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Abstract

We consider the formulation of "machine unlearning" of Sekhari, Acharya, Kamath,1

and Suresh (NeurIPS 2021), which formalizes the so-called "right to be forgotten"2

by requiring that a trained model, upon request, should be able to ’unlearn’ a3

number of points from the training data, as if they had never been included in4

the first place. Sekhari et al. established some positive and negative results5

about the number of data points that can be successfully unlearnt by a trained6

model without impacting the model’s accuracy (the "deletion capacity"), showing7

that machine unlearning could be achieved by using differentially private (DP)8

algorithms. However, their results left open a gap between upper and lower9

bounds on the deletion capacity of these algorithms: our work fully closes this gap,10

obtaining tight bounds on the deletion capacity achievable by DP-based machine11

unlearning algorithms.12

1 Introduction13

Machine learning models trained on user data are now routinely used virtually everywhere, from14

recommendation systems to predictive models. In many cases, this user data itself includes some15

sensitive information (e.g., healthcare or race) or private aspects (customer habits, geographic data),16

sometimes even protected by law. To address this issue – that the models trained on sensitive datasets17

must not leak personal or private information – in a principled fashion, one of the leading frameworks18

is that of differential privacy (DP) [Dwork et al., 2006], which has de facto become the standard for19

privacy-preserving machine learning over the past decade.20

At its core, DP requires that the output of a randomized algorithm M not change drastically if one to21

modify one of the datapoints: that is, if X,X ′ are two datasets only differing in one user’s data, then22

for all possible outputs S of the algorithm one should have roughly the same probability of observing23

S under both inputs:24

Pr[M(X) ∈ S ] ≤ eε Pr[M(X ′) ∈ S ] + δ

where ε > 0 and δ ∈ (0, 1] quantify the privacy guarantee (the smaller values, the better the privacy;25

see Section 2 for formal definitions). Intuitively, an algorithm M being (ε, δ)-DP means that its output26

does not reveal much about any particular user’s data, since the output would be nearly identical had27

this user’s data been completely different.28

While the use of differential privacy can mitigate many privacy concerns, it does come with some29

limitations. The first is the overhead in brings: that is, ensuring differential privacy for a learning30

task typically incurs an overhead in the number of data points needed to achieve the same accuracy31

guarantee. Perhaps more importantly, DP does not solve all possible privacy concerns: even if a ML32

model is trained on a sensitive dataset in a differentially private way, the dataset may still be subject33

to some attacks – e.g., if the server where the training data is stored is itself compromised. Somewhat34
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tautologically: DP is not a silver bullet, and only provides meaningful guarantees against the threat35

models it was meant to address.36

Another type of concerns focuses on the individual right to maintain control on one’s own data:37

broadly speaking, this is asking that each user can (under some reasonable circumstances) require that38

their personal data and information be removed from a company’s collected data and trained models.39

This so-called “right to be forgotten,” which allow people to request that their data be deleted entirely40

from an ML system, has been passed into legislation or is considered in some form or another by41

various countries or entities, prominently the European Union’s General Data Protection Regulation42

(GDPR), the California Privacy Rights Act (CCRA), Canada’s proposed Consumer Privacy Protection43

Act (CPPA), and most recently in Australia [Karp, 2023].44

However, translating this “right to be forgotten” into practice comes with a host of challenges, starting45

with how to formalize it [Cohen et al., 2022] and technically implement it – which recently led to a46

new area of research in ML and computer science, that of machine unlearning. A naive technical47

solution would be for a given company to keep the original training set at all times, and, upon a48

deletion request by a user, remove this user’s data from the set before retraining the whole model on49

the result. This, of course, comes up with two major drawbacks: first, the cost to the company, in50

terms of time and computational resources, of retraining a large model on a regular basis. Second, the51

privacy cost, as keeping the training set for an indefinite time in order to be able to handle the deletion52

requests leaves the door open to potential attacks and data breaches. Fortunately, there have been,53

over the past few years, a flurry of better (and more involved) approaches to machine unlearning, to54

handle deletion requests much more efficiently, and requiring to maintain much less of the training55

set (see, e.g., [Bourtoule et al., 2021, Nguyen et al., 2022], and related work below).56

