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Abstract Many hardware-aware neural architecture search (NAS) methods have been developed to
optimize the topology of neural networks (NN) with the joint objectives of higher accuracy
and lower latency. Recently, both accuracy and latency predictors have been used in NAS
with great success, achieving high sample efficiency and accurate modeling of hardware
(HW) device latency respectively. However, a new accuracy predictor needs to be trained for
every new NAS search space or NN task, and a new latency predictor needs to be additionally
trained for every new HW device. In this paper, we explore methods to enable multi-task,
multi-search-space, and multi-HW adaptation of accuracy and latency predictors to reduce
the cost of NAS. We introduce a novel search-space independent NN encoding based on
zero-cost proxies that achieves sample-efficient prediction on multiple tasks and NAS search
spaces, improving the end-to-end sample efficiency of latency and accuracy predictors by
over an order of magnitude in multiple scenarios. For example, our NN encoding enables
multi-search-space transfer of latency predictors from NASBench-201 to FBNet (and vice-
versa) in under 85 HW measurements, a 400X improvement in sample efficiency compared
to a recent meta-learning approach. Our method also improves the total sample efficiency of
accuracy predictors by over an order of magnitude. Finally, we demonstrate the effectiveness
of our method for multi-search-space and multi-task accuracy prediction on 28 NAS search
spaces and tasks.

1 Introduction
Latency Prediction On NASBench-201 for Raspi4

Neural architecture search (NAS) has seen great
success in discovering neural network (NN) ar-
chitectures with high accuracy. However, NAS
methods are often costly, requiring several hun-
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method, and accuracy.
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The key to efficient prediction-based NAS lies in minimizing the number of NN trained models
for accuracy predictors, and HW measurements for latency predictors. In that vein, HELP [8]
utilized metalearning to adapt a latency predictor to multiple devices:While this representative
approach has begun to create generalizable/transferable predictors, it requires a very large number
of NN accuracy or latency samples for pretraining transferable predictors. In this paper, we look
broadly at the problem of generalizable but sample-efficient accuracy, and latency prediction. We
make progress towards efficient multi-search-space, multi-task and multi-device deployment of
NNs on the ever growing catalogue of HW platforms and novel NAS spaces. From Figure 1, we
show that our methods improve the total sample efficiency of both latency and accuracy predictors
by more than an order of magnitude. The main contributions of this paper are:

e Few-Shot Accuracy And Latency Prediction Using Novel NN encodings: We study two
NN encodings (called ZCP and HWL) that enable accuracy and latency prediction in as few as 10
samples. Instead of representing NNs with a search-space dependent vector of its topology, ZCP
and HWL represent NNs with a search-space independent vector of metrics based on zero-cost
proxies or HW latency measurements respectively. Figure 2 shows an overview of our approach.
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strate transfer of HW latency predic-
tors from one NAS search space to
another in as few as 4 samples. Fur-
ther, we demonstrate the efficacy of
few-shot transfer of accuracy predic-
tors across over 95 domain (search space + task) transfer pairs.

Related Work

Prediction Based NAS: Accuracy predictors are used to efficiently identify promising candidates
from a NAS space as demonstrated by PNAS [11]. NPENAS [21] showed that accuracy predictors
can be integrated with evolutionary search algorithm to perform NAS. Further, NPNAS [22] utilized
an accuracy predictor to identify models with the top-K highest predicted accuracy, which were
fully trained for evaluation. To improve the effectiveness of predictor-based NAS, BRP-NAS [5]
introduced a predictor that learns a binary relation for accuracy prediction, integrating this with
sample-based NAS delivered state of the art NAS results. A recent paper [16] explores transferring
architectures from previously solved, related problems to treat NAS as a few-shot learning problem.
Given the high sample efficiency of predictor-based NAS, we explore the transferability and
generalizability of predictors for domain agnostic NAS with knowledge reuse.

Latency modeling in NAS: The accuracy of latency predictors for HW-aware NAS is prone to
errors, and proxy metrics like FLOPs or model size have been used as alternatives. Previous layer-
wise predictors [17] fail to account for the interactions between layers on actual HW. BRP-NAS [5]
introduced an end-to-end NAS latency predictor based on a GCN. HELP [8] and MAPLE [14] utilize
few-shot latency estimation methods to improve sample efficiency on their target HW, at the cost
of expensive pre-training on existing HW measurements. Our aim is to create sample-efficient
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Figure 3: Predictors are used for both accuracy and latency to achieve SoTA results on sample-based NAS.
In this work, we explore (a) New DNN encodings for prediction that enable multi-search-space NAS, (b)
Transfer-learning methods to adapt a particular predictor to multiple tasks, devices, data-sets.

multi-HW latency predictors that require much fewer latency measurements for both pre-training,
and on the target device.

Zero Cost Proxies: Zero Cost Proxies (ZCPs) [1] attempt to quantify the trainability and
expressivity of NN architectures without training them. Several zero cost proxies are inspired by
pruning at initialization research to generate scores for architectures [10, 13, 18, 19]. Several data-
independent zero cost proxies have also been proposed [2]. NAS-Bench-Suite-Zero [7] evaluates
13 different zero cost proxies across 28 tasks and makes all of the results available for use. Prior
work [1] has focused on using ZCPs as a weak predictor of accuracy within a NAS search. However,
we utilize ZCPs in a novel way to represent NNs at the input of a predictor, thus enabling the
transfer of predictors across domains more effectively.

Method

In this section, we describe our methodology of predicting the latency and accuracy of NN ar-
chitectures. Specifically, we focus on generalizing the task of prediction such that it is agnostic
to task, search-space and HW. Due to the domain agnostic encoding of NNs depicted in Figure
3, we can have one predictor for multiple NAS tasks, search spaces, and HW devices. We utilize
a first order transfer learning (TL) strategy to train and transfer predictors. Note that we train
separate predictors for latency and accuracy respectively. In doing so, we study (1) Learnable HW
Embedding Tables for multi-device latency prediction and (2) Different DNN encoding formats
(ZCP: Zero-Cost Proxies, HWL: HW Latencies) that improve predictor sample-efficiency and enable
multi-task and multi-search-space adaptation.

