
Published in Transactions on Machine Learning Research (06/2024)

On the numerical reliability of nonsmooth autodiff: a Max-
Pool case study

Ryan Boustany ryan.boustany@ut-capitole.fr
Toulouse School of Economics
Université de Toulouse
Thales LAS France

Reviewed on OpenReview: https: // openreview. net/ forum? id= 142xsInVfp

Abstract

This paper considers the reliability of automatic differentiation for neural networks
involving the nonsmooth MaxPool operation across various precision levels (16, 32,
64 bits), architectures (LeNet, VGG, ResNet), and datasets (MNIST, CIFAR10,
SVHN, ImageNet). Although AD can be incorrect, recent research has shown that it
coincides with the derivative almost everywhere, even in the presence of nonsmooth
operations. On the other hand, in practice, AD operates with floating-point numbers,
and there is, therefore, a need to explore subsets on which AD can be numerically
incorrect. Recently, Bertoin et al. (2021) empirically studied how the choice of
ReLU′(0) changes the output of AD and define a numerical bifurcation zone where
using ReLU′(0) = 0 differs from using ReLU′(0) = 1. To extend this for a broader
class of nonsmooth operations, we propose a new numerical bifurcation zone (where
AD is incorrect over real numbers) and define a compensation zone (where AD is
incorrect over floating-point numbers but correct over reals). Using SGD for training,
we found that nonsmooth MaxPool Jacobians with lower norms maintain stable and
efficient test accuracy, while higher norms can result in instability and decreased
performance. We can use batch normalization, Adam-like optimizers, or increase
precision to reduce MaxPool Jacobians influence.

1 Introduction

Nonsmooth neural networks are trained using optimization algorithms (Bottou et al., 2018; Davis
et al., 2018) based on backpropagation and automatic differentiation (AD) (Speelpenning, 1980;
Rumelhart et al., 1986b; Baydin et al., 2018). AD is a crucial tool in contemporary learning
architectures as it allows for fast differentiation (Griewank & Walther, 2008; Bolte et al., 2022).
It is implemented in popular machine learning libraries such as TensorFlow (Abadi et al., 2016),
PyTorch (Paszke et al., 2019), and Jax (Bradbury et al., 2018). Although the validity domain
of AD is theoretically limited to smooth functions (Griewank & Walther, 2008), it is commonly
used for nonsmooth functions (Bolte et al., 2022; 2021b; Bertoin et al., 2021). The behavior of
nonsmooth AD has been investigated in previous studies (Griewank & Walther, 2008; Griewank,
2013; Griewank et al., 2016; Barton et al., 2018; Kakade & Lee, 2018; Griewank & Rojas, 2019;
Griewank & Walther, 2020; Bolte & Pauwels, 2020a; Bolte et al., 2022).

1

https://openreview.net/forum?id=142xsInVfp

Published in Transactions on Machine Learning Research (06/2024)

MaxPool: a nonsmooth operation The MaxPool operation, introduced by Yamaguchi et al.
(1990), is commonly used in convolutional neural networks (CNN) for image classification (Krizhevsky
& Hinton, 2010; Krizhevsky et al., 2012; Zeiler & Fergus, 2014; LeCun et al., 2015). MaxPool reduces
the spatial dimensions of a feature map by selecting the maximum value within specific patches.
However, when applied to uniform pixel values, MaxPool can cause nonsmoothness, especially at
image edges where identical pixels can be chosen arbitrarily. In such cases, different choices of
MaxPool’s nonsmooth Jacobians bear a variational sense. See Appendix A.2 for an illustration. In
this paper, the term MaxPool-derived program refers to a specific choice of a MaxPool nonsmooth
Jacobian.

Various types of nonsmooth AD errors: We carry out a PyTorch (Paszke et al., 2019)
experiment to investigate the autodiff behavior of the nonsmooth max function, defined as max: x 7→
max1≤i≤4 xi ∈ R. We implement two max programs (max1 and max2) with different derivative
implementations. For example, the max function is not differentiable at x = (1, 1, 1, 1) and autodiff
returns (1, 0, 0, 0) for max1 and (0.25, 0.25, 0.25, 0.25) for max2 (see Appendix A.1 for more details).
Let zero be a program as follows: zero : t 7→ max1(t × x) − max2(t × x). The AD output of zero is
denoted by zero′. As mathematical functions, both max1 and max2 output the same value and zero
always outputs 0. However, we observe an unexpected behavior when using AD and floating-point
numbers: zero′(t) ̸= 0 for some t ∈ R.

Table 1: Overview of numerical AD errors for the zero program with 32 bits precision.

zero′(t)
t −10−3 −10−2 −10−1 0 101 102 103

x1 = (1, 2, 3, 4) 0.0 0.0 0.0 −1.5 0.0 0.0 0.0
x2 = (1.4, 1.4, 1.4, 1.4) 10−7 10−7 10−7 10−7 10−7 10−7 10−7

For x1, we observe a significant error at t = 0 where the computed derivative, zero′(0), is −1.5,
deviating from the correct derivative value. In contrast, for x2, which often appears in tasks such
as image classification (refer to Appendix A.2), theoretical calculations predict zero′(t) = 0 for
any t ∈ R. However, discrepancies emerge when using floating-point arithmetic, as illustrated by
AD results. Specifically, across all t values listed in Table 1, zero′(t) approximates to 5.96 × 10−8

(rounded to 10−7 in the table), which is near the computational precision limit of 32-bit systems.
This phenomenon occurs due to numerical arithmetic limits. Typically, t denotes a neural network
parameter and x represents an input image pixel area where the pixel values are identical, such as
in the MNIST dataset (see Appendix A.2). The behavior observed in Table 1 are not due to the
nonsmooth multivariate nature of the max function. Similar phenomena can also be seen when the
univariate ReLU operation is used to compute max. In contrast, we observe no errors near machine
precision using NormPool—a nonsmooth multivariate function that computes the Euclidean norm.
Furthermore, reproducing Table 1 with zero : t 7→ ReLU1(t) − ReLU2(t) where ReLU′

1(0) = 0 and
ReLU′

2(0) = 1, also shows no AD errors near machine precision. These observations suggest that
minor AD errors may stem from the intrinsic properties of the max function. Thus, our study
primarily examines max and MaxPool operations. For more details, please refer to Appendix A.3
and Appendix A.4.

Reals vs floating-point numbers: Over the real numbers, AD computes derivatives for nondif-
ferentiable functions, except on a Lebesgue measure-zero subset of inputs (Bolte & Pauwels, 2020a;b).

2

Published in Transactions on Machine Learning Research (06/2024)

However, as indicated in Table 1, the use of floating-point arithmetic can expand the subsets where
AD yields incorrect results. In Section 3, we propose two subsets of network parameters where
AD numerically fails: a new bifurcation zone, characterized by significant AD amplitude variations,
and a compensation zone, where minor amplitude variations occur near machine precision due to
rounding schemes in inexact arithmetic over reals (e.g., non-associativity). Our experiments show
that in a 64-bit network using MaxPool, the compensation zone covers the entire parameter space.
In a 32-bit network, both compensation and bifurcation zones exist, while in a 16-bit setting, the
bifurcation zone dominates the entire parameter space.

Implications for learning dynamics: In Section 4, we examine the influence of different
nonsmooth MaxPool Jacobians on learning processes. We find that nonsmooth Jacobians with low
norms produce test accuracies comparable. Conversely, Jacobians with high norms tend to reduce
test accuracy, primarily due to training instability or backprop-related issues. In a 16-bit precision
setting, which is a significant focus of research (Vanhoucke et al., 2011; Hwang & Sung, 2014;
Courbariaux et al., 2015; Gupta et al., 2015),the effects of these Jacobians are more marked and
vary depending on the network architecture, dataset, and the precision level employed. Additionally,
we observe that the inclusion of batch normalization (Ioffe & Szegedy, 2015) and the use of the
Adam optimizer (Kingma & Ba, 2014) help to alleviate these negative impacts. All experiments
were conducted using PyTorch (Paszke et al., 2019), and our source code is available publicly 1.