The above discussion, still, brings to light an important question: is machine unlearning, paradoxically,57

at odds with (differential) privacy? What is the connection between the two notions: are they58

complementary, or is there a trade-off between them?59

This is the main question this work sets out to address. Our starting point is the formalization60

of machine unlearning set forth by Sekhari, Acharya, Kamath, and Suresh [Sekhari et al., 2021],61

itself reminiscent of the definition of DP (see Definition 2.5 for the formal statement): a pair62

of algorithms (A, Ā) is an (ε, δ)-unlearning algorithm if (1) A : X ∗ → W is a (randomized)63

learning algorithm which, given a dataset X ⊆ X ∗, outputs model parameters A(X) ∈ W; and64

(2) Ā : X ∗ × W × T → W which, on input a set of deletion requests U ⊆ X , previous model65

parameters w, and some succinct additional “side information” T (X) ∈ T about the original dataset,66

output updated model parameters w′ ∈ W from which the data from U has been unlearned, that is,67

such that68

Pr
[
Ā(U,A(X), T (X)) ∈ W

]
≤ eε Pr

[
Ā(∅, A(X \ U), T (X \ U)) ∈ W

]
+ δ

and69

Pr
[
Ā(∅, A(X \ U), T (X \ U)) ∈ W

]
≤ eε Pr

[
Ā(U,A(X), T (X)) ∈ W

]
+ δ

for every possible set W ⊆ W of model parameters. Loosely speaking, this requires that the outcomes70

of (a) training a model M via A on the dataset X then unlearning some of the original training data71

U ⊆ X from M using Ā, and (b) training a model M ′ via A directly on the dataset X \ U then72

unlearning nothing via Ā, be nearly indistinguishable.73

In their paper, Sekhari et al. [Sekhari et al., 2021] focus on genralization guarantees of unlearning74

algorithm, i.e., what can be achieved by unlearning algorithms when focusing on population loss,75

namely, when aiming to minimize76

F (w) := Ex∼D[f(w, x)]

given a prespecified loss function f : W ×X → R, where the expectation is over the draw of a new77

datapoint from the underlying distribution p on the sample space. The quality of a learning algorithm78

A is then measured by the expected excess risk79

R(f,A) := E
[
F (A(X))− inf

w∗∈W
F (w∗)

]
where the expectation is taking over the random choice of a dataset X ∼ Dn of size n, and the80

randomness of A itself. The focus of [Sekhari et al., 2021], as is ours, is then to quantify the deletion81

capacity achievable for (ε, δ)-unlearning given a prespecified loss function, that is, the maximum82
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number of data points one can ask to be forgotten (maximum size of the subset U ) before the excess83

risk increases by more than some threshold (see Definition 2.6).84

In their paper, [Sekhari et al., 2021] draw a connection between DP learning algorithms and unlearning85

ones, showing that DP learning algorithms do provide some unlearning guarantees out-of-the-box,86

and that one can achieve non-trivial unlearning guarantees for convex loss functions by leveraging87

the literature on differentially private optimization and learning. One of their main results is showing88

that these DP-based unlearning algorithms, which crucially do not rely on any side information89

(the additional input T (X) ∈ T provided to the unlearning algorithm Ā) can handle strictly fewer90

deletion requests than general unlearning algorithms which do rely on such side information.91

Their results, however, do not fully characterize the deletion capacity of these “DP-based” machine92

unlearning algorithms, leaving a significant gap between their upper and lower bounds. We argue93

that fully understanding this quantity is crucial, as DP-based unlearning algorithms are exactly those94

for which there is no conflict between the two notions of DP and unlearning – instead, this class95

of algorithms is the one for which they work hand in hand. This is in contrast to the more general96

unlearning algorithms relying on maintaining and storing side information about the training set, as97

this side information can make their deployment susceptible to privacy breaches.98

