikishin et al., 2022), have been proposed as methods for enabling off-policy RL with more
gradient steps. While each of these approaches significantly improve sample efficiency, the efficacy
of these fixes can be highly task-dependent (as we will show), and understanding the underlying
issue and the behavior of these methods is still unanswered.
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In this paper, we attempt to understand why taking more gradient steps can lead to worse perfor-
mance with deep RL algorithms, why heuristic strategies can help in some cases, and how this
challenge can be mitigated in a more principled and direct way. Through empirical analysis with
the recently proposed tandem learning paradigm (Ostrovski et al., 2021), we show that in the early
stages of training, TD-learning algorithms tend to quickly obtain high validation temporal-difference
(TD) error (i.e., the error between the Q-network and the bootstrapping targets on a held-out val-
idation set), and give rise to a worse final solution. We further show that many existing methods
devised for the data-efficient RL setting are effective insofar as they control the validation TD error
to be low. This insight gives a robust principle for making deep RL efficient: in order to improve
data-efficiency, we can simply select the most suitable regularization for any given problem by hill-
climbing on the validation TD error.

We realize this principle in the form of a simple online model selection method, that attempts to
automatically discover the best regularization strategy for a given task during the course of online
RL training, that we call Automatic model selection using Validation TD error (AVTD). AVTD
trains several off-policy RL agents on a shared replay buffer where each agent applies a different
regularizer. Then, AVTD dynamically selects the agent with the smallest validation TD error for
acting in the environment. We find that this simple strategy alone often performs similarly or out-
performs individual regularization schemes across a wide array of Gym and DeepMind control suite
(DMC) tasks. Critically, note that unlike prior regularization methods, whose performance can vary
drastically across domains, our approach behaves robustly across all domains. To summarize, our
first contribution is an empirical analysis of the bottlenecks in sample-efficient deep RL. We rig-
orously evaluate several potential explanations behind these challenges, and observe that obtaining
high validation TD-error in the early stages of training is one of the biggest culprits that inhibits
performance of data-efficient deep RL. Our second contribution is a simple active model selection
method (AVTD) that attempts to automatically select regularization schemes by hill-climbing on
validation TD error. Our method often matches or outperforms the best individual regularization
scheme across a wide range of Gym and DMC tasks.

2 PRELIMINARIES AND PROBLEM STATEMENT

The objective in RL is to maximize the long-term discounted return in a Markov decision process
(MDP), (S,A, P, r, γ), consisting of a state space S, an action spaceA, a transition dynamics model
P (s′|s,a), a reward function r(s,a), and a discount factor γ ∈ [0, 1). The Q-function Qπ(s,a)
for a policy π(a|s) is the expected discounted reward obtained by executing action a at state s and
following π(a|s) thereafter, Qπ(s,a) := Eπ [

∑∞
t=0 γ

tr(st,at)]. The optimal Q-function is achieved
when it satisfies the Bellman equation: Q⋆(s,a) = Es′∼P (s′|s,a) [r(s,a) + γmaxa′ Q⋆(s′,a′)].
Practical off-policy methods (e.g., Mnih et al., 2015; Hessel et al., 2018; Haarnoja et al., 2018) train
a Q-network, Qθ (parameterized by θ), to minimize the temporal difference (TD) error:

L(θ) = E(s,a,s′)∼D

[(
r(s,a) + γQ̄(s′,a′)−Qθ(s,a)

)2]
, (1)

where D is the replay buffer consisting of the transitions (s,a, s′) collected so far, Q̄ is the target Q-
network that is often updated to follow the Q-network Qθ with delay or smoothing (Fujimoto et al.,
2018) so that the target does not move too quickly, and a′ is usually drawn from a policy π(a|s) that
can maximize or approximately maximize Qθ(s,a). In theory, these off-policy algorithms can be
made very sample efficient by minimizing the TD error fully over any data batch, which in practice
translates to making more update steps to the Q-network per environment step, or higher “update-
to-data” ratio (UTD) (Chen et al., 2021). However, when done naı̈vely, this can lead to worse
performance (e.g., on DMC (Nikishin et al., 2022) and on MuJoCo gym (Janner et al., 2019)).

There have been many prior methods proposed for dealing with high UTD issues (e.g., DroQ (Hi-
raoka et al., 2021), REDQ (Chen et al., 2021), and resets (Nikishin et al., 2022)). However, we find
that none of these prior methods and other simple baseline regularization schemes such as weight
decay, dropout and spectral normalization (Miyato et al., 2018) work well across all the tasks (see
Appendix A, Figure 4). What is the primary culprit that can explain the high UTD challenge? Can
we address it in a more direct and principled way?
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3 THE PRIMARY CULPRIT BEHIND FAILURE OF HIGH UTD DEEP RL

In this section, we attempt to understand the underlying causes behind the failure of off-policy
RL algorithms in the high UTD deep RL and whether prior sample-efficient RL algorithms have
addressed these problems appropriately. We examine several plausible hypotheses that prior works
posit: Q-value overestimation due to distribution shift (Fujimoto et al., 2019; Kumar et al., 2020),
non-stationarity due to changing data distributions (Lyle et al., 2022), as well as early overfitting to
the replay buffer (Nikishin et al., 2022). We first describe the setup for our empirical analysis. Then,
in the next section, we demonstrate through a controlled study that the aforementioned hypothesized
reasons are not sufficient to explain the challenges with high UTD. Then, by demonstrating that high
UTD deep RL usually results in high generalization gap in the TD error, we argue that the main
culprit behind the failure mode of high UTD learning is the high validation TD error. We validate
this hypothesis by evaluating some recently proposed regularizers, and show that these regularizers
are effective insofar as they control the validation TD error to be low.

