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ABSTRACT

Recent advances in large language models have led to increased adoption across
specialized domains, but their effectiveness on tasks with limited training data
remains unclear. We investigate this question through bias detection in medical
curriculum text, comparing models ranging from DistilBERT (67M parameters)
to Llama-3.2 (1.2B parameters) using both sequence classification and causal lan-
guage modeling approaches. Our findings challenge conventional assumptions
about model scaling: while the instruction-tuned Llama achieved the strongest
screening performance (AUC: 0.7904, F2: 0.5760), architectural choices proved
more critical than model size. DistilBERT demonstrated competitive perfor-
mance through targeted architectural choices, achieving the second-highest AUC
(0.8857) despite its smaller size. These results suggest that for specialized clas-
sification tasks with limited training data, architectural alignment and instruction
tuning may be more crucial than increased model capacity. Our work provides
practical insights for deploying language models in domain-specific applications
where expert annotation is expensive and dataset size is necessarily limited.

1 INTRODUCTION

Recent advances in large language models have led to their increased adoption across specialized
domains, based on their theoretical advantages in transfer learning and multi-task capabilities Brown
et al. (2020); Raffel et al. (2020); Bommasani et al. (2021). However, the effectiveness of these mod-
els on domain-specific tasks with limited training data remains unclear. We investigate this question
through bias detection in medical curriculum text Salavati et al. (2024), where expert annotation is
expensive and dataset size is necessarily limited.

2 METHODS

In this study, we investigated the relative importance of model architecture versus model size for
bias detection in medical curriculum text using the BRICC dataset Salavati et al. (2024); Butts
et al. (2024), which contains 1,530 annotated text segments with a 1:4 ratio of gender-biased to non-
biased samples. Our experimental setup examined two primary axes of variation: model architecture
(sequence classification versus causal language modeling) and model size (from DistilBERT at 67M
parameters through Llama-3.2 at 1.2B parameters). We compared BERT-base (109M parameters)
Devlin et al. (2019), DistilBERT (67M parameters), and Llama-3.2 (1.2B parameters) Touvron et al.
(2023b;a) in both sequence classification and causal language modeling configurations. The BERT
variants utilized bidirectional attention in their base form, while Llama employed unidirectional
attention. Each model variant was trained under standardized conditions using AdamW optimization
with a learning rate of 2e-5 and batch size of 32 for eight epochs, which were chosen due to their
strong performance in Salavati et al.’s model.

3 RESULTS

Analysis of model performance metrics reveals critical insights when evaluating these systems as
screening tools for expert review of potential bias. In this context, F2 and AUC metrics are par-
ticularly relevant, as they better capture a model’s ability to minimize false negatives while main-
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Table 1: Performance Metrics for Different Models
Model Accuracy Precision Recall F1 F2 AUC
BERT (Base) 0.5784 0.1747 0.3883 0.1589 0.2302 0.4803
BERT (Fine-tuned) 0.7876 0.3393 0.4043 0.3689 0.3893 0.7018
DistilBERT (Base) 0.3301 0.1141 0.7340 0.1975 0.3517 0.4680
DistilBERT (Fine-tuned) 0.8497 1.0000 0.0213 0.0417 0.0265 0.8857
Llama 3.2 1B (Base) 0.4003 0.1339 0.6383 0.2021 0.3375 0.4919
Llama 3.2 1B (Fine-tuned) 0.1855 0.1535 0.9521 0.2643 0.4664 0.5056
Llama 3.2 1B Instruct (Base) 0.8105 0.0000 0.0000 0.0000 0.0000 0.4983
Llama 3.2 1B Instruct (Fine-tuned) 0.8922 0.8375 0.5345 0.6522 0.5760 0.7904

taining reasonable precision. As shown in Table 1, the fine-tuned instruction-tuned Llama 3.2 1B
model achieved the strongest overall screening performance, with an AUC of 0.7904 and F2 score
of 0.5760. This represents a substantial improvement over the base BERT model’s metrics (AUC:
0.4803, F2: 0.2302). DistilBERT demonstrated intriguing performance characteristics after fine-
tuning, achieving the second-highest AUC (0.8857) but a notably low F2 score (0.0265), suggesting
potential challenges in practical deployment as a screening tool. This disparity between AUC and F2
metrics indicates that while the model effectively ranks examples, its specific classification threshold
may need adjustment for screening purposes. The standard fine-tuned BERT model achieved more
balanced screening performance (AUC: 0.7018, F2: 0.3893), while the base Llama variants showed
limited effectiveness (AUC: 0.50, F2: 0.3375-0.4664). These results suggest that instruction tuning
may be particularly valuable for developing effective screening systems in specialized domains with
limited training data.