Related works and contributions: Recent works indicate that for a broad class of programs
employing nonsmooth functions, AD is incorrect primarily on a Lebesgue measure-zero subset of
the program’s input domain (Bolte & Pauwels, 2020a; Lee et al., 2020). However, practical inputs
are typically machine-representable. In this context, Lee et al. (2023) investigated AD correctness
in neural networks with machine-representable parameters, specifically excluding networks with
MaxPool. Additionally, Bertoin et al. (2021) explored the impact of the ReLU′(0) on AD and
training, identifying a bifurcation zone in ReLU networks where AD is incorrect. These studies,
however, do not address situations where AD is incorrect over floating-point numbers yet correct
over real numbers, such as those noted in the last line of Table 1. To bridge this gap, we propose a
new bifurcation zone and introduce the concept of a compensation zone. Our research evaluates the
reliability of automatic differentiation in MaxPool neural networks across various precision levels,
examining how the effects of the compensation zone vary with network architecture, independent
of the nonsmooth functions’ dimensionality (whether univariate or multivariate). We also delve
into how nonsmooth MaxPool Jacobians influence the stability and performance of neural network
training.

Organization of the paper: In Section 2, we discuss the elements of nonsmooth backpropagation
and define three subsets of network parameters - the bifurcation zone, compensation zone, and regular
zone. We also examine the implications of nonsmooth MaxPool Jacobians for backpropagation,
based on Bolte & Pauwels (2020a;b). In Section 3, we define and discuss the numerical bifurcation
and compensation zones, including factors that influence their significance. In Section 4, we present
detailed experiments on neural network training. For additional findings and experiments, please
refer to Appendix C.

1https://github.com/ryanboustany/MaxPool-numerical

3

https://github.com/ryanboustany/MaxPool-numerical

Published in Transactions on Machine Learning Research (06/2024)

2 MaxPool neural networks and nonsmooth AD

2.1 Preliminaries and notations

In supervised training for neural networks, we work with a set of training data (xi, yi)N
i=1, where each

xi is an input and yi its matching label. A neural network, through its function f , uses parameters
θ to generate predictions ŷi = f(xi, θ). The difference between these predictions and the actual
labels is measured by a loss function ℓ. The aim is to reduce this discrepancy across the training set
by minimizing an empirical loss function L such as:

min
θ∈Rp

L(θ) := 1
N

N∑
i=1

ℓ(ŷi, yi). (1)

For all i ∈ {1, . . . , N} and θ ∈ Rp, Equation (1) can be expressed with ℓ(ŷi, yi) = li(θ), where
li : Rp → R represents a composition of H elementary functions as follows:

li(θ) = gi,H ◦ gi,H−1 ◦ . . . ◦ gi,1(θ). (2)

Equation (2) models common neural network types, including feed-forward (Rumelhart et al.,
1986a), convolutional (LeCun et al., 1998), and recurrent networks (Hochreiter & Schmidhuber,
1997). For a more concrete example, please refer to Appendix A.2 in Bertoin et al. (2021). We
focus on elementary functions that are locally Lipschitz and semialgebraic, commonly found in
nonsmooth neural networks (Bolte & Pauwels, 2020a;b). Functions gi,j include operations such as
linear transformations, ReLU, MaxPool, convolution with filters, and softmax for classification.

2.2 Nonsmooth AD framework

Training nonsmooth neural networks (Bolte & Pauwels, 2020a; Bolte et al., 2021b; 2022; 2021a;
Davis et al., 2020) is challenging due to the need to compute subgradients from Equation (1). Major
machine learning tools such as TensorFlow (Abadi et al., 2016), PyTorch (Paszke et al., 2019),
and Jax (Bradbury et al., 2018) address this issue using automatic differentiation, referred to here
as backprop (Rumelhart et al., 1986b; Baydin et al., 2018). They apply differential calculus to
nonsmooth items, often replacing derivatives with Clarke Jacobians (Clarke, 1983). Given a locally
Lipschitz continuous function F : Rp → Rq, the Clarke Jacobian of F is defined as:

Jacc F (x) = conv
{

lim
k→+∞

Jac F (xk) : xk ∈ diffF , xk −→
k→+∞

x

}
(3)

where diffF represents the full measure set where F is differentiable and Jac F is the standard
Jacobian of F . A selection v in Jacc F is a function v : Rp → Rp×q such that, for all x ∈ Rp,
v(x) ∈ Jacc F (x). If F is C1, the only possible selection is v = Jac F .

Definition 1 (Calculus model, programs and nonsmooth AD) Let l be a composition func-
tion evaluated at θ ∈ Rp, as specified in Equation (2). A program P that executes l can be described
through a sequence of subprograms such as:

• Elementary programs: {gj}H
j=1 such that l(θ) = gH ◦ gH−1 ◦ . . . ◦ g1(θ).

• Derived programs: {vj}H
j=1 where each vj(w) ∈ Jacc gj(w) at point w = gj−1 ◦ · · · ◦ g1(θ).

4

Published in Transactions on Machine Learning Research (06/2024)

Then, the backprop algorithm automates applying differential calculus rules as follows:

backprop[P](θ) = vH (gH−1 ◦ . . . ◦ g1(θ)) · vH−1 (gH−2 ◦ . . . ◦ g1(θ)) · . . . · v1(θ). (4)

In practice, AD libraries (Abadi et al., 2016; Paszke et al., 2019; Bradbury et al., 2018) implement
dictionaries (see for e.g. Griewank & Walther (2008); Bolte et al. (2022)) containing conjointly
elementary programs and derived programs which efficiently computes the quantities defined in
Equation (4).

Remark 1 As seen in Section 1 with the zero program, various programs can implement a unique
composition function l. Each nonsmooth elementary program gj in the composition (see Definition
1) can be associated with different derived programs vj . Specifically, for any j = 1, . . . , H and
w = gj−1 ◦ · · · ◦ g1(θ), all selections vj(w) from the Clarke Jacobian of gj(w) bear a variational sense.

Example 1 The Clarke subdifferential of ReLU(t) = max(0, t) at t is 0 for t < 0, 1 for t > 0, and
the interval [0, 1] for t = 0. All ReLU-derived program that implements ReLU′(0) = s with s ∈ [0, 1]
can be used for backprop.

Definition 2 (Backprop set) Let l denote a composition function evaluated at θ ∈ Rp, as specified
in Equation (2). We define J(θ) as the function that encompasses the set of all possible backprop
outputs through all programs implementing l(θ) as in Definition 1:

J(θ) = {backprop[P](θ) : P is a program implementing l(θ)} . (5)

Remark 2 For a composition function l composed by C1 elementary programs {gj}H
j=1, J(θ) is

a singelton for all θ ∈ Rp. For locally Lipchitz semialgebraic (or definable) elementary programs
{gj}H

j=1: Equation (4) returns an element within the backprop set.

Remark 3 The chain rule, essential for AD, often fails with Clarke subgradients. Hence, the
backprop set might differ from the Clarke subdifferential (Clarke, 1983). For example, the Clarke
subdifferential of 2ReLU(x) − 1

3ReLU(−x) at x = 0 is [1
3 , 2], whereas backprop outputs 0 (with

ReLU′(0) = 0).

2.3 Network parameters subsets

Recently, Bertoin et al. (2021) studied the bifurcation zone in ReLU networks, characterized by
network parameters at which the output of AD diverges between ReLU′(0) = 0 and ReLU′(0) = 1.
However, their study did not cover the scenario where backprop theoretically computes a singleton,
but AD inaccurately computes it due to floating-point arithmetic. From our knowledge, this
phenomenon appears when comparing the output of AD across different derivatives implementations
of MaxPool. To address this gap, we introduce the concept of the compensation zone.

Definition 3 (Compensation, bifurcation and regular zones) For each i = 1, . . . , N , let li
denote a composition function evaluated at θ ∈ Rp and Ji(θ) denote the backprop set associated as
detailed in Definition 2. We define the following network parameters subsets of Rp:

ΘR =
{

θ ∈ RP : ∀i, j ∈ {1, . . . , N} × {1, . . . , H}, Jacc gi,j(w) is a singleton
}

, (6)

ΘC =
{

θ ∈ RP \ΘR : ∀i ∈ {1, . . . , N}, Ji(θ) is a singleton
}

, (7)

ΘB = {θ ∈ Rp\ΘR : ∃i ∈ {1, . . . , N} such that Ji(θ) is not a singleton} , (8)

5

Published in Transactions on Machine Learning Research (06/2024)

where w = gi,j−1 ◦ . . . ◦ gi,1(θ), ΘR is the regular zone, ΘC the compensation zone and ΘB the
bifurcation zone.