Experimental setup. We first describe the setup for our analysis. Many of the experiments in our
empirical study utilize passive sources of data obtained from previous online RL runs. We replay
this data in different ways to control for and examine various hypotheses. For generating this logged
data, we utilize one run of a resetting SAC agent from Nikishin et al. (2022), trained with a UTD
value of 9. We analyze a standard SAC agent in the high UTD regime. Since we operate in the
offline regime, to stabilize TD learning, we additionally normalize the features of the last layer
(following prior works on TD stability (Bjorck et al., 2021a; Kumar et al., 2021a)). We refer this as
feature normalization (FN). We added FN in the last layer of the Q-network in our analysis except
DroQ, as it already utilizes LayerNorm. For fair comparisons, we use feature normalization in all the
experiments including the online setting in this section. While we keep most of the hyperparameters
the same, there are still some small differences between the online and offline settings. In the
online setting, we use the standard SAC which uses entropy backup in the bellman update. In the
offline setting, we remove the entropy term in the bellman backup and use deterministic backup
(the mean of the action from the Gaussian actor is used). Our analysis focuses on the fish-swim
environment from DMC suite since high UTD training results in the largest gap in this domain (see
the online column in Appendix C, Figure 8). We obtain similar trends for many other experiments;
a complete set of our analysis results are in Appendix C. The confidence interval in our performance
curves refers to the standard error computed over 8 random seeds. See implementation details about
different regularizers in Appendix B.

3.1 CAN POOR DATA COLLECTION, DISTRIBUTION SHIFT OR NON-STATIONARITY EXPLAIN
THE FAILURE OF HIGH UTD LEARNING?

First observe that, as expected, the performance of a standard SAC agent degrades as the UTD value
increases (Figure 1-left). We will now attempt to understand if this performance degradation can be
attributed to (a) poor data collection, (b) excessive action distribution shift and overestimation in the
Q-function or (c) non-stationarity of the replay buffer.

(a) Quality of data used for training. One might speculate that SAC behaves poorly in the high
UTD regime due to its inability to effectively collect exploratory data. To understand if this might
be the primary source of issues in high UTD learning, we analyze the behaviors of RL methods
with high UTD in an offline setting, when training on identical data. If indeed the negative effects of
higher UTD ratios are entirely due to exploration and data collection, we would expect this change to
greatly mitigate the bottlenecks with higher UTD ratios. In this study, we trained SAC with different
UTD values on the aforementioned logged dataset, but replayed the data sequentially (following
the tandem learning protocol (Ostrovski et al., 2021)). This approach mimics how a typical online
RL agent would gradually observe data as it explores, but here, the dataset itself is independent of
the agent being trained. We refer this setting as the offline streaming setting. As shown in Figure
1-middle left, the performance of SAC still degrades as UTD increases, even though the data comes
from a high performing agent. This suggests that the poor data collection alone does not explain the
failure of high UTD learning. Since, this setting still preserves the challenges of learning from data,
including the effect of the training distribution and data quantity, we investigate these next.

(b) Non-stationarity in replay buffer data distributions. Another potential explanation for the
issues in learning with high UTD is non-stationarity: with higher UTD, the algorithm makes more
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Figure 1: The effects of varying UTD ratios on the performance of SAC agents augmented with feature
normalization on fish-swim task under online (left), offline streaming (middle left), and offline shuffled
streaming (middle right) settings. The plot on the right shows the ∆Q in the shuffled streaming setting.
Typical offline RL issue of being over-optimistic on OOD actions does not appear in the regime we study.
Results in other tasks are in Figure 14, where we find identical or small gaps for UTD=1, 3, and 9.
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Figure 2: Diagnostic analysis on fish-swim under the offline shuffled streaming. All agents use feature
normalization in the last layer to stabilize TD learning. The evaluation of the TD error is done on the growing
training/heldout replay buffer (collected by the online SAC agent that resets periodically during training).

gradient updates on the learned policy, allowing the distribution of the learned policy to change
more drastically between iterations of learning. Sudden changes in the data distribution and non-
stationary target values of this sort have been regarded as challenges in online RL (Igl et al., 2020).
As before, to understand if high UTD challenges arise from non-stationarity, we construct an exper-
iment that removes this factor. We rerun SAC with different UTDs in the offline streaming setting
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Method ∆Q MC Bias Train. TD Valid. TD

Avg. Rank on fish-swim 2.278± 0.017 2.224± 0.033 2.436± 0.045 1.360± 0.062
Avg. Rank on 7 DMC tasks 1.819± 0.044 1.697± 0.044 1.701± 0.050 1.605± 0.052

Table 1: Average performance rank selected based on different metrics across 7 DMC tasks. The model
selection is done among four different UTDs (1, 3, 9, and 20). The rank value for each method represents the
rank of the method selected by the corresponding metric in terms of its evaluation return. The rank value ranges
from 1 to 4 with 1 being the best and 4 being the worst. The Avg. Rank is first averaged over environment steps
(in an interval of 5000 steps), and then the resulting values are used to compute the mean and the standard error
in the table (across both seeds and the environments).

from above, but now also reshuffle the buffer before training. That is, while the previous streaming
setting replayed data in order it was collected by the online RL agent, this new setting presents data
sequentially, but not in the same order that it was collected. This ensures that the data distribution
of samples used for training is stationary and does not change over the course of training. We refer
this as the offline shuffled streaming setting. Note however that the underlying RL algorithm still
observes new data points as it trains for longer. We still observe a similar performance trend in this
shuffled streaming setting, as shown in Figure 1-middle right, indicating that non-stationarity of the
data distribution alone also does not explain the failure of high UTD learning.

