
GENSIM: GENERATING ROBOTIC SIMULATION TASKS
VIA LARGE LANGUAGE MODELS

Lirui Wang1, Yiyang Ling2,3*, Zhecheng Yuan4*, Mohit Shridhar5, Chen Bao6, Yuzhe Qin3,
Bailin Wang1, Huazhe Xu4, Xiaolong Wang3

1MIT CSAIL, 2Shanghai Jiao Tong University, 3UC San Diego,
4Tsinghua University, 5University of Washington, 6CMU

ABSTRACT

Collecting large amounts of real-world interaction data to train general robotic
policies is often prohibitively expensive, thus motivating the use of simulation data.
However, existing methods for data generation have generally focused on scene-
level diversity (e.g., object instances and poses) rather than task-level diversity,
due to the human effort required to come up with and verify novel tasks. This
has made it challenging for policies trained on simulation data to demonstrate
significant task-level generalization. In this paper, we propose to automatically
generate rich simulation environments and expert demonstrations by exploiting
a large language models’ (LLM) grounding and coding ability. Our approach,
dubbed GENSIM, has two modes: goal-directed generation, wherein a target task is
given to the LLM and the LLM proposes a task curriculum to solve the target task,
and exploratory generation, wherein the LLM bootstraps from previous tasks and
iteratively proposes novel tasks that would be helpful in solving more complex tasks.
We use GPT4 to expand the existing benchmark by ten times to over 100 tasks,
on which we conduct supervised finetuning and evaluate several LLMs including
finetuned GPTs and Code Llama on code generation for robotic simulation tasks.
Furthermore, we observe that LLMs-generated simulation programs can enhance
task-level generalization significantly when used for multitask policy training.
We further find that with minimal sim-to-real adaptation, the multitask policies
pretrained on GPT4-generated simulation tasks exhibit stronger transfer to unseen
long-horizon tasks in the real world and outperform baselines by 25%.1

1 INTRODUCTION

Achieving general-purpose robotic policies necessitates significant amounts of data, which is labor-
intensive to collect in the real world. Although simulation provides an economical solution for
generating diverse amounts of data at the scene level and instance level (Akkaya et al., 2019; Kauf-
mann et al., 2023; Fang et al., 2022; Deitke et al., 2022), increasing task-level diversity in simulation
remains challenging due to the significant human effort required, especially for complex tasks. For
example, creating new tasks involves specifying new asset relationships and task progression, as
well as ensuring achievability and transferability to other contexts such as the real world. Due to the
challenges, typical human-curated simulation benchmarks usually have only tens to hundreds of tasks
(Zeng et al., 2021; Yu et al., 2020; James et al., 2020).

Recent years have witnessed significant progress in Large Language Models (LLMs) (OpenAI,
2023; Bubeck et al., 2023; Anil et al., 2023) in natural language processing and further in code
generation (Chen et al., 2021; Rozière et al., 2023) for various tasks. In robotics, LLMs have been
applied in multiple aspects, ranging from user interface (Ahn et al., 2022; Shridhar et al., 2022;
Lynch et al., 2023; Driess et al., 2023), to task and motion planning (Lin et al., 2023; Huang et al.,
2022), summarizing robot logs (Liu et al., 2023), and cost and reward designs (Yu et al., 2023; Ha
et al., 2023), revealing impressive capabilities on physical grounding and code generation. In this
work, we take a step further to investigate whether LLMs can be used to create diverse simulation

1See our project website(https://liruiw.github.io/gensim), demo(https://huggingface.co/spaces/Gen-Sim/Gen-
Sim), and code(https://github.com/liruiw/GenSim) for visualizations and open-source models and code.