4 DISCUSSION

The substantial performance gap between our results and those reported by Salavati et al. highlights
critical challenges in reproducing and extending work on specialized NLP tasks. A significant lim-
itation arose from our inability to replicate their precise data filtering methodology, which selected
examples containing explicit social identity markers in quoted text. Without access to these filtering
criteria, our broader dataset likely included more ambiguous cases that complicated the classification
task.

Additionally, the experimental process revealed inherent difficulties in diagnosing the root causes
of poor model performance. When results deviated from expected benchmarks, it remained un-
clear whether the issues stemmed from fundamental differences in dataset composition, suboptimal
training procedures, evaluation metric implementation discrepancies, or model architecture mis-
alignment. This diagnostic uncertainty was compounded by limited documentation for newer model
architectures, particularly regarding their adaptation to specialized classification tasks. While base
model usage is often well-documented, guidance for configuring model heads, implementing appro-
priate preprocessing steps, and optimizing training hyperparameters remains sparse.

These challenges underscore the broader need for more comprehensive documentation and repro-
ducibility protocols in specialized NLP tasks, especially when working with evolving model archi-
tectures on nuanced classification problems.

The comparative analysis between models yielded particularly intriguing insights about the rela-
tionship between model size and task performance. While conventional wisdom suggests that larger
models should demonstrate superior transfer learning capabilities, our results indicate that architec-
tural alignment with the task may be more crucial than parameter count. The strong performance of
DistilBERT relative to larger models suggests that specialized classification tasks with limited train-
ing data may benefit more from targeted architectural choices than from increased model capacity.

These challenges underscore the broader need for more comprehensive documentation and repro-
ducibility protocols in specialized NLP tasks, especially when working with evolving model archi-
tectures on nuanced classification problems.
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A APPENDIX: SUPPLEMENTARY METHODS

A.1 DATASET AND TASK DEFINITION

The BRICC dataset comprises medical curriculum text annotated for various types of bias. After
initial challenges with considering the full dataset, we limited our scope to filter for examples of
gender bias and a proportional number of text snippets classified as not having gender bias. Key
characteristics include:

• 1,530 annotated text segments in filtered dataset

• 1:4 split; 306 examples are biased
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A.2 EXPERIMENTAL OVERVIEW

Our investigation consists of two primary experimental tracks, each designed to test distinct hy-
potheses about model performance in specialized domains with limited training data. The first track
examines architectural impacts on model performance, while the second investigates fine-tuning
strategies for domain adaptation.

A.2.1 ARCHITECTURE COMPARISONS

We compare sequence classification and causal language modeling approaches across different
model sizes. This comparison aims to disentangle the effects of model architecture from model
size in specialized domain tasks. Key experimental variables include:

• Architecture Type: Sequence classification vs. causal language modeling

• Model Size: BERT-base (109M parameters) vs. Llama-3.2 (1.2B parameters)

• Attention Patterns: Bidirectional (BERT) vs. unidirectional (Llama, BERT with
is decoder=True)

Each architectural variant was evaluated under identical training conditions to isolate architecture-
specific effects. The sequence classification models implement task-specific heads optimized for
binary classification, while the causal language modeling variants approach the task through next-
token prediction.

A.3 MODEL ARCHITECTURES

We investigated two primary architectural approaches using BERT-base and Llama-3.2 models: se-
quence classification and causal language modeling (CausalLM). While our experiments focused
on these two models, we include architectural comparisons with DistilBERT, which established the
baseline results on the BRICC dataset in prior work.

The sequence classification variants implement task-specific classification heads differently across
model families. BERT applies linear layers to its encoder outputs, while Llama performs clas-
sification on the final token’s representation, following the approach used by other causal mod-
els like GPT-2 Radford et al. (2019). For context, DistilBERT’s architecture Sanh (2019), which
achieved the baseline results, applies linear layers similar to BERT but includes an additional pre-
classification transformation. These architectural differences reflect their underlying designs: BERT
and DistilBERT as bidirectional encoders (with DistilBERT using half the layers of BERT) and
Llama as a decoder-only model.