(c) Distribution shift and out-of-distribution (OOD) actions. Our analysis so far suggests that
the challenges in learning with high UTD are related to effective learning from passive data: even
when the data quality and non-stationarity are accounted for, the performance with high UTDs is
worse. One might speculate that an obvious challenge for learning from data is action distribution
shift or OOD actions (Fujimoto et al., 2019; Levine et al., 2020; Kumar et al., 2019): higher UTDs
require more off-policy Bellman backups, resulting in backups from OOD actions, and Q-value
overestimation (Thrun & Schwartz, 1993; Van Hasselt et al., 2016; Fujimoto et al., 2018). Note that
overestimation in the Q-function in general stems from multiple sources such as imperfect mini-
mization of Bellman error, optimism due to OOD actions, and constraints imposed by the function
class. In this study, our goal is to investigate if OOD actions are an issue in the high UTD regime.
Hence, we plot the gap in Q-values at actions chosen by the policy and the actions in the dataset:
∆Q = Es∼D,aπ∼π(a|s)[Qθ(s,a

π)] − Es,aβ∼D[Qθ(s,a
β)] (which measures how overestimated are

the Q-values due to action distribution shift following (Kumar et al., 2020)). By inspecting the Q
gap (see Figure 1, rightmost for fish-swim and Figure 14 for other environments), we find that
for UTD=1,3,9, the gaps are generally very similar to each other and for UTD=20, the gaps are
higher but still controlled. Despite the similarity in the Q gaps for UTD=1,3,9, the performance is
widely different (see Figure 10, the leftmost column). Therefore, the performance degradation from
ramping up the UTD cannot be explained due to action distribution alone. Note that we are not
claiming that action distribution shift is not a problem in general, but that our evidence shows that in
the high UTD online RL settings that we study, distributional shift does not explain the performance
difference. This is perhaps expected as our dataset contains all the experience from an online RL
run, and is hence of high coverage.

3.2 CAN OVERFITTING EXPLAIN THE FAILURE OF HIGH UTD LEARNING?

Even after using data of high quality obtained from the run of resetting SAC, and after correcting for
non-stationarity and distribution shift, we find that the challenges with high UTD RL still remain.
This hints at the possibility that the actual underlying issue is some form of overfitting. This moti-
vates us to measure the TD errors on a held-out validation dataset and observe its relationship with
the high UTD failture cases.

As shown in Figure 2a, the validation TD error tends to be correlated with the failure cases with
high UTD. Note that the validation TD error also correlates well with the increase of UTD ratio.
While this observation hints that the overfitting might be the root cause of the high UTD failure, it
is hard to precisely quantify the amount of overfitting in TD learning due to the dynamic nature of
the training objective. It is possible that this seemingly overfitting issue co-exists with/or is caused
by another cause that we have not uncovered. Nevertheless, compared to existing metrics such as
the Q-gap and the Q-function estimation bias relative to the true Q-function (Fujimoto et al., 2018;
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Chen et al., 2021; Wang et al., 2021), validation TD error is a relatively more robust indicator for
the high UTD failure. See Table 1 for a summary based on the performance rank. The validation
TD error is especially effective on fish-swim (more details in Appendix C.1). We have shown
empirical evidence that the validation TD error is a good indicator for the high UTD failure on
fish-swim, but how about other environments? It turns out that most other DMC tasks that suffer
from the high UTD learning issue also exhibit the same trend (see Figure 10 in Appendix C). This
suggests that the biggest challenge that needs to be handled in such data-efficient deep RL settings
is controlling validation TD error.

3.3 CAN MITIGATING HIGH VALIDATION TD ERROR EXPLAIN THE GOOD PERFORMANCE
OF PRIOR REGULARIZERS?

We provided empirical evidence in the previous section that obtaining high validation TD error
often correlates well with the failure of naı̈ve RL methods with high UTD, compared to a number
of other previously hypothesized explanations/metrics. In this section, we attempt to understand if
the performance improvements from a variety of previously proposed regularizers, can be attributed
to their effectiveness in controlling the validation TD error We note that none of the methods we
study enable high UTD learning across all tasks (as we have previously discussed), so our study
instead focuses on understanding whether methods that work well in each setting also achieve lower
validation TD errors. These regularizers include dropout (Gal & Ghahramani, 2016) (DO, used by
Hiraoka et al. (2021)), weight decay (Loshchilov & Hutter, 2017) (WD, used by Lillicrap et al.
(2015)), spectral normalization (Miyato et al., 2018) (SN, used by Gogianu et al. (2021); Bjorck
et al. (2021b)), periodic resets (Nikishin et al., 2022), and a combination of LayerNorm (Ba et al.,
2016) and dropout (DroQ (Hiraoka et al., 2021)). All of these regularizers operate differently:
dropout injects stochasticity into the Q-network, weight decay controls the parameter norm; spectral
normalization controls the maximum singular value of the weight matrix. We observe that SAC
exhibits lower validation TD errors when trained with these regularizers in the high UTD regime
(as shown in Figure 2b for fish-swim and Appendix C, Figure 13 for other environments). This
further highlights that a reduction in the validation TD error does correspond to better performance.
We would also highlight that the regularizers that achieve the lowest validation TD error offline are
usually one of the top performing methods online (Figure 5).