1

https://liruiw.github.io/gensim
https://huggingface.co/spaces/Gen-Sim/Gen-Sim
https://huggingface.co/spaces/Gen-Sim/Gen-Sim
https://github.com/liruiw/Gen-Sim

Figure 1: Task gallery of over 100 tasks generated by GPT4. GenSim leverages a LLM code
generation pipeline to scale up simulation tasks for policy training and task-level generalization.

tasks, tapping further into these capabilities. Our LLM-based framework, GenSim, provides an
automatic mechanism to design and validate task asset arrangement and task progression. More
importantly, the generated tasks exhibit great diversity, fostering task-level generalization of robotic
policies. Conceptually in GenSim, the reasoning and coding capabilities of LLMs are distilled into
lingo-visuo-action policies via the intermediately synthesized simulation data.

The framework is structured around three components: (1) prompting mechanisms that propose new
tasks in natural language instruction and their corresponding implementations in code; this provides
an automatic mechanism to design and validate task asset arrangement and task progression. (2) a
task library that caches previously generated high-quality instruction code for validation and language
model finetuning, returned as a comprehensive task dataset. (3) a language-conditioned multi-task
policy training procedure that leverages the generated data to enhance task-level generalization. The
framework operates in two distinct modes. In the goal-directed setting, where the user has a specific
task or desires to design a task curriculum, the framework adopts a “top-down” approach. It takes the
desired task as input and iteratively generates related tasks to attain the targeted objective. Conversely,
in the exploratory setting, where no prior knowledge of the target task is available, the framework
gradually explores beyond existing tasks and aims to establish a task-agnostic foundational policy.

By initializing the task library with 10 human-curated tasks (Shridhar et al., 2022) , we use GenSim to
scale it up and generate over 100 tasks (Figure 1). We propose several tailored metrics to progressively
measure the quality of generated simulation tasks, and evaluate several LLMs in both goal-directed
and exploratory settings. Based on the generated task library from GPT4, we conduct supervised
finetuning on, including GPT3.5 and Code-Llama to further improve task generation performance of
LLMs. Additionally, we quantitatively measure task achievability by policy training, and present task
statistics across different properties, and code comparisons among different models.

Importantly, we have trained multitask robotic policies that generalize well on the generated tasks
altogether and improve zero-shot generalization performance compared to models that train on only
human-curated tasks. Furthermore, we also show that training jointly with GPT4-generated tasks
can improve the generalization performance by 50% and have around 40% zero-shot transfer to new
tasks in simulation. Finally, we consider sim-to-real transfer and show that pretraining on diverse
simulation tasks achieves better real-world generalization capabilities by 25%. Overall, policies that
trained on diverse LLM-generated tasks have better task-level generalization to new tasks, which
indicates the potential of training foundational policies by scaling simulation tasks with LLM. The
contributions of this work can be summarized as follows:

• We propose a novel simulation task generation pipeline through LLMs to generate over 100
tasks. We observe that LLMs are capable of generating high-quality, achievable, and diverse
tasks by bootstrapping from existing human-curated tasks.

• We benchmark state-of-the-art LLM models such as GPTs and Code-Llama on simulated
manipulation task creations. We find that prompting and finetuning based on the task library
can significantly improve the capability of LLMs generating higher quality tasks.

2

Can you generate the
task “build-car”?

Can you generate a new task
that is different from the
existing ones?

Distillation

Task Library

Task-Level Generalization

Sim-to-Real Adaptation
…

pyramid-on-
pallet

ball-on-box-in-
container

color-ordered-
insertion

construct-corner-
blocks

Simulation
Engine

Program
SynthesisTask Creator

Reflection

…

…

Figure 2: GenSim is an LLM framework to scale up simulation task diversity for robotic policy
training. We investigate goal-directed mode (top prompt) and exploratory mode (bottom prompt) that
generate robotic simulation task codes. The generated task codes are cached in a task library which
can be used for policy training to achieve better task-level generalization and sim-to-real adaptations.

• We illustrate the effectiveness of the GPT4-generated tasks for language-conditioned visuo-
motor policies by improving in-domain generalization by over 50% as well as zero-shot
generalization to unseen tasks and instructions in both simulation and the real world.

