
Optimal Task Order for Continual Learning of Multiple Tasks

Ziyan Li 1 Naoki Hiratani 2

Abstract
Continual learning of multiple tasks remains a
major challenge for neural networks. Here, we
investigate how task order influences continual
learning and propose a strategy for optimizing it.
Leveraging a linear teacher-student model with
latent factors, we derive an analytical expression
relating task similarity and ordering to learning
performance. Our analysis reveals two principles
that hold under a wide parameter range: (1) tasks
should be arranged from the least representative
to the most typical, and (2) adjacent tasks should
be dissimilar. We validate these rules on both
synthetic data and real-world image classification
datasets (Fashion-MNIST, CIFAR-10, CIFAR-
100), demonstrating consistent performance im-
provements in both multilayer perceptrons and
convolutional neural networks. Our work thus
presents a generalizable framework for task-order
optimization in task-incremental continual learn-
ing.

1. Introduction
The ability to learn multiple tasks continuously is a hallmark
of general intelligence. However, deep neural networks and
its applications, including large language models, struggle
with continual learning and often suffer from catastrophic
forgetting of previously acquired knowledge (McCloskey &
Cohen, 1989; French, 1999; Hadsell et al., 2020; Luo et al.,
2023). Although extensive work has been done to identify
when forgetting is most prevalent (Ramasesh et al.; Lee
et al., 2021) and how to mitigate it (French, 1991; Robins,
1995; Kirkpatrick et al., 2017; Shin et al., 2017; Serra et al.,
2018; Rolnick et al., 2019), it remains unclear how to pre-
vent forgetting while simultaneously promoting knowledge
transfer across tasks (Ke et al., 2020; Lin et al., 2022; Ke

1Department of Physics, Washington University in St Louis, St
Louis, USA 2Department of Neuroscience, Washington University
in St Louis, St Louis, USA. Correspondence to: Naoki Hiratani
<hiratani@wustl.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

et al.; Kontogianni et al., 2024).

One important yet relatively underexplored aspect of con-
tinual learning is task-order dependence. Previous work has
revealed that the order in which tasks are presented can sig-
nificantly influence continual learning performance and also
explored various approaches to optimize task order (Lad
et al., 2009; Pentina et al., 2015; Guo et al., 2018; Bell &
Lawrence, 2022; Lin et al., 2023; Singh et al., 2023). How-
ever, we still lack clear understanding on how ordering of
tasks influences the learning performance and how to order
tasks to achieve optimal performance. Figure 1 illustrates
this problem using a continual binary image classification
example, where a neural network is trained on three tasks: A
(Cat vs. Ship), B (Frog vs. Truck), and C (Horse vs. Deer).
Learning one task can influence performance on the others
in a complex manner (Figs. 1a and 1b). Consequently, in
this example, the C→B→A task order achieves a higher
average performance after training than the A→B→C or-
der (Fig. 1c). The goal of this work is to understand this
task-order dependence in continual learning.

Task-order optimization requires some amount of knowl-
edge on all tasks beforehand, making it infeasible in a
strictly online learning setting. Nevertheless, it remains
highly relevant for many learning problems. One scenario
is when data acquisition and training need to be conducted
in parallel, which may occur in the training of self-driving
algorithms (Verwimp et al., 2023) or medical image analysis
(Kumari et al., 2023). In this setting, it is beneficial to first
collect a small pilot dataset across all underlying tasks and
then determine the optimal order of data acquisition and
training to maximize knowledge transfer while minimizing
forgetting across tasks. To demonstrate the potential appli-
cability of our theory to this problem, we provide numerical
evidence that, in continual visual recognition benchmarks,
an optimal task order estimated from just 1% of the data
significantly outperforms a random task order.

Moreover, in robotics applications (Lesort et al., 2020; Ibarz
et al., 2021), switching between tasks often involves phys-
ically rearranging objects around the robot, which is both
time-consuming and labor-intensive. As a result, switching
tasks on a trial-by-trial basis is often infeasible, necessitating
block-wise training. In this scenario, optimizing task order
could help maximize average performance across all tasks.

1

Optimal Task Order for Continual Learning of Multiple Tasks

Figure 1. Schematic figure of the task-order dependence. a, b) Continual learning of binary classification with two different task orders.
c) Average test accuracy on the three classification tasks at the end of learning under task orders depicted in panels a and b. Error bars
represent the standard error of mean over 10 random seeds.

Similar constraints arise in designing of machine-learning-
based teaching curricula for schools or professional training
where learners need to study multiple subjects sequentially
(Rafferty et al., 2016; Singh et al., 2023). Furthermore, even
in a more traditional continual learning task, if the current
task creates unfavorable conditions, systems can postpone
its learning to a more suitable time. Understanding how
the order of tasks impacts learning can also serve as a tool
for predicting the difficulty of online learning given a data
stream. Lastly, large language models are typically trained
in an online fashion because the size of the training corpus
is so vast that multiple epochs of training over the entire
dataset is infeasible (Hoffmann et al., 2022; Chowdhery
et al., 2023). In such cases, how the corpus is organized
for training can significantly impact learning efficiency, sup-
porting the importance of optimizing task/corpus order.

To explore the basic principle of task order optimization,
here we analyze the task-order dependence of continual
learning using a linear teacher-student model with latent
factors. First, we derive an analytical expression for the
average error after continual learning as a function of task
similarity for an arbitrary number of tasks. Our theory
shows that this error inevitably depends on the task order
because it is a function of the upper-triangular components
of the task similarity matrix, rather than of the entire matrix.

We then investigate how the similarity between tasks, when
placed in various positions within the task order, affects the
overall error. Through linear perturbation analysis, we find
that the task-order effect decomposes into two factors. The
first is absolute order dependence: similarity between two
tasks influences the error differently depending on whether
these tasks appear near the beginning or near the end of the
sequence. We demonstrate that when tasks are on average
positively correlated, the least representative tasks should be
learned first, while the most typical task should be learned
last (periphery-to-core rule). The second factor is relative
order dependence: the effect of task similarity on the error
differs depending on whether two tasks are adjacent in the
sequence or far apart. We show that a task order maximizing

the path length in the task dissimilarity graph outperforms
one that minimizes this path length (max-path rule), consis-
tent with previous empirical observations (Bell & Lawrence,
2022).

We illustrate these two rules by applying them to tasks with
simple similarity structures forming chain, ring, and tree
graphs, revealing the presence of non-trivial task orders that
robustly achieve the optimal learning performance, given
a graph structure. Moreover, we apply these rules to con-
tinual image classification tasks using the Fashion-MNIST,
CIFAR-10, and CIFAR-100 datasets. We estimate task simi-
larity by measuring the zero-shot transfer performance be-
tween tasks, and then implement the task-ordering rules
based on these estimates. Our results show that both the
periphery-to-core rule and the max-path rule hold robustly
in both multilayer perceptrons and convolutional neural
networks. Moreover, using ∼ 1% of the data for the task
similarity and order estimation was sufficient to achieve a
significant improvement over random ordering. This work
thus provides a simple and generalizable theory to task-order
optimization in task-incremental continual learning.

2. Related Work
The effects of curriculum learning have been extensively
studied in the reinforcement learning (RL) literature (El-
man, 1993; Krueger & Dayan, 2009; Narvekar et al., 2020).
However, these studies primarily focus on learning a single
challenging task by sequentially training on simpler tasks,
leaving open the question of how to design a curriculum
for learning multiple tasks of similar difficulty. A limited
number of works have explored task-order optimization for
continual/lifelong learning across multiple tasks by contrast.

Lad et al. (2009) demonstrated that ordering tasks based
on pairwise order preferences can lead to better classifica-
tion performance compared to random task ordering. More
recently, Bell & Lawrence (2022) investigated task-order
optimization by examining Hamiltonian paths on a task
dissimilarity graph (see Sec. 4 for details). They hypothe-

2

Optimal Task Order for Continual Learning of Multiple Tasks

sized that the shortest Hamiltonian path would be optimal
but instead found that the longest Hamiltonian path signif-
icantly outperformed both random task ordering and the
shortest path in continual image classification tasks. Our
work provides analytical insights into when and why this
is the case. Lin et al. (2023) analyzed generalization error
and task-order optimization in continual learning for linear
regression. Our work advances this theoretical framework
in several important ways. First, we introduce a latent struc-
ture model for considering the effect of input similarity and
reveal how tasks’ relative positions—not just their absolute
positions as in Lin et al. (2023)’s Equation 10—influence
the model’s final performance. We validate this theoretical
finding through experiments on both synthetic data and im-
age classification tasks. Furthermore, we extend beyond the
synthetic task settings of Lin et al. (2023) by demonstrating
these effects in a general continual learning framework us-
ing data-driven similarity estimation. Task-order effects on
continual learning have also been analyzed in (Pentina et al.,
2015; Evron et al., 2023; Singh et al., 2023).

The linear teacher-student model used in this work is a
widely adopted framework for analyzing the average prop-
erties of neural networks by explicitly modeling the data
generation process through a teacher model (Gardner &
Derrida, 1989; Zdeborová & Krzakala, 2016; Bahri et al.,
2020). Due to their analytical tractability, these models have
offered deep insights into various aspects of statistical learn-
ing problems, including generalization (Seung et al., 1992;
Advani et al., 2020), learning dynamics (Saad & Solla, 1995;
Werfel et al., 2003; Saxe et al., 2014), and representation
learning (Saxe et al., 2019; Tian et al., 2021). Many studies
have also applied this framework to explore various aspects
of continual learning (Asanuma et al., 2021; Lee et al., 2021;
Evron et al., 2022; Goldfarb & Hand, 2023; Li et al., 2023;
Lin et al., 2023; Goldfarb et al.; Hiratani; Mori et al.).

3. Task-order Dependence
3.1. Model Setting

Let us consider a sequence of P tasks, where the inputs
x ∈ RNx and the target output y∗ ∈ RNy of the µ-th task
is generated by

s ∼ N (0, I) , x = Aµs, y∗ = Bµs. (1)

Here, s ∈ RNs is the latent factor that underlies both x
and y∗, I is the identity matrix, and Aµ ∈ RNx×Ns and
Bµ ∈ RNy×Ns are the mixing matrices that generate the
input x and the target y∗ from the latent s (Fig. 2a). Below
we focus on Nx ≫ Ns regime. The introduction of this
low-dimensional latent factor s is motivated by the presence
of low-dimensional latent structures in many real-world
datasets (Yu et al., 2017; Cohen et al., 2020).

We sample elements of {Aµ, Bµ}Pµ=1 from a corre-
lated Gaussian distribution. Denoting a vector con-
sists of the (i, j)-th elements of A1, .., AP by aij ≡
[A1,ij , A2,ij ,, AP,ij]

T , we sample aij ∈ RP from

aij ∼ N
(
0, 1

Ns
Cin

)
(2)

where Cin is a P × P matrices that specify input corre-
lation between tasks. Similarly, we sample the (i, j)-th
elements of B1, .., BP , bij ≡ [B1,ij , B2,ij ,, BP,ij]

T ,
by bij ∼ N (0, 1

Ns
Cout). Note that here correlation is

introduced across tasks in an element-wise manner while
keeping elements of each mixing matrix independent (i.e.〈
Aµ

ijA
ν
kl

〉
A

= δikδjl
Cin

µν

Ns
), where δik represents the Kro-

necker delta. Here we generate the model from the task
similarity matrices {Cin, Cout} because previous work sug-
gests the crucial impact of task similarity on continual learn-
ing (Ramasesh et al.; Lee et al., 2021). In section 5, we
consider the estimation of task similarity from datasets to
ensure the applicability of our framework.