4 AUTOMATIC MODEL SELECTION BASED ON VALIDATION TD (AVTD)

The performance of various regularization methods above indicates that no single regularizer per-
forms well on all the tasks. More so, it is also unreasonable to expect that a single regularizer
would perform well on every deep RL problem. However, if we can devise a general principle that
allows us to automatically identify a good regularization approach from among a set of candidate
approaches, we would expect such a principle to perform well given a broad set of regularization
methods. Previously, we observed that the validation TD error of different regularization approaches
correlates well with performance in the offline setting. Can we somehow use this correlation to our
advantage and select the best regularization approach automatically?

A naı̈ve approach that directly follows from our analysis would train multiple independent agents
with different regularizers in parallel, for a small number of initial steps, then select the one with
the smallest validation TD error and use it for the rest of training. While intuitive, this approach
may not necessarily work: TD error depends on the scale of the reward function, and typically as
an online RL agent makes progress towards maximizing reward and observes higher reward value,
TD error increases. This means that this naı̈ve approach will select the agent that has made the
least progress towards maximizing reward as it is likely to be the undesirable one that attains the
smallest TD error. To address this shortcoming, we consider a simple modification of this idea: we
instead train multiple agents with different regularizers on a shared replay buffer, such that the data
collection does not confound the evaluation of TD error.
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Algorithm 1 AVTD

1: Input: A collection of off-policy RL agents {(Q1
θ, π

1
θ), · · · , (QK

θ , πK
θ )}, greedy exploration

coefficient ε = 0.1
2: for each environment step do
3: With probability ε, j ← argmaxi L(θi;Dheldout). Otherwise, j ← Unif({K})
4: Sample action a from πj

θ and use it to act in the environment
5: Add the new transition in the replay buffer: D ← D ∪ {(s, a, s′, r}
6: for i = 1 · · ·K do
7: Update Qi

θ and πi
θ using the replay buffer D

8: end for
9: After every 10 episodes, collect a heldout trajectory and add toDheldout with the same action

selection strategy above for D.
10: end for

At each environment step, AVTD picks the agent with the lowest validation TD error to take actions
in the environment. Essentially, all the agents are utilizing the same buffer, similar to the offline
streaming setting, except that the active agent (the agent that is taking action currently) collects
data that goes into the replay buffer. As we will show, this does not reduce the correlation between
the validation TD error and the performance, and this selection strategy can reliably select the best
performing algorithm without incurring the additional sample complexity that might result from
running multiple learners in sequence to pick the best one. An overview is shown in Algorithm 1.

5 EXPERIMENTAL EVALUATION OF AVTD

The goal of our experiments is to validate the principle that hill-climbing on validation TD error to
mitigate statistical overfitting can improve performance in data-effcient deep RL. To this end, we
evaluate our active model selection method, AVTD along with previously-proposed regularization
strategies for comparisons. Through experiments, we will establish that automatically selecting the
regularization strategy (or strength) via AVTD is able to match or outperform the best individual
strategy. Concretely, we will answer the following questions: (1) Is AVTD able to select the best
regularization coefficient online out of a set of candidates?, (2) How important is utilizing a valida-
tion set in AVTD?, and (3) Does AVTD match or improve the performance over the best performing
regularization approach it must select from? We first present answers to questions (1) and (2) and
then present our final results in (3). Implementation details are in Appendix B.

(1) Is AVTD able to select the best regularization strength online? To answer this question, we
use five DroQ agents with different dropout rates (0.003, 0.01, 0.03, 0.1, 0.0) and evaluate if AVTD
is able to select the best dropout rate for each task independently. We show in Figure 16a that
AVTD can reliably match the performance of the best regularizer on the four Gym tasks we train
on, without apriori knowing which coefficient would perform well. One might argue that simply
training an ensemble of these coefficients could achieve a similar effect. We show that this is not the
case in Figure 16b by comparing to the uniform selection strategy where a randomly selected agent
is used to act in the environment for any given rollout.

(2) Is there any benefit to specifically using validation TD error in AVTD? To answer this ques-
tion, we performed a study where we automatically adjust the regularization strategy by hill climbing
on the training TD error instead of the validation TD error. On fish-swim, we observe that uti-
lizing validation TD error is critical, and training TD error leads to worse performance (Figure 17).
Qualitatively, we observe that the regularization strategy selected by the hill climbing on training TD
error is the one that does not add any regularization, resulting in worse performance. This demon-
strates that the principle of hill climbing on the validation TD error is more robust than hill climbing
on the training TD error, further corroborating the insights from our empirical analysis.