For causal language modeling, BERT requires architectural modification through the addition of a
language modeling head and conversion to unidirectional attention (using is decoder=True),
while Llama maintains its native decoder-only architecture. BERT’s language modeling head in-
cludes a dedicated transformation layer followed by vocabulary projection, adding substantial pa-
rameters beyond the base model. These architectural choices significantly impact how each model
approaches the classification task: BERT’s sequence classification variant directly optimizes for
classification through transformed representations, while the CausalLM variants must adapt to a
fundamentally different prediction task Jin et al. (2024); Liu et al. (2024). Detailed specifications
for each variant are provided in Appendix B.

A.4 TRAINING METHODOLOGY

Our training approach incorporates several key methodological elements designed to ensure robust
comparison across experimental conditions while maintaining practical applicability.

A.4.1 BASE CONFIGURATION

All models were trained using the following base configuration:

• Optimizer: AdamW with β1 = 0.9, β2 = 0.999
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• Learning Rate: 2e-5 with linear warmup over 100 steps
• Batch Size: 32 samples
• Gradient Accumulation: 4 steps
• Weight Decay: 0.01
• Epochs: 8

The training duration was determined through preliminary experiments showing convergence pat-
terns across architectures, with additional steps allocated to account for potential late-stage opti-
mization.

A.4.2 ARCHITECTURE-SPECIFIC ADAPTATIONS

Training procedures were adapted for each architectural variant while maintaining fundamental con-
sistency:

• Sequence Classification:
– Binary cross-entropy loss
– Classification token ([CLS]) pooling for BERT
– Final token representation for Llama
– Dropout rate of 0.1 maintained across models

• Causal Language Modeling:
– Next-token prediction loss
– Causal attention masking
– Label token appending for classification
– Temperature scaling (τ = 0.7) during inference

B APPENDIX: MODEL ARCHITECTURE DETAILS

B.1 SEQUENCE CLASSIFICATION ARCHITECTURES

The BERT sequence classification model (BertForSequenceClassification, 109.5M parameters) aug-
ments the base BERT encoder with a classification head on top of the pooled output. The base en-
coder comprises 12 transformer layers with a hidden dimension of 768 and 12 attention heads. Its
embedding layer handles 30,522 tokens and includes both positional and token type embeddings,
with layer normalization (ϵ = 10−12) and dropout (p = 0.1) for regularization.

The DistilBERT sequence classification model (DistilBertForSequenceClassification, 67.0M param-
eters) follows a similar architecture but achieves parameter efficiency through architectural distilla-
tion. It uses 6 transformer layers instead of BERT’s 12 while maintaining the same hidden dimen-
sion of 768. The model adds a pre-classification transformation layer and uses a higher dropout rate
(p = 0.2) for the classification head. Both the pre-classifier and classifier are linear transformations,
with the pre-classifier maintaining the 768-dimensional representation before the final classification
layer.

The Llama sequence classification model (LlamaForSequenceClassification, 1.24B parameters)
takes a different approach, performing classification on the last non-padding token’s representation.
This design choice aligns with other causal models like GPT-2, reflecting Llama’s decoder-only
architecture. The model comprises 16 transformer layers with a hidden dimension of 2048, uses
RMSNorm (ϵ = 10−5) for normalization, and employs rotary positional embeddings. When no
padding token is defined, the model defaults to using the final sequence token for classification.

B.2 CAUSAL LANGUAGE MODELING ARCHITECTURES

The BERT causal language modeling variant (BertLMHeadModel) modifies the base architecture
for CLM fine-tuning by adding a language modeling head and enabling decoder-style processing.
The language modeling head consists of a transformation layer maintaining the 768-dimensional
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representation, followed by GELU activation, layer normalization, and final projection to the vocab-
ulary size. This architectural modification fundamentally changes how BERT processes sequences,
converting its native bidirectional attention to unidirectional attention.

DistilBERT maintains a similar relationship to its base model when adapted for causal language
modeling, though with its reduced layer count providing significant parameter efficiency. The adap-
tation process follows the same pattern as BERT, with the addition of a language modeling head and
conversion to unidirectional attention.

Llama’s causal language modeling variant (LlamaForCausalLM) represents its natural form as a
decoder-only model, using scaled dot-product attention with rotary embeddings. The attention
mechanism maintains the model’s 2048-dimensional queries while using reduced 512-dimensional
keys and values. The model includes a gated MLP with SiLU activation and 8192-dimensional
intermediate representations, projecting finally to the vocabulary size of 128,256.
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