Let us consider the training of a linear network, y = Wx,
in this set of P tasks. We evaluate the performance of the
network for the µ-th task using the mean squared error:

ϵµ[W] ≡
〈
∥y∗ − y∥2

〉
s
= ∥Bµ −WAµ∥2F , (3)

where ⟨·⟩s represents expectation over latent s ∼ N (0, I).
In a task-incremental continual learning task (Van de Ven
& Tolias, 2019), we are mainly concerned with minimizing
the total error on all tasks after learning all tasks. Denoting
the network parameter after learning of the last, P -th, task
by WP , the final error is defined by

ϵf ≡
1

Ny

P∑
µ=1

ϵµ[WP]. (4)

Below, we take the expectation over randomly generated
mixing matrices {Aµ, Bµ}Pµ=1 and derive the average final
error ϵ̄f ≡ ⟨ϵf ⟩{Aµ,Bµ} as a function of the input and output
correlation matrices Cin and Cout. Subsequently, we ana-
lyze how the task order influences ϵ̄f and how to optimize
the order.

3.2. Analysis of the Final Error ϵf

We consider task incremental continual learning where P
tasks are learned in sequence one by one. Let us denote
the weight after training on the (µ − 1)-th task as Wµ−1.
Considering learning of the µ-th task from W = Wµ−1 us-
ing gradient descent on task-specific loss ϵµ[W], the weight
after training follows (see Appendix A.2)

Wµ = Wµ−1

(
I − UµU

T
µ

)
+BµA

+
µ , (5)

3

Optimal Task Order for Continual Learning of Multiple Tasks

Figure 2. a) Schematic of the teacher-student model. b) Comparison between the analytical and numerical evaluations of the error ϵf
under various number of tasks. Each point represents the errors under a randomly sampled task similarity matrices (Cin, Cout) (see
Appendix C for implementation details). c) Optimal task order for three task learning. In the white regions, Cin is not a positive-definite
matrix, hence the tasks are not well-defined.

where Uµ is defined by singular value decomposition (SVD)
of Aµ, Aµ = UµΛµV

T
µ , and A+ is the pseudo-inverse of A.

Applying it recursively while assuming that W is initialized
as a zero matrix prior to the first task, we have

Wµ =

µ∑
ν=1

(BνA
+
ν)

µ∏
ρ=ν+1

(I − UρU
T
ρ). (6)

If Nx ≫ Ns, pseudo-inverse A+
µ is approximated by a

scaled transpose γAT
µ , and UµU

T
µ approximately follows

UµU
T
µ ≈ γAµA

T
µ with γ = Ns

Nx
(see Appendix A.4). Thus,

under Ns

Nx
≪ 1, we have

Wµ ≈ γ

µ∑
ν=1

(BνA
T
ν)

µ∏
ρ=ν+1

(I − γAρA
T
ρ). (7)

Under this approximation, there exists a simple expression
of the final error as below (see Appendix A.3 for the proof).
Theorem 3.1. At Ns

Nx
→ 0 limit, the final error asymptoti-

cally satisfies

ϵ̄f =
∥∥∥(Cout)1/2

(
I − (I + Cin,U)−1Cin

)∥∥∥2
F
, (8)

where Cin,U is the strictly upper-triangle matrix generated
from the input correlation matrix Cin (see eq. 34).

Importantly, the dependence on the upper-triangular com-
ponents in Eq. 3.1 implies that ϵ̄f is not permutation-
invariance, and thus depends on the task-order.

3.3. Numerical Evaluation

To check this analytical result, in Fig. 2b, we compared ϵ̄f
estimated from Eq. 8 with its numerical estimation through

learning via gradient descent, under various choices of the
number of tasks P and task correlation matrices Cin and
Cout (each point in Fig. 2b represents the errors under one
randomly sampled {Cin, Cout} pair). This result indicates
that our simple analytical expression robustly captures the
performance of continual learning in a linear teacher-student
model under arbitrary task similarity and the number of
tasks.

To explore how task order influences the continual learning
performance, we next calculated the optimal task order of
three tasks under various input correlation Cin using Eq. 8
(Fig. 2c). Here, we set the output correlation Cout

µν = 1 for
all task pairs (µ, ν) for simplicity, and parameterized the
input correlation between tasks A, B, and C by

Cin =

 1 ρAB ρCA

ρAB 1 ρBC

ρCA ρBC 1

 . (9)

Here, tasks A, B, and C are linear regression tasks with
partial overlap in the input domain. If ρAB = 1, the input
subspace for tasks A and B are the same, while they are
independent if ρAB = 0. Figure 2c revealed that the optimal
task order depends on the combination of task similarity
(ρAB , ρBC , ρCA) in a rich and complex manner. Some of
the phase shifts represent trivial mirror symmetry (e.g., x =
y line), but many of them are non-trivial. To further gain
insights into this complex task-order dependence, below, we
consider the linear perturbation limit.

4

Optimal Task Order for Continual Learning of Multiple Tasks

Figure 3. Linear perturbation analysis of task order dependence. a) Decomposition of the contribution of task similarity to the final error
under ρo = 1,m = 0.3. b) Schematic representations of periphery-to-core ordering and core-to-periphery ordering. Circles A, B, ..., I
represent tasks and their spatial positions represent similarity between tasks. Here, tasks A-C are central whereas tasks D-I are periphery.
c) Schematic of minimum and maximum paths on a task dissimilarity graph. d) G+

µν as a function of m under P = 7. Colors indicate the
indices such that the purple line on the top corresponds to G+

1,2, while the yellow line at the bottom corresponds to G+
6,7. e) Relative error

of core-to-periphery and periphery-to-core rules under various average task correlation m at P = 7. Error bars represent the standard
error over random seeds (see Appendix C for details). f) Coefficient α− under P = 3, 5, 7. Dark gray line corresponds to α− at P → ∞
limit. g) Relative error of min-path and max-path task orders under P = 7. Here we took average over two task orders that follows the
minimum pathway to estimate the error of min-path. The error of max-path was estimated in the same manner.

4. Task-order Optimization
4.1. Linear Perturbation Theory

Theorem 3.1 revealed a simple relationship between the task
similarity and the final error of continual learning, but it
remains unclear how to optimize the task order for continual
learning. To gain insight into this question, we next add a
small perturbation to the input similarity matrix and examine
how the change in the similarity between various task pairs
modifies the error. We parameterize the input correlation
matrix by a combination of a constant factor and a small
perturbation.

Cin
µν =

{
1 (if µ = ν)

m+ δMµν (otherwise).
(10)

Here, we set the constant factor m to be the same across all
tasks for the analytical tractability of the matrix inversion,
and perturbation δM is constrained to the ones that keep
Cin to a correlation matrix. Similarly, we restricted the
target output correlation matrix to be Cout

µν = ρo for all
non-diagonal components. In this setting, the error has the
following decomposition.

Theorem 4.1. Let us suppose that all elements of matrix
δM satisfies, |δMµν | < δm, where δm is a positive constant.

Then, the final error is written as below:

ϵ̄f [C
in, Cout] = ϵ̄f [m, ρo] +

P∑
µ=1

P∑
ν=µ+1

GµνδMµν +O(δ2m),

(11)

where ϵ̄f [m, ρo] is the error in the absence of perturbation,
and Gµν is a function of m, ρo, and P (see Eqs. 57 in Ap-
pendix). At ρo = 1, Gµν has a following simple expression:

Gµν = G+
µν +G−

µν , (12a)

G+
µν ≡ −(1−m)P+µ−1 − (1−m)P+ν−1

+ 3−m
2−m (1−m)µ+ν−1, (12b)

G−
µν ≡ −

(
1− (1−m)P

(
mP
1−m + 3−m

2−m

))
(1−m)P−(ν−µ).

(12c)

Note that, P × P matrix G specifies the contribution of
(µ, ν)-th task similarity to the final error. The proof of the
theorem is provided in Appendix B.2. Fig. 3a describes
an example of Gµν (here P = 7 and m = 0.3). In this
case, G12 is positive while G17 is negative, meaning that if
you increase the similarity between the first and the second
tasks while keeping the rest the same, the total error ϵ̄f goes
up, but if you increase the similarity between the first and
the last tasks, the error instead decreases. To understand
this task order dependence, we next analyze G+ and G−

separately.

5

Optimal Task Order for Continual Learning of Multiple Tasks

4.2. Impact of Task Typicality

Let us first consider the contribution of G+
µν term. Denoting

α+ ≡ 2−m
3−m (1−m)P , G+

µν is rewritten as

G+
µν = 3−m

(2−m)(1−m)

(
(1−m)µ − α+

) (
(1−m)ν − α+

)
− α+(1−m)P−1, (13)

If 1 > m > 0, 3−m
(2−m)(1−m) > 0 and (1 − m)µ ≥

(1 − m)P > α+ for µ = 1, 2, ..., P . Therefore, G+
µν is

a monotonically decreasing function of both µ and ν under
1 > m > 0 (Fig. 3d). This means that, to minimize the
error contributed from G+

µν , δϵ+f ≡
∑

µ,ν G
+
µνδMµν , the

tasks should be ordered in a way that the residual similarity
δMµν takes a small (preferably negative) value for early
task pairs and a large value for later task pairs. In other
words, earlier pairs should be relatively dissimilar to each
other, while later pairs should be more similar.

One heuristic way to achieve this task order is to put the
most atypical task at the beginning and the most typical one
at the end. Denoting the relative typicality of the task by
δtµ =

∑
ν ̸=µ δMνµ, if we arrange tasks as δt1 ≤ δt2 ≤

... ≤ δtP , on average, earlier pairs are dissimilar to each
other while the latter ones are similar. Below, we denote this
ordering as a periphery-to-core rule, as less representative
periphery tasks are learned first and more central core tasks
are learned later under this principle (Fig. 4b). Under a
randomly generated input correlation matrix Cin, periphery-
to-core task order robustly outperformed both random and
core-to-periphery order, when the average correlation is
large positive value (red vs black and blue line in Fig. 3e).
This was not the case when the average correlation is a
small positive value potentially due to contribution from
G− factor. Note that, a similar rule was derived by Lin et al.
(2023) based on their analysis of linear regression model,
where they proved that when there is one outlier task, the
outlier task should be learned in the first half of the task
sequence.

4.3. Impact of Hamiltonian Path Length

Let us next focus on G−
µν term that governs the contribution

of the relative distance between tasks in the task sequence.
The error originating from this term is written as

δϵ−f = α−
P−1∑
d=1

(1−m)P−d
P−d∑
µ=1

δMµ,µ+d, (14)

where α− ≡ −1+(1−m)P
(

mP
1−m + 3−m

2−m

)
is a coefficient.

α− is negative if 1 > m > 0 and P is sufficiently large (Fig.
4f). Thus, to minimize the error δϵ−f , the tasks should be
arrange in a way that δMµ,µ+d is small for small d, while
δMµ,µ+d is large for large d. In other words, tasks following

one another in the task order sequence should be dissimilar
to each other, while distant pairs should be similar.

Given a set of tasks, let us define a task dissimilarity graph
by setting each task as a node and dissimilarity between
two tasks as the weight of the edge between corresponding
nodes (Fig. 4c). Then, a task order that learns each task only
once forms a Hamiltonian path on the graph, a path that
visits all nodes once but only once. We can then construct
a heuristic solution for minimizing δϵ−f by selecting a task
order that yields the longest Hamiltonian path. When tasks
have the same similarity with each other in terms of Cout,
their similarity depends solely on Cin, allowing us to define
dissimilarity as dµν ≡ 1 − Cin

µν . Thus, the total length of
the Hamiltonian path induced by a given task order follows
DH =

∑P−1
µ=1 dµ,µ+1. Consequently, δϵ−f is rewritten as

δϵ−f = −α−
(
(1−m)P−1DH

+

P−1∑
d=2

(1−m)P−d
P−d∑
µ=1

dµ,µ+d

)
+ const.