(3) Can AVTD match or exceed the performance of individual regularizers that it dynami-
cally selects from, across a wide range of tasks? To evaluate overall performance of AVTD in
comparison with each individual regularizer, we evaluate AVTD, individual regularizers, and other
prior methods on 9 DMC tasks and 4 MuJoCo Gym tasks. The comparative evaluation of AVTD
and other methods is shown in Figure 3. For AVTD, we use a combination of five regularization
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Figure 3: AVTD comparing to the Performance of various sample-efficient RL methods based on SAC
on Gym (top row) and DMC tasks (bottom two rows). Oracle: the best method (selected in hindsight by the
average return over the first 300K environment steps). We scale the x-axis for this oracle approach by 1.1 to
account for the additional samples utilized by any model selection method for constructing the validation set;
SAC: the standard SAC agent trained with UTD ratio of 1; Reset: the standard SAC agent trained with high
UTD ratios (9 on DMC and 20 on Gym) and resets periodically (after every 200K/100K steps on DMC/Gym
tasks); WD=0.01: the standard SAC agent trained with the high ratios and regularized with weight decay in the
Q-network; DroQ (Hiraoka et al., 2021). AVTD performs more reliably across the board, often matching the
top performing method on each environment. We use representative baselines in this plot; See Appendix C.4,
Figure 18 for the full results with all baselines and the aggregated normalized score computation protocol.

strategies: LayerNorm, LayerNorm + WD with a weight of 0.01, WD with a weight of 0.01 alone,
and LayerNorm + Dropout with fractions of 0.03 or 0.01. This set of regularizers includes at least
one regularizer that performs well on each of the tasks (e.g., DroQ regularizers work well on Gym
tasks; weight decay works well on DMC tasks). However, no single strategy performs well across
all the tasks. The goal of AVTD is to identify the best performing method, and preferably improve
it in each case. To interpret the performance of AVTD, we also plot an oracle upper bound, that
identifies the best regularization method for every task with unlimited on the fly access to the run of
each regularizer. AVTD frequently matches the best performing method (with the exception of the
DMC acrobot-swingup task) and, in the case of the hardest task (humanoid-run), outper-
forms prior methods, indicating that selecting the regularizer based on validation error is consistently
effective. Observe that AVTD closes the gap between the best individual regularizer (in this case,
WD=0.01) and this oracle approach by 30%, indicating that it is effective.

Method LN+WD=0.01 LN WD=0.01 DroQ=0.03 DroQ=0.01 AVTD

Avg. Rank 3.346 ± 0.104 3.317 ± 0.085 3.490 ± 0.118 4.125 ± 0.131 3.798 ± 0.154 2.923 ± 0.110

Table 2: Average performance rank over the first 300k steps. The rank value for each method ranges from
1 to 6 with 1 being the best and 6 being the worst. The Avg. Rank is averaged over both environments (4 Gym
+ 9 DMC tasks) and environment steps (first 3× 105 steps). Standard error is computed over 8 random seeds.

Average algorithm rank: To further understand the efficacy of AVTD in selecting the best regu-
larizer, we rank each of the individual regularization techniques and AVTD in terms of the average
return obtained in the first 300K steps for all the tasks and compute the average rank attained by ev-
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ery approach. A more effective regularization approach across the board should attain a smaller rank
(ideally, close to 1.0). As shown in Table 2, all prior regularizers exhibit statistically overlapping
values of average rank, indicating that none of the methods is the best across the board. On the other
hand, AVTD attains an average rank of 2.923, improving over all the other methods significantly.
This indicates the efficacy of AVTD in attaining good performance across the board.

6 RELATED WORK

In image-based RL domains, prior works have identified overfitting issues (Song et al., 2019) and
found data augmentation to help (Kostrikov et al., 2020; Yarats et al., 2021; Raileanu et al., 2021).
Cetin et al. (2022) identified a “self-overfitting” issue that is caused by TD learning with a convolu-
tional encoder and low magnitude rewards. Our work is distinct as we mainly focus on state-based
tasks with mostly dense rewards. Overfitting is also studied in offline RL (Kumar et al., 2021b;
Arnob et al., 2021; Lee et al., 2022), and while we do run some analysis in offline RL, we follow the
tandem learning protocol (Ostrovski et al., 2021), where the offline dataset is generated via an active
RL agent and is not an arbitrary distribution. In the sample-efficient deep RL setting that we study
in this paper, Nikishin et al. (2022) observed that forcing the TD learning to fit on limited initial
data with many gradient steps can hinder the learning progress later on in the training. This prior
work speculates that this observation could be due to some “overfitting-like” phenomenon. This is
different from our work as it does not utilize a held-out validation set, and our validation TD error
metric cannot be used to directly conclude the existence of overfitting, but rather as an indicator for
the high UTD failure. Finally, our analysis also examines the feasibility of various other hypotheses
(e.g., non-stationarities of the replay buffer (Lyle et al., 2022; Igl et al., 2020), action distribution
shift (Fujimoto et al., 2019), value under/over-estimation (Fujimoto et al., 2018; Chen et al., 2021;
Wang et al., 2021)) towards explaining issues in data-efficient deep RL. We find that the validation
TD error correlates with the performance better than other metrics that we examine.