1.1 Our contributions99

The main contribution of our paper is a tight bound on the “amount of unlearning” achievable by any100

machine unlearning algorithm which does not rely on side information. For the sake of exposition,101

we state in this section informal versions of our results.102

Theorem 1.1 (Unlearning For Convex Loss Functions (Informal; see Theorems 3.1 and 3.3)). Let103

f : W×X → R be a 1-Lipschitz convex loss function, where W ⊆ Rd is the parameter space. There104

exists an (ε, δ)-machine unlearning algorithm which, trained on a dataset S ⊆ Xn, does not store105

any side information about the training set besides the learned model, and can unlearn up to106

m = O

(
nεα√

d log(1/δ)

)
datapoints without incurring excess population risk greater than α. Moreover, this is tight: there107

exists a 1-Lipschitz linear loss function such that no machine unlearning algorithm can unlearn108

Ω( nεα√
d log(1/δ)

) data points without excess population risk α, unless it stores side information.109

Our techniques also allow us to easily establish the analogue for strongly convex optimization:110

Theorem 1.2 (Unlearning For Strongly Convex Loss Functions (Informal)). Let f : W ×X → R111

be a 1-Lipschitz strongly convex loss function. There exists an (ε, δ)-machine unlearning algorithm112

which, trained on a dataset S ⊆ Xn, does not store any side information about the training set113

besides the learned model, and can unlearn up to114

m = O

(
n2εα

d log(1/δ)

)
datapoints without incurring excess population risk greater than α. Moreover, this is tight.115

We note that, prior to our work, only bounds for the convex loss function case were known, with116

an upper bound of m = Õ(nεα/
√
d log(eε/δ)) (loose by polylogarithmic factors for ε = O(1), as117

well as an 1/
√
ε factor for ε ≫ 1) and a limited lower bound stating that m ≥ 1 is only possible if118

nε/
√
d = Ω(1).119

Our next contribution, motivated by the similarity of the formalisations of machine unlearning120

(without side information) and that of differential privacy, is to establish the analogue of key properties121

of DP for machine unlearning, namely, post-processing and composition of machine unlearning122

algorithms. To do so, we first identify a natural property of machine unlearning algorithms, which,123

when satisfied, will allow for the composition properties:124

Assumption 1.3 (Unlearning Laziness). An unlearning algorithm (Ā, A) is said to be lazy if, when125

provided with an empty set of deletion requests, the unlearning algorithm Ā does not update the126

model. That is, Ā(∅, A(X), T (X)) = A(X) for all datasets X .127
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We again emphasize that this laziness property is not only intuitive, it is also satisfied by several128

existing unlearning algorithms, and in particular those proposed in Sekhari et al. [2021].129

Theorem 1.4 (Post-processing of unlearning). Let (Ā, A) be an (ε, δ)-unlearning algorithm taking130

no side information. Let f : W → W be an arbitrary (possibly randomized) function. Then (f ◦Ā, A)131

is also an (ε, δ)-unlearning algorithm.132

Under our laziness assumption, we also establish the following:133

Theorem 1.5 (Chaining of unlearning). Let (Ā, A) be a lazy (ε, δ)-unlearning algorithm taking134

no side information, and able to handle up to m deletion requests. Then, the algorithm which uses135

(Ā, A) to sequentially unlearn k disjoint deletion requests U1, . . . , Uk ⊆ X such that | ∪i Ui| ≤ m,136

outputting137

Ā(Uk, . . . , Ā(U1, A(X)) . . .)

is an (ε′, δ′)-unlearning algorithm, with ε′ = kε and δ′ = δ · ekε−1
eε−1 = O(kδ) (for k = O(1/ε)).138

and, finally,139

Theorem 1.6 (Advanced composition of unlearning). Let (Ā1, A), . . . , (Āk, A) be lazy (ε, δ)-140

unlearning (with common learning algorithm A) taking no side information, and define the composi-141

tion of those unlearning algorithms, Ã as142

Ã(U,A(X)) = f
(
Ā1(U,A(X)), . . . , Āk(U,A(X))

)
.