The task of prediction in NAS can be generally defined by 7 = {X*, Y*}, where X" C X is a
set of NN architectures and Y C ) is the quantity to be predicted for X?, either accuracy Y}, or
latency Y;. We train a four-layer MLP based regression model f(x,0) : X — R, parametrized by 0
by minimizing the empirical mean-squared differences (or loss £) between the predicted values
f(X7;0) and the actual/measured values Y* as shown here: ming L(f(X%;0),Y"). Typically, a
different predictor needs to be trained for every different NAS search space, task, or HW device. In
the following, we describe how a single predictor that can generalize to all of the above.

1. Expanding the latency prediction problem to also take the HW device h € H as an input
f(x,h;0) : X XxH — R. This allows us to predict latency for multiple devices using a single
trained predictor. We primarily compare to HELP, who approached this problem with few-shot
metalearning [8]. We show that HELP performs poorly when the task distance is high between
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different devices, and we describe our simple transfer learning (TL) approach which when
combined with new NN encodings and HW embeddings, performs better in many scenarios.

2. Investigating different input encodings for the NN (x). Most prior work has simply taken a vector
encoding of the NN as input to the predictor. Instead, we experiment with novel NN encodings
that do not reflect the NN topology, but rather a vector of measurements or computations (R)
performed on the NN R(x) : X — R”, where r is the number of elements in the vector. We try
two encodings: a vector of zero-cost proxies (ZCP), and a vector of HW latency measurements
(HWL) on different devices. We will demonstrate that our new encodings improve prediction
accuracy. More importantly, R is independent from the NN topology, and can therefore work for
multiple search spaces, allowing us to train a single predictor for multiple NAS search spaces.

Hardware Embedding

For a latency predictor of the form f(x, h; 0) :
X X H — R, we need to find an appropriate
method of representing h € H. We discuss three
methods we explore for representing HW devices.
(1) Sample: HELP [8] obtains the latencies of a
set of fixed reference NN architectures to repre-
sent the HW device h. For instance, 10 fixed NN
architectures are used to represent a hardware
device in HELP. For each device, these 10 NNs
are benchmarked on the device and their laten-
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cies are concatenated into a vector, which is the
HW representation. Since HW devices may be
diverse and heterogeneous, architectures used to
generate this HW embedding may not be repre-
sentative of the true characteristics of the device,
and a larger set of NNs may be required to faith-

Device Set

Figure 4: Learned HW Embedding Table improves
latency prediction on FBNet over 5 train-test device
sets. (R1-3: random subsets of FBNet, FAdv: FBNet-
Adversarial, FD: FBNet-Default, GM: Geomean)

fully capture the device behavior. (2) Index: Instead of utilizing a set of latencies to represent the
HW device, we can simply represent devices by the binary form of their index. However, this
would mean that a new device would simply be represented by a binary embedding, which may
be unrelated to the actual characteristics of the HW. (3) Embedding Tables (ET): We initialize a
d-dimensional learnable embedding table to represent the set of training devices. Each embedding
lookup can be interpreted as using a one-hot vector e; to represent the i*” device. Thus, obtaining
the row vector corresponding to the i*" HW device can be presented as Ej, = ¢;E, where E € RI71xd
is the embedding table. Figure 4 shows a preview of the results demonstrating that our proposed
Embedding Tables outperforms the “Index" baseline and “Sample" based embeddings on a number
of multi-HW latency prediction datasets.

NN Encoding

Conventional Vec (Vector) encoding of NN structure typically consists of an adjacency matrix
to describe connectivity and a list of operations [23]. However, Vec encoding (X*) for different
search spaces may be vastly different in dimensionality and semantics, making it impossible to
create transferable predictors across search spaces as shown in Figure 2. Instead, we propose to
use a vector of NN metrics as an encoding of a NN for training a predictor. Several metrics can
be generated for any NN, irrespective of task and search-space. For instance, the HW latency can
be measured for any NN in a reliable fashion. Further, we can also generate scores for NNs by
utilizing Zero-Cost Proxies [1]. These metrics can be concatenated to generate a continuous vector
encoding for NN architectures. We thus present two novel forms of neural architecture encodings:
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e HW Latencies (HWL): Suppose we have [ devices available for measurement of latency
of arbitrary NN architectures. We introduce a function L(x7) : X — R/, which maps any NN
architecture to a real tensor of I elements. Each of the elements of the tensor correspond to the
normalized latency of the architecture on the I'* device.

e Zero Cost Proxies (ZCP): Suppose we have z zero cost proxies available for generating scores
of arbitrary NN architectures. We introduce a function Z(x%) : X — R?, which maps any NN
architecture to a real tensor of z elements. Each of the elements of the tensor correspond to the
normalized score of the architecture on the z*" ZCP.

Few-Shot Adaptation

We describe our method of few-shot adaptation of a trained MLP predictor f with the latency
measurements or accuracy samples collected from the target HW device or neural task respectively.

Hardware Adaptation: We wish to train on a set of HW devices denoted by 7. For prediction
on a novel HW device denoted by 7* = {hfz, XTZ,YTZ}, we have |7°| sample measurements and
|7?| < |r!|. For embedding tables, we initialize a new row in our table for a new HW device. The
values of this row are assigned to be the same as a device h*' such that the correlation between the
device h™ and h™' is maximized for a small set of sampled NN latencies (Y7, YTZ} as shown in Eq.
1. Our method uses the same NNs X*" for embedding initialization as it does for fine-tuning.