Regularization in deep RL. Regularization schemes, such as dropout (Gal & Ghahramani, 2016),
layernorm (Ba et al., 2016), or batchnorm (Cheng et al., 2016) have been effective in improving the
sample efficiency of deep RL algorithms. For example, Hiraoka et al. (2021) uses dropout and lay-
ernorm on top of SAC to attain near state-of-the-art performance on MuJoCo gym Liu et al. (2019)
found that L2 weight regularization on actors can improve both on-policy and off-policy RL algo-
rithms. Nikishin et al. (2022) propose periodic resets of critic weights, and can also be interpreted
as a form of regularization. Despite the empirical successes of these regularization approaches, the
understanding of the principle behind these regularization approaches is lacking. Our analysis sheds
light on the connection of these regularization approaches to statistical overfitting. We also observe
that the efficacy of these regularizers is quite domain dependent: not all regularizers work in all
domains (see Figure 4). On the contrary, we do not propose yet another regularizer, but a method
to select from among regularizers. Our method, AVTD, is also related to theoretical algorithms that
attempt to do online model selection (Foster et al., 2019; Lee et al., 2021; Cutkosky et al., 2021), that
study this problem from a theoretical perspective. Khadka et al. (2019) also utilizes multiple learners
and actively selects from them based on an estimate of return, distinct from validation TD-error.

7 DISCUSSION

In this work, we attempted to understand the primary bottlenecks in data-efficient deep RL. Through
a rigorous empirical analysis, we showed that poor performance in high UTD deep RL is often
correlated with high validation TD error, and the effectiveness of many existing regularizers can
be explained by their ability to control the validation TD error. We use this experimental design
to devise a principle for obtaining sample-efficient deep RL: by targeting this metric by an active
model selection strategy, that automatically adjusts regularization based on validation TD-error,
we can often match the best and outperform existing regularizers on each task, achieving better
overall performance. While AVTD can work well across a number of domains, several important
questions remain. For instance, it is not clear why and when certain regularization strategies work
better than others. If we can answer this question, we can optimize for validation TD error in a
more straightforward fashion without requiring multiple parallel agents. This likely would require
understanding the learning dynamics of TD-learning, which is an interesting topic for future work.
Reducing the computational cost of our method is also an interesting avenue for future work.
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Appendices
A FAILURE CASE OF EXISTING REGULARIZERS
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Figure 4: Failure cases for commmon sample-efficient RL methods across DMC and MuJoCo gym
benchmark. DroQ is the state-of-the-art method on gym tasks, Reset is one of the top performing algorithm
on DMC from Nikishin et al. (2022) that utilizes resets, and WD=0.01 is a simple regularization baseline
that we study in our work that utilizes weight decay on the Q-network. While DroQ and Resets attain good
performance on the Gym tasks, they perform poorly on the other set of tasks from the DMC suite. In contrast,
weight decay performs well on the DMC tasks attains poor performance on Gym.

B IMPLEMENTATION DETAILS

AVTD. In all our experiments, we use ε = 0.1 unless specified otherwise. This means that at each
environment step, there is a 10% chance that a random agent is picked and the action is sampled from
that random agent. One held-out episode of transitions is collected after every 10 episodes where the
actions are picked with the same strategy above. These environment steps are also counted towards
the number of steps taken by the AVTD for fair comparisons.

Weight decay (WD). For all our experiments with weight decay, we apply AdamW (Loshchilov
& Hutter, 2017) on the weight matrices of the Q-network (not on bias) except the last layer of the
network (that maps the last layer feature to a scalar). When LayerNorm and weight decay are used
together, weight decay is not applied on the bias and the scale learned in the LayerNorm. Unless
specified otherwise, we use a weight decay coefficient of 0.01.

Spectral normalization (SN). For spectral normalization, we follow the implementation of
Gogianu et al. (2021) where we use 1 power iteration to keep a running estimate of the singular
vector (that corresponds to the largest singular value) and backpropagate through the norm. We fol-
low the best-performing setting in Gogianu et al. (2021) where SN is only applied to the penultimate
layer of the Q-network (the layer that has the 256× 256 weight).

LayerNorm (LN). For all our experiments with LayerNorm (Ba et al., 2016), we use it right
before each ReLU activation in the Q-network and learns additional per-feature-element scales and
biases.

Feature Normalization (FN). For all our experiments with feature normalization, we use it right
before the last layer of the Q-network where it is parameterized as

Qθ(s,a) =
w⊤fθ(s,a)

∥fθ(s,a)∥2

where w is the last layer weight of the Q-network and fθ(s,a) gives the post-activation feature right
before the last layer. This trick has been applied in many prior works to improve the stability of TD
learning (e.g., (Bjorck et al., 2021a; Kumar et al., 2021a)).
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Initial Temperature 1.0

Target Update Rate update rate of target networks 0.005

Learning Rate learning rate for the Adam optimizer 0.0003

Discount Factor 0.99

Batch Size 256

Network Size (256, 256)

Warmup Period # of initial random exploration steps 10000 for DMC, 5000 for gym MuJoCo

Table 3: Hyperparameters used for the SAC algorithm (Haarnoja et al., 2018)

Dropout (DO). For all our experiments with dropout, we apply it in the Q-network before the
ReLU activation (before LayerNorm when combined together, e.g., DroQ (Hiraoka et al., 2021)).
Unless specified otherwise, we use a dropout rate of 0.03 for DO and 0.01 for DroQ. Our DO
implementation follows the open-source implementation of DroQ in Smith et al. (2022) (https:
//github.com/ikostrikov/walk_in_the_park). On DMC tasks, we turn off the policy
delay in the DroQ baseline to keep it consistent with other baselines (e.g., Reset, weight decay) as
they all do not use policy delay.