2 AUTOMATED TASK GENERATION FOR POLICY LEARNING

We present GenSim (Figure 2), an LLM framework to generate simulation environments, tasks, and
demonstrations through program synthesis. The GenSim pipeline starts with a task creator (Sec.
2.1) with a prompt chain operating in two modes, namely goal-directed mode and exploratory mode,
depending on the knowledge of the target task. As a memory component, the task library (Sec. 2.2)
is used to store previously generated high-quality tasks. Finally, the stored tasks from the library can
be used for multitask policy training (Sec. 2.3) or finetuning LLMs for better task generation.

2.1 TASK CREATOR

The goal of the task creator is to propose novel task descriptions and corresponding code implementa-
tions, which can be further broken down into scene generations and demonstration generations. In
particular, we use the Ravens benchmark (Zeng et al., 2021; Shridhar et al., 2022) which focuses on
motion primitives such as pushing and pick-and-place that can be parameterized by two end-effector
poses at each timestep. From the example in Figure 3, the reset function in the simulation environment
code, efficiently initializes the assets and their attributes and poses, as well as the spatial and language
goals that parameterize the action in each step2. In the exploratory task generation setting, the
pipeline is prompted to generate a novel task that is sufficiently different from the existing tasks. In
the goal-directed setting, the pipeline aims to fill in the task descriptions and implementations of a
specified task name. The exploratory approach requires creativity and reasoning capability to come
up with new tasks while goal-directed approach focuses on simulation coding as a specific task.

In both settings (Figure 3), the language chain first generates a task description and associated
implementations afterward. The task description includes the task name, assets, and task summary.
We adopt few-shot prompting for code generation in the pipeline. LLM is prompted to select reference
tasks and codes from existing tasks in the task library introduced in the next section. This process is
critical for LLM to know exactly how to implement a task class (such as the procedure of sampling
asset URDFs and building scene first, and then adding a spatial goal and language goals). In contrast
to other LLM coding tasks, there are various feedback forms in robotic simulations including the
execution pipeline, simulators, policy training, and humans. See Appendix §E for more details on the
prompts and generated example code.

2.2 TASK LIBRARY

In the GenSim framework, we leverage an external memory, dubbed task library, to cache the
generated tasks by the task creator to come up with better new tasks and to train multitask policies.

2Note that in this work, a task is defined by its code (and the associated language template) rather than a
specific scene configuration, object relations, or demonstration trajectory.

3

Syntax

Runtime

Environment

Policy Training

Human Inspection

Self-Reflection

Code does not compile

No such urdf named
‘platform/platform.urdf’

Timeout exceeds. Environment
success rates is lower than 50%

The task already exists in the task
memory / Task implementation is

not aligned with descriptions

Single-task policy training success
rates is lower than 5%

The task looks not matching the
language instructions

Code Feedback

Code Execution Data

Code ExampleTask Generation

Task Library

Initialize task

Sample asset, pose, color

Goals and instructions

Task Description

Task Code

Reflection

Validation

Figure 3: Our automatic simulation task generation pipeline (top left) generates a task code that can
be used to generate scenes, simulations, and expert demonstrations for imitation learning. In addition
to common execution-based feedback in LLM program synthesis tasks, the LLM critic and the task
library provide task quality feedback. Finally, policy training and humans provide the final checks.

composition extrapolation

stack-block-pyramid palletizing-boxes

ball-on-box-in-container

build-bridge

four-corner-pyramid

build-carpyramid-on-pallet construct-corner-block

place-block-in-bowl block-insertion color-ordered-insertion build-two-circles

Figure 4: GenSim demonstrates interesting task-level composition and extrapolation behaviors in
code generation for simulation tasks, which are distilled to policy learning through demonstrations.

The task library is initialized from the tasks in the human-curated benchmark. It provides the task
creator with a list of past task descriptions to condition on in the description generation stage and a list
of past codes in the code generation stage. Then, the task creator is prompted to select reference tasks
from the task library as examples for coding new tasks. After the task implementation is finished and
passes all tests including successfully generating demonstrations, we then prompt the LLM to reflect
on the new task and the task library and form an ensembled decision for whether the newly generated
task should be added to the library. In Figure 4, we observe interesting composition and extrapolation
behaviors in the tasks generated by GenSim. These saved task codes can be used offline to generate
demonstration trajectory data for multitask policy training.

The task library, generated in exploratory mode, can be used as bootstrapping data for iteratively
training task creators to generate better simulation tasks in goal-directed mode. This is important to
scale up task generations and incorporate human feedback as finetuned models are more economical
to use as task creators. In the next section, we discuss how to distill the task-level generalizations in
LLM code generation into policy learning, by expanding the corpus of the training tasks.

2.3 LLM SUPERVISED MULTITASK POLICY

Once the tasks are generated, we can use these task implementations to generate demonstration data
and train manipulation policies. We use a similar two-stream transporter network architecture as in
Shridhar et al. (2022) to parametrize the policy with affordance predictions. The code generation to
language-conditioned behavior cloning process can be viewed as the distilling process from LLMs
into the low-level control and affordance of robot policies. Treating the program as an efficient
representation of the task and associated demonstration data (Figure 5), we can define the embedding

4

Policy Improvement
on Related Tasks

Sim-to-Real
Policy Adaptation

Policy Generalization to
Novel Tasks

GPT Task Embedding

Figure 5: Task code embedding can be used to create an embedding space in the task library
(visualized as a T-SNE (Van der Maaten & Hinton, 2008) plot), which can be used for clustering tasks
and policy training. For example, the purple represents the tasks involving rope, and blue denotes
tasks that involve building structures.

space among tasks, whose distance metric is more robust to varying factors from perception such as
object poses and shapes and yet more informative than the language instructions.

3 EXPERIMENTS

In this section, we aim to use experiments to validate our framework, through the following specific
questions: (1) How well can LLM design and implement simulation tasks? Can we improve the
performance of LLMs on task generation? (2) Does training on LLM-generated tasks improve policy
generalizations? Does policy training benefit more if more generated tasks are given? (3) Can
pretraining on LLM-generated simulation tasks benefit real-world robot policy deployment?

3.1 EVALUATING LLM ROBOTIC SIMULATION TASK GENERATION

In this section, we ablated the design of the exploratory LLM pipeline with a simulation task-driven
metric. Specifically, we measure a sequence of pass rates on “syntax-correct” which measures
basic coding syntax issues as well as answer formatting problems, “runtime-verified“ which tests
asset hallucinations and code reasoning capability, and finally “task completed” which measures
the designs of task demonstrations (the success in pick-place motions). These metrics are shown
in the x-axis of Figure 6. Note that some problems such as misaligned language instruction and
task behavior will not be captured by these metrics. To distill these task generation capabilities into
more economic and scalable language models and to potentially conduct self-improvement, we use
OpenAI API to finetune GPT models on the GPT4-generated tasks in the task library and achieve
better performance through this finetuning process. Moreover, we also finetune open-sourced LLMs
such as Code-Llama (Rozière et al., 2023) with LoRA (Hu et al., 2021). We use the task names with
a short prompt as input tokens and the task code as output tokens for autoregressive training.

Exploratory task generation. In total, the pipeline generates 120 diverse tasks that can be used
for task demonstrations. We compare our task description and code separation prompt with a single
prompt that requests both together as well as zero-shot prompt that does not provide as many reference
codes. Figure 6 shows that a two-stage prompt chain with few-shot examples and task library can
effectively improve the code generation success rates. The exploratory task generation requires the
LLM to have language reasoning capabilities to understand the prompts and creativity for new tasks.

Goal-directed task generation. We also experiment with the goal-directed procedure to measure the
coding capabilities of different language models. Specifically, we pick 10 held-out tasks and prompt
each model to generate three trials (multiple implementations of the same task) for evaluating the
metric. We observe that GPT4 is still outperforming other models in the specific robot simulation
coding tasks. More specifically, strong closed-source models such as GPT-3.5 and GPT4 with
in-context learning (prompting) can generate creative tasks and yet are still prone to hallucinations

5

Goal-Directed Task GenerationExploratory Task Generation

Figure 6: Left) The prompt chain with few-shot examples and the task library are helpful for LLM
simulation task generation. Right) Finetuning on GPT4’s generated tasks can improve simulation
coding capabilities, for both closed-source GPT3.5 and open-source Code-LLama-Instruct-13B.

Added Tasks Task Number Task Source

Few-shot Improvement by Adding
GPT Tasks

Zero-Shot Generalization by Pretraining
on Different Sources

Zero-shot Generalization by Pretraining
on GPT Tasks

Figure 7: Joint training with augmented data from the LLM generated tasks can improve policy
performance, in both multi-task and single-task settings. We also showed that when training on more
tasks, the policy exhibits stronger zero-shot generalization capabilities, which holds true for different
sources of task generation including open-source LLMs.

in code. We observe that the finetuned open-source models can achieve closer performance as
state-of-the-art LLMs. The finetuned open-source models can generate the correct code flow and
syntax but they occasionally exhibit misalignment between high-level objectives and implementation,
due to the complexities of long simulation code. This motivates increasing better language models in
simulation task creations such as self-instruct (Wang et al., 2022) as well as distillation from more
capable models. See Appendix §B, §E for more experiment details and examples.

3.2 TASK-LEVEL GENERALIZATION

In this section, we study how the generated tasks from LLM can help with tabletop language-
conditioned visuomotor policy learning for generalizations and adaptation. We adopt the 0 (fail) to
100 (success) scores proposed in the Ravens benchmark (Zeng et al., 2021) which considers partial
credits for completing tasks. The simulation robot setup is a Universal Robot UR5e with a suction
gripper. The policy input is a top-down RGB-D reconstruction, and the output is an affordance
map that is then transformed to pick and place actions. We use the CLIPort (Shridhar et al., 2022)
architecture but the framework is independent of which policy parametrization we use.

Few-shot policy generalization to related tasks. In particular, from Fig. 7 left, we show that jointly
training LLM-generated tasks can improve the policy performance on the original CLIPort (Shridhar
et al., 2022) tasks by over 50%, especially under low data regime such as 5 demos. This is expected
as adding related tasks reduces the overfitting problem on a few demos.

Zero-shot policy generalization to unseen tasks. From Fig. 7 middle, we show by pretraining
on more tasks generated by LLM, our model can generalize better to tasks in the original Ravens
benchmark. On the right, we also experimented with pretraining on 5 tasks on the different task
sources of the human written tasks, closed-source LLM, and open-source finetuned LLM, and
observed similar zero-shot task-level generalization. The task-level generalization is surprising to us
considering that the task and language instructions have not been seen in the training datasets. In
contrast, when only pretraining on the 10 tasks in CLIPort, the policy does not generalize well on the

6

t=0

Label No Adaptation CLIPortNo Pretrain

Stack-Block: “stack the blue block on the yellow block”
t=T

Pair-Blocks-On-Line: “put the other blue block next to the second red block on the line”

Align-Block-Zone: “move the block to the corresponding zone”

Build-Wheel: “place the purple and green blocks around the white cylinder, to form a wheel shape”

Ours(a)

(b)

Figure 8: (a) The labels and the affordance heatmap of different real-world policies (green denotes
placing and red denotes picking). (b) Executions of long-horizon tasks by GPT4-pretrained models.

Task No Adaptation No Pretrain CLIPort GenSim (50 Tasks) GenSim (70 Tasks)
Episodes(Sample) Success Success Success Success Success

put-block-in-bowl 20(20) 0/10 5/10 5/10 8/10 8/10
stack-block 25(25) 0/10 2/10 6/10 9/10 10/10

block-tower-on-corner 20(80) 0/10 0/10 2/10 3/10 4/10
block-in-bowl-in-zone 10(20) 0/10 10/10 7/10 10/10 10/10

put-block-at-zone-corner 10(40) 0/10 0/10 10/10 9/10 10/10
pair-blocks-on-line 20(80) 0/10 0/10 0/10 2/10 4/10
align-block-in-zone 20(60) 0/10 0/10 2/10 3/10 6/10

build-wheel 10(80) 0/10 0/10 0/10 0/10 3/10
pack-spheres 20(80) 0/10 6/10 7/10 4/10 7/10

average 155(485) 0% 25.5% 43.3% 53.3% 68.8%

Table 1: Success rates (%) of multi-task policies that are finetuned on the base models from simulation.
The test performance is measured across different scenes.

GPT4-generated tasks. One intuition is that LLM code generation expands the corpus of the task
data, and thus training on these related tasks leads to more robust generalizable representations.

Specifically, as shown in Fig. 4, the color-ordered-insertion can be thought of as a compositional
task between block-insertion and place-block-in-bowl from CLIPort original task tasks. The former
task involves placing a block into some colored bowl, while the goal of the latter task is to insert a
specific block into fixtures. In the left of Figure 7, our experiment suggests that learning jointly with
related and more complex task color-ordered-insertion has the potential to contribute to enhanced
generalization capabilities of put-block-in-bowl. On the other hand, when we try to learn a base policy
for novel task generalization and even across domains, it is more beneficial to learn from as diverse
tasks as possible, corresponding to exploratory task generation. See Appendix §C for more details.

3.3 ADAPTING PRETRAINED MODEL TO THE REAL WORLD

In this section, we conduct experiments to transfer the policy trained in simulation to the real
environment. We hypothesize that by expanding the diversity of training tasks generated by LLM
in the simulation, the trained policy would exhibit enhanced adaptability in real-world scenarios.
To further enhance the sim-to-real transition, we incorporate an adaptation process for the real
world. This process includes collecting a small set of real-world data for each task, followed by
data augmentations and the fine-tuning of the simulation-pretrained model over 50 epochs. We
perform our real-world experiments using an XArm-7 robot equipped with a suction gripper. A
bird’s-eye-view camera is installed facing downward to capture RGB-D observations. In Table 1, the
model pretrained on 70 GPT4-generated tasks achieves an average success rate of 68.8% over 10

7

Code-Llama (Finetuned) GPT-4(b)

(a)

Figure 9: (a) Task statistics across different properties in the generated benchmark. (b) Example
failure modes of the Code LLama after finetuning, and GPT4 through prompting.

trials of 9 tasks, an over 25% increase compared to baselines that only pretrained on CLIPort tasks
and 15% improvement on models that pretraind on only 50 tasks. Qualitatively, baseline models
without sufficient pretraining often pick or place the wrong objects, and baseline without adaptations
has diffused affordance prediction. We hypothesize that GPT4-generated task pretraining exposes
policy with broad language instructions and task compositions, which allows it to generalize better to
a diverse set of tasks after sim-to-real adaptation. Moreover, we qualitatively observe that pretraining
on diverse simulation tasks improves robustness on long-horizon complex tasks (Figure 8). For
example, the GPT4-pretrained model has a more robust performance on build-wheel task in the real
world. We defer the task, training, and evaluation details to the Appendix §D.

3.4 ADDITIONAL ANALYSIS

Simulation Training Success Rates. On Table 2, we showed single-task and multi-task policy
training success rates on a subset of our generated tasks with 200 demos. The average task success
rate for policy training on GPT4-generated tasks is 75.8% for single-task and 74.1% for multi-task,
which is similar to 76.6% for a single task and 76.1% for multi-task from human-curated tasks in
CLIPort (Shridhar et al., 2022). See Appendix §C for more training details.

Code Generation Comparison. In Figure 9 (b), we qualitatively evaluate failure cases in the
top-down experiments for both the Code Llama and GPT4. The coding objective is to implement
the multi-step logic of placing a cylinder on a pallet first and then placing the block on the pallet.
Based on the add goal step, we observed that Code LLama has ignored the pallet completely, and
GPT4 got the order of placement wrong, while being a bit noisy in text descriptions. Other common
LLM modes include misaligned language descriptions and task objectives as well as imbalanced task
distribution when scaling the LLM generation pipeline. More details can be found in §B.5.

4 CONCLUSION AND FUTURE WORKS

In this work, we present GenSim, a scalable LLM framework to augment diverse simulation tasks for
robotic policy, which aims to distill LLM grounding and coding capabilities into low-level policies.
We investigate LLM finetuning and prompting in both goal-directed and exploratory approaches to
generate new simulation task codes. We leverage the generated tasks for training multitask policies
that show generalization capabilities both to new tasks in simulation and the real world.

5 ACKNOWLEDGEMENT

We thank MIT Supercloud for providing computing resources. The authors would like to thank many
helpful discussions from Yoon Kim and Russ Tedrake at MIT. This work is supported in part by the
Amazon Greater Boston Tech Initiative and Amazon PO No. 2D-06310236.

8

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a
robot hand. arXiv preprint arXiv:1910.07113, 2019.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv
preprint arXiv:2305.10403, 2023.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program synthesis. In Interna-
tional Conference on Learning Representations, 2018.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs, Kiana Ehsani, Jordi Salvador, Winson Han,
Eric Kolve, Aniruddha Kembhavi, and Roozbeh Mottaghi. Procthor: Large-scale embodied ai
using procedural generation. Advances in Neural Information Processing Systems, 35:5982–5994,
2022.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multimodal
language model. arXiv preprint arXiv:2303.03378, 2023.

Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama.
Write, execute, assess: Program synthesis with a repl. Advances in Neural Information Processing
Systems, 32, 2019.

Kuan Fang, Yuke Zhu, Silvio Savarese, and Li Fei-Fei. Adaptive procedural task generation for
hard-exploration problems. arXiv preprint arXiv:2007.00350, 2020.

Kuan Fang, Toki Migimatsu, Ajay Mandlekar, Li Fei-Fei, and Jeannette Bohg. Active task random-
ization: Learning visuomotor skills for sequential manipulation by proposing feasible and novel
tasks. arXiv preprint arXiv:2211.06134, 2022.

Huy Ha, Pete Florence, and Shuran Song. Scaling up and distilling down: Language-guided robot
skill acquisition. arXiv preprint arXiv:2307.14535, 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. arXiv preprint arXiv:2207.05608, 2022.

Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J Davison. Rlbench: The robot
learning benchmark & learning environment. IEEE Robotics and Automation Letters, 5(2):3019–
3026, 2020.

9

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-Fei,
Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation with multimodal
prompts. arXiv preprint arXiv:2210.03094, 2022.

Heewoo Jun and Alex Nichol. Shap-e: Generating conditional 3d implicit functions. arXiv preprint
arXiv:2305.02463, 2023.

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and
Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature, 620
(7976):982–987, 2023.

Belinda Z Li, William Chen, Pratyusha Sharma, and Jacob Andreas. Lampp: Language models as
probabilistic priors for perception and action. arXiv e-prints, pp. arXiv–2302, 2023.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. arXiv preprint
arXiv:2209.07753, 2022.

Kevin Lin, Christopher Agia, Toki Migimatsu, Marco Pavone, and Jeannette Bohg. Text2motion:
From natural language instructions to feasible plans. arXiv preprint arXiv:2303.12153, 2023.

Ruibo Liu, Jason Wei, Shixiang Shane Gu, Te-Yen Wu, Soroush Vosoughi, Claire Cui, Denny Zhou,
and Andrew M Dai. Mind’s eye: Grounded language model reasoning through simulation. arXiv
preprint arXiv:2210.05359, 2022.

Zeyi Liu, Arpit Bahety, and Shuran Song. Reflect: Summarizing robot experiences for failure
explanation and correction. arXiv preprint arXiv:2306.15724, 2023.

Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Tianli Ding, James Betker, Robert Baruch, Travis
Armstrong, and Pete Florence. Interactive language: Talking to robots in real time. IEEE Robotics
and Automation Letters, 2023.

Liane Makatura, Michael Foshey, Bohan Wang, Felix HähnLein, Pingchuan Ma, Bolei