The mathematical tools of Proposition 1 are conservative fields developed in Bolte & Pauwels
(2020a). This proposition implies that theoretically (assuming exact arithmetic over the reals), the
backprop set is almost everywhere a singleton. The proof is given in Appendix B.

Proposition 1 Given subsets ΘR, ΘB, and ΘC in Rp as defined in Definition 3, the following
properties hold:

• ΘR, ΘB, and ΘC form a partition of Rp.

• ΘB is a Lebesgue null measure subset.

Remark 4 (Backprop returns a gradient a.e.) Let θ ∈ Rp and P be a program implementing
a composition function l(θ) as in Definition 1. Then backprop[P](θ) = ∇l(θ) almost everywhere.

2.4 MaxPool-derived programs

Definition 4 (Clarke Jacobian of matrix’s maximum function) Let X be a m × n real ma-
trix and Fs be a function such that Fs(X) = max1≤i≤m,1≤j≤n Xij ∈ R, where s := m × n denotes
the size of X. The Clarke Jacobian of Fs at the point X is:

Jacc Fs(X) = conv

 ⋃
(i,j)∈A(X)

Eij

 , (9)

where A(X) := {(i, j) ∈ {1, . . . , m}×{1, . . . , n} : Fs(X) = Xij} is the active set and Eij is an m×n
matrix with all entries equal to 0 except for the (i, j)-th entry which is 1.

Definition 5 (MaxPool operation) Let X ∈ Rp×q be a real matrix, and s := m×n be the size of
a pooling window such that p ≥ m and q ≥ n. For each i ∈ {0, . . . ,

⌊ p
m

⌋
−1} and j ∈ {0, . . . ,

⌊ q
n

⌋
−1},

we define a submatrix Xi,j of X, of size m × n as follows:

Xi,j := {Xkl : m × i ≤ k < m × (i + 1), n × j ≤ l < n × (j + 1)}, (10)

where k and l are the indices of the entries in X, in the lexicographic order. The MaxPool
operation output a matrix Y ∈ R⌊ p

m ⌋×⌊ q
n ⌋ where Yij = Fs(Xi,j) for all i ∈ {0, . . . ,

⌊ p
m

⌋
− 1} and

j ∈ {0, . . . ,
⌊ q

n

⌋
−1}. Finally, the MaxPool Clarke Jacobian at point X, denoted as Jacc MaxPool(X),

can be obtained by replacing each submatrix Xi,j in X with Jacc Fs(Xi,j).

Definition 6 (MaxPool-derived programs) Define Xi,j ∈ Rm×n as a submatrix of X (Defini-
tion 5), from which we derive MaxPool programs based on the Clarke Jacobian:

• Native: Chooses the first index (i1, j1) from the active set A(Xi,j) and outputs Ei1j1 .
Autograd libraries use this implementation.

• Minimal: Takes all indices from A(Xi,j), averaging them as 1
|A(Xi,j)|

∑
(k,l)∈A(Xi,j) Ekl. We

called it "minimal" as it yields the smallest norm element within Equation (9).

6

Published in Transactions on Machine Learning Research (06/2024)

• Hybrid: A blend of native and minimal, parameterized by β > 0:

(1 − β) · Ei1j1 + β ·

 1
|A(Xi,j)|

∑
(k,l)∈A(Xi,j)

Ekl

 ,

Remark 5 The hybrid MaxPool-derived program is a selection of the MaxPool Clarke Jacobian
for β ∈ [0, 1] and a selection of a conservative Jacobian approach for other β values, as outlined in
Bolte & Pauwels (2020a). .

The chain rule is essential for AD, but it often faces challenges with Clarke subgradients. The
backprop set defined in Definition 2 does not consistently qualify as a Clarke subdifferential.
Therefore, in the following sections of this paper, we will also investigate the impact of using a
conservative Jacobian (β > 1) on the learning and training processes. This investigation is important
as conservative Jacobians have a variational interpretation within the framework of nonsmooth AD
(see Bolte & Pauwels (2020a)).

3 A more general numerical bifurcation zone

In this section, we explore numerically subsets of network parameters for neural networks involving
MaxPool operations across various floating-point precisions. We find that the numerical bifurcation
zone identified by Bertoin et al. (2021) does not apply to scenarios involving MaxPool-derived
programs. Specifically, both the max function and MaxPool contribute to minor AD errors that
appear with floating-point numbers but not with real numbers. As a result, we suggest a new
numerical bifurcation and define a compensation zone using two distinct methods: one with
nondeterministic GPU computations and the other with ReLU-derived programs. These methods
are based on the notations and frameworks discussed in Sections 2.1 and 2.2.

3.1 A numerical criteria for the bifurcation and compensation zone

Numerical bifurcation zone for ReLU networks: Recently, Bertoin et al. (2021) investigated
a numerical bifurcation zone S01 specific to ReLU-derived programs. For each i = 1, . . . , N , two
programs implement a same function li: R0

i (using ReLU′(0) = 0) and R1
i (using ReLU′(0) = 1).

The bifurcation zone S01 is defined as:

S01 =
{

θ ∈ RP : ∃i ∈ {1, . . . , N}, backprop[R0
i](θ) ̸= backprop[R1

i](θ)
}

. (11)

Definition 7 (Backprop variation) Let (Bq)q∈N be a sequence of mini-batches, where each batch
size |Bq| falls within {1, . . . , N}. Consider P = {Pi}N

i=1 and Q = {Qi}N
i=1 as two neural network

implementations using different nonsmooth-derived programs (e.g., ReLU or MaxPool). Each Pi

and Qi computes a composition function li. The backprop variation between P and Q over M
experiments with random parameters {θm}M

m=1 is defined as:

Dm,q(P, Q) =

∥∥∥∥∥∥backprop

 ∑
i∈Bq

Pi(θm)

 − backprop

 ∑
i∈Bq

Qi(θm)

∥∥∥∥∥∥
1

. (12)

7

Published in Transactions on Machine Learning Research (06/2024)

A 32 bits MNIST experiment: Let P and Q be programs for a LeNet-5 network on MNIST,
using native and minimal MaxPool programs, respectively. For a sanity check, let P̃ be a copy of
P . We compute the backprop variation (as in Definition 7) between P and P̃ and between P and
Q. We control all sources of divergence in our implementation using deterministic computation.
Results are reported in Figure 1 and the experiment was run on a CPU under 32 bits precision.

0 -8 -7 -6 -5 -4 -3 -2 -1
log10(magnitude)

10 1

100

101

102

Pr
op

or
tio

n
(%

)

(a) Dm,q(P, Q)

0 -8 -7 -6 -5 -4 -3 -2 -1
log10(magnitude)

101

102

Pr
op

or
tio

n
(%

)

(b) Dm,q(P, P̃)

Figure 1: Histogram of backprop variation Dm,q for LeNet-5 on MNIST (128 mini-batch size) at
32-bit precision, comparing P with P̃ and P with Q over M = 1000 experiments.

We observe no variation in backpropagation between P and P̃ , indicating controlled sources of
divergence. This observation contrasts with the expectations from Proposition 1, which predicts
no variation between P and Q; we find Dm,q(P, Q) > 0 across all m, q. We identify two types of
variations: minor ones, comprising 98.78% of parameters, which align with machine precision in
32 bits (between 10−8 and 10−7), and major ones, peaking at 10−3 and accounting for 1.22% of
parameters. Notably, these findings differ significantly from the backprop variations observed with
ReLU-derived programs as shown in Figure 3, where we either see significant divergences or none.
Consequently, this section focuses on analyzing backprop variations in MaxPool-derived programs
to propose a new bifurcation zone.

An heuristic for the numerical bifurcation zone: In Figure 1, we identify two types of
backpropagation variations: one potentially arising from numerical bifurcations and another due
to floating-point arithmetic errors, which we refer to as compensation errors. To establish criteria
for proposing a new numerical bifurcation zone for nonsmooth-derived programs, we compare
these observed backpropagation variations with known sources, such as GPU nondeterminism and
variations from ReLU-derived programs at 16 and 32-bit precision. This method allows us to
differentiate between numerical bifurcations and compensation errors without presuming distinct
zones. We denote floating-point precision by ω and consider various neural networks like LeNet-5,
VGG, or ResNet for our analysis.