(15)

Because −α− is non-negative, small task dissimilarity dµν
(i.e., large task correlation Cin

µν) generally helps minimiz-
ing the error. Moreover, we have 0 ≤ (1 − m)P−1 <
(1 −m)P−d for d = 2, 3, ..., indicating DH term has the
smallest impact on the error. Therefore, by choosing the
largest dµν for DH , we can make δϵ−f small on average.
We observed this trend robustly even when we sampled
{Cin, Cout} randomly (Fig. 3g). Our work thus provides
theoretical insights on why the maximum Hamiltonian path
provides a preferable task order, strengthening previous em-
pirical finding (Bell & Lawrence, 2022). We call this rule
as max-path rule below.

4.4. Application to Tasks Having Simple Graph
Structures

The analyses above elucidated two principles underlying
task order optimization. To illustrate these principles, we
next examine task order optimization for a set of tasks with
a simple task similarity structure.

Figure 4a depicts the total error estimated using Eq. 8 in a
continual learning scenario involving five tasks with a chain-
like similarity. We configure the input correlation matrix
Cin such that tasks A and B are directly correlated, while A
and C are correlated only indirectly through B. Specifically,
denoting the similarity between neighboring tasks on the
task dissimilarity graph as a, we set Cin

AB = Cin
BC = a,

Cin
AC = a2, and so on (see Appendix C). Here, tasks ex-

hibit significant overlap when a ≲ 1, while tasks become
independent in the limit a → 0 (x-axis of Figure 4a). We
set Cout to one for all task pairs. Each line in Figure 4a

6

Optimal Task Order for Continual Learning of Multiple Tasks

Figure 4. Optimal task orders for tasks with simple graph-like similarity structures. a,b) Total error ϵf under all task orders when the
similarity structure of five tasks follows chain (a) and ring (b) structures. Each gray line represents one of 120 (=5!) task order, while red,
orange, and blue lines highlight three representative task orders depicted on the right. Thick black line is the average error over ordering.
c) Numerically-estimated learning dynamics of the network when tasks have a chain-graph structure. Red and blue lines represents
A→B→C→D→E and A→E→C→D→B orders depicted in the insets. Black line is the average learning trajectory under random task
ordering. d,e) The same as panels a and b but for tasks with similarity matrices having tree (d), and tree-leaves similarity structure (e),
respectively. f) The same as panel c, but for tasks having tree-graph-like similarity structure.

represents the error under a specific task order. For example,
the A→B→C→D→E task order, depicted by the red line,
consistently performed among the worst, regardless of the
similarity a between neighboring tasks. Surprisingly, sev-
eral task orders robustly outperformed the others, such as
A→C→E→D→B (orange line) and A→E→C→D→B (blue
line). These task orders align with the two principles de-
scribed earlier. First, the periphery-to-core rule suggests
that the initial task should either be A or E, as these tasks are
the least typical.1 Second, the max-path rule indicates that
subsequent tasks should be as dissimilar as possible. For
instance, if the first task is A, selecting E as the second task,
as in the blue line, maximizes the distance. Notably, there
was approximately a seven-fold difference in performance
between the best and worst task orders, underscoring the
critical importance of task order in continual learning.

We observed analogous trends when applying the same anal-
ysis to tasks with ring, tree, and leaves structures (Figs. 4b,
4d, and 4e, respectively). For tasks with a tree-like similarity
structure, as shown in Figure 4d, the error was minimized
when tasks corresponding to leaf nodes were learned first,
followed by tasks associated with root nodes (the orange and
blue trees in Fig. 4d). This result aligns with the periphery-
to-core rule. When only the leaf nodes were considered
as tasks, as illustrated in Figure 4e, the optimal task order
exhibited a complex pattern of hopping across tasks (blue
tree in Fig. 4e), consistent with the max-path rule.

1Due to mirror symmetry, the E→A→C→B→D order exhibits
equivalent performance to A→E→C→D→B.

Numerical simulations validated the analytical results
(Figs. 4c and 4f) and further revealed intricate learning
dynamics. In Figure 4f, the red task order initially outper-
formed the black line representing the average performance,
while the blue task order performed worse. However, this
trend reversed around the fourth task. These findings indi-
cate that the optimal task order is often non-trivial, and a
greedy approach optimizing task-by-task error may lead to
suboptimal performance.

5. Application to Image Classification Tasks
Our analytical investigation in the linear teacher-student
setting highlighted two principles for task order optimiza-
tion: the periphery-to-core rule and the max-path rule. To
evaluate the potential applicability of these principles to
more general settings, we next explore continual learning of
image classification tasks.

5.1. Empirical Estimation of Task Similarity

To apply these principles, it is necessary to first measure the
similarity between tasks. Here, we estimate the similarity
between tasks A and B by measuring the zero-shot transfer
performance between them (Fig. 8). Specifically, we train a
network for task A, obtaining the learned weights WA. We
then measure the error of this trained network on task B,
denoted as ϵB [WA]. Since the transfer performance from
task A to B generally differs from that of B to A we take

7

Optimal Task Order for Continual Learning of Multiple Tasks

Figure 5. Task order preference in continuous image classification tasks. a–f) Continual learning performance, defined as the average
test accuracy across all the tasks after learning, under various task orders. Panels (a, c, e) compare the periphery-to-core rule against the
core-to-periphery rule, whereas panels (b, d, f) compare the max-path rule with the min-path rule. g, h) The ratio of task sets where the
periphery-to-core rule outperforms the core-to-periphery rule (g), and where the max-path rule outperforms the min-path rule (h), under
CIFAR-100. Different colors represent results for different numbers of tasks (P = 3, 5, 7). See Appendix C.3 for details.

the mean of both directions and define the similarity ρAB :

ρAB = 1− 1

2

(√
ϵB [WA]

ϵB,sf [WA]
+

√
ϵA[WB]

ϵA,sf [WB]

)
. (16)

Here, ϵB,sf [WA] represents the error on task B with label
shuffling, which serves as the chance-level error. The square
root is taken because the error scales with the squared value
of task correlation in our linear model (see Appendix C.4).

Although this method requires training the network on all
P tasks, the computational complexity of training is O(P),
which is significantly smaller than the naive task order opti-
mization that requires a computational cost of O(P !). Fur-
thermore, this method only requires the inputs and outputs
of the trained network, making it applicable even in situa-
tions where the model’s internal details are inaccessible.

5.2. Numerical Results

We estimated the performance of the periphery-to-core rule
and max-path rule in task-incremental continual learning
using Fashion-MNIST (Xiao et al., 2017), CIFAR-10, and
CIFAR-100 dataset (Krizhevsky et al., 2009) (see Appendix
C for the details). For the Fashion-MNIST and CIFAR-10
datasets, we randomly generated five binary image classi-
fication tasks by dividing 10 labels into 5 pairs without re-
placement. In the case of CIFAR-100, we selected 10 labels
out of 100 labels randomly and generated 5 binary classi-
fications. For Fashion-MNIST, we trained a multi-layered
perceptron with two hidden layers, while for CIFAR-10/100,
we used a convolutional neural network with two convolu-

tional layers and one dense layer, to explore robustness
against the model architecture.

We found that the final performance was modulated
by the estimated average similarity among tasks, ρ̄ =

1
P (P−1)

∑
µ̸=ν ρµν , we thus plotted the performance of each

task-order rule as a function of the average similarity (Fig.
5). In all three settings, we found that the periphery-to-core
rule robustly outperforms the core-to-periphery rule and
average performance over random ordering (Fig. 5a,c,e).
Similarly, the max-path rule outperformed both the min-
path rule and the random ordering (Fig. 5b,d,e; see also Bell
& Lawrence (2022)). Moreover, we observed consistent
results under a continual learning of a multi-class classifica-
tion (Fig.7a and b). The periphery-to-core rule outperformed
the max-path rule on average, but the difference was small
(red lines in Fig. 5 top vs bottom). When we increased
the number of binary classification tasks from 3 to 7 using
CIFAR-100, the performance advantage periphery-to-core
over core-to-periphery increased (Fig. 5g) as expected from
the linear model (Fig. 6c). This was not evident for max-
path and min-path rules potentially because the difference
was already high under P = 3 (Fig. 5h).

We also investigated the inference of task similarity and
ordering from a small subset of training data. This exten-
sion is crucial, as it demonstrates the practical relevance of
our theory to real-world machine learning settings where
full access to all training data upfront is often unrealistic
(in contrast, when complete data is available, naive multi-
task learning may suffice). When we reduced the number of
training samples used to estimate task similarity across tasks

8

Optimal Task Order for Continual Learning of Multiple Tasks

in CIFAR-10, the relative advantage of both the periphery-
to-core rule and the max-path rule over a random task order
remained robust. Even when only 1% of the training data
was used for estimating task similarity, we observed a per-
formance gain comparable to that in the full data scenario
(Panels c and d vs. g and h in Fig. 9). However, when the
amount of data was reduced to 0.1% (approximately 10 sam-
ples per task), the performance gain became non-significant.
We observed similar trends with both the Fashion-MNIST
and CIFAR-100 datasets, although the results for CIFAR-
100 were less robust, particularly in the negative similarity
regime (Fig. 10). These results suggest the robustness of
the task order optimization principles found in our simple
analysis.

6. Discussion
In this work, we derived a simple analytical expression to
explain how task similarity and ordering influence continual
learning performance in a linear model with latent struc-
ture. Based on this result, we proposed two principles for
task order optimization: the periphery-to-core rule and the
max-path rule, the latter of which was predicted by Bell
& Lawrence (2022). We validated these principles in task-
incremental continual image classification tasks using both
multi-layer perceptrons and convolutional neural networks.
Thus, this work proposes basic principles for task order op-
timization in the context of continual learning for multiple
tasks.

Limitations

Our theoretical results were derived in a linear model under
the assumption of random task generation, which limits their
direct applicability. However, we numerically confirmed
that the proposed ordering rules hold in both convolutional
neural networks and multi-layer perceptrons trained for con-
tinual image recognition tasks. Future work should further
evaluate these rules in domains closer to real-world appli-
cations, including deep-RL, robotics, and language models.
Additionally, in this work, we restricted the model setting to
scenarios where each task is learned only once and trained
to convergence. The first assumption can be readily re-
laxed as long as the total number of tasks remains small
(see Appendix A.4). Relaxing the second assumption is an
important direction for future work.

Acknowledgements
This work was partially supported by McDonnell Center for
Systems Neuroscience.

Impact Statement
Task order optimization for continual learning of multi-
ple tasks may potentially contribute beyond the field of
machine learning from school curriculum design (Rafferty
et al., 2016; Zhu et al., 2018) to animal training protocol in
neuroscience experiments (Krueger & Dayan, 2009). Nev-
ertheless, due to theoretical nature of this work, there are
no specific societal consequence that we feel must be high-
lighted here.

References
Advani, M. S., Saxe, A. M., and Sompolinsky, H. High-

dimensional dynamics of generalization error in neural
networks. Neural Networks, 132:428–446, 2020.

Asanuma, H., Takagi, S., Nagano, Y., Yoshida, Y., Igarashi,
Y., and Okada, M. Statistical mechanical analysis of
catastrophic forgetting in continual learning with teacher
and student networks. Journal of the Physical Society of
Japan, 90(10):104001, 2021.

Bahri, Y., Kadmon, J., Pennington, J., Schoenholz, S. S.,
Sohl-Dickstein, J., and Ganguli, S. Statistical mechanics
of deep learning. Annual Review of Condensed Matter
Physics, 11:501–528, 2020.

Bell, S. J. and Lawrence, N. D. The effect of task ordering
in continual learning. arXiv preprint arXiv:2205.13323,
2022.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. Journal of Machine Learning Research,
24(240):1–113, 2023.

Cohen, U., Chung, S., Lee, D. D., and Sompolinsky, H.
Separability and geometry of object manifolds in deep
neural networks. Nature communications, 11(1):746,
2020.

Elman, J. L. Learning and development in neural networks:
The importance of starting small. Cognition, 48(1):71–99,
1993.