E(h,2) = E(argmax p(Y",Y")) 1)
heH

For index/sample HW embeddings, we either assign the next available index or collect latency
samples to generate the appropriate embedding for the HW device h™. After initializing the
embedding function E, we perform simple first order fine-tuning of the NN as shown in Eq. 2,
where {X7, Y7} refers to a training set.

min £( FXT E(hT);0),Y7) )

Search Space Adaptation When adapting a latency or accuracy prediction model from one
search space to another, it is likely that |xT1| # |xT2 |. This is depicted in Figure 2, every search
space has its own encoding. As a mapping does not exist between domains, we utilize the ZCP
Z and HWL L embeddings to represent NN architectures across multiple search spaces. Thus,
the model that we train and fine-tune is f(R(x);0) : R — R. Here, R C {L(x),Z(x)}. The
functions L and Z are generated by executing NNs on reference devices or calculating a set of
zero cost proxies respectively. The generated latencies and scores are search-space independent
since |R(xf1) | = |R(x72) |, allowing transfer from one neural search space to another using the same
predictor f. Therefore a pre-trained predictor f (R(X™);0) : R” — R can be fine-tuned on a target
task 7% = {X*,Y"} by minimizing empirical loss on a training set (X”, Y}

min £( FRXT);0),Y) 3)

Hardware Latency Predictors

In this section, we look at the task of HW latency prediction. We verify the efficacy of our training
and fine-tuning method for few-shot learning of latency predictors on novel HW devices as well
as empirically assess the effectiveness of different methods of encoding these devices. Finally, we
utilize our proposed NN encodings (ZCP and HWL) to transfer knowledge from the FBNet [24]
search space to the NASBench-201 search space and vice versa for latency prediction. Previous
work has defined sample efficiency as the amount of new data required when transferring a pre-
trained predictor to a different hardware device [8, 14]. Although we acknowledge that optimizing
for the number of new samples required for transfer is crucial, we also believe that the number



NB201-Adversarial Task

NASBench-201 Default Task Method ‘ Samples ‘ Mean
Method | Samples | GPU | CPU | Pixel2 | Raspi4 | ASIC | FPGA | Mean HELP 20 0.36
FLOPs - 095 | 083 | 077 |08 |044 |09 0.79 TL Vec ET 20 0.65
TL ZCPVec ET 20 0.78
BRP-NAS 900 081 |08 | 067 |0.85 081 |08 0.79 TL HWLVec ET 20 073
BRP-NAS (+ES) | 3200 0.82 | 081 | 069 |0.85 0.83 | 0.83 0.81 :
HELP 20* 0.98 | 0.99 |08 0.89 0.94 | 0.99 0.93 FBNet-Adversarial Task
TL Vec Sample | 20* 087 092 094 |087 |082 |069 0.85 Method | Samples | Mean
% zec gTdex 10 0.94 | 093 | 087 |0.77 0.73 | 0.9 0.86 HELP 20 037
I ZeCCP o 10 0.99 | 095 | 088 |09 0.9 |0.99 0.94 'TL Vec ET 2 0.39
T zCr IY\?C T 10 0.97 | 096 | 0.86 | 0.91 0.95 | 0.97 0.94 TL ZCPVec ET 20 0.45
ec 10 0.95 | 097 | 081 |0.88 0.93 | 0.95 0.91 1. HWLVec ET 20 041

*20 samples are required, with 10 dedicated to creating the "sample” HW embedding.

Table 2: Spearman-p of ad-

Table 1: Spearman-p of TL and existing methods on NASBench201 . .
versarial device sets.

for Latency Prediction. (ES: Extra Samples)

Latency Estimation On NASBench-201

FBNet Default Task 0.8
0.7
Method ‘ Samples ‘ FPGA ‘ Raspi ‘ ASIC ‘ Mean 06
HELP |20 | 0.89 | 094 |089 | 091 Eos
@
TL Sample | 20 074 079 |081 | 078 004
TLIndex | 10 092 | 086 |087 | 088 03 - e
TLET 10 0.96 0.95 0.98 0.96 0.2 —THEe
0 10 20 30 40 50

Number Of Hardware Latency Measurements On New Device

Table 3: Spearman-p of TL and existing methods on  Figure 5: ZCPs with Vec encoding improves latency
FBNet for Latency Prediction. prediction on NB201-Adversarial Task.

of pretraining samples should be taken into account. It is important to note that more efficient
predictors will require fewer pretraining samples.

Few-Shot Latency Predictor Transfer: The task of learning a reliable latency predictor for
a neural architecture search space on a specific HW requires a large number of samples to avoid
overfitting [8]. This has to be repeated for every HW and search space. HELP [8] looks at the
task of using meta-learning to transfer a single latency predictor to multiple target devices and
architectures from an unseen space. It utilizes 900/4000 latency samples for a set of training devices
on the NASBench-201/FBNet spaces respectively to train a baseline predictor. The predictor is
then tested on the remaining 14725/1000 latency points for the hardware on NASBench-201/FBNet
spaces respectively. Then, this predictor is transferred to predict latency on a target (test) HW with
only 20 samples. It performs extremely well on the reported train-test device sets (referred to as
Default Tasks) on the NASBench-201 and FBNet NAS spaces. We find that one of the key reasons
for this is the low task distance (high correlation) between the training and test device sets. Task
distance refers to the latency or accuracy correlation between the training and test device/NAS
space respectively. We conduct a deeper investigation of task distance and its effect on latency
predictors in the Appendix. Further, we introduce adversarial device sets, named ‘NB201/FBNet-
Adversarial Task’ for the NASBench-201 and FBNet NAS space, which exhibits low train-test device
correlation.

From Table 1 and Table 3, we can see that our method is able to perform on par or better than
HELP [8] with half as many samples—this is on the "default” hardware set defined in the HELP
paper [8]. One of the reasons why the sample efficiency is doubled is due to the embedding table
that is utilized to represent the HW which improves Spearman-p from 0.85 to 0.94 in Table 1.
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Figure 6: Training from scratch with ZCP/HWL en-  Table 4: Reducing number of samples from pre-
codings achieves a similar Spearman-p to HELP in  training device set can negatively impact prediction
under 80 total measurements, a 100X improvement. spearman-p.