A threshold with nondeterministic GPU computations: We set a threshold τ1
f,ω for the

maximum backprop variation due to nondeterministic GPU computations (refer to Appendix A.6.1
for more details):

τ1
f,ω = max

1≤m≤M,1≤q
Dm,q(P, P̃) (13)

where P and P̃ compute a neural network f using the same nonsmooth-derived program, for
example, ReLU′(0) = 0 or minimal MaxPool. See Figure 2 for an illustration. We observe no
variation at ω = 16, with PyTorch’s nondeterministic GPU operations disabled. Additionally, τ1

8

Published in Transactions on Machine Learning Research (06/2024)

can be interpreted as an upper bound on the expected backprop variation when repeatedly running
the same program under nondeterministic conditions.

0 -4 -3 -2 -1 0
log10(magnitude)

101

102

Pr
op

or
tio

n
(%

)

(a) τ1
f,16 = 0

0 -9 -8 -7 -6 -5 -4
log10(magnitude)

101

102

Pr
op

or
tio

n
(%

)
(b) τ1

f,32 = 1.11 × 10−7

0 -17 -16 -15 -14 -13
log10(magnitude)

101

102

Pr
op

or
tio

n
(%

)

(c) τ1
f,64 = 1.55 × 10−16

Figure 2: Histogram of backprop variation under nondeterministic GPU operations, where f is a
LeNet-5 network on MNIST with batch size 128 for M = 1000 experiments.

A threshold with ReLU-derived programs: For ReLU-derived programs, we define R0 (with
ReLU′(0) = 0) and R1 (with ReLU′(0) = 1) as two programs implementing a same network f under
deterministic GPU operations. We introduce threshold τ2

f,ω for backprop variation:

τ2
f,ω = min

1≤m≤M,1≤q

{
Dm,q(R0, R1) : Dm,q(R0, R1) > 0

}
, (14)

τ2 can be interpreted as a lower bound on the error we expect to make when running two different
ReLU-derived programs of the same function.

Remark 6 We do not consider τ2 in the context of MaxPool-derived programs, as it is anticipated
that τ2 will approximate machine precision values as in Figure 1.

0 -7 -6 -5 -4 -3 -2 -1 0
log10(magnitude)

100

101

102

Pr
op

or
tio

n
(%

)

(a) τ2
f,16 = 3.39 × 10−6

0 -7 -6 -5 -4 -3 -2 -1 0
log10(magnitude)

10 2

10 1

100

101

102

Pr
op

or
tio

n
(%

)

(b) τ2
f,32 = 4.81 × 10−5

0 -17 -16 -15 -14
log10(magnitude)

101

102

Pr
op

or
tio

n
(%

)

(c) τ2
f,64 = 0

Figure 3: Histogram of backprop variation with ReLU-derived programs, where f is a LeNet-5
network on MNIST with batch size 128 for M = 1000 experiments.

Figure 3 illustrates two types of backpropagation variations with ReLU-derived programs: significant
divergences or none at all, contrasting with phenomena observed with MaxPool-derived programs.
These divergences may suggest the presence of a numerical bifurcation zone. Additionally, variations
from nondeterministic GPU computations, as shown in Figure 2, correspond to minor variations
near machine precision, similar to those seen in Figure 1. We propose establishing a numerical
bifurcation zone, applying different thresholds for various precisions to accommodate hardware
constraints.

9

Published in Transactions on Machine Learning Research (06/2024)

Criteria 1 (Numerical bifurcation zone) For a neural network f and a floating-point precision
ω, let τf,ω be a fixed threshold (for e.g τ1

f,ω, τ2
f,ω). The numerical bifurcation zone is defined as:

S(τf,ω) =
{

θ ∈ RP : ∃i ∈ {1, . . . , N}, ∥backprop[Pi](θ) − backprop[Qi](θ)∥1 > τf,ω

}
⊂ ΘB. (15)

Here, Pi and Qi are programs implementing f using different nonsmooth-derived programs.

Table 4 in Appendix A.6 lists threshold values for various networks and datasets across 16-bit,
32-bit, and 64-bit precisions. These thresholds are numerical guides and fluctuate based on the
initial network parameters, datasets, and architecture. The characteristics of the compensation
zone depend on the neural network’s structure rather than the nature (univariate or multivariate)
of the nonsmooth elementary programs defined in Definition 1. For example, computing MaxPool
using ReLU programs can lead to compensation errors, as detailed in Table 1 (see Appendix A.3).
In convolutional networks like VGG or ResNet, computing MaxPool with ReLU functions using
the formula 2 max(x, y) = (x + y) + (ReLU(x) − ReLU(−y)) + (ReLU(y) − ReLU(−x) does not
align with the bifurcation zone proposed by Bertoin et al. (2021). Conversely, using NormPool—a
nonsmooth multivariate function calculating the Euclidean norm—avoids such compensation errors.
Further details can be found in Appendix A.4.

3.2 Volume of the numerical bifurcation zone

We employed Monte Carlo sampling to estimate the volume of the numerical bifurcation zone for
various networks, adhering to Criteria 1. Thresholds τ2

f,16, τ1
f,32, and τ1

f,64 were consistently applied
across all networks, as detailed in Appendix A.6.3 with reference to Equations (13) and (14).

Experimental Setup: We generated a set of network parameters {θm}M
m=1 randomly using

Kaiming-Uniform initialization (He et al., 2015), with M = 1000 experiments conducted. Sub-
sequently, we iterated over the entire CIFAR10 dataset to estimate the proportion of θm within
the numerical bifurcation zone S as defined in Criteria 1 (referenced in Equation (18)) and the
proportion of affected mini-batches (detailed in Equation (19)).

Impact of floating-point precision: Using the VGG11 model on the CIFAR10 dataset, we
evaluated the volume of S across different precision levels. The results revealed that at 16-bit
and 32-bit precision, all parameters resided within S, whereas at 64-bit precision, none did. This
variance demonstrates the significant role of precision in the effects of backprop with MaxPool-
derived programs. Notably, the impact on mini-batches was substantial, with 46% at 32 bits and
100% at 16 bits, underscoring the influence of precision on the computational outcomes.

Table 2: Impact of S according to floating-point precision using a VGG11, on CIFAR10 dataset
and M = 1000 experiments. The first line represents network parameters θm in S, while the second
measured the proportion of affected mini-batches falling in S.

Floating-point precision 16 bits 32 bits 64 bits
Proportion of {θm}M

m=1 in S 100% 100% 0%
Proportion of impacted mini-batches 100% 46.67% 0%

We also investigated the influence of mini-batch size on the proportion of affected mini-batches
within the numerical bifurcation zone S using the VGG11 model on the CIFAR10 dataset. Our

10

Published in Transactions on Machine Learning Research (06/2024)

findings indicate that larger mini-batch sizes correlate with an increased proportion of impacted
mini-batches at 32-bit precision. However, at 64-bit precision, no parameters were observed to fall
into S (as shown in Figure 4). Additionally, variations in network depth—examined across VGG
variants 11, 13, 16, and 19—did not significantly alter the impact on mini-batches at 16-bit and
32-bit precisions. Notably, the introduction of batch normalization markedly increased the number
of affected mini-batches at 32-bit precision.

VGG11 VGG13 VGG16 VGG19
Networks

0

20

40

60

80

100

Pr
op

or
tio

n
(%

)

64 256 512 1024
 Mini-batch size

False True
Batch-normalization

Precision
16
32
64

Figure 4: Impact of different size parameters on the proportion of affected mini-batches (see Equation
(19) using CIFAR10 dataset. First: Different VGG network sizes. Second: VGG11 with varying
mini-batch sizes. Third: VGG11 with and without batch normalization.

4 Impact on learning

4.1 Benchmarks and implementation

Datasets and architectures: We train neural networks to investigate the impact of numerical
effects outlined in Section 3. Our experiments used CIFAR10 (Krizhevsky & Hinton, 2010), MNIST
(LeCun et al., 1998) and ImageNet (Deng et al., 2009) datasets. We test various network architectures
including VGG11 (Simonyan & Zisserman, 2014), ResNet (He et al., 2016), and LeNet (LeCun
et al., 1998). Details are available in Appendix C.1.