Evron, I., Moroshko, E., Ward, R., Srebro, N., and Soudry,
D. How catastrophic can catastrophic forgetting be in
linear regression? In Conference on Learning Theory, pp.
4028–4079. PMLR, 2022.

Evron, I., Moroshko, E., Buzaglo, G., Khriesh, M., Mar-
jieh, B., Srebro, N., and Soudry, D. Continual learning
in linear classification on separable data. In Interna-
tional Conference on Machine Learning, pp. 9440–9484.
PMLR, 2023.

9

Optimal Task Order for Continual Learning of Multiple Tasks

French, R. M. Using semi-distributed representations to
overcome catastrophic forgetting in connectionist net-
works. In Proceedings of the 13th annual cognitive sci-
ence society conference, volume 1, pp. 173–178, 1991.

French, R. M. Catastrophic forgetting in connectionist net-
works. Trends in cognitive sciences, 3(4):128–135, 1999.

Gardner, E. and Derrida, B. Three unfinished works on the
optimal storage capacity of networks. Journal of Physics
A: Mathematical and General, 22(12):1983, 1989.

Goldfarb, D. and Hand, P. Analysis of catastrophic forget-
ting for random orthogonal transformation tasks in the
overparameterized regime. In International Conference
on Artificial Intelligence and Statistics, pp. 2975–2993.
PMLR, 2023.

Goldfarb, D., Evron, I., Weinberger, N., Soudry, D., and
HAnd, P. The joint effect of task similarity and overpa-
rameterization on catastrophic forgetting—an analytical
model. In The Twelfth International Conference on Learn-
ing Representations.

Guo, M., Haque, A., Huang, D.-A., Yeung, S., and Fei-Fei,
L. Dynamic task prioritization for multitask learning. In
Proceedings of the European conference on computer
vision (ECCV), pp. 270–287, 2018.

Hadsell, R., Rao, D., Rusu, A. A., and Pascanu, R. Embrac-
ing change: Continual learning in deep neural networks.
Trends in cognitive sciences, 24(12):1028–1040, 2020.

Heek, J., Levskaya, A., Oliver, A., Ritter, M., Rondepierre,
B., Steiner, A., and van Zee, M. Flax: A neural network
library and ecosystem for JAX, 2024. URL http://
github.com/google/flax.

Helias, M. and Dahmen, D. Statistical field theory for neural
networks, volume 970. Springer, 2020.

Hiratani, N. Disentangling and mitigating the impact of task
similarity for continual learning. In The Thirty-eighth
Annual Conference on Neural Information Processing
Systems.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., de Las Casas, D., Hendricks,
L. A., Welbl, J., Clark, A., et al. Training compute-
optimal large language models. In Proceedings of the
36th International Conference on Neural Information
Processing Systems, pp. 30016–30030, 2022.

Ibarz, J., Tan, J., Finn, C., Kalakrishnan, M., Pastor, P., and
Levine, S. How to train your robot with deep reinforce-
ment learning: lessons we have learned. The International
Journal of Robotics Research, 40(4-5):698–721, 2021.

Ke, Z., Liu, B., Xiong, W., Celikyilmaz, A., and Li, H.
Sub-network discovery and soft-masking for continual
learning of mixed tasks. In The 2023 Conference on
Empirical Methods in Natural Language Processing.

Ke, Z., Liu, B., and Huang, X. Continual learning of a mixed
sequence of similar and dissimilar tasks. Advances in
neural information processing systems, 33:18493–18504,
2020.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T.,
Grabska-Barwinska, A., et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national
academy of sciences, 114(13):3521–3526, 2017.

Kontogianni, T., Yue, Y., Tang, S., and Schindler, K. Is con-
tinual learning ready for real-world challenges? CoRR,
2024.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Krueger, K. A. and Dayan, P. Flexible shaping: How learn-
ing in small steps helps. Cognition, 110(3):380–394,
2009.

Kumari, P., Chauhan, J., Bozorgpour, A., Azad, R., and
Merhof, D. Continual learning in medical imaging analy-
sis: A comprehensive review of recent advancements and
future prospects. CoRR, 2023.

Lad, A., Ghani, R., Yang, Y., and Kisiel, B. Toward optimal
ordering of prediction tasks. In Proceedings of the 2009
SIAM International Conference on Data Mining, pp. 884–
893. SIAM, 2009.

Lee, S., Goldt, S., and Saxe, A. Continual learning in
the teacher-student setup: Impact of task similarity. In
International Conference on Machine Learning, pp. 6109–
6119. PMLR, 2021.

Lesort, T., Lomonaco, V., Stoian, A., Maltoni, D., Filliat, D.,
and Dı́az-Rodrı́guez, N. Continual learning for robotics:
Definition, framework, learning strategies, opportunities
and challenges. Information fusion, 58:52–68, 2020.

Li, C., Huang, Z., Zou, W., and Huang, H. Statistical
mechanics of continual learning: Variational principle
and mean-field potential. Physical Review E, 108(1):
014309, 2023.

Lin, S., Yang, L., Fan, D., and Zhang, J. Beyond not-
forgetting: Continual learning with backward knowledge
transfer. Advances in Neural Information Processing
Systems, 35:16165–16177, 2022.

10

http://github.com/google/flax
http://github.com/google/flax

Optimal Task Order for Continual Learning of Multiple Tasks

Lin, S., Ju, P., Liang, Y., and Shroff, N. Theory on forget-
ting and generalization of continual learning. In Inter-
national Conference on Machine Learning, pp. 21078–
21100. PMLR, 2023.

Luo, Y., Yang, Z., Meng, F., Li, Y., Zhou, J., and Zhang,
Y. An empirical study of catastrophic forgetting in large
language models during continual fine-tuning. arXiv
preprint arXiv:2308.08747, 2023.

McCloskey, M. and Cohen, N. J. Catastrophic interfer-
ence in connectionist networks: The sequential learning
problem. In Psychology of learning and motivation, vol-
ume 24, pp. 109–165. Elsevier, 1989.

Mori, F., Mannelli, S. S., and Mignacco, F. Optimal pro-
tocols for continual learning via statistical physics and
control theory. In NeurIPS 2024 Workshop on Mathemat-
ics of Modern Machine Learning.

Narvekar, S., Peng, B., Leonetti, M., Sinapov, J., Taylor,
M. E., and Stone, P. Curriculum learning for reinforce-
ment learning domains: A framework and survey. Journal
of Machine Learning Research, 21(181):1–50, 2020.

Peng, L., Giampouras, P., and Vidal, R. The ideal continual
learner: An agent that never forgets. In International Con-
ference on Machine Learning, pp. 27585–27610. PMLR,
2023.

Pentina, A., Sharmanska, V., and Lampert, C. H. Curriculum
learning of multiple tasks. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 5492–5500, 2015.

Rafferty, A. N., Brunskill, E., Griffiths, T. L., and Shafto, P.
Faster teaching via pomdp planning. Cognitive science,
40(6):1290–1332, 2016.

Ramasesh, V. V., Dyer, E., and Raghu, M. Anatomy of
catastrophic forgetting: Hidden representations and task
semantics. In International Conference on Learning Rep-
resentations.

Robins, A. Catastrophic forgetting, rehearsal and pseudore-
hearsal. Connection Science, 7(2):123–146, 1995.

Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T., and
Wayne, G. Experience replay for continual learning.
Advances in neural information processing systems, 32,
2019.

Saad, D. and Solla, S. A. On-line learning in soft committee
machines. Physical Review E, 52(4):4225, 1995.

Saxe, A., McClelland, J., and Ganguli, S. Exact solutions to
the nonlinear dynamics of learning in deep linear neural
networks. In Proceedings of the International Conference
on Learning Represenatations, 2014.

Saxe, A. M., McClelland, J. L., and Ganguli, S. A mathe-
matical theory of semantic development in deep neural
networks. Proceedings of the National Academy of Sci-
ences, 116(23):11537–11546, 2019.

Serra, J., Suris, D., Miron, M., and Karatzoglou, A. Over-
coming catastrophic forgetting with hard attention to the
task. In International conference on machine learning,
pp. 4548–4557. PMLR, 2018.

Seung, H. S., Sompolinsky, H., and Tishby, N. Statistical
mechanics of learning from examples. Physical review A,
45(8):6056, 1992.

Shin, H., Lee, J. K., Kim, J., and Kim, J. Continual learning
with deep generative replay. Advances in neural informa-
tion processing systems, 30, 2017.

Singh, P., Li, Y., Sikarwar, A., Lei, S. W., Gao, D., Talbot,
M. B., Sun, Y., Shou, M. Z., Kreiman, G., and Zhang, M.
Learning to learn: How to continuously teach humans and
machines. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 11708–11719, 2023.

Tian, Y., Chen, X., and Ganguli, S. Understanding self-
supervised learning dynamics without contrastive pairs.
In International Conference on Machine Learning, pp.
10268–10278. PMLR, 2021.

Van de Ven, G. M. and Tolias, A. S. Three scenarios for
continual learning. arXiv preprint arXiv:1904.07734,
2019.

Verwimp, E., Yang, K., Parisot, S., Hong, L., McDonagh,
S., Pérez-Pellitero, E., De Lange, M., and Tuytelaars,
T. Clad: A realistic continual learning benchmark for
autonomous driving. Neural Networks, 161:659–669,
2023.

Werfel, J., Xie, X., and Seung, H. Learning curves for
stochastic gradient descent in linear feedforward net-
works. Advances in neural information processing sys-
tems, 16, 2003.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747, 2017.

Yu, X., Liu, T., Wang, X., and Tao, D. On compressing
deep models by low rank and sparse decomposition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 7370–7379, 2017.

Zdeborová, L. and Krzakala, F. Statistical physics of infer-
ence: Thresholds and algorithms. Advances in Physics,
65(5):453–552, 2016.

Zhu, X., Singla, A., Zilles, S., and Rafferty, A. N.
An overview of machine teaching. arXiv preprint
arXiv:1801.05927, 2018.

11

Optimal Task Order for Continual Learning of Multiple Tasks

A. Analysis of the Impact of Task Similarity on Continual Learning
A.1. Model Setting

Below, we analyze task-order dependence of continual learning using linear teacher-student models with a latent factor. In
teacher-student models, the generative model of the task parameterized explicitly by the teacher model, making the learning
dynamics and the performance analytically tractable (Gardner & Derrida, 1989; Saad & Solla, 1995; Zdeborová & Krzakala,
2016). Here, the generative model for input x ∈ RNx and the target output y ∈ RNy is constructed as

s ∼ N (0, I) , x = Aµs, y∗ = Bµs, (17)

where s ∈ RNs is the latent variable that underlies x and y∗, I is the identity matrix, and Aµ ∈ RNx×Ns and Bµ ∈ RNy×Ns

are mixing matrices for the input and the target output at task µ = 1, ..., P , respectively.

We generate matrices {Aµ, Bµ}Pµ=1 randomly but with task-to-task correlation. We specify the element-wise correlation
among input generation matrices {Aµ}Pµ=1 by a P × P correlation matrix Cin and specify the correlation among the
target output generation matrices {Bµ}Pµ=1 by another P × P correlation matrix Cout. Cin and Cout are constrained to
be correlation matrices, but arbitrary otherwise. For all 1 ≤ i ≤ Nx and 1 ≤ j ≤ Ns, we generate (i, j)-th elements of
matrices A1, ..., AP by jointly sampling them from a Gaussian distribution with mean zero and covariance 1

Ns
Cin:A1

ij
...

AP
ij

 ∼ N (0, 1
Ns

Cin
)
. (18)

Similarly, we generate (i, j)-th elements of matrices B1, ..., BP by (B1
ij , ..., B

P
ij)

T ∼ N
(
0, 1

Ns
Cout

)
. Note that, under

this construction, two different elements in a matrix Aµ are independent with each other, but the same element in matrices for
two different tasks are correlated with each other. Although the random task generation assumption limits direct applicability
of our theory, it enables us to obtain insights into how task similarity influences the overall performance and optimal task
order. Moreover, our analytical results up to Eq. 28 hold for arbitrary mixing matrices {Aµ, Bµ}, as they don’t assume the
expectation over {Aµ, Bµ}.