Figure 4 shows consistent benefit of using a learned device embedding on the FBNet space on the
adversarial task. Table 2 compares our method to HELP on a new Adversarial Task. Since the
default hardware set had a high input output correlation, we define an adversarial task as one
where the test devices have low spearman-p correlation between train and test devices. We use
20 samples for tests here to emphasize on the importance of the ZCP and HWL representation in
improving spearman-p. For this task, the task distance between the pretraining set and the test
set is much higher than the default set. In this more challenging task, we observe a much higher
improvement in Spearman-p using TL ZCPVec compared to HELP for both NASBench-201 and
FBNet search spaces, demonstrating the superiority of our approach on a more challenging task.
Figure 5 plots more details for the NASBench-201 Adversarial Task, showing that HELP requires a
much higher number of samples to catch up to our TL methods, especially when ZCP is used.

Few-Shot Latency Predictor Pre-training: While Transfer Learning and HELP [8] are effective
ways of transferring latency predictors while minimizing the number of samples required on the
new device, they need to first train a predictor on a large set of training devices. As discussed in the
previous section, the effectiveness of such methods highly depend upon the task distance (train-test
device correlation). Further, to train the predictor, 900 and 4000 latency samples are required for
18 devices on NASBench-201 and FBNet respectively. Table 4 shows that the prediction accuracy
decreases when the number of pretrain samples are decreased, however, our TL ET method is
impacted less than the HELP baseline. In general, the number of total HW latency measurements of
these methods are very high, as several training devices are required to minimize the task distance
when adding a new hardware device.

The TL ZCPVec ET method depicted in Figure 5 and Table 1 inputs the Vec (vector) description
of an architecture along with its ZCP description. This simple change significantly improves the
accuracy of the latency predictor without increasing the number of HW latency measurements
required. We go one step further and look at training latency predictors from scratch using the
ZCP and HWL encodings. In Figure 6, we train latency predictors from scratch with the Vec, ZCP,
HWL and HWLVec encodings. We find that the total number (both pretraining and target device)
of HW latency measurements required for latency predictors with the ZCP and HWL encoding is
significantly lower compared to methods like BRP-NAS [5], HELP [8], and our TL variants. Thus,
we find that ZCP and HWL are not only a search space agnostic encoding of NN, but also ones
that can do effective few-shot latency prediction from scratch.

Multi-Search-Space Latency Prediction: A search-space agnostic encoding of NNs akin to
the one depicted in Figure 2, can not only enable few-shot training of predictors from scratch,
but also enable transfer of a latency predictor from one neural search space to another. Since the
vector (Vec) encoding of candidate architectures from the FBNet space is different from that of
the NASBench-201 space, it is not possible to transfer knowledge from one predictor to another.



gllean Spearman-p Over 20 Devices For NASBench201 o Mean Spearman-p Over 20 Devices For FBNet
1. 1.

G Pp—0—0=—0—0—0—"0 —0—0—0—0—0
0.8 | 0.8 1
& e
S —e— HWL Transfer (FBNet -» NB201) S —o— HWL Transfer (NB201 - FBNet)
€ 0.6 —e— HWL NB201 Train From Scratch £ 0.61 —e— HWL FBNet Train From Scratch
§ —8— \Vec Train From Scratch g —8— Vec Train From Scratch 4
n v 0.4+
0.4 1
0.2 1
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Number Of HW Latency Measurements On Target Search Space Number Of HW Latency Measurements On Target Search Space

Figure 7: Using the HWL encoding to transfer a predictor from a source search space to a target search space
demonstrates superior performance than training from scratch.

However, the HWL encoding is independent from the NN search-space. We thus utilize the HWL
encoding to train on 15% of the architectures on one space, and then transfer to the other space
with very few samples (X-axis of Figure 7). Note that this transfer across search spaces is different
from the transfer across hardware devices presented in HELP [8] and in our previous sections.
Figure 7 reinforces our results from the previous section, that training from scratch with the HWL
requires far fewer samples than Vec to train an accurate predictor. Furthermore, when transferring
a trained predictor from one search space to another, HWL proves to be advantageous. We believe
that this is first time that knowledge from one NAS search space was utilized for a different NAS
search space for latency prediction—our results look promising. In the Appendix, we demonstrate
predictor transfer for 21 devices, from FBNet to NASBench-201 and vice versa.

Accuracy Predictors

In this section, we study few-shot accu-

racy predlctlon. FlrSt’ we Study the im- NASBench-201 Validation Accuracy Prediction

pact of our proposed NN encodings (ZCP 10
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TransNASBench-101, and across both the et
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available in the benchmark [4]. Finally, 0.4 = — 10; e
we transfer an accuracy predictor from Total Number Of Trained Model Samples
NASBench-201 to NASBench-301 [26] and

vice versa for further empirical results. Figure 8: ZCP is more measurement efficient than other

Few Shot Accuracy Prediction from encodings for accuracy prediction.
Scratch: We train a predictor from scratch
on the NASBench-201 space to predict the validation accuracy on the CIFAR-10 data-set. Figure 8
depicts the trained model sample efficiency of the ZCP encoding with respect to other NN encodings.
We find that ZCP is able to approximately match the Spearman-p of BRP-NAS with less than half
the samples. To understand why ZCP works better than the simple Vec encoding, we study the
effect of incrementally removing zero cost proxies from the encoding in the Appendix. We show
that prediction accuracy is resilient to the removal of multiple ZCPs from our NN encoding.
Multi Search-Space and Task Accuracy Prediction: We train individual predictors from scratch
on every task from TransNASBench-101 Micro search space using 15% of the architectures, and
transfer it to every other task on the TransNASBench-101 Micro and Macro search space with
only 10 samples. This transfer task uses the ZCP NN encoding, and is compared with a train from
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Figure 10: We compare the sample efficiency of Vec and ZCP in neural architecture search.

scratch strategy with the Vec NN encoding on every TransNASBench-101 Micro and Macro space.
From Figure 9 (left), we see a benefit of multi-search-space and multi-task transfer learning in over
85% of the cases. We also do the same for three data-sets of NASBench201 and two data-sets of
NASBench301, and find a consistent improvement in Spearman-p for ZCP with transfer learning
in Figure 9 (right). We have demonstrated effective transfer of accuracy predictors across tasks and
search-spaces, utilizing previously learned knowledge to drastically reduce the number of samples
on the new task or search space while considerably outperforming conventional train-from-scratch
predictors.