Training settings: The default optimizer is SGD. Conducted on PyTorch and Nvidia V100
GPUs, we define mini-batch sequences (Bq)q∈N with sizes |Bq| ⊂ {1, . . . , N}, where αq > 0 is the
learning rate for each mini-batch q. Each program Pi in P = {Pi}N

i=1 implements a function li (as
in Definition 1). The SGD algorithm updates network parameters θq,P by:

θq+1,P = θq,P − γ
αq

|Bq|
∑

i∈Bq

backprop[Pi](θq,P) (16)

with γ > 0 indicating the step-size parameter.

4.2 Effect on training and test errors

We further investigate the effect of the phenomenon described in Section 3 in terms of learning
using the CIFAR10 dataset (Krizhevsky & Hinton, 2010) and the VGG11 architecture (Simonyan
& Zisserman, 2014). This was performed at 16-bit and 32-bit precisions with various β values,
repeating each configuration ten times with random initialization. The results are depicted in Figure
5. To confirm our findings in alternative settings, we also use the MNIST (LeCun et al., 1998) and
ImageNet (Krizhevsky et al., 2012) datasets and the ResNet18 and ResNet50 architectures (He

11

Published in Transactions on Machine Learning Research (06/2024)

et al., 2016). Additional details on the different architectures and datasets experiments are found in
Appendix C.

Training effect with 16-bit: For β values greater than 103, we observe training instability
characterized by exploding gradients, unaffected by the presence of batch normalization. Conversely,
stable and efficient test accuracies are maintained for β values within the set {0, 1, 10, 100}.

Training effect with 32-bit: When β values are large, such as 104, the training process may
become unstable, exhibiting oscillations and sudden fluctuations in the learning curve. This
instability can occur if batch normalization is not used. However, incorporating batch normalization
with high β values helps stabilize the training dynamics, enhances test data accuracy, and prevents
gradient explosion.

0 1 10 100 1000 10000

0.90

0.91

0.92

Te
st

 a
cc

ur
ac

y

Batch norm
False
True

(a) 16-bit

0 50 100 150 200
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
lo

ss 0
1
10
100
1000
10000

(b) 16-bit, with batch normalization

0 1 10 100 1000 10000
0.905

0.910

0.915

0.920

0.925

Te
st

 a
cc

ur
ac

y

Batch norm
False
True

(c) 32-bit

0 50 100 150 200
epoch

0.0

0.5

1.0

1.5

2.0

Tr
ai

n
lo

ss 0
1
10
100
1000
10000

(d) 32-bit, without batch normalization

Figure 5: Training a VGG network on CIFAR10 with SGD. We performed ten random initializations
for each experiment, depicted by the boxplots and the filled contours (standard deviation).

Training and weight differences: We trained seven VGG11 networks {Pi}6
i=0 at 32-bit precision

on CIFAR10 for 200 epochs, using 128-size mini-batches, fixed learning rate for each mini-batch q
αq = 1.0, and step-size parameter γ ∈ [0.01, 0.012]. All networks, starting with the same parameters,
varied with hybrid MaxPool {βi}6

i=0. Using nondeterministic GPU computation, we measured
epoch-wise backpropagation differences between P0 and the others, observing parameter variations
and test accuracies. Variations and accuracies for β ≤ 103 were consistent, showing β’s minimal
impact for practical scenarios. At β = 104, significant divergences and a test accuracy drop were
noted, indicating that high β values could destabilize training due to exploding gradients.

Recommendation for practitioners: We found that the choice of β significantly influences
neural network training. Specifically, large β values can destabilize training and reduce test accuracy.

12

Published in Transactions on Machine Learning Research (06/2024)

0 25 50 75 100 125 150 175 200
Epoch

0
100

101

102

103

104

W
ei

gh
t d

iff
er

en
ce

0 vs 0
0 vs 1
0 vs 10
0 vs 102

0 vs 103

0 vs 104

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

= 0
= 1
= 10
= 102

= 103

= 104

Figure 6: Left: Difference between network parameters (L1 norm) at each epoch. “0 vs 0” indicates
∥θk,P0 − θk,P7∥1 where P7 is a second run of P0 for sanity check, “0 vs 1” indicates ∥θk,P0 − θk,P1∥1.
Right: test accuracy of each {Pi}5

i=0 during 200 epochs.

It is noteworthy that such large values are impractical in real-world applications. For more realistic
β values, we observed no impact on training loss or test accuracy. We recommend using low-norm
Jacobians to ensure robust training; therefore, we propose a minimal MaxPool Jacobian (β = 1
results in the minimal norm). Furthermore, employing the Adam optimizer at 32-bit precision, as
noted by Bertoin et al. (2021), effectively counteracts the adverse effects of large β values, thereby
stabilizing training (see Appendix C.2).

Connexion with the choice of ReLU′(0): Initially, Bertoin et al. (2021) reported that the
choice of ReLU′(0) significantly impacts learning, with vanilla SGD training showing ReLU′(0) = 0
as the most efficient option. A recent erratum published by the same authors (Bertoin et al. (2023))
revises this finding, indicating that the impact of ReLU′(0) on learning outcomes is considerably less
pronounced than initially stated. This is in line with our investigation of the MaxPool operation.

5 Conclusion

In our study, we evaluate the reliability of automatic differentiation in neural networks involving
MaxPool. Testing across a variety of models and datasets revealed that AD may inaccurately
process MaxPool operations when using floating-point numbers. This observation suggests that
the AD correctness findings by Lee et al. (2023) may not fully apply to convolutional neural
networks incorporating MaxPool. Our analysis identifies two critical zones: bifurcation zones,
where AD inaccuracies manifest in both real and floating-point computations, and compensation
zones, which are accurate in real numbers but may exhibit errors in floating-point representations.
Although bifurcation zones are uncommon, they lead to significant AD discrepancies. In contrast,
compensation zones more frequently display minor shifts in amplitude, related to machine precision.

Furthermore, employing lower-norm MaxPool Jacobians tends to enhance training stability and
test accuracy, while higher-norm Jacobians increase the risk of training instability, especially in
lower-precision environments. Factors such as dataset characteristics, network architecture, and
learning parameters—including batch normalization and the Adam optimizer—significantly influence
AD’s numerical behavior.

13

Published in Transactions on Machine Learning Research (06/2024)

Acknowledgments and Disclosure of Funding

The author acknowledges the support of the AI Interdisciplinary Institute ANITI funding under the
grant agreement ANR-19-PI3A-0004. The author acknowledges the help of the Association Nationale
de la Recherche et de la Technologie (ANRT) and Thales LAS France, which contributed to Ryan
B’s grant. This work was performed using HPC resources from CALMIP (Grant 2023-[P23040]).
The author would like to thank Jérôme Bolte and Edouard Pauwels for their precious feedback.
The author would like to thank the collaborators at Thales LAS France, in particular Beatrice
Pesquet-Popescu and Andrei Purica, for their help. comments.

References

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-scale
machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), pp. 265–283, 2016. URL https://www.usenix.org/system/files/conference/
osdi16/osdi16-abadi.pdf.

Paul I. Barton, Kamil A. Khan, Peter Stechlinski, and Harry A.J. Watson. Computationally
relevant generalized derivatives: theory, evaluation and applications. Optimization Methods
and Software, 33(4-6):1030–1072, 2018. doi: 10.1080/10556788.2017.1374385. URL https:
//doi.org/10.1080/10556788.2017.1374385.

Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
Automatic differentiation in machine learning: a survey. Journal of Marchine Learning Research,
18:1–43, 2018.

David Bertoin, Jérôme Bolte, Sébastien Gerchinovitz, and Edouard Pauwels. Numerical influence of
relu’(0) on backpropagation. Advances in Neural Information Processing Systems, 34:468–479,
2021.

David Bertoin, Jérôme Bolte, Sébastien Gerchinovitz, and Edouard Pauwels. Erratum: Numerical
influence of relu’(0) on backpropagation, 2023.

Jérôme Bolte and Edouard Pauwels. Conservative set valued fields, automatic differentiation,
stochastic gradient methods and deep learning. Mathematical Programming, pp. 1–33, 2020a.

Jérôme Bolte, Tam Le, Edouard Pauwels, and Antonio Silveti-Falls. Nonsmooth implicit dif-
ferentiation for machine learning and optimization. CoRR, abs/2106.04350, 2021a. URL
https://arxiv.org/abs/2106.04350.