The student network that learns the task is specified to be a linear network:

y = Wx, (19)

where W ∈ RNy×Nx is the trainable weight. The mean-squared error between the output of the student network y and the
target for the µ-th task y∗ is given by

ϵµ[W] ≡ 1
Ny

〈
∥y − y∗∥2

〉
s
= 1

Ny
∥Bµ −WAµ∥2F (20)

The second equality follows from the Gaussianity of s. We consider task-incremental continual learning (Van de Ven &
Tolias, 2019) where the network is trained for task µ = 1, ..., P in sequence. During the training for the µ-th task, weight
W is updated by gradient descent on error ϵµ:

W ←W − η
∂ϵµ[W]

∂W
= W − 2η

Ny
(Bµ −WAµ)A

T
µ . (21)

We denote the weight after training on task µ as Wµ. The total error on all tasks at the end of all P task learning becomes:

ϵf ≡
P∑

µ=1

ϵµ[WP] =
1

Ny

P∑
µ=1

∥Bµ −WPAµ∥2F . (22)

To uncover how similarity between tasks influences the final error, in this work, we focus on the average performance over
randomly generated mixing matrices {Aµ, Bµ}Pµ=1 under a fixed pair of task correlation matrices Cin, Cout. We define the
average of the final error ϵf over generative models {Aµ, Bµ}Pµ=1 by

ϵ̄f ≡ ⟨ϵf ⟩A,B . (23)

Below, we first derive the analytical expression of Wµ then estimate the total final error ϵ̄f .

12

Optimal Task Order for Continual Learning of Multiple Tasks

A.2. The Weight after Continual Learning of P Tasks

Considering the gradient flow limit of learning dynamics, the weight update (Eq. 21) is rewritten as

dW

dt
= −(Bµ −WAµ)A

T
µ . (24)

Let us denote singular value decomposition (SVD) of Aµ by Aµ = UµΛµV
T
µ , where Uµ ∈ RNx×No and Vµ ∈ RNs×No

are semi-orthonormal matrices (i.e., UTU = V TV = I) and Λµ ∈ RNo×No is a non-negative diagonal matrix. Then, at
any point during learning, there exists a matrix Q(t) ∈ RNy×No such that W (t) is written as W (t) = Wµ−1 +Q(t)UT

µ

because weight change during learning of the µ-th task is constrained to the space spanned by UT
µ . Thus, at the convergence

of learning, dW
dt = 0, we have (

Bµ − [Wµ−1 +QµU
T
µ]Aµ

)
AT

µ = 0. (25)

Solving this equation with respect to Qµ, we get Qµ = BµVµΛ
−1
µ −Wµ−1Uµ. Therefore, the weight after training on the

µ-th task becomes

Wµ = Wµ−1(I − UµU
T
µ) +BµA

+
µ , (26)

where A+
µ is the pseudo-inverse of Aµ (A+

µ = VµΛ
−1
µ UT

µ). By applying this result iteratively from zero initialization, Wµ is
rewritten as

Wµ =

µ∑
ν=1

(BνA
+
ν)

µ∏
ρ=ν+1

(I − UρU
T
ρ), (27)

where
∏µ

ρ=ν+1(I − UρU
T
ρ) is the identity matrix if µ = ν, otherwise,

µ∏
ρ=ν+1

(I − UρU
T
ρ) = (I − Uν+1U

T
ν+1)(I − Uν+2U

T
ν+2) · · · (I − UµU

T
µ). (28)

To further investigate how task similarity impacts continual learning performance, below we focus on the large Nx regime,
and analyze the learning behavior at Ns

Nx
→ 0 limit. This assumption of the presence of low-dimensional latent factor

is consistent with many real-world datasets (Yu et al., 2017; Cohen et al., 2020). If Aµ is a very-tall random matrix
(i.e., Nx ≫ Ns), pseudo-inverse A+

µ is approximated by a scaled transpose γAT
µ , and UµU

T
µ approximately follows

UµU
T
µ ≈ γAµA

T
µ , where γ = Ns

Nx
(see Appendix A.4). Thus, we have

Wµ ≈ γ

µ∑
ν=1

(BνA
T
ν)

µ∏
ρ=ν+1

(I − γAρA
T
ρ). (29)

Using the approximation from Eq. 29, the error on the µ-th task after training on ν-th task, ϵµ[Wν], is

ϵµ[Wν] = ∥Bµ −WνAµ∥2F ≈

∥∥∥∥∥Bµ − γ

ν∑
ρ=1

(BρA
T
ρ)

ν∏
σ=ρ+1

(I − γAσA
T
σ)Aµ

∥∥∥∥∥
2

F

. (30)

A.3. Proof of Theorem 3.1

Substituting WP with Eq. 29, at Ns

Nx
→ 0 limit, ϵ̄f is rewritten as

ϵ̄f =
1

Ny

P∑
µ=1

〈∥∥∥∥∥Bµ − γ

P∑
ρ=1

BρA
T
ρ

P∏
σ=ρ+1

(I − γAσA
T
σ)Aµ

∥∥∥∥∥
2

F

〉

=
1

Ny

P∑
µ=1

〈
∥Bµ∥2F

〉
− 2γ

Ny

P∑
µ=1

P∑
ρ=1

〈
tr

[
BT

µBρA
T
ρ

P∏
σ=ρ+1

(I − γAσA
T
σ)Aµ

]〉

+
γ2

Ny

P∑
µ=1

〈∥∥∥∥∥
P∑

ρ=1

BρA
T
ρ

P∏
σ=ρ+1

(I − γAσA
T
σ)Aµ

∥∥∥∥∥
2

F

〉
(31)

13

Optimal Task Order for Continual Learning of Multiple Tasks

Taking expectation over {Aµ, Bµ}Pµ=1, the first term is
〈
∥Bµ∥2F

〉
= Ny . The second term is rewritten as

γ

Ny

P∑
µ=1

P∑
ρ=1

〈
tr

[
BT

µBρA
T
ρ

P∏
σ=ρ+1

(I − γAσA
T
σ)Aµ

]〉

=
1

Nx

P∑
µ=1

P∑
ρ=1

Cout
µρ

〈
tr
[
AT

ρ (I − γAρ+1A
T
ρ+1) · · · (I − γAPA

T
P)Aµ

]〉
=

1

Nx

P∑
µ=1

P∑
ρ=1

Cout
µρ

〈
tr[AT

ρ Aµ]− γ

P∑
σ1=ρ+1

tr[AT
ρ Aσ1

AT
σ1
Aµ] + γ2

P−1∑
σ1=ρ+1

P∑
σ2=σ1+1

tr[AT
ρ Aσ1

AT
σ1
Aσ2

AT
σ2
Aµ]− ...

〉

=
1

Nx

P∑
µ=1

P∑
ρ=1

Cout
µρ

P−ρ∑
k=0

(−γ)k
∑

ρ<σ1<...<σk≤P

〈
tr
[
AT

ρ Aσ1
AT

σ1
...Aσk

AT
σk
Aµ

]〉
. (32)

In the first line, we took expectation over {Bµ}, which yields γ
Ny

〈
tr[BT

µBρM]
〉
B
= Ns/Nx

Ny

NyC
B
µρ

Ns
tr[M] =

CB
µρ

Nx
tr[M] for

arbitrary matrix M . In the third line, we rearranged the terms inside the trace based on γ dependence. The summation∑
ρ<σ1<...<σk≤P in the last line is summation over a set of indices σ1, σ2, ..., σk that satisfy ρ < σ1 < σ2 < ... < σk ≤ P

condition. Under Nx ≫ Ns, the expectation term in the equation above follows (see Appendix A.4)

〈
γktr

[
AT

ρ Aσ1
AT

σ1
...Aσk

AT
σk
Aµ

]〉
= Nx

(
Cin

ρσ1
Cin

σ1σ2
...Cin

σkµ
+O

(
Ns

Nx

))
. (33)

Moreover, if we define an upper-triangle matrix Cin,U ∈ RP×P by

Cin,U =

{
Cin

µν (if µ < ν)

0 (otherwise)
, (34)

we have

∑
ρ<σ1<...<σk≤P

〈
tr
[
AT

ρ Aσ1A
T
σ1
...Aσk

AT
σk
Aµ

]〉
=

∑
ρ<σ1<...<σk≤P

Cin
ρσ1

Cin
σ1σ2

...Cin
σkµ

+O
(

Ns

Nx

)
=
[(
Cin,U

)k
Cin

]
ρµ

+O
(

Ns

Nx

)
(35)

The last line follows because the upper triangle matrix Cin,U satisfies

P∑
σ1=1

P∑
σ2=1

...

P∑
σk=1

Cin,U
ρσ1

Cin,U
σ1σ2

...Cin,U
σk−1σk

Cin
σkµ

=

P∑
σ1=ρ+1

P∑
σ2=σ1+1

...

P∑
σk=σk−1+1

Cin,U
ρσ1

Cin,U
σ1σ2

...Cin,U
σk−1σk

Cin
σkµ

=
∑

ρ<σ1<...<σk≤P

Cin
ρσ1

Cin
σ1σ2

...Cin
σk−1σk

Cin
σkµ

. (36)

Moreover, because
[
(Cin,U)k

]
ρν

= 0 for any ν if ρ satisfies ρ ≥ P − k + 1, we have

P−ρ∑
k=0

[(
Cin,U

)k
Cin

]
ρµ

=

P∑
k=0

[(
Cin,U

)k
Cin

]
ρµ

(37)

14

Optimal Task Order for Continual Learning of Multiple Tasks

Therefore, taking Ns

Nx
→ 0 limit, it follows that

1

Nx

P∑
µ=1

P∑
ρ=1

Cout
µρ

ν−ρ∑
k=0

(−γ)k
∑

ρ<σ1<...<σk≤P

〈
tr
[
AT

ρ Aσ1
AT

σ1
...Aσk

AT
σk
Aµ

]〉
≈

P∑
µ=1

P∑
ρ=1

Cout
µρ

P∑
k=0

(−1)k
[(
Cin,U

)k
Cin

]
ρµ

=

P∑
µ=1

P∑
ρ=1

Cout
µρ

[(
I + Cin,U

)−1
Cin

]
ρµ

= tr
[
Cout

(
I + Cin,U

)−1
Cin

]
. (38)

In the third line, we used

(I + Cin,U)

P∑
k=0

(−1)k
(
Cin,U

)k
= I + (−1)P

(
Cin,U

)P+1
= I. (39)

We can evaluate the third term of Eq. 31 in an analogous manner:

γ2

Ny

P∑
µ=1

〈∥∥∥∥∥
P∑

ρ=1

BρA
T
ρ

P∏
σ=ρ+1

(I − γAσA
T
σ)Aµ

∥∥∥∥∥
2

F

〉

=
γ2

Ny

P∑
µ=1

P∑
ρ=1

P∑
ρ′=1

〈
tr

BT
ρ′BρA

T
ρ

P∏
σ=ρ+1

(I − γAσA
T
σ)Aµ

AT
ρ′

P∏
σ′=ρ′+1

(I − γAσ′AT
σ′)Aµ

T
〉

=
Ns

N2
x

P∑
µ=1

P∑
ρ=1

P∑
ρ′=1

Cout
ρρ′

〈
tr
[
AT

ρ (I − γAρ+1A
T
ρ+1)...(I − γAPA

T
P)AµA

T
µ (I − γAPA

T
P)...(I − γAρ′+1A

T
ρ′+1)Aρ′

]〉
.