NAS Search Effectiveness: To assess the efficacy of accuracy predictors utilizing ZCP input
representation, we develop a straightforward search algorithm akin to [5]. For the NASBench-101
and NASBench-201 search spaces, we generate ZCP representations for all 423k and 15k neural
network architectures, respectively. At each step, we sample 10 neural network architectures
from the search space and train the accuracy predictor using these points. Subsequently, the
accuracy predictor is employed to predict the accuracy of every neural network in the search
space, and the top 10 points are selected as new samples. Accuracies of previously sampled neural
network architectures are excluded when sampling new points. From Figure 10, we see that on the
NASBench-101 search space, ZCP finds a near-optimal architecture in 40 samples, whereas Vec
representation requires over 100 samples. A similar improvement in sample efficiency is observed
for NASBench-201.



6 Discussion and Conclusion

In this paper, we introduced Multi-Predict, a first step towards search-space, task and device
agnostic predictors for neural architecture search.

We studied two NN encodings (ZCP and HWL) that can enable few-shot transfer of knowledge
from one search-space to another for the first time. We performed extensive experiments on many
NAS search spaces, tasks, and devices that consistently show significant improvements in sample
efficiency compared to training a conventional accuracy/latency predictor from scratch. We hope
that our work can be a first step in developing NAS methods for much larger and more open-ended
search spaces. Furthermore, such NN encodings enable NAS predictors that can continuously learn
from prior NAS runs, even on different search spaces or tasks. While our initial results seem very
promising, we believe that a more rigorous and extensive evaluation of these new NN encodings is
warranted, for example, our investigation in the Appendix has already identified a failure scenario,
when our ZCP NN encoding loses the most highly-correlated proxies. Developing more robust
search-space independent NN encodings, and evaluating their encoding ability in a principled way
is therefore a key challenge moving forward to enable our vision of extending NAS beyond a single
search space.

Our paper has also identified methods to more accurately train HW latency predictors for
multiple devices, including learnable HW embeddings that outperform previous metalearning
approaches [8]. We made a key observation, that task distance or device latency correlation in
this case, plays a large role in enabling such multi-device predictors. Further, we showed that our
first-order transfer learning method with our HW embedding performs better than prior work in
adversarial scenarios when the task distance is high.

The objective of our paper was to enable re-use of knowledge across existing HW latency
and accuracy samples for a generalizable, few-shot approach to prediction-based NAS. We obtain
over an order of magnitude improvement in the sample and measurement efficiency of latency
and accuracy prediction. We also demonstrated multi-search-space and multi-task transfer of
accuracy predictors over 28 NAS search spaces and tasks. Further, we enabled multi-search-space
adaptation of HW latency predictors in under 5 samples. In the future, we intend to conduct deeper
investigations of search-space agnostic encodings for NN and HW, and new training techniques to
improve the sample efficiency and generalizability of predictors for NAS.

7 Broader Impact Statement

The pursuit of better representations for neural architecture search (NAS) can yield more efficient
and high-performing neural network designs while also reducing the carbon footprint. Our research
emphasizes the effectiveness of two computationally efficient methodologies for representing neural
architectures, which represents a significant step towards achieving sample-efficient NAS. The
HWL representation requires dedicated hardware infrastructure, but its sample efficiency through
hardware inference would greatly reduce the number of architectures that require training. We
are optimistic that this and other efforts to efficiently represent neural architectures can have a
positive environmental impact by decreasing the cost of NAS.
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8 Submission Checklist
1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] We discuss the importance of input-
output correlation for predictor effectiveness and also introduce adversarial tasks to effec-
tively demonstrate the difficulty of hardware latency prediction.

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics author’s and review guidelines and ensured that your paper
conforms to them? https://automl.cc/ethics-accessibility/ [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experimen-
tal results, including all requirements (e.g., requirements. txt with explicit version), an
instructive README with installation, and execution commands (either in the supplemental
material or as a URL)? [Yes] We will also release the code upon publication.

(b) Did you include the raw results of running the given instructions on the given code and
data? We will release the code with instructions upon publication.

(c) Did you include scripts and commands that can be used to generate the figures and tables
in your paper based on the raw results of the code, data, and instructions given? [Yes] We
have included all information to generate our results in the submission code.

(d) Did you ensure sufficient code quality such that your code can be safely executed and the
code is properly documented? [Yes]

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces,
fixed hyperparameter settings, and how they were chosen)? [Yes] We have included this
information in the appendix.

(f) Did you ensure that you compared different methods (including your own) exactly on
the same benchmarks, including the same datasets, search space, code for training and
hyperparameters for that code? [Yes] We adapt the BRP-NAS and HELP code to standardize
our experiments.

(g) Did you run ablation studies to assess the impact of different components of your approach?
[Yes] We study adversarial task distance and input-output correlation of representations.

(h) Did you use the same evaluation protocol for the methods being compared? [Yes]
(i) Did you compare performance over time? [N/A]
(j) Did you perform multiple runs of your experiments and report random seeds? [Yes]

(k) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes]
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(I) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] We use
NASBench-301 for one of the accuracy transfer experiments.

(m) Did you include the total amount of compute and the type of resources used (e.g., type of
GPUSs, internal cluster, or cloud provider)?

(n) Did you report how you tuned hyperparameters, and what time and resources this required
(if they were not automatically tuned by your AutoML method, e.g. in a NAs approach; and
also hyperparameters of your own method)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL?

(d) Did you discuss whether and how consent was obtained from people whose data you're
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if appli-
cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board
y yPp P p
(1rB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent
on participant compensation? [N/A]
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A Supplementary Materials for Multi-Predict: Few Shot Predictors For Efficient Neural
Architecture Search.