Jérôme Bolte, Tam Le, Edouard Pauwels, and Tony Silveti-Falls. Nonsmooth implicit differentiation
for machine-learning and optimization. Advances in Neural Information Processing Systems, 34,
2021b.

Jérôme Bolte, Ryan Boustany, Edouard Pauwels, and Béatrice Pesquet-Popescu. On the complexity
of nonsmooth automatic differentiation. In The Eleventh International Conference on Learning
Representations, 2022.

14

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://doi.org/10.1080/10556788.2017.1374385
https://doi.org/10.1080/10556788.2017.1374385
https://arxiv.org/abs/2106.04350

Published in Transactions on Machine Learning Research (06/2024)

Jérôme Bolte and Edouard Pauwels. A mathematical model for automatic differentiation in machine
learning. In Conference on Neural Information Processing Systems, 2020b.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. Siam Review, 60(2):223–311, 2018.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Frank H Clarke. Optimization and nonsmooth analysis. SIAM, 1983.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Training deep neural networks
with low precision multiplications. In Proceedings of the International Conference on Learning
Representations, 2015.

D. Davis, D. Drusvyatskiy, S. Kakade, and J. D. Lee. Stochastic subgradient method converges on
tame functions. Foundations of Computational Mathematics., 2018.

Damek Davis, Dmitriy Drusvyatskiy, Sham Kakade, and Jason D Lee. Stochastic subgradient
method converges on tame functions. Foundations of computational mathematics, 20(1):119–154,
2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255, 2009.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

A. Griewank and A. Rojas. Treating artificial neural net training as a nonsmooth global optimization
problem. In International Conference on Machine Learning, Optimization, and Data Science (pp.
759-770). Springer, Cham., 2019.

A. Griewank and A. Walther. Beyond the oracle: Opportunities of piecewise differentiation. In
Numerical Nonsmooth Optimization (pp. 331-361). Springer, Cham., 2020.

Andreas Griewank. On stable piecewise linearization and generalized algorithmic differentiation.
Optimization Methods and Software, 28, 07 2013. doi: 10.1080/10556788.2013.796683.

Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques of
algorithmic differentiation. SIAM, 2008.

Andreas Griewank, Andrea Walther, Sabrina Fiege, and Torsten Bosse. On lipschitz optimization
based on gray-box piecewise linearization. Mathematical Programming, 158:383–415, 2016.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with
limited numerical precision. In International conference on machine learning, pp. 1737–1746.
PMLR, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

15

http://github.com/google/jax
http://github.com/google/jax

Published in Transactions on Machine Learning Research (06/2024)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9:
1735–1780, 1997.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Kyuyeon Hwang and Wonyong Sung. Fixed-point quantization of deep convolutional networks. In
Proceedings of the International Conference on Machine Learning, 2014.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong, Feihu Zhou, Liqiang Xie,
Zhenyu Guo, Yuanzhou Yang, Liwei Yu, et al. Highly scalable deep learning training system with
mixed-precision: Training imagenet in four minutes. arXiv preprint arXiv:1807.11205, 2018.

Sham M Kakade and Jason D Lee. Provably correct automatic sub-differentiation for qualified
programs. In Advances in Neural Information Processing Systems, volume 31. Curran Associates,
Inc., 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky and Geoff Hinton. Convolutional deep belief networks on cifar-10. Unpublished
manuscript, 40(7):1–9, 2010.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444, 2015.

Wonyeol Lee, Hangyeol Yu, Xavier Rival, and Hongseok Yang. On correctness of automatic
differentiation for non-differentiable functions. In NeurIPS 2020-34th Conference on Neural
Information Processing Systems, 2020.

Wonyeol Lee, Sejun Park, and Alex Aiken. On the correctness of automatic differentiation for neural
networks with machine-representable parameters, 2023.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. arXiv preprint arXiv:1710.03740, 2017.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS workshop on deep learning
and unsupervised feature learning, volume 2011, pp. 5, 2011.

16

Published in Transactions on Machine Learning Research (06/2024)

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf,
Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems
32, pp. 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

D. E. Rumelhart, Geoffrey E. Hinton, and R. J. Williams. Learning representations by back-
propagating errors. Nature, 323:533–536, 1986a.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986b.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Bert Speelpenning. Compiling fast partial derivatives of functions given by algorithms. University
of Illinois at Urbana-Champaign, 1980.

Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. Improving the speed of neural networks on
cpus. In Proceedings of the Deep Learning and Unsupervised Feature Learning Workshop, 2011.

Kouichi Yamaguchi, Kenji Sakamoto, Toshio Akabane, and Yoshiji Fujimoto. A neural network for
speaker-independent isolated word recognition. In ICSLP, 1990.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pp. 818–833, 2014.

17

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Published in Transactions on Machine Learning Research (06/2024)

This is the appendix for ”On the numerical reliability of nonsmooth autodiff: a MaxPool case study”.

Contents

A Further comments, discussion, and technical elements 18

B Proof related to Section 2.3 22

C Complements on experiments 23

D Complementary information 26

A Further comments, discussion, and technical elements

A.1 Implementation of the zero program

The implementation of the zero function used in Table 1 is given in Figure 7. Programs max1 and
max2 correspond to an equivalent implementation of the same function max, but the computed
derivatives are different.

def max1(x):
res = x[0]
for i in range(1, 4):

if x[i] > res:
res = x[i]

return res

def max2(x):
return torch.max(x)

def zero(t):
z = t * x
return max1(z) - max2(z)

Figure 7: Implementation of programs max1, max2 and zero using Pytorch. Programs max1
and max2 are an equivalent implementation of max, but with different derivatives due to the
implementation.

A.2 Challenges posed by MaxPool in image processing

In Convolutional Neural Networks (CNNs), the MaxPool operation is frequently used for reducing
dimensions and downsampling. This function is especially crucial in image contexts, where uniform
intensity regions are common, especially around the edges of objects and flat surfaces. One common
situation is encountering identical pixel values within a pooling window, as shown in Figure 8.
MaxPool must choose among these equivalent values, creating a point of non-differentiability. During
training, this affects gradient calculation in backpropagation, affecting the updates to convolutional
filters (Goodfellow et al., 2016).

A.3 AD errors with ReLU-derived programs

We conduct a small PyTorch experiment using the nonsmooth function ReLU: x 7→ max(x, 0).
Consider two programs max1 and max2 implementing the max: x 7→ max1≤i≤4 xi ∈ R function
using different ReLU-derived programs. Note that 2 max(x, y) = (x + y) + (ReLU(x) − ReLU(−y)) +
(ReLU(y) − ReLU(−x)). Let zero2 : t 7→ max1(t × x) − max2(t × x) be a program implementing

18

Published in Transactions on Machine Learning Research (06/2024)

0 5 10 15 20 25
0

5

10

15

20

25

Figure 8: Image segment post-convolution, spotlighting equal pixel values (marked in red) within a
2x2 MaxPool window.

the null function as described in Figure 9. Let zero′
2 denote the backward AD algorithm for the

zero program. As mathematical functions, max1 and max2 are equal and the program zero outputs
constantly 0. However, for some t ∈ R, AD can return zero′

2(t) ̸= 0. Results are reported in Table 3
and similar to Table 1.
def relu(x):

return torch.relu(x)

def relu2(x):
return torch.where(x >= 0, x, torch.tensor(0.0))

def max01(x):
return (x[0] + x[1]) / 2 + relu((x[0] - x[1]) / 2) + relu((x[1] - x[0]) / 2)

def max02(x):
return (x[0] + x[1]) / 2 + relu2((x[0] - x[1]) / 2) + relu((x[1] - x[0]) / 2)

def max1(x):
return max01(torch.stack([max01(x[0:2]), max01(x[2:4])]))

def max2(x):
return max02(torch.stack([max02(x[0:2]), max02(x[2:4])]))

def zero_2(t):
z = t * x
return max1(z) - max2(z)

Figure 9: Implementation of max1, max2 and zero2 using Pytorch. Programs max1 and max2 are
an equivalent implementation of max, but implemented using different ReLU-derived programs.