where f : Wk → W is any (possibly randomized) function. Then, for every δ′ > 0, (Ã, A) is an143

(ε′, δ′)-unlearning taking no side information, where ε′ = k
2 ε

2 + ε
√

2k ln (1/δ′).144

1.2 Related work145

Albeit recent, the field of machine unlearning has already received considerable attention from the ML146

community, with an array of studies and papers focusing on practical solutions and their empirical147

performance. We focus in this section on the works most closely related to ours, mostly theoretical.148

As discussed earlier, the goal of machine unlearning (Bourtoule et al. [2021]) is to delete what models149

have learned from data. This problem coincides tangentially with the idea of differential privacy as150

they both requires to minimize the effect of a (or a group of) sample. The original, stringent definition151

of unlearning requires ε = 0 (full deletion of the user’s data, as if it had never been included in the152

training set in the first place) in contrast to differential privacy that allows ε > 0, leaving a possibility153

for “memorization.” To relax this definition, Ginart et al. [2019] proposed the probabilistic version of154

unlearning.155

Prior theoretical work of unlearning are mostly disjoint from the differential privacy literature,156

in spite of a general recognition that the two notions aim to address related issues. Most works157

on machine unlearning mainly focus on empirical risk minimization of approximate unlearning158

algorithms (Guo et al. [2020], Izzo et al. [2020]), which seeks to find an approximate minimizer on159

the remaining dataset after deletion. Closest to our work is the recent paper of Sekhari et al. [2021],160

which formulated the notion of machine unlearning used in our paper and focused on population161

loss minimization of approximating unlearning algorithm (i.e., allowing ε > 0). Their objectives,162

however, were somewhat orthogonal to ours, as they focused for a large part on minimizing the space163

requirements for the side information T (X) provided to the unlearning algorithm (while our paper164

focuses on algorithms which do not rely on any such side information, prone to potential privacy165

leaks). While their work, to motivate this focus, established partial bounds on the deletion capacity166

of unlearning algorithm that do not take in extra statistics, these bounds were not tight, and one167

of our main contributions is closing this gap. Following Sekhari et al. [2021], the notion of online168

unlearning algorithm – which receive the deletion requests sequentially – was put forward and studied169

in Suriyakumar and Wilson [2022], again with memory efficiency with respect to the side information170

in mind; however, their primary focus is on the empirical performance of unlearning algorithm.171

Another work closely to ours is the notion of certified data removal proposed by Guo et al. [2020].172

The main difference between (ε, δ)-certified removal and the definition from Sekhari et al. [2021] is173

that, in the former, the unlearning mechanism requires access not only to the samples to be deleted174

(the set U ⊆ X), but also to the full original training set X: this is exactly the type of constraints our175

work seeks to avoid, due to the risk of data breach this entails.176
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1.3 Organization of the paper177

We first provide the necessary background and notion on differential privacy, learning, and the178

formulation of machine unlearning used throughout the paper in Section 2. We then provide a detailed179

outline of the proof of our main result, Theorem 1.1, in Section 3, before concluding with a discussion180

of results and future work in Section 4.181

Due to space constraints, the details of all other results, as well as omitted proofs, are deferred to the182

Supplemental.183

2 Preliminaries184

In this section, we recall some notions and results we will extensively rely on in our proofs and185

theorems, starting with differential privacy.186

2.1 Differential Privacy187

Definition 2.1 ((Central) Differential Privacy (DP)). Fix ε > 0 and δ ∈ [0, 1]. An algorithm188

M : Xn → Y satisfies (ε, δ)-differential privacy (DP) if for every pair of neighboring datasets X,X ′,189

and every (measurable) subset S ⊆ Y:190

Pr[M(X) ∈ S ] ≤ eε Pr[M(X ′) ∈ S ] + δ.