Reset. For our experiments with Reset (Nikishin et al., 2022), we use the same strategy as the
original paper where we re-initialize the agent from scratch periodically while keeping the replay
buffer. For DMC tasks, we use a reset frequency of 200K steps (same as the original paper). For
gym tasks, we use a reset frequency of 100K steps. To our surprise, resetting every 100K could
already match the performance of DroQ (Hiraoka et al., 2021).

Gym experimental setup. For all the experiments on Gym tasks, we follow DroQ (Hiraoka et al.,
2021) where we update the actor once per every 20 critic update steps and run 3× 105 environment
steps. We use a warm-up period of 5000 steps where random actions are taken before updating the
agents. We use a UTD ratio of 20 (also used in DroQ (Hiraoka et al., 2021) and RedQ (Chen et al.,
2021)).

DMC experimental setup. For all the experiments on DMC tasks, we use a UTD ratio of 9,
warm-up period of 10000 steps where random actions are taken before updating the agents, and run
106 environment steps. Unless specified otherwise, no policy delay is used for experiments on DMC
(actor update frequency is the same as the critic update frequency).

SAC. For the SAC implementation used in this paper, we build our code on top of the jaxrl
codebase: https://github.com/ikostrikov/jaxrl (Kostrikov, 2021). The actor action
distribution is parameterized by a Tanh-transformed diagonal Gaussian with learnable and state-
dependent mean and log standard deviation. Both actor and critic (Q-function) networks are ini-
tialized with orthogonal initialization with a multiplier of

√
2, following the implementation in

https://github.com/evgenii-nikishin/rl_with_resets (the official repository
of Reset (Nikishin et al., 2022)). The hyperparameter used for SAC is attached as follows (see
Table 3):

Evaluation return computation. Unless specified otherwise, the return for individual seed
throughout the paper is estimated by running the policy with the deterministic mode (e.g., taking
the mean of the Gaussian distribution for each action) for 10 independent trials.
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C DMC ANALYSIS

C.1 COMPARISON OF THREE METRICS: Q-GAP, ESTIMATION BIAS USING MC RETURNS
AND TD VALIDATION ERROR.

In this section, we plot the evaluation return against three metrics. The first metric is ∆Q :=
Es∼D,aπ∼π(a|s) [Qθ(s,a

π] − Es,aβ∼D
[
Qθ(s,a

β)
]
. The second metric is the estimation bias of

the estimated Q-function compare to the actual return of the policy on the state-action distribution
of the policy: Eπ [Qθ(s,a)−Qπ(s,a)]. In our experiment, the second term is estimated by the
Monte-Carlo discounted return (by computing the discounted reward-to-go for each transition in the
trajectory): Q̂π(st,at) =

∑T
t′=t γ

t′−tr(st′ ,at′) (with the trajectory being τ = [(st,at)]
T
t=1). We

use 10 trajectories. The third metric is the TD error (Equation 1) on an independently collected held-
out dataset. Figure 6 and 7 shows the metric values and the evaluation returns on different DMC
environments with different UTDs and different regularizers respectively under the offline shuffled
streaming setting. These plots are generated using 7 separate trials (different from the 8 trials used
in the plots in the rest of the paper). This is because the MC Bias information was not being logged
during the original 8 trials. The results for the different UTDs are summarized in Table 1.

C.2 THE EFFECT OF REGULARIZERS ON THE ONLINE PERFORMANCE.

To further study whether the validation TD error is indicative of the performance beyond the offline
setting, we plot the online evaluation performance against the validation TD error in the offline
shuffled streaming setting. The method that achieves the lowest TD error in the shuffled streaming
setting usually performs well online (Figure 5).
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Figure 5: The effect of regularization approaches on the online performance and its correlation with
the TD validation error in the offline shuffled streaming setting. On quadruped-run, hopper-hop,
humanoid-run, and fish-swim the performance improvements correlate well with the validation TD
error in the offline setting. The method with the lowest validation TD error ranks first in performance on
hopper-hop (Reset), huamnoid-run (WD), and fish-swim (Reset). For quadruped-run, Reset
achieves the lowest validation TD error and it is one of the top performing method. We include a more complete
set of results in Appendix C, Figure 11 (Online), Figure 13 (Offline Shuffled).
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Figure 6: Comparison of three metrics with varying UTDs under the offline shuffled streaming setting:
the Q-gap (∆Q), the estimation bias (MC Bias), and the Validation TD Error (Lvalid(θ)). Plots are generated
using 7 separate trials (compared to Figure 10).
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Figure 7: Comparison of three metrics with varying regularizers under the offline shuffled streaming
setting: the Q-gap (∆Q), the estimation bias (MC Bias), and the Validation TD Error (Lvalid(θ)). Plots are
generated using 7 separate trials (compared to Figure 13)

C.3 SUPPLEMENTARY RESULTS.