A.1 Neural Architecture Search Spaces

In this paper, we utilize several different neural architecture design spaces. NASBench-101 and
NASBench-201 are cell based search spaces, consisting of 423,624 and 15,625 architectures re-
spectively. NASBench-101 is trained on CIFAR-10, and NASBench-201 is trained on CIFAR-10,
CIFAR-100 and ImageNet16-120. NASBench-301 is a surrogate NAS benchmark with 10'® total
architectures. TransNAS-Bench-101 is a NAS benchmark with a micro (cell based) search space
with 4096 architectures, and a macro search space with 3256 architectures. Each of these networks
are trained on seven tasks from the Taskonomy data-set. These search spaces are unified within
the NASLib framework. This space has further been extended by NAS-Bench-Suite-Zero, adding
two data-sets from NAS-Bench-360, SVHN and four data-sets from Taskonomy. FBNet constructs a
layer-wise search space which is more hardware-friendly than NAS-Bench-201, with 102! unique

architectures.

Name Type
fisher [19] Pruning-at-init
flops [15] Baseline
grad-norm [1] | Pruning-at-init

Latency Estimation On FBNet grasp [20] Pruning-at-init
12-norm [1] Baseline
0.80 . .
N jacov [13] Jacobian
éo.vs nwot [13] Jacobian
g params [15] Baseline
o070 plain [1] Baseline
0.65 snip Pruning-at-init
° NuPmber Of Measurements On New Device >0 synflow [18] Pruning-at-init
zen-score [10] Piece. Lin.

Figure 11: Sample efficiency of Transfer Learning
(FSP) with respect to HELP on the FBNet search Table 6: List of ZC proxies in NAS-Bench-Suite-
space for the FBNet-Adversarial Task. Zero [7]. These are used in our ZCP description.

A.2 Hardware Latency Benchmarks

One of the key challenges of hardware aware neural architecture search is the collection of reliable
hardware resource metrics for neural networks on the target search space. Several methods utilize
simple metrics such as FLOPs as a metric for resource aware NAS, but it has been shown that design
spaces with comparable FLOPs can have vastly different behavior on hardware [9]. HW-NAS-Bench
introduces a public hardware latency data-set of two SOTA NAS search spaces (NAS-Bench-201
and FBNet). HW-NAS-Bench provides the measured/estimated hardware cost on six devices for all

Table 5: NAS Search Spaces and their respective metrics utilized in our paper.

Search Space ‘ HW Latency (HWL) ‘ ZC Proxies (ZCP) ‘ Num Architectures
NASBench101 [25] X v 10000
NASBench201 v v 15625
NASBench301 [26] X v 11221
TransNASBench101 Micro [4] X v 3256
TransNASBench101 Macro [4] X v 4096
Additional (NASBenchSuiteZero) [7] X v 600

FBNet [24] v X 5000
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Device Type ‘ NASBench-201 | FBNet
HELP & HW-NAS-Bench [8, 9]

1080ti_1 GPU v v/
2080ti_1 GPU v v/
1080ti_32 GPU v v
2080ti_32 GPU v v
1080ti_256 GPU v v Name Type
2080ti_256 GPU v 4 NASBENCH101 CIFAR10 NB1_CF10
phan_tt o j j NASBENCH201 CIFAR10 NB2_CF10
titamxp1 preie Y Y NASBENCH201 CIFAR100 NB2_CF100
titan_rtx_32 GPU v v NASBENCH201 IMAGENET16-120 NB2_IM16
titany_32 GPU v v NASBENCH201 NINAPRO NB2_NP
t%:a“xl’tﬁz ” ggg ; j NASBENCH201 SVHN NB2_SVHN
itan_rtx_:
fitanx 256 oPU Y Y NASBENCH201 SCIFAR100 NB2_SC100
fitanxp_ 256 GPU v v NASBENCH301 CIFAR10 NB3_CF10
eold_6210 cPU v v NASBENCH301 NINAPRO NB3_NP
silver 4114 cpu v v NASBENCH301 SVHN NB3_SVHN
silver_4210r cpu v v NASBENCH301 SCIFAR100 NB3_SC100
gold_6226 cru v v TRANSBENCH101 MACRO CLASS SCENE ma_CS
samsung_as0 Mobile v v TRANSBENCH101 MACRO CLASS OBJECT ma_CO
pixel3 ) ﬁ"‘;}e j ; TRANSBENCH101 MACRO AUTOENCODER ma_AE
casentiol ph 1 Mobile Y Y TRANSBENCH101 MACRO NORMAL ma N
pixelz Mobile v v/ TRANSBENCH101 MACRO JIGSAW ma_]J
o FPGA - v TRANSBENCH101 MACRO ROOM LAYOUT ma_RL
raspid RasPi v v TRANSBENCH101 MACRO SEGMENTSEMANTIC | ma_SS
eyeriss ASIC v v TRANSBENCH101 MICRO CLASS SCENE mi_CS
EAGLE[5] TRANSBENCH101 MICRO CLASS OBJECT mi_CO
: TRANSBENCH101 MICRO AUTOENCODER mi_AE
gore 177820 fp5z | Desktop CPU_| ‘ TRANSBENCH101 MICRO NORMAL mi N
snapdragon_675_kryo_460_int8 Mobile CPU o
snapdragon_855_kryo_485_int8 Mobile CPU TRANSBENCH101 MICRO JIGSAW mlJ
snapdragon_450_cortex_a53_int8 Mobile CPU TRANSBENCH101 MICRO ROOM LAYOUT mi_RL
" , TRANSBENCH101 MICRO SEGMENTSEMANTIC mi_SS
edge_tpu_int8 ‘ Embedded TPU ‘ .
: TRANSBENCH101 MICRO NINAPRO mi_NP
gix_1080ti_fp32 | Desktop GPU_| TRANSBENCH101 MICRO SVHN mi_SV
jetson_nano_fp16 ‘ Embedded GPU ‘ TRANSBENCH101 MICRO SCIFAR100 mi_SC

jetson_nano_fp32 Embedded GPU

AN N N N SNEAYA YA Y NN AN
3% X X[ X X X X XX X | X

snapdragon_855_adreno_640_int8 Mobile GPU

snapdragon_450_adreno_506_int8 |  Mobile GPU Table 8: Short-hand names for NAS Search Spaces used
snapdragon_675_adreno_612_int8 Mobile GPU . h 1 . d

snapdragon_675_hexagon_685_int8 Mobile DSP In the correlation lagrams'

snapdragon_855_hexagon_690_int8 Mobile DSP

Table 7: Device List and their availability for
NASBench-201 and FBNet

A3

A4

46875 architectures on NAS-Bench-201 across CIFAR-10, CIFAR-100 and ImageNet16-120. Further,
the measured/estimated hardware-cost on these devices is also provided for all 10?! architectures
in the FBNet search space. HELP [8] considers a hardware latency data-set of 7 representative
platforms on the NAS-Bench-201, FBNet and MobileNetV3 search spaces. BRP-NAS [5] further
provides LatBench/Eagle, a latency data-set for NAS-Bench-201 on six devices.