We further say that M satisfies pure differential privacy (ε-DP) if δ = 0, otherwise it is approximate191

differential privacy.192

We now recall another notion of differential privacy in terms of Renyi Divergence, from Bun and193

Steinke [2016].194

Definition 2.2 (Zero-Concentrated Differential Privacy (zCDP)). A randomized algorithm M : Xn →195

Y satisfies (ξ, ρ)-zCDP if for every neighboring datasets (differing on a single entry) X,X ′ ∈ Xn,196

and ∀α ∈ (1,∞):197

Dα(M(X)∥M(X ′)) ≤ ξ + ρα

where D is the α-Renyi divergence between distributions of M(X) and M(X ′). We say that M is198

ρ-zCDP when ξ = 0.199

We use the following group privacy property of zCDP in the proof later.200

Proposition 2.3 (k-distance group privacy of ρ-zCDP [Bun and Steinke, 2016, Proposition 1.9]). Let201

M : Xn → Y satisfy ρ-zCDP. Then, M is (k2ρ)-zCDP for every X,X ′ ∈ Xn that differs in at most202

k entries.203

2.2 Learning204

We also will require some definitions on learning, specifically with respect to minimizing population205

loss. Fix any loss function f : W ×X , where W is the (model) parameter space and X is the sample206

space. Then, the generalization loss is defined as207

F (w) := Ex∼p[f(w, x)]

in which the expectation is over the distribution of x (one sample) and w is the learning output. Let208

F ∗ = minw∈W F (w) be the minimizer of population risk and w∗ is the corresponding minimizer.209

Define learning algorithm A : Xn → W that takes in dataset S ∈ Xn and returns hypothesis210

w := A(S) ∈ W . The excess risk is given by:211

E[F (A(S))]− F ∗

where the expectation is over the randomness of A and S.212

Hence, we could define the sample complexity as following ([Sekhari et al., 2021, Definition 1]),213

which is analogous to deletion capacity, in which will be stated later.214

Definition 2.4 (Sample complexity of learning). The α-sample complexity of a problem is defined as:215

n(α) := min{n | ∃A s.t. E[F (A(S))]− F ∗ ≤ α, ∀D}
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2.3 Unlearning216

As previously discussed, we rely on the definition of unlearning proposed in by Sekhari et al. [2021],217

and maintain same notation. Note that T (S) denotes the data statistics (which could be the entire218

dataset S or any form of statistic) available to Ā.219

Definition 2.5 ((ε, δ)-unlearning). For all S of size n and delete requests U ⊆ S such that |U | ≤ m,220

and W ⊆ W , a learning algorithm A and an unlearning algorithm Ā is (ε, δ)-unlearning if:221

Pr
[
Ā(U,A(S), T (S)) ∈ W

]
≤ eε Pr

[
Ā(∅, A(S \ U), T (S \ U)) ∈ W

]
+ δ

and222

Pr
[
Ā(∅, A(S \ U), T (S \ U)) ∈ W

]
≤ eε Pr

[
Ā(U,A(S), T (S)) ∈ W

]
+ δ,

Our results will be phrased in terms of the deletion capacity, which captures the number of deletion223

requests an unlearning algorithm can handle before seeing a noticeable drop in its output’s accuracy:224

Definition 2.6 (Deletion Capacity). Let ε, δ > 0, S be a dataset of size n drawn i.i.d. from D225

and let ℓ(w, z) be a loss function. For a pair of learning and unlearning algorithm A, Ā that are226

(ε, δ)-unlearning, the deletion capacity mA,Ā
ε,δ is defined as the maximum size of deletions requests227

set |U | that we can unlearn without doing worse in excess population risk than α:228

mA,Ā
ε,δ (α) := max{m | E

[
max

U⊆S:|U |≤m
F (Ā(U,A(S), T (S)))− F ∗

]
≤ α}

where F ∗ := minA(S)∈B F (Ā(U,A(S), T (S))).229

3 Main result230

In this section, we provide a detailed outline of our main result on unlearning for convex loss functions,231

Theorem 1.1, for which we prove the upper and lower bounds separately.232

Theorem 3.1 (Deletion capacity from unlearning via DP, Lower Bound). Suppose W ⊆ Rd, and fix233

any Lipschitz convex loss function. Then there exists a lazy (ε, δ)-unlearning algorithm (Ā, A), where234