This section contains additional plots for the 7 DMC environments with different UTDs and different
regularizers on evaluation return, training/validation TD error.
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Figure 8: The effects of UTD ratios on 7 DMC tasks. All agents use feature normalization in
the last layer feature to stabilize TD learning. Among all the tasks considered, almost all tasks
exhibit the failure mode of high UTD in the online setting except on hopper-hop where UTD=20
performs the best. In the offline setting, the performance degrade trend is cleaner where the agents
trained with UTD=1 performs the best across the board (except on hopper-hop on the streaming
setting, humanoid-run on the shuffled streaming setting, and finger-turn hard on both
offline settings.) and the agents trained with UTD=20 performs the worst across the board (except
on quadruped-run on shuffled streaming setting and finger-turn hard on both offline
settings).
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Figure 9: The effects of UTD ratio on 7 DMC tasks in the offline streaming setting. All
agents use feature normalization in the last layer to stabilize TD learning. For all tasks except
quadruped-run (where the agent trained with UTD=1 is doing a bit worse than other agents with
UTD=3 and UTD=9 but achieving lower validation TD error) and finger-turn hard (where
performance does not seem to matter among different UTD ratios), the TD validation error corre-
lated well with performance.
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Figure 10: The effects of UTD ratio on 7 DMC tasks in the offline shuffled streaming setting.
All agents use feature normalization in the last layer to stabilize TD learning. For all tasks except
finger-turn hard (where the performance of the agents trained with UTD=1,3,9 are indistin-
guishable while the validation TD errors are) and hopper-hop (where the performance of the
agents train with UTD=1,3 are indistinguishable while the validation TD errors are), the TD valida-
tion error correlated well with performance.
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Figure 11: The effects of various regularization approaches on 7 DMC tasks. Among all the
tasks considered, fish-swim, humanoid-run and hopper-hop have the most similar relative
performance ordering. On humanoid-stand, all the other methods except the base SAC + FN
correlates have similar performance ordering across online/offline settings. On quadruped-run,
we observe that the performance gap is much bigger in the offline settings, but the relative ordering
of DO, WD, Reset and DroQ is roughly preserved (FN and FN + SN are much worse in the shuffled
streaming setting). The ordering is the most ambiguous in hopper-stand.
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Figure 12: The effects of different regularizations on 7 DMC tasks in the offline streaming set-
ting. All agents use feature normalization in the last layer to stabilize TD learning. On fish-swim,
humanoid-run and humanoid-stand, the evaluation returns of different regularization ap-
proaches generally correlates well with their TD errors. On hopper-hop, finger-turn hard
and hopper-stand, no obvious correlation can be seen as all of approaches perform quite simi-
larly. Specifically, on fish-swim, the top performing method correlates better with the validation
TD error compared to the training TD error.
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Figure 13: The effects of different regularizations on 7 DMC tasks in the offline shuffled
streaming setting. All agents use feature normalization in the last layer to stabilize TD learning. On
humanoid-stand, humanoid-run, quadruped-run and fish-swim, the top performing
methods tend to have lower TD error. Specifically, on fish-swim, the top performing method
correlates better with the validation TD error compared to the training TD error.
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Figure 14: The effects of UTD ratio on the gap in Q-values on 6 DMC tasks in the offline
shuffled streaming setting. All agents use feature normalization in the last layer to stabilize TD
learning.
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Figure 15: The data collecting policy for the offline analysis. The online training RL agent is a
standard SAC with UTD ratio of 9 and gets periodically reset after every 200K steps.
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C.4 FULL RESULTS FOR AVTD

How effective is AVTD at online model selection? Figure 16 shows two experiments that involve
an ensemble of DroQ agents. Figure 17 studies how important it is to use a held-out validation set
compared to the training set in AVTD.
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(a) Can AVTD select the best regularization
strength in the ensemble? We plot AVTD against
the five agents trained independently on the return
metric. AVTD consistently matches the top perform-
ing regularizer, suggesting that it can select the best
regularization strength.
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(b) Can training an ensemble of agents match the
performance of AVTD? Random corresponds to train-
ing an ensemble with completely random agent selec-
tion (ε = 1.0) where the evaluation return of each agent
in the ensemble is shown separately. AVTD consis-
tently outperforms all agents in the ensemble.

Figure 16: How effective is AVTD at online model selection with DroQ agents? In both experiments, we
use five DroQ agents with different dropout rate: 0.1, 0.03, 0.01, 0.003, and 0.0 (denoted as LN).

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

200

400

600

Re
tu

rn

Ours Ours (train)

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0.10

1.00

TD
 E

rr
or

DroQ=0.01
DroQ=0.03
LN+WD=0.01

WD=0.01
LN

Train
Valid

Figure 17: AVTD vs. model selection via training TD error on fish-swim. Left: return; Right: val-
idation TD error of each agent in AVTD (right) and training TD error of each agent in AVTD (train) (mid).
AVTD consistently picks the regularizer with the best performance (WD=0.01) whereas AVTD (train) consis-
tently picks the agent that overfits the most. Thus, AVTD (train) achieves a lower return compared to AVTD.

Aggregated performance computation. To compute the aggregated performance for each
method, we use the following protocol – For each environment, we normalize the return by the
best average return achieved on each task (taking the maximum over all agent and all environment
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steps and the average over all eight seeds). After obtaining the normalized return for each environ-
ment, method and seed, we aggregate them over nine DMC tasks and four Gym tasks to obtain the
sample efficiency curve for the aggregated normalized score following Agarwal et al. (2021). Since
DMC experiments were run for a larger number of steps (106) than Gym experiments (3 × 105),
we only take the performance of the DMC for the first 3 × 105 steps to compute the aggregated
normalized score.
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Figure 18: AVTD compared to different regularizers and the standard SAC baseline with UTD=1.
For Gym tasks, UTD=20 is used and the actor is updated once per 20 critic updates. For DMC tasks,
UTD=9 is used and the actor is updated with every critic update.
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