In Table 5, we summarize the search spaces we used in our paper. Further, in Table 7, we detail
the hardware platform we used in our paper for analysis, as well as which search spaces their
latency is available on.

Zero Cost Proxies
We utilize the zero cost proxies listed in Table 6. The correlations between different Zero Cost
Proxies for the NASBench-201 CIFAR-10 search space are provided in Figure 13 (a).

Hardware Devices And Correlations

We present the correlation between hardware device latencies on the NASBench-201 search space
with respect to ZC Proxies in Figure 13 (b). Further, in Figure 14, we present device correlations in
three categories. 1 represents the device correlation is greater than 0.7, 0.5 indicates that the device
correlation is greater than 0.5, but lesser than 0.7, finally, 0 indicates that the device correlation
is less than 0.5. We find that most devices have a high correlation alternative. This indicates that
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our HWL encoding can be an effective tool to map to arbitrary hardware platforms with high
confidence.

A.5 Importance of train-test device correlation

Meta-Learning performs extremely well when the task distance is low. One of the reasons for the
success of HELP [8] in building accurate latency predictors is the low task distance. A low task
distance can be established by measuring the Spearman-p between the training and test devices.
We take the default FBNet and NASBench-201 device sets reported by HELP and study their task
distance. Table 11 indicates that in most cases, simply choosing a highly correlated device would
perform better than utilizing transfer learning. However, it is important to note that establishing
correlation between devices can be a tricky task, and a higher variance may be observed with
different architecture samples. From Table 12, we find that if we remove devices with high train-test
correlation from the training set, the performance of transfer learning falls extremely fast. Thus,
while HELP and Transfer Learning are sample efficient methods of building hardware latency
predictors, there exists a trade-off between training device correlation and sample efficiency. The
higher the task distance, the more samples are likely to be needed to build a robust latency predictor.

A.6 True Sample Efficiency Of HELP and BRP-NAS

In Appendix A.5, we discuss that Table 11 demonstrates a Spearman rank correlation between 0.83
and 0.97 for the training devices of the FPGA device. This indicates that scaling the total number
of hardware measurements is not an efficient method for evaluating sample efficiency on the
default device set. To augment Figure 6, we create an adversarial device set with train-test device
correlations ranging from 0.5 to 0.7 for HELP. From Figure 16, it is evident that ZCP significantly
enhances the total number of hardware latency measurements. It is worth mentioning that our
HWL and HWLVec perform exceptionally well due to high train-test device correlations, akin to
those observed for HELP in Figure 6.

A.7 Multi-Search-Space Latency Predictor Transfer

In Figure 20 and 21, we present the per-device result of transferring a latency predictor from FBNet
to NASBench201 and NASBench201 to FBNet respectively. In almost all cases, there is a benefit to
HWL Transfer in the extremely low sample regime.

Figure 12: Correlation between zero cost proxies  Figure 13: Correlation between Zero Cost Proxies
utilized in our ZCP encoding for the NASBench-201  and device latencies.
CIFAR-10 search space.
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Figure 14: Correlation between hardware device latencies on the NASBench-201 search space. 1
represents the device correlation is greater than 0.7, 0.5 indicates that the device correlation
is greater than 0.5, but lesser than 0.7, finally, 0 indicates that the device correlation is less
than 0.5. We find that most devices have a corresponding highly correlated device.

FBNet Default Train-Test Device Correlations

Test Device

Train Device eyeriss fpga raspi4
1080ti_1 0.25 0.23  0.26
1080ti_32 0.53 042 0.52
silver_4114 0.62 0.67 0.64
silver_4210r 0.63 0.68  0.65
essential_ph_1 0.68 0.7 0.66
samsung_s7 0.69 0.71  0.68
1080ti_64 0.76 0.61 0.72
samsung_a50 0.86 0.86 0.84
pixel3 0.98 091 0.96
p Of Closest Train Device | 0.98 0.91 0.96
HELP Predictor p 0.94 0.89  0.90

Table 9: The default task training device set of
FBNet has devices whose correlation is higher

than predictor p.

NB201 Default Train-Test Device Correlations

Test Device

Train Device eyeriss fpga raspi4
1080ti_1 0.42 0.83  0.65
1080ti_32 0.43 0.84  0.67
samsung_s7 0.52 089  0.76
essential_ph_1 0.62 092 081
silver_4114 0.59 094 084
samsung_a50 0.63 0.96  0.87
silver_4210r 0.62 097 088
1080ti_256 0.89 0.89  0.73
pixel3 0.72 0.87  0.97
p Of Closest Train Device | 0.89 0.97  0.97
HELP Predictor p 0.94 099 0.89

Table 10: The default task training device set of
NASBench-201 has devices whose correlation is

very close to predictor p.

Table 11: The default device set has a high training-test device correlation (low task distance).
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Figure 15: We train accuracy predictors with ZCP NN representation. We remove certain ZCPs from the NN
representation and observe its effect on Spearman-p of the accuracy predictor. We find that removing good
ZCPs can have a worse impact over removing bad ZCPs for accuracy prediction on NASBench-201.

Latency Prediction On NASBench-201 FPGA
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Figure 16: Training from scratch with ZCP/HWL encodings and comparing it with BRP-NAS and HELP

Few Shot Latency and Accuracy Prediction

In Figure 17, we present the entire graphs for different NN encodings. We find that ZCP and
HWL are generally the most sample efficient. Eyeriss has a low ZCP-latency correlation, thus Vec
performs better in this case. However, we still see significant benefit from using ZCPVec, which
indicates that modifying the NN encoding in exisiting tasks to include zero cost proxy evaluation
can help us train better predictors at almost no extra cost.