Ā has the form Ā(U,A(S), T (S)) := A(S) (and thus, in particular, takes no side information) with235

deletion capacity236

mA,Ā
ε,δ (α) ≥ Ω

(
εnα√

d log (1/δ)

)
where the constant in the Ω(·) only depends on the properties of the loss function.237

Proof. Our proof follows the same general outline as that of Sekhari et al. [2021], with a key difference238

which allows us to derive the tight bound. Namely, we start, similarly, from the observation that any239

(ε, δ)-DP learning algorithm A whose privacy guarantee is with respect to edit distance m between240

datasets (instead of the usual neighboring relation) readily implies an (ε, δ)-machine unlearning241

algorithm (Ā, A), where Ā(w) = w (i.e., the “unlearning part” returns its input unchanged).242

However, we depart from previous work by how we obtain this (ε, δ)-DP algorithm A with respect to243

edit distance m. The key insight is that instead of starting with any good approximate DP learning244

algorithm and using the grouposition property of DP to “upgrade” it to m-edit distance, we instead245

start with a good zCDP learning algorithm. Indeed, zCDP has much tigher grouposition properties246

than approximate DP (cf. Proposition 2.3), which in turn leads to better parameters when applying247

grouposition to achieve DP to groups up to size m: specifically, starting with a ρ2/2-zCDP standard248

privacy guarantee (for groups of size 1) we would by Proposition 2.3 obtain (m2ρ2/2)-zCDP for249

neighboring datasets differin in up to m entries. Leveraging then the standard conversion from250

concentrated to approximate DP [Bun and Steinke, 2016], this implies, for every δ > 0, an (ε, δ)-DP251

guarantee for groups of size m, where ε = O(mρ
√

log (1/δ)). Thus, choosing ρ = Θ

(
ε

m
√

ln (1/δ)

)
252

would suffice to achieve the desired end privacy guarantee on A (with respect to edit distance up to253

m), and thus the (ε, δ)-unlearning one for (Ā, A).254

To do so, however, we crucially need to start with a sufficiently good private learning algorithm A255

with zCDP guarantees, instead of approximate DP. Fortunately for us, such an algorithm is provided256

by [Feldman et al., 2020, Theorem 1]:257
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Lemma 3.2 (zCDP mini-batch noisy SGD Feldman et al. [2020]). Fix any L-Lipschitz convex loss258

function over a convex subset B of Rd of diameter D. Then there exists an algorithm A which satisfies259

(ρ2/2)-zCDP with excess population loss:260

E
[
F (θ)−min

θ∈B
F (θ)

]
≤ O

(
DL ·

(
1√
n
+

√
d

ρn

))
(1)

where the expectation is taken over the randomness of A.261

By the above discussion, using this zCDP-private learning algorithm with ρ = Θ

(
ε

m
√

ln (1/δ)

)
, we262

get an excess population loss bounded by263

O

(
DL

(
1√
n
+

m
√

d ln (1/δ)

εn

))
(2)

It only remains to show how the claimed deletion capacity bound frollows from this excess population264

risk guarantee. Construct, as discussed earlier, an unlearning algorithm Ā that returns the input265

without making any changes (and in particular does not require any additional statistics T (S), and266

satisfies the laziness assumption). Since A is (ε, δ)-DP, for any set U ⊆ S, |U | = m, and W ⊆ W ,267

Pr[A(S) ∈ W ] ≤ eε Pr[A(S′) ∈ W ] + δ

Pr[A(S′) ∈ W ] ≤ eε Pr[A(S) ∈ W ] + δ

. But since Ā(U,A(S)) = A(S), this readily yields, letting S′ := S \ U :268

Pr
[
Ā(U,A(S)) ∈ W

]
≤ eε Pr

[
Ā(∅, A(S′)) ∈ W

]
+ δ

Pr
[
Ā(∅, A(S′)) ∈ W

]
≤ eε Pr

[
Ā(U,A(S)) ∈ W

]
+ δ

which implies that (A, Ā) is indeed (ε, δ)-unlearning for U of size (up to) m.269