(40)

The term inside the trace can be expanded as〈
tr
[
AT

ρ (I − γAρ+1A
T
ρ+1)...(I − γAPA

T
P)AµA

T
µ (I − γAPA

T
P)...(I − γAρ′+1A

T
ρ′+1)Aρ′

]〉
=

P−ρ∑
k=1

P−ρ′∑
k′=1

∑
ρ<σ1<...<σk≤P

∑
ρ′<σ′

1<...<σ′
k≤P

(−γ)k+k′
〈

tr
[
AT

ρ Aσ1A
T
σ1
...Aσk

AT
σk
AµA

T
µAσ′

k
AT

σ′
k
...Aσ′

1
AT

σ′
1
Aρ′

]〉
, (41)

and the expectation over {Aµ} follows (Appendix A. 4)

γk+k′
〈

tr
[
AT

ρ Aσ1
AT

σ1
...Aσk

AT
σk
AµA

T
µAσ′

k
AT

σ′
k
...Aσ′

1
AT

σ′
1
Aρ′

]〉
=

N2
x

Ns

(
Cin

ρσ1
Cin

σ1σ2
...Cin

σkµ
Cin

µσ′
k′
...Cin

σ′
2σ

′
1
Cin

σ′
1ρ

′ +O
(

Ns

Nx

))
.

(42)

Therefore, at Ns

Nx
→ 0 limit, the squared term is evaluated as

γ2

Ny

P∑
µ=1

〈∥∥∥∥∥
P∑

ρ=1

BρA
T
ρ

P∏
σ=ρ+1

(I − γAσA
T
σ)Aµ

∥∥∥∥∥
2

F

〉

=

P∑
µ=1

P∑
ρ=1

P∑
ρ′=1

Cout
ρρ′

P−ρ∑
k=0

(−1)k
∑

ρ<σ1<...<σk≤P

Cin
ρσ1

...Cin
σkµ

P−ρ′∑
k′=0

(−1)k
′ ∑
ρ′<σ′

1<...<σ′
k′≤P

Cin
ρ′σ′

1
...Cin

σ′
k′µ

=

P∑
µ=1

P∑
ρ=1

P∑
ρ′=1

Cout
ρρ′

[
(I + Cin,U)−1Cin

]
ρµ

[
(I + Cin,U)−1Cin

]
ρ′µ

= tr
[
Cout(I + Cin,U)−1Cin

(
(I + Cin,U)−1Cin

)T]
. (43)

15

Optimal Task Order for Continual Learning of Multiple Tasks

Noticing that the first term of Eq. 31 is rewritten as

1

Ny

P∑
µ=1

〈
∥Bµ∥2F

〉
= P = tr[Cout], (44)

at Ns

Nx
→ 0 limit, the final error ϵ̄f is written as

ϵ̄f = tr[Cout]− 2tr[Cout(I + Cin,U)−1Cin] + tr
[
Cout(I + Cin,U)−1Cin

(
(I + Cin,U)−1Cin

)T]
=
∥∥∥(Cout

)1/2 (
I − (I + Cin,U)−1Cin

)∥∥∥2
F
. (45)

Thus, we obtained the equality in Theorem 3.1. Note that because Cout is a correlation matrix, there exists a matrix
(Cout)

1/2 such that (Cout)
1/2

(Cout)
1/2

= Cout. Because Cin = I + Cin,U + (Cin,U)T , ϵ̄f is also written as

ϵ̄f =
∥∥∥(Cout

)1/2
(I + Cin,U)−1

(
Cin,U

)T∥∥∥2
F
. (46)

Note that, if Cin = I , the error is zero. This is consistent with previous results showing that in the absence of overlap
between tasks, continual learning doesn’t suffer from forgetting (Ramasesh et al.; Lee et al., 2021; Peng et al., 2023).
Additionally, Eq. 33 requires P ≪ Nx

Ns
(see Appendix A).4 below), thus the obtained expression doesn’t hold when the

number of tasks is comparable to the network size.

A.4. Expectation over Random Correlated Matrices {Aµ}

We first show that A+
µ → γAT

µ and UµU
T
µ → γAµA

T
µ at Ns

Nx
→ 0, where γ = Ns

Nx
and Uµ is defined by SVD of Aµ,

Aµ = UµΛµV
T
µ . If Λµ = 1√

γ I , then we have AµA
T
µ = UµΛ

2
µU

T
µ = 1

γUµU
T
µ , and

A+
µ = VµΛ

−1
µ UT

µ =
√
γ
(
UµV

T
µ

)T
= γ

(
1√
γUµV

T
µ

)T
= AT

µ . (47)

Thus, it is sufficient to show that Λµ → 1√
λ
I at Ns

Nx
→ 0. The mean and variance of Ns ×Ns matrix AT

µAµ over randomly
sampled Aµ obey 〈

AT
µAµ

〉
A
= Nx

Ns
I〈

[AT
µAµ − 1

γ I]⊙ [AT
µAµ − 1

γ I]
〉
= Nx

N2
s

(
I + 11T

)
, (48)

where 1 is a all-one vector and ⊙ represents Hadamard product, indicating that the standard deviation of AT
µAµ shows

O
(

Ns

Nx

)
scaling with respect to the mean. Thus, γAT

µAµ → I at Ns

Nx
→ 0, implying Λµ → 1√

λ
I at Ns

Nx
→ 0.

Regarding expectation over A in Eq. 33, expanding the equation up to the next to the leading order, we have〈
tr
[
AT

ρ Aσ1
AT

σ1
...Aσk

AT
σk
Aµ

]〉
=

∑
i0,...,ik

∑
j0,...,jk

〈
Aρ

i0j0
Aσ1

i0j1
Aσ1

i1j1
Aσ2

i1j2
Aσ1

i2j2
...Aσk

ik−1jk
Aσk

ikjk
Aµ

ikj0

〉
=

∑
i0,...,ik

∑
j0,...,jk

(
δj0,j1,j2,...,jk

(
1
Ns

)k+1

Cin
ρσ1

Cin
σ1σ2

...Cin
σkµ

+
∑
l

δil−1ilδj0,j1,...,jl−1,jl+1,...,jk

(
1
Ns

)k+1

Cin
ρσ1

Cin
σ1σ2

...Cin
σl−2σl−1

Cin
σl−1σl+1

Cin
σlσl

Cin
σl+1σl+2

...Cin
σkµ

+ ...
)

= Nx

(
Nx

Ns

)k
Cin

ρσ1
Cin

σ1σ2
...Cin

σkµ
+Ns

(
Nx

Ns

)k∑
l

Cin
ρσ1

Cin
σ1σ2

...Cin
σl−1σl+1

Cin
σlσl

...Cin
σkµ

+O
((

Nx

Ns

)k)
= γ−kNx

(
Cin

ρσ1
Cin

σ1σ2
...Cin

σkµ
+O

(
Ns

Nx

))
(49)

16

Optimal Task Order for Continual Learning of Multiple Tasks

δj0,j1,...,jk in the third line is the Kronecker delta function that returns 1 if j0 = j1 = ... = jk, otherwise returns 0.
The third line follows from Isserlis’ theorem, which states that the expectation over multivariate normal variables can be
decomposed into summation over all pair-wise partitions (Helias & Dahmen, 2020). In the equation above, the partition that
pairs neighboring matrices takes O(Nk+1

x) value, while all other partitions yield O(Nk
x) value at most because of indices

mismatch. Note that, the number of second order terms depends on P , as suggested by the summation over l in the third
line. Thus, we expect that our theory hold only when P satisfies P ≪ Nx

Ns
.

From a parallel argument with the one above, the expectation in Eq. 42 is evaluated as

γk+k′
〈

tr
[
AT

ρ Aσ1A
T
σ1
...Aσk

AT
σk
AµA

T
µAσ′

k
AT

σ′
k
...Aσ′

1
AT

σ′
1
Aρ′

]〉
=
(

Ns

Nx

)k+k′ (
Nx

Ns

)k+k′+2

Ns

(
Cin

ρσ1
Cin

σ1σ2
...Cin

σkµ
Cin

µσ′
k′
...Cin

σ′
2σ

′
1
Cin

σ′
1ρ

′ +O(Ns

Nx
)
)

=
N2

x

Ns

(
Cin

ρσ1
Cin

σ1σ2
...Cin

σkµ
Cin

µσ′
k′
...Cin

σ′
2σ

′
1
Cin

σ′
1ρ

′ +O
(

Ns

Nx

))
. (50)

B. Analysis of the Impact of Task Order on Continual Learning
B.1. Linear Perturbation Analysis of the Order Dependence

To further investigate the order-dependence of the final error ϵ̄f , we aim to decompose the error into interpretable features of
task similarity matrix. To this end, we further constrain the input similarity matrix Cin to

Cin
ij =

{
1 (if i = j)

m+ δMij (otherwise),
(51)

where m is a constant satisfying −1 < m < 1. Here, δMij is a small element-wise perturbation added in such a way that
Cin is a correlation matrix. We define an upper-triangular matrix that consists of the constant component as M̄ . (i, j)-th
element of M̄ takes M̄ij = m if j > i, but M̄ij = 0 otherwise. This constant M̄ assumption enables us to evaluate the
effect of inverse matrix term in ϵ̄f analytically owing to the following lemma:

Lemma B.1. For any m satisfying −1 < m < 1, an upper-triangle matrix M̄ satisfies[
(I + M̄)−1

]
ij
= δij −m[j > i]+(1−m)j−i−1, (52)

where [X]+ is the indicator function that returns 1 if X is true, but returns 0 otherwise.

Proof.

[(I + M̄)(I + M̄)−1]ij =

P∑
k=1

(δik +m[k > i]+)
(
δkj −m[j > k]+(1−m)j−k−1

)
= δij + [j > i]+

(
−m(1−m)j−i−1 +m−m2

j−1∑
k=i+1

(1−m)j−k−1

)
= δij + [j > i]+

(
−m(1−m)j−i−1 +m−m

[
1− (1−m)j−i−1

])
= δij . (53)

Let us consider the case when the output similarity is the same across all the tasks for simplicity. Then, Cout is written as

Cout = ρo11
T + [1− ρo]I. (54)

In this problem setting, assuming that δM is sufficiently small compared to M̄ , we can rewrite the error ϵ̄f as a linear
function of δM , which enables us to interpret the contribution of different pairwise similarities to the final error. The
following theorem describes the exact decomposition of the impact of task order in this linear perturbation limit.

17

Optimal Task Order for Continual Learning of Multiple Tasks

Theorem B.2. Let us suppose that all elements of a upper-triangle matrix with zero-diagonal components δMij satisfies,
|δMij | < δm, where δm is a positive constant. Then, the error ϵ̄f is rewritten as below:

ϵ̄f = ϵ̄f [m, ρo] +

P∑
i=1

P∑
j=i+1

GijδMij +O(δ2m), (55)

where

ϵ̄f [m, ρo] ≡
∥∥∥(ρo11T + [1− ρo]I

)1/2
(I + M̄)−1M̄T

∥∥∥2
F

(56a)

Gij ≡ go(i) + go(j) + g+(j + i) + g−(j − i), (56b)

and functions go, g−, g+ : Z→ R that constitute the coefficient G are defined by

go(k) ≡ (1−ρo)m
2−m (1−m)P−k −

(
ρo − (1−ρo)m

2−m

)
(1−m)P+k−1, (57a)

g+(s) ≡
(
ρo − (1−ρo)m

2−m

)
3−m
2−m (1−m)s−1 − (1−ρo)m

2−m

(
Pm+ 2(1−m)− (1−m)2

2−m

)
(1−m)2P−s, (57b)

g−(d) ≡ (1−ρo)m
2−m

1
2−m (1−m)d−1 −

[(
ρo − (1−ρo)m

2−m

)(
1− (1−m)P

(
mP
1−m + 3−m

2−m

))
− (1−ρo)m

2−m
1

1−m

]
(1−m)P−d.