Multi-Search-Space-Task Accuracy Predictor Transfer

We train individual predictors from scratch on every task from TransNASBench-101 and NASBench
search space using 15% of the architectures on the individual train space, and transfer it to every
other task on the TransNASBench-101 and NASBench search space with only 10 samples. This
transfer task utilizes the ZCP NN encoding, and is compared with a train from scratch strategy
(on the new task only) with the Vec NN encoding. From Figure 19 (Left), we see a benefit of
multi-search-space and multi-task transfer learning, the exact improvement is depicted in Figure
19 (Right).

Limitations

Representation Correlation. We find that the domain agnostic NN encoding works extremely well
for building few-shot predictors for latency and accuracy. However, our test in Figure 15 indicates
that the effectiveness of this encoding is somewhat dependent on the correlation of the entries
of ZCP and HWL with the predictor output. Fortunately, there exist several effective ZCPs that
can serve as proxies for few-shot learning. Further, this highlights the importance of building a
robust hardware benchmark such that new hardware can be adapted from predictors of previous
benchmarks, as such encodings can be transferred across tasks and search-spaces.
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FPGA

RasPi4 Eyeriss ‘ Average

Default Set 0.886
Spearman < 0.7 | 0.663
Spearman < 0.6 | 0.328
Spearman < 0.3 | 0.146

0.895 0.939 0.91
0.689 0.727 0.69
0.395 0.437 0.39
0.159 0.201 0.17

Table 12: In this test, we remove devices with high correlation such that remaining devices have
correlation lesser than the specific number. We find that removing highly correlated devices
causes predictor performance to decrease extremely fast on the FBNet search space.

NB201-Adversarial Task.

H FBNet-Adversarial Task

titan_rtx_1,titan_rtx_32,titanxp_1,2080ti_1,titanx_1,1080ti_1,

Train titanx_32,titanxp_32,2080ti_32,1080ti_32,gold_6226,samsung_s7,

silver_4114,gold_6240,silver_4210r,samsung_a50,pixel2

1080ti_1,1080ti_32,1080ti_64,2080ti_1,2080ti_32,2080ti_64,,
Train titan_rtx_1.titan_rtx_32.titan_rtx_64,titanx_1,
titanx_32,titanx_64,titanxp_1,titanxp_32,titanxp_64

Test  eyeriss,desktop_gpu_gtx_1080ti_fp32,embedded_tpu_edge_tpu_int8 H Test

gold_6226,essential_ph_1,samsung_s7,pixel2

Table 13: Adversarial device sets for the NASBench and FBNet search spaces. As seen here, most of
the training devices for FBNet are GPU, as they exhibit low correlation with the test devices.
Our NB201-Adversarial Task exhibits more diversity, as we combine the EAGLE [5] and
HELP [8] HW latency data-sets.

HW Embedding Correlation. While we introduce a sample-free method of representing
hardware devices, the effectiveness of these embeddings largely rely on the diversity of the HW-NN
samples that the predictor is trained on. Further, the additional sample efficiency offered by our
embedding initializer in Eq. 1 depends on the diversity of the hardware platforms the predictor

was trained on.

Transfer Learning Architecture and Hyper Parameters

Cross Domain Network Layer Size
Cross Domain Network Depth

Optimizer

Pre-Training Optimizer LR
Scheduler

Training Epochs

Transfer Epochs

Transfer Optimizer LR
Optimizer Weight Decay

128

4

AdamW

0.004
CosineAnnealingLR
250

50

0.0004

0.0005

Table 14: Hyper-parameter configuration for Accuracy

Transfer Learning results.

Transfer Learning Architecture and Hyper Parameters

Source Hardware Samples
Batch Size

Source Hardware Epochs
Target Hardware Epochs
HW Embedding Size

GCN Layer Size (NB201)
GCN Layer Depth (NB201)
GCN FC Layer Size

GCN FC Layer Depth

NN Layer Size (FBNet)

NN Layer Depth

NN Embedding Dimension
Interaction Feature Size
Interaction Feature Depth
Optimizer

Source Optimizer LR
Target Optimizer LR
Optimizer WD

900 (NB201)/4000 (FBNet)
128

250

50

8

200

200

100

3

30

1000

2
AdamW
0.0004
0.001
0.0005

Table 15: Hyper-parameter configuration for Hard-
ware Transfer Learning results.

20



Latency Prediction On NASBench-201 FPGA

Latency Prediction On NASBench-201 Raspi4
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Figure 17: Total number of HW Measurements and Trained Model Samples required to predict latency
and accuracy on NASBench-201 for various NN encodings, with respect to HELP and

Trasnfer Learning (FSP).

] || n
| | [ |
[ ] EEE
H B N
| . E BN -0.8
| ] H Em
- ] 0.6
9 [ | u Em g
© ® 0.4
& m &
c | | < 0.2
K] | . | | [ [ [] ®
= i ENE EEE EEEN =
I [ ] 0.0
] = | [ |
u 0.2
Eu
] | u
| |
H H N Em
gl " "
||

Transfer space

Figure 19: Presents the heatmap for the improve-
ment in performance when using ZCP with transfer
learning over Vec train-from scratch.

Figure 18: The white boxes indicate improvement in
performance when using ZCP with transfer learning.
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Figure 20: For FBNet to NASBench-201, HWL Transfer improves sample efficiency, indicating that
we can leverage transfer learning for multi-search-space latency prediction. (Vec line not
visible in some graphs as its performance is too poor, and we set the Y scale to focus on
HWL and HWL Transfer.
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Figure 21: For NASBench-201 to FBNet, HWL Transfer improves sample efficiency, indicating that
we can leverage transfer learning for multi-search-space latency prediction. (Vec line not
visible in some graphs as its performance is too poor, and we set the Y scale to focus on
HWL and HWL Transfer.
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