Recalling the definition of deletion capacity (Definition 2.6), we finally deduce from (2) the deletion270

capacity with excess population risk less than α:271

mA,Ā
ε,δ (α) ≥ m = Ω

(
εnα√

d ln (1/δ)

)
where the O(·) hides constant factors depending only on the loss function (namely, the Lipschitz272

function L, and the diameter D).273

Theorem 3.3 (Deletion capacity from unlearning via DP, Upper Bound). There exists a Lipschitz274

convex loss function (indeed, linear) for which any ε, δ)-unlearning algorithm (Ā, A) which takes no275

side information must have deletion capacity276

mA,Ā
ε,δ (α) ≤ O

(
εnα√

d log (1/δ)

)
.

Detailed Proof Sketch. We will consider the following linear (and therefore convex and Lipschitz)277

loss function L(θ, S):278

L(θ, S) := −⟨θ,
n∑

i=1

xi⟩ (3)

for dataset S of n points x1, . . . , xn ∈ {− 1√
d
, 1√

d
}d. We also define the 1-way marginal query, i.e.279

average, as:280

q(S) :=
1

n

n∑
i=1

xi . (4)

To establish our deletion capacity lower bound with respect to this loss function, we will proceed281

in three stages: the first, relatively standard, is to relate population loss (what we are interested in)282

to empirical loss – which allows us to focus on the existence of a “hard dataset.” The second step283
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is then to establish a sample complexity lower bound on the empirical risk (for this loss function)284

of any (ε, δ)-DP algorithm, via a reduction to differentially private computing of 1-marginals. This285

step is similar to the one underlying the (weaker) lower bound of Sekhari et al. [2021] (itself relying286

on an argument of [Bassily et al., 2019]), although a more careful choice of building blocks for the287

reduction already allows us to obtain an improvement by logarithmic factors.288

Third, lift this DP lower bound to a stronger lower bound for DP with respect to edit distance m.289

This step is quite novel, as it morally corresponds to establishing the converse of the grouposition290

property of differential privacy (for our specific setting), a converse which does not hold in general.291

Our argument, relatively simple, will crucially rely on the linearity of our loss function.292

We omit the details of the first step (reduction from population to empirical loss) in this detailed293

outline, as it is quite standard. For the second step, our starting point is the following lower bound of294

Steinke and Ullman:295

Theorem 3.4 (Lower bound for one-way marginals [Steinke and Ullman, 2016, Main Theorem]). For296

every ε ∈ (0, 1), every function δ = δ(n) such that δ ≥ 2−o(n) and δ ≤ 1/n1+Ω(1), and for every297

α ≤ 1/10, if A : {±1}n×d → [±1]d is (ε, δ)-differentially private and E[∥A(S)− q(S)∥1] ≤ αd298

(i.e., with average-case accuracy α) for all S ∈ {±1}n×d, then we must have299

n ≥ Ω

(√
d ln (1/δ)

εα

)
.

Using this lower bound as a blackbox, we then can adapt the argument of [Bassily et al., 2014, Lemma300

5.1, Part 2] to obtain the following stronger result:301

Lemma 3.5 (Lower bound for Privately Computing 1-way Marginals). Let n, d ∈ N, ε > 0, 2−on ≤302

δ(n) ≤ 1/n1+Ω(1). For all α ≤ 1/10, if A is (ε, δ)-differentially private and S ⊆ {± 1√
d
}n×d:303

E[∥A(S)− q(S)∥2] = min

(
α,Ω

(√
d ln (1/δ)

nε

))
,

where q(S) = 1
n

∑n
i=1 xi as before.304

Combining the above with the argument strategy of [Bassily et al., 2014, Theorem 5.3] finally yields305

the main lemma for the second step of our proof:306

Lemma 3.6 (Lower bound on empirical loss of (ε, δ)-DP algorithms). Let n, d ∈ N, ε > 0, and307

δ = o(1/n). For every (ε, δ)-differentially private algorithm with output θpriv, there is a dataset308