A.4 NormPool : a nonsmooth multivariate operation without compensation errors

We conducted an experiment to show that compensation errors are not caused by the multivariate
nature of nonsmooth elementary functions when using floating-point arithmetic. In this experiment,
we used the NormPool operation, which is similar to the MaxPool operation but replaces the

19

Published in Transactions on Machine Learning Research (06/2024)

zero′
2(t)

t −10−3 −10−2 −10−1 0 101 102 103

x =
[
1.0 2.0 3.0 4.0

]
0.0 0.0 0.0 1.5 0.0 0.0 0.0

x =
[
1.4 1.4 1.4 1.4

]
10−7 10−7 10−7 10−7 10−7 10−7 10−7

Table 3: Summary of various types of AD errors with zero2 program using PyTorch for different
combinations of t and x.

maximum with the Euclidian norm. Two programs, P and Q, were used to implement a LeNet-5
network on the MNIST dataset with two different NormPool-derived programs. We computed the
backprop variation (see Definition 7) between P and Q, while controlling all sources of divergence
in our implementation using deterministic computation. The results are presented in Figure 10.
The experiment was conducted on a CPU with 16-bit floating-point precision.

0 -7 -6 -5 -4 -3 -2 -1 0 1
log10(magnitude)

10 1

100

101

102

Pr
op

or
tio

n
(%

)

Figure 10: Histogram of backprop variation between P and Q for a LeNet-5 network on MNIST
(128 mini-batch size) with 16-bit. We run M = 1000 experiments.

In contrast to our findings with MaxPool, we obtained similar results to those reported in Bertoin
et al. (2021) with ReLU-based programs. Specifically, for NormPool-based programs, we observed
either significant divergence of backprop or none.

A.5 Bifurcation zone: a practical example

This section presents an example that demonstrates cases where AD can be incorrect. Calculating
the accurate derivative for all inputs might be impossible, particularly when the function is
nondifferentiable. This is because the derivative does not exist for inputs where the function is
nondifferentiable.

A.5.1 Network configuration

Consider an input matrix X of size 4 × 4 given by:

X =

1 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 (Input)

20

Published in Transactions on Machine Learning Research (06/2024)

Let k be a positive number and W be a convolution kernel of size 3 × 3 given by:

W = k ·

1 1 1
1 1 1
1 1 1

 (Convolution kernel)

Let’s consider a composition function l such that:

l(W) = MaxPool ◦ (X ∗ W) = k (17)

where the convolution operation X ∗ W produces an output matrix Z of size 2 × 2, followed by the
application of a MaxPool with a pooling window of size 2 × 2.

A.5.2 Backprop computation: native vs minimal

Let P (resp. Q) be a program implementing the composition function l in Equation equation 17
using the native (resp. minimal) MaxPool-derived program. Then, we have:

backprop[P](W) =

1 0 0
0 0 0
0 0 0

 , backprop[Q](W) =

0.5 0 0.5
0 0 0
0 0 0

The convolutional kernel W falls within the bifurcation zone defined in Definition 3.

A.6 Comments on Section 3

A.6.1 Non-determinism in GPU computation

Graphics Processing Units (GPUs) are designed for parallel processing, which can result in unpre-
dictable behaviors.

• Floating-point operations: The non-associative nature of floating-point arithmetic can
lead to discrepancies. These differences might become significant as they accumulate across
operations.

• Reduction operations: Functions like sum or maximum, especially in GPUs, can exhibit
variability between runs. This variability can result in divergent accumulated rounding
errors.

A.6.2 Threshold values for various networks in Section 3.1

Table 4 presents threshold values for various neural networks on different datasets, computed
under different floating-point precisions (16-bit, 32-bit, and 64-bit). For simplicity, thresholds are
approximated as powers of 10.

A.6.3 Details on Monte Carlo sampling in Section 3.2

Recall that, for a neural network f and a floating-point precision ω, we want to estimate the volume
of the set

S(τf,ω) =
{

θ ∈ RP : ∃i ∈ {1, . . . , N}, ∥backprop[Pi](θ) − backprop[Qi](θ)∥1 > τf,ω

}
⊂ ΘB

21

Published in Transactions on Machine Learning Research (06/2024)

Network f Dataset τ1
f,16 τ2

f,16 τ1
f,32 τ2

f,32 τ1
f,64 τ2

f,64

LeNet-5 MNIST 0 10−5 10−6 10−5 10−14 0
VGG-11 CIFAR-10 0 10−1 10−8 10−7 10−14 0
VGG-11 SVHN 0 10−1 10−8 10−7 10−15 0
VGG-13 CIFAR-10 0 10−1 10−9 10−9 10−14 0
VGG-16 CIFAR-10 0 10−2 10−10 10−9 10−15 0
VGG-19 CIFAR-10 0 10−3 10−11 10−10 10−15 0
ResNet-18 CIFAR-10 10−2 1 10−3 10−4 10−13 0
DenseNet-121 CIFAR-100 0 10−2 10−6 10−1 10−14 0

Table 4: Threshold values of various neural networks f across different datasets.

Our experiments divide a dataset into R mini-batches. Each r-th mini-batch is represented by the
index set Br ⊂ {1, . . . , N}. The programs Pr and Qr are associated with the neural network f and
implement a composition function lr for each r. Specifically, Pr uses the native MaxPool-derived
program, whereas Qr uses the minimal one. For every precision level ω ∈ {16, 32, 64}, we establish a
threshold τf,ω as in Section 3. Using the Kaiming-Uniform (He et al., 2015) initialization in PyTorch,
we randomly generate a parameter set {θj}M

j=1, with M = 1000. The first line of Table 2 is given by
the formula

1
M

K∑
j=1

1

∃r ∈ {1, . . . , R},

∥∥∥∥∥∥backprop

 ∑
j∈Br

Pj(θ)

 − backprop

 ∑
j∈Br

Qj(θ)

∥∥∥∥∥∥
1

> τf,ω

 , (18)

where 1 represents the indicator function, returning either 1 or 0 depending on the truth value of
its argument’s condition. Similarly, the second line of Table 2 is given by the formula

1
MR

M∑
j=1

R∑
r=1

1

∥∥∥∥∥∥backprop

 ∑
j∈Br

Pj(θ)

 − backprop

 ∑
j∈Br

Qj(θ)

∥∥∥∥∥∥
1

> τf,ω

 , (19)

Using the formula √√√√ ln
(

2
α

)
2n

,

and setting α = 0.05, we compute the error margin of the Hoeffding confidence interval as n = M
for Table 2’s first line and n = MR for its second. The first line adheres to a 95% confidence interval
under the iid assumption due to Hoeffding’s inequality.

Using McDiarmid’s inequality at risk level α = 0.05, we compute the error margin of the second
line in Table 2 by the formula √

1
2

(1
M

+ 1
R

)
ln

(2
α

)
.

B Proof related to Section 2.3

Proof 1 (of Proposition 1)

22

Published in Transactions on Machine Learning Research (06/2024)

1. The three subsets have unique definitions, indicating that they are separate. For instance,
a parameter cannot belong to the regular and bifurcation zones since the regular zone is
defined as the area where each program gi,j is assessed at differentiable points. On the other
hand, the bifurcation zone is defined as the region where the set of all possible backprop
outputs is not a singleton, indicating non-differentiability at some points. Additionally,
the union of these zones covers the entire parameter space Θ as every parameter must
be assigned to one of the three subsets: resulting in differentiable points when evaluated,
resulting in nondifferentiable points but having a singleton backprop set, or resulting in
nondifferentiable points with a non-singleton backprop set. Therefore, ΘR ∪ ΘB ∪ ΘC = Θ.

2. As we consider locally Lipchitz semialgebraic (or definable) functions, see [Theorem 1, Bolte
& Pauwels (2020a)] for the proof arguments.

C Complements on experiments

C.1 Benchmark datasets and architectures

Datasets: In this work, we utilized various well-known image classification benchmarks. Below
are the datasets, including their characteristics and original references.

Dataset Dimensionality Training set Test set
MNIST 28 × 28 (grayscale) 60K 10K

CIFAR10 32 × 32 (RGB) 60K 10K
SVHN 32 × 32 (RGB) 600K 26K

ImageNet 224 × 224 (RGB) 1.3M 50K

The corresponding references for these datasets are LeCun et al. (1998); Krizhevsky & Hinton
(2010); Netzer et al. (2011).

Neural network architectures: We evaluated various CNN neural network architectures, with
details as follows:

Name Layers Loss function
LeNet-5 5 Cross-entropy
VGG11 11 Cross-entropy
VGG13 13 Cross-entropy
VGG16 16 Cross-entropy
VGG19 19 Cross-entropy

ResNet18 18 Cross-entropy
ResNet50 50 Cross-entropy

DenseNet121 125 Cross-entropy

The corresponding references for these architectures are Simonyan & Zisserman (2014); He et al.
(2016); Huang et al. (2017); LeCun et al. (1998).

LeNet-5: The implementation for LeNet-5 was sourced from the following GitHub repository:
https://github.com/ChawDoe/LeNet5-MNIST-PyTorch/blob/master/model.py.

23

https://github.com/ChawDoe/LeNet5-MNIST-PyTorch/blob/master/model.py

Published in Transactions on Machine Learning Research (06/2024)

VGG: We used the PyTorch repository’s implementation for the VGG models. It can be accessed
at the following link: https://github.com/PyTorch/vision/blob/main/torchvision/models/
vgg.py.

ResNet: For ResNet models, we utilized the PyTorch repository’s implementation available at:
https://github.com/PyTorch/vision/blob/main/torchvision/models/resnet.py. We made
minor adjustments to the output layer’s size (changing from 1000 to 10 classes) and the kernel size
in the primary convolutional, varying from 7 to 3). When batch normalization was not used, we
replaced the batch normalization layers with identity mappings.

DenseNet: The implementation for DenseNet was taken from the PyTorch repository, available
at: https://github.com/PyTorch/vision/blob/main/torchvision/models/densenet.py.

C.2 Mitigating factor: Adam optimizer

After training a VGG11 network on CIFAR-10 using the Adam optimizer, we obtained results shown
in Figure 11. Our findings are consistent with those presented in Section 3, but the network exhibits
reduced sensitivity to β, resulting in improved stability of both test errors and training loss.

0 50 100 150 200
epoch

0.0

0.1

0.2

0.3

0.4

0.5

Tr
ai

n
lo

ss 0
1
10
100
1000
10000

(a) 32-bit without batch normalization

0 1 10 100 1000 10000

0.86

0.88

0.90

0.92

Te
st

 a
cc

ur
ac

y

Batch norm
False
True

(b) 32-bit

Figure 11: Training losses on CIFAR10 (left) and test accuracy (right) on VGG network trained
with Adam optimizer and without batch normalization.

C.3 Additional experiments with MNIST and LeNet-5 networks

We repeated the experiments in Section 4.2 using a LeNet-5 network on the MNIST dataset. The
results are depicted in Figure 12. We found that for 16 bits, the test accuracies were similar when
training was possible, but β = {103, 104} caused chaotic training behavior. For 32 bits, the test
accuracies were mostly similar, except for β = 104. We noticed that the chaotic oscillations had
completely disappeared.

C.4 Additional experiments with ResNet18

We performed the same experiments described in Section 4.2 using ResNet18 architecture trained
on CIFAR 10. Figure 13 represents the test errors with or without batch normalization. For 16
bits, test accuracies are similar, but β = 104 induces chaotic training behavior. For 32 bits, test
accuracies are identical, and the chaotic oscillations phenomena have entirely disappeared.

24

https://github.com/PyTorch/vision/blob/main/torchvision/models/vgg.py
https://github.com/PyTorch/vision/blob/main/torchvision/models/vgg.py
https://github.com/PyTorch/vision/blob/main/torchvision/models/resnet.py
https://github.com/PyTorch/vision/blob/main/torchvision/models/densenet.py

Published in Transactions on Machine Learning Research (06/2024)

0 1 10 100 1000 10000
0.991

0.992

0.993

0.994

0.995

Te
st

 a
cc

ur
ac

y

Batch norm
False
True

(a) 16-bit

0 20 40 60 80 100
epoch

0.00

0.02

0.04

0.06

0.08

0.10

Tr
ai

n
lo

ss 0
1
10
100
1000
10000

(b) 16-bit, with batch normalization

0 1 10 100 1000 10000

0.990

0.992

0.994

0.996

Te
st

 a
cc

ur
ac

y

Batch norm
False
True

(c) 32-bit

0 20 40 60 80 100
epoch

0.00

0.05

0.10

0.15

Tr
ai

n
lo

ss 0
1
10
100
1000
10000

(d) 32-bit, without batch normalization

Figure 12: Training a LeNet-5 network on MNIST with SGD. We performed ten random initializations
for each experiment, depicted by the boxplots and the filled contours (standard deviation).

0 1 10 100 1000

0.90

0.91

0.92

0.93

Te
st

 a
cc

ur
ac

y

Batch norm
False
True

(a) 16-bit

0 50 100 150 200
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
lo

ss 0
1
10
100
1000
10000

(b) 16-bit, with batch normalization

0 1 10 100 1000 10000
0.91

0.92

0.93

0.94

Te
st

 a
cc

ur
ac

y

Batch norm
False
True

(c) 32-bit

0 50 100 150 200
epoch

0.0

0.5

1.0

1.5

2.0

Tr
ai

n
lo

ss 0
1
10
100
1000
10000

(d) 32-bit, with batch normalization

Figure 13: Training a ResNet18 network on CIFAR10 with SGD. We performed ten random
initializations for each experiment, depicted by the boxplots and the filled contours (standard
deviation).

C.5 Additional experiments with ResNet50 on ImageNet

We performed the same experiments described in Section 4.2 using a ResNet50 architecture trained on
ImageNet. The test accuracy is represented in Figure 14. We employ mixed precision (Micikevicius
et al., 2017; Jia et al., 2018), utilizing 16 and 32 bits precision to balance computational speed and

25

Published in Transactions on Machine Learning Research (06/2024)

information retention. Test accuracies are similar when training is possible, but β = 103 induces
chaotic training behavior.

0 20 40 60 80
epoch

0

20

40

60

80

Te
st

 a
cc

ur
ac

y 0
1
10
100
1000

Figure 14: Test accuracy during training a Resnet50 on ImageNet with SGD using mixed precision.
The shaded area represents three runs. We have a chaotic test accuracy behavior for β = 103.

D Complementary information

Computational Resources: All the experiments were conducted on four Nvidia V100 GPUs.
This ensured consistent and reliable computation times across different experimental runs.

Code and Results Availability: The code corresponding to the experiments, as well as the
results of these experiments, are publicly available. The repository can be accessed at the following
URL: https://github.com/ryanboustany/MaxPool-numerical.

Licenses: The datasets used in our experiments are released under various licenses. CIFAR10
is under the MIT license, MNIST and SVHN are under the GNU General Public License, and
ImageNet is under the BSD license. The libraries we used, Numpy and PyTorch, are released under
the BSD license, while Python is released under the Python Software Foundation License.

Dataset Network Optimizer Batch Size Epochs Time Per Epoch Repetitions
MNIST LeNet-5 SGD 128 100 2 seconds 10
CIFAR10 VGG11 SGD 128 200 9 seconds 10
CIFAR10 ResNet18 SGD 128 200 13 seconds 10
SVHN VGG11 SGD 128 100 70 seconds 10
ImageNet Resnet50 SGD 512 90 15 minutes 3

Table 5: Detailed experimental setup, including the dataset, neural network architecture, optimizer
used, batch size, number of epochs, average computation time per epoch, and repetitions for each
experiment.

26

https://github.com/ryanboustany/MaxPool-numerical

	Introduction
	MaxPool neural networks and nonsmooth AD
	Preliminaries and notations
	Nonsmooth AD framework
	Network parameters subsets
	MaxPool-derived programs

	A more general numerical bifurcation zone
	A numerical criteria for the bifurcation and compensation zone
	Volume of the numerical bifurcation zone

	Impact on learning
	Benchmarks and implementation
	Effect on training and test errors

	Conclusion
	Further comments, discussion, and technical elements
	Implementation of the zero program
	Challenges posed by MaxPool in image processing
	AD errors with ReLU-derived programs
	NormPool : a nonsmooth multivariate operation without compensation errors
	Bifurcation zone: a practical example
	Network configuration
	Backprop computation: native vs minimal

	Comments on Section 3
	Non-determinism in GPU computation
	Threshold values for various networks in Section 3.1
	Details on Monte Carlo sampling in Section 3.2

	Proof related to Section 2.3
	Complements on experiments
	Benchmark datasets and architectures
	Mitigating factor: Adam optimizer
	Additional experiments with MNIST and LeNet-5 networks
	Additional experiments with ResNet18
	Additional experiments with ResNet50 on ImageNet

	Complementary information