(57c)

Matrix G specifies the relative contribution of each task-to-task similarity to the final error. Notably, ϵ̄f [m, ρo] term is
permutation invariant by construction. Thus, task-order dependence stems from the δM -dependent terms.

Inserting ρo = 1 into Eqs. 57, you get Theorem 4.1 in the main text.

B.2. Proof of Theorem B.2

The inverse of (I + M̄ + δM) is rewritten as

(I + M̄ + δM)−1 = (I + M̄)−1 − (I + M̄)−1δM(I + M̄)−1 +O(δM2). (58)

Thus, up to the leading order with respect to δM , we have

ϵ̄f =
∥∥∥(ρo11T + [1− ρo]I

)1/2 (
I + M̄ + δM

)−1
(M̄ + δM)T

∥∥∥2
F

=
∥∥∥(ρo11T + [1− ρo]I

)1/2
(I + M̄)−1M̄T

∥∥∥2
F

+ 2tr
[
M̄(I + M̄)−T

(
Cout

)1/2
(I + M̄)−1

(
δMT − δM(I + M̄)−1M̄T

)]
+O(δM2). (59)

The first term corresponds to ϵ̄f [M̄, Cout], thus it is enough to show that the coefficients of δM is written as Eqs. 56b and
57.

M̄(I + M̄)−T term is rewritten as

[M̄(I + M̄)−T]ij =

P∑
k=1

m[k > i]+
(
δjk −m[k > j]+(1−m)k−j−1

)
= m[j > i]+ −m

(
(1−m)kij−j−1 − (1−m)P−j

)
= [j > i]+m

(
1− [1− (1−m)P−j]

)
−m[j ≤ i]+

(
(1−m)i−j − (1−m)P−j

)
= m(1−m)P−j −m[j ≤ i]+(1−m)i−j . (60)

In the second line, we defined kji by kji ≡ max(i+ 1, j + 1). For the ease of notation, let us denote the last term in the
equation above as

vji ≡ m(1−m)P−j −m[j ≤ i]+(1−m)i−j . (61)

18

Optimal Task Order for Continual Learning of Multiple Tasks

Next,
(
ρo11

T + [I − ρo]I
)
(I + M̄)−1 term becomes

[(
ρo11

T + [I − ρo]I
)
(I + M̄)−1

]
ij

=
∑
k

(ρo + (1− ρo)δik)
(
δkj −m[j > k]+(1−m)j−k−1

)
= ρo

(
1−

∑
k

m[j > k]+(1−m)j−k−1

)
+ (1− ρo)

(
δij −m[j > i]+(1−m)j−i−1

)
= ρo(1−m)j−1 + (1− ρo)δij − (1− ρo)m[j > i]+(1−m)j−i−1 (62)

In the last line, we used
∑

k m[j > k]+(1−m)j−k−1 = 1− (1−m)j−1. As before, let us denote the coefficient by

uij ≡ ρo(1−m)j−1 − (1− ρo)m[j > i]+(1−m)j−i−1. (63)

Then, the first-order term with respect to δM follows

tr
[
M̄(I + M̄)−T

(
ρo11

T + (1− ρo)I
)
(I + M̄)−1

(
δMT − δM(I + M̄)−1M̄T

)]
=
∑
ijk

[
M̄(I + M̄)−T

]
ij

[(
ρo11

T + [I − ρo]I
)
(I + M̄)−1

]
jk

(
δMik −

∑
l

δMkl

[
M̄(I + M̄)−T

]
il

)

=
∑
ijk

vji ((1− ρo)δjk + ujk)

(
δMik −

∑
l

δMklvli

)
=
∑
kl

δMkl

∑
ij

vji (δik [(1− ρo)δjl + ujl]− vli [(1− ρo)δjk + ujk])

=
∑
kl

δMklGkl, (64)

where the coefficient of (k, l)-th element is defined by

Gkl ≡
∑
ij

vji (δik [(1− ρo)δjl + ujl]− vli [(1− ρo)δjk + ujk]) . (65)

Gkl is decomposed into

Gkl = (1− ρo)vlk +
∑
j

vjkujl − (1− ρo)
∑
i

vkivli −
∑
ij

vjivliujk. (66)

The first term (1− ρo)vlk is rewritten as

(1− ρo)vlk = (1− ρo)m(1−m)P−l −m[l ≤ k]+(1−m)k−l

= (1− ρo)m(1−m)P−l. (67)

Here, we dropped the second term, because δMkl = 0 when l ≤ k.

19

Optimal Task Order for Continual Learning of Multiple Tasks

Regarding the second term, summation over j is evaluated as

P∑
j=1

vjiujk =
∑
j

(
m(1−m)P−j −m[j ≤ i]+(1−m)i−j

) (
ρo(1−m)k−1 − (1− ρo)m[k > j]+(1−m)k−j−1

)

= ρo(1−m)k−1

m

P∑
j=1

(1−m)P−j −m

i∑
j=1

(1−m)i−j

− (1− ρo)m

2

k−1∑
j=1

(1−m)(P−j)+(k−j−1) −
jik∑
j=1

(1−m)(i−j)+(k−j−1)

= ρo(1−m)k−1

(
(1−m)i − (1−m)P

)
− (1− ρo)m

2−m

([
(1−m)P−(k−1) − (1−m)P+(k−1)

]
−
[
(1−m)i+k−1−2jik − (1−m)i+k−1

])
=

(
ρo −

(1− ρo)m

2−m

)(
(1−m)i+k−1 − (1−m)P+k−1

)
+

(1− ρo)m

2−m

(
(1−m)i+k−1−2jik − (1−m)P−(k−1)

)
.

(68)

In the third line, we defined jik as jik ≡ min(k − 1, i). Thus, the second,
∑

j vjkujl, term becomes

∑
j

vjkujl = −
([

ρo −
(1− ρo)m

2−m

]
(1−m)P+l−1 +

(1− ρo)m

2−m
(1−m)P−l+1

)

+

[
ρo −

(1− ρo)m

2−m

]
(1−m)k+l−1 +

(1− ρo)m

2−m
(1−m)l−k−1. (69)

The third term is, from a similar calculation, rewritten as∑
i

vlivki

=
∑
i

(
m(1−m)P−l −m[l ≤ i]+(1−m)i−l

) (
m(1−m)P−k −m[k ≤ i]+(1−m)i−k

)
= Pm2(1−m)2P−(k+l) −m2

(
(1−m)P−k

P∑
i=l

(1−m)i−l + (1−m)P−l
P∑

i=k

(1−m)i−k

)
+m2

P∑
i=l

(1−m)2i−(k+l)

=

(
Pm2 + 2m(1−m)− m(1−m)2

2−m

)
(1−m)2P−(k+l) −m

(
(1−m)P−k + (1−m)P−l

)
+

m

2−m
(1−m)l−k.

(70)

The last term is a little more complicated, so let us divide it into two terms:

∑
i

vli
∑
j

vjiujk =

(
ρo −

(1− ρo)m

2−m

)
T1 +

(1− ρo)m

2−m
T2, (71)

where

T1 = m(1−m)P−l
P∑
i=1

(
(1−m)i+k−1 − (1−m)P+k−1

)
−m

P∑
i=l

(1−m)i−l
(
(1−m)i+k−1 − (1−m)P+k−1

)
,

T2 = m(1−m)P−l
P∑
i=1

(
(1−m)i+k−1−2jik − (1−m)P−(k−1)

)
−m

P∑
i=l

(1−m)i−l
(
(1−m)i−(k−1) − (1−m)P−(k−1)

)
.

(72a)

20

Optimal Task Order for Continual Learning of Multiple Tasks

Taking summation over index i, T1 and T2 are rewritten as

T1 = m(1−m)P−l

(
(1−m)k

m

[
1− (1−m)P

]
− P (1−m)P+k−1

)
−
(

1

2−m

[
(1−m)l+k−1 − (1−m)2P+1+(k−l)

]
− (1−m)P+k−1

[
1− (1−m)P+1−l

])
=

(
1− (1−m)P

[
2 +

mP

1−m
− 1−m

2−m

])
(1−m)P−(l−k) − 1

2−m
(1−m)l+k−1 + (1−m)P+k−1. (73)

T2 = (1−m)P−l
(
[1− (1−m)k−1] + [(1−m)− (1−m)P+2−k]−mP (1−m)P−(k−1)

)
−
(

1

2−m
[(1−m)l−k+1 − (1−m)2P+3−(l+k)]− [1− (1−m)P+1−l](1−m)P−(k−1)

)
= −1−m

2−m
(1−m)l−k − 1

1−m
(1−m)P−(l−k) +

(
(2−m)(1−m)P−l + (1−m)P−k+1

)
− (1−m)2P−(k+l)

(
mP (1−m) + 2(1−m)2 − (1−m)3

2−m

)
. (74)

The results above show that Gkl is decomposed into four components:

Gkl = g−(l − k) + g+(l + k) + gL(k) + gR(l). (75)

Summing over the terms that only depends on k, we have

gL(k) = −(1− ρo)
(
−m(1−m)P−k

)
−
(
ρo − (1−ρo)m

2−m

)
(1−m)P+k−1 − (1−ρo)m

2−m (1−m)P−k+1

= (1−ρo)m
2−m (1−m)P−k −

(
ρo − (1−ρo)m

2−m

)
(1−m)P+k−1 (76)

Similarly, the terms that only depend on l are summed up to:

gR(l) = (1− ρo)m(1−m)P−l −
([

ρo − (1−ρo)m
2−m

]
(1−m)P+l−1 + (1−ρo)m

2−m (1−m)P−l+1
)

− (1− ρo)
(
−m(1−m)P−l

)
− (1−ρo)m

2−m (2−m)(1−m)P−l

= (1−ρo)m
2−m (1−m)P−l −

(
ρo − (1−ρo)m

2−m

)
(1−m)P+l−1. (77)

Therefore, gL and gR have the same form. We denote this function as go below.

g+(l + k) term has a slightly more complicated expression:

g+(l + k) =
(
ρo − (1−ρo)m

2−m

)
(1−m)k+l−1 − (1− ρo)m

(
Pm+ 2(1−m)− (1−m)2

2−m

)
(1−m)2P−(k+l)

+
(
ρo − (1−ρo)m

2−m

)
1

2−m (1−m)l+k−1 + (1−ρo)m
2−m (1−m)

(
Pm+ 2(1−m)− (1−m)2

2−m

)
(1−m)2P−(k+l)

=
(
ρo − (1−ρo)m

2−m

)
3−m
2−m (1−m)l+k−1 − (1−ρo)m

2−m

(
Pm+ 2(1−m)− (1−m)2

2−m

)
(1−m)2P−(k+l). (78)

Lastly, g−(l − k) term becomes

g−(l − k)

= (1−ρo)m
2−m (1−m)l−k−1 − (1−ρo)m

2−m (1−m)l−k −
(
ρo − (1−ρo)m

2−m

)(
1− (1−m)P

(
2 + mP

1−m −
1−m
2−m

))
(1−m)P−(l−k)

+ (1−ρo)m
2−m

(
1−m
2−m (1−m)l−k + 1

1−m (1−m)P−(l−k)
)

= (1−ρo)m
2−m

1
2−m (1−m)l−k−1 −

[(
1− (1−m)P

(
mP
1−m + 3−m

2−m

))
− (1−ρo)m

2−m
1

1−m

]
(1−m)P−(l−k). (79)

We thus obtain Eq. 57. If we set ρo = 1, we recover Theorem 4.1. In Theorem 4.1, G+ is defined as G+
ij = g+(i+ j) +

gL(i) + gR(j).

21

Optimal Task Order for Continual Learning of Multiple Tasks

Figure 6. a, b) The same as Fig. 3e and g, but without normalization. The average correlation dominates the error ϵf , but the order
dependence is observed robustly. c) The ratio of networks where the periphery-to-core order outperforms core-to-periphery order. As
before, we generated 1000 samples of Cin matrices randomly while fixing Cout to be all one, then binned Cin based on the average
off-diagonal correlation. For each average correlation value m, we then calculated the ratio of networks in which the periphery-to-core
order achieved smaller error than the core-to-periphery order. d) The same as panel c, but the ratio of random seeds where the max-path
orders achieved the better performance than the min-path orders.

B.3. The Impact of Task Typicality

We can further analyze the impact of task typicality on the task order discuss in the main text. Let us define ḡ by

ḡ ≡ 1

P

P∑
µ=1

(1−m)µ =
1

mP

(
(1−m)− (1−m)P+1

)
, (80)

then G+
µν is rewritten as

G+
µν =

[
(3−m)ḡ

(2−m)(1−m) − (1−m)P−1
]
[(1−m)µ + (1−m)ν]

+ 3−m
(2−m)(1−m) ((1−m)µ − ḡ) ((1−m)ν − ḡ)− (3−m)ḡ2

(2−m)(1−m) . (81)

Thus, the corresponding error term δϵ̄+f becomes

δϵ̄+f =

P∑
µ=1

P∑
ν=µ+1

G+
µνδMµν

= P
[

(3−m)ḡ
(2−m)(1−m) − (1−m)P−1

] P∑
µ=1

(1−m)µδtµ

+ 3−m
(2−m)(1−m)

P∑
µ=1

P∑
ν=µ+1

((1−m)µ − ḡ) ((1−m)ν − ḡ) δMµν + const. (82)

If (3−m)ḡ
(2−m)(1−m) > (1−m)P−1, from the rearrangement inequality, the first term is minimized under δt1 ≤ δt2 ≤ ... ≤ δtP

ordering. However, the second term may not be minimized under this task order.

C. Implementation Details
Source codes for all the numerical experiments are available at https://github.com/ziyan-li-code/
optimal-learn-order.

C.1. Linear Teacher-student Model with Latent Variables

In the simulations depicted in Figs. 2b, 3eg, and 4ef, we set the latent vector size Ns = 30, input layer size Nx = 3000,
and the output layer size Ny = 10. We initialized the weight matrix W as the zero matrix, and then updated the weight
using gradient descent (Eq. 21) with learning rate η = 0.001 for 100 iterations per task. In Fig. 2b, the input correlation
matrix Cin ∈ RP×P was generated randomly in the following manner. First, we generated a strictly upper-triangular matrix

22

https://github.com/ziyan-li-code/optimal-learn-order
https://github.com/ziyan-li-code/optimal-learn-order

Optimal Task Order for Continual Learning of Multiple Tasks

Figure 7. Task order preference in continuous image classification tasks. a,b) Average classification performance after continual learning
of CIFAR-100 where each task consists of 5 label classifications. Here, we randomly picked 25 labels from CIFAR-100 dataset and
generated 5 tasks each requiring classification of 5 labels. c,d) Average classification performance after continual learning on CIFAR-10.
Task similarity was estimated by evaluating zero-shot generalization performance from task A to B, using the training data of B instead
of the test data (see Appendix C.4 for details).

Cin,U by sampling each element independently from a continuous uniform distribution between 0 and 1, U[0,1]. We then
generated the full matrix Cin by Cin = Cin,U + (Cin,U)T + I . If the resultant Cin is a positive semi-definite matrix, we
accepted the matrix, otherwise, we generated Cin in the same manner, until we obtain a positive semi-definite matrix. Here,
we limited the correlation to be positive mainly because continual learning is typically impractical when there exists a large
negative correlation between tasks. We generated Cout using the same method. In Fig. 2c, we estimated the final error
ϵ̄f using Eq. 8 for each triplet (ρAB , ρBC , ρCA). We calculated the error for all six task orders and plotted the order that
yielded the minimum error.

In Figs. 3e and g, we generated input correlation matrix Cin using the same method with Fig. 2b, but we instead sampled
the elements from a uniform distribution between -1 and 1, U[−1,1]. The average correlation m was defined by the average of
the off-diagonal components of Cin. The output correlation matrix Cout was set to be the all one matrix (i.e. Cout

µν = 1 for
all (µ, ν) pairs) which corresponds to the ρo = 1 scenario. We estimated the error under each task order for 1000 randomly
generated input correlation matrices and binned the performance by the average correlation. The average performance
(black lines in Figs. 3e and g) were estimated by taking the average over randomly sampled 100 task orders. The error bars,
representing the standard error of mean, are larger for larger average correlation because we didn’t generated many Cin

with a large average correlation under our random generation method. Because there are two task sequence that provides the
max-path due to symmetry (e.g. A→C→E→B→D and D→B→E→C→A in Fig. 3c), we defined the error of the max-path
rule as the average over these two task orders.

C.2. Generation of Input Similarity Matrices Having Simple Graph Structures

In Fig. 4, we introduced simple graph structures to the task similarity matrices. To this end, we first generated an unweighted
bidirectional adjacency matrix Adj ∈ {0, 1}P×P given a graph structure, then calculated distance between nodes on the
graph specified by Adj , which we denote as D. From this distance matrix D, we generated the input similarity matrix Cin

by Cin
ij = aDij for each task pairs (i, j). Here, a is the constant that controls overall task similarity. a ≈ 1 means that inputs

for all tasks are highly correlated, whereas a ≈ 0 means that they are mostly independent.

For instance, in the case of chain graph, the adjacency matrix is given by Adj,ij = 1 if j = i± 1 else Adj,ij = 0. Thus, the
distance between nodes D follows Dij = |i− j| and the input correlation matrix becomes Cin

ij = a|i−j|. In the ring graph,
the distance between node is instead given by Dij = min{|i− j|, P − |i− j|}. For the tree graph, we used a tree where
each non-leaf node has exactly two children nodes. The same structure was assumed for the leaves graph, except that we
only used leaf nodes for constructing the task similarity matrix.

C.3. Convolutional and Multi-layered Non-linear Neural Networks for Image Classification

We used convolutional neural networks (CNNs) for numerical experiments with the CIFAR-10 and CIFAR-100 datasets.
The network consisted of two convolutional layers and one dense layer, followed by an output layer. The first convolutional
layer had 32 filters with 3× 3 kernels. The output was passed through a Rectified Linear Unit (ReLU) activation function
and then downsampled using average pooling with a window size of 2 × 2 and a stride of 2. The second convolutional
layer was similar to the first, except that we used 64 filters. The dense layer following the two convolutional layers had 256

23

Optimal Task Order for Continual Learning of Multiple Tasks

Figure 8. Schematic of the task similarity estimation. From the error in zero-shot transfer ϵµ[Wν] (left), we estimated task similarity ρµν

(right).

Figure 9. Task order preference estimated from various fraction of training data under CIFAR-10 task. For instance, in 0.1% data results
depicted in panels a and b, we first used 0.1% of training data (∼ 10 images) for training the network with one task and used 0.1% of
training data from another task to evaluate the zero-shot transfer performance. We then estimated the task similarity as before. Panels g
and h are the same with panels c and d in Fig. 7. We used the same set of parameters with the results depicted in the main figure (see
Appendix C for details).

neurons, with ReLU as the activation function. For classification, we used a softmax activation function in the last layer.
The weights of both convolutional and dense layers were initialized with LeCun normal initializers.

For the Fashion-MNIST dataset, we used multi-layer perceptrons (MLPs) to evaluate the robustness of our findings against
the neural architecture. The MLP model had two hidden layers with 128 and 64 neurons, respectively. We used ReLU as the
activation function for the hidden layers and softmax for the output layer.

In both CNN and MLP models, we studied binary classification with two output neurons, except in Figure 7a and b, where
we considered a classification of 5 labels with five output neurons. All tasks were implemented as single-head continual
learning where the output nodes are shared across tasks. The performance was evaluated by the average classification
accuracy on the test datasets for all the tasks at the end of the entire training.

The networks were trained by minimizing the cross-entropy loss using the Adam optimizer with a learning rate of 10−3 for
five epochs per task. We set the batch size to 4 due to GPU memory constraints. The models were implemented using Flax
(Heek et al., 2024), a JAX neural network library, and were trained on NVIDIA Tesla V100 GPUs

In both Figures 5 and 7, we generated 100 task sets by randomly dividing 10 labels into a set of five binary classification
tasks. In the case of CIFAR-100, we initially sampled 10 labels randomly, then partitioned them into five binary classification.
We binned the task sets by the average similarity estimated from Eq. 16, then plotted the mean performance and the standard
error of mean for each bin. The black lines representing the average performance of random task order were estimated by

24

Optimal Task Order for Continual Learning of Multiple Tasks

Figure 10. Task order preference in continuous image classification tasks where the task similarity was estimated from 1% of training
data, as opposed to Fig. 5 where 100% of data was used. a–f) Continual learning performance, defined as the average test accuracy
across all the tasks after learning, under various task orders. g, h) The ratio of task sets where the periphery-to-core rule outperforms the
core-to-periphery rule (g), and where the max-path rule outperforms the min-path rule (h), under CIFAR-100 with different numbers of
tasks (P = 3, 5, 7). Panels c and d were replicated from Fig. 9 for completeness. Note that task-order effects were smaller in CIFAR-100
because the number of training images per label is fewer in CIFAR-100 than in CIFAR-10 and Fashion-MNIST.

taking the mean of the classification performance under 30 random task orders for each task set. Because there are two
task orders that provides the max-path by construction, we define the performance of the max-path rule as the mean of
performance under these two task orders.

C.4. Estimation of Task Similarity

In the main text, we inferred similarity between two tasks A and B using zero-shot transfer performance between the two
tasks. Previous work on linear model indicates that, if the output similarity is one, the pairwise transfer performance
∆ϵTF [ν → µ] ≡ ϵµ[Wν]− ϵµ[Wo] is written as (Hiratani)

∆ϵTF [ν → µ] = ρinµν(2− ρinµν), (83)

indicating that the input similarity between two tasks can be inferred as

ρinµν = 1−
√

1−∆ϵTF [ν → µ]. (84)

Motivated by this relationship, we defined similarity between tasks in general nonlinear networks by Eq. 16. A similar
approach was implemented in (Lad et al., 2009). Notably, this method only requires inputs/outputs of the trained network,
and thus applicable to situation where the model details are inaccessible (e.g., human and animal brains, closed-LLM).

We implemented the evaluation the zero-shot transfer performance from task A to B as follows: First, we trained a network
on task A for 5 epochs from a random initialization using the Adam optimizer on the cross-entropy loss with learning rate
10−3 as above. We then measured the cross-entropy loss on the test dataset of task B, ϵB [WA], where WA represents the
weight after 5 epochs of training on task A. To normalize the accuracy, we divided the obtained loss by the loss on task
B under a label shuffling, ϵB,sf [WA]. The resultant value ϵB [WA]

ϵB,sf [WA] characterizes how well the network transfer to task B
compared to a random task with the same input statistics. Since evaluating similarity using the transfer performance on
the test data may potentially introduce bias, in Fig. 7c and d, we estimated the transfer performance ∆ϵB [WA] using the
training dataset for task B. Even in this setting, we found results nearly identical to those in Fig. 5c and d, confirming the
robustness of our findings with respect to the details of the similarity evaluation method.

In the task similarity and order estimation from sparse data shown in Figs. 9 and 10, we estimated task similarity in the
same manner as described above, but using subsampled training data. For example, in the 1% data scenario, we used 1% of

25

Optimal Task Order for Continual Learning of Multiple Tasks

the training data for task A to calculate the weights after learning task A, denoted as WA. As before, we trained the network
using the Adam optimizer on the cross-entropy loss for 5 epochs from random initialization except that we only used 1% of
training data at each epoch. We then estimated the transfer performance to task B, ϵB [WA], using 1% of the training data for
task B. The task similarity between tasks A and B was then computed using Eq. 16, as in the full data setting.

26