S = {x1, . . . , xn} ⊆ {− 1√
d
, 1√

d
}d such that309

E
[
L(θpriv, S)− L(θ∗, S)

]
= min

(
α2,Ω

(
d log(1/δ)

n2ε2

))
where θ∗ :=

∑n
i=1 xi

∥
∑n

i=1 xi∥2
is the minimizer of L(θ, S) := −⟨θ,

∑n
i=1 xi⟩.310

The above lemma establishes a lower bound on the empirical loss of any (ε, δ)-differentially private311

algorithm. To derive from this our claimed lower bound on unlearning algorithms, we need to312

introduce a dependence on m, the deletion capacity (i.e., number of points to unlearn). This is done313

in the last (third) step of our argument, via a reduction which establishes a (restricted) converse to the314

grouposition property of DP.315

Recall that an algorithm M : Xn → Y satisfies (ε, δ)-DP for edit distance m if for every pair of316

neighboring datasets X,X ′ that differ in up to m entries, and every S ⊆ Y:317

Pr[M(X) ∈ S ] ≤ eε Pr[M(X ′) ∈ S ] + δ.

We apply this m-edit distance (ε, δ)-DP on Lemma 3.6 by a reduction that shows: for any differentially318

private algorithm with respect to edit distance at most m must incur an empirical loss given by319

Lemma 3.6.320
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Lemma 3.7. Suppose there exists an m-edit distance (ε, δ)-DP algorithm M that takes in a dataset321

S of size n to approximate q(S) (as defined in (4)), with empirical loss γ. Then, we can construct a322

1-edit distance (i.e., standard) (ε, δ)-DP algorithm M′ that, on input a dataset S′ of N = n/m data323

points, approximates q(S′) to error γ.324

Proof. The reduction is quite simple: given M, construct M′ as follows for N = n
m inputs:325

M′(x1, . . . , xN ) = M(x1, . . . , x1,︸ ︷︷ ︸
m

x2, . . . , x2︸ ︷︷ ︸
m

, . . . , xN , . . . , xN︸ ︷︷ ︸
m

) .

We immediately have that M′ is (ε, δ)-DP for the usual 1-edit distance between datasets, since326

M is DP with respect to edit distance m. The sample complexity and error bound then follows327

direction from n = N × m, where n ≥ N,N ∈ N,m ≥ 1, and the fact that q(x1, . . . , xN ) =328

q(x1, . . . , x1, x2, . . . , x2, . . . , xN , . . . , xN ) due to the definition of q.329

Combining Lemma 3.7 with Lemma 3.6, we get that any m-edit distance (ε, δ)-DP algorithm M330

approximating q on datasets of size n = N ×m must have error γ at least331

min

(
α2,Ω

(
d log(1/δ)

N2ε2

))
= min

(
α2,Ω

(
m2d log(1/δ)

n2ε2

))
which, reorganising the terms and recalling the definition of deletion capacity, yields the claimed332

bound on mA,Ā
ε,δ .333

We note that the proof of Theorem 1.2 follows from a very similar argument; we refer the reader to334

the Supplemental for details.335

4 Discussion and future work336

Our work fully characterized deletion capacity of any unlearning algorithm (Ā, A) minimizing337

population risk under both convex and strongly convex loss functions, when only given the model338

parameters (output of the learning algorithm) and the set of deletion requests. This restriction, namely339

that the unlearning algorithm does not rely on any additional side information, is motivated by the340

potential privacy risks storing (non-private) side information can entail.341

We hope our work will lead to further study of the interplay between differential privacy and machine342

unlearning, and to additional study of “DP-like” properties of machine unlearning, such as the343

postprocessing and composition properties our present work identified. In view of the myriad344

applications these properties have had in privacy-preserving algorithm design, we believe that their345

analogue for machine unlearning will prove very useful.346

We leave for future work the question of which unlearning guarantees can be obtained from pure347

differentially private algorithms, and of whether variants of the standard threat model for differential348

privacy (specifically, pan-privacy, or privacy under continual observation) could have implications for349

machine unlearning in an online setting where deletion requests come sequentially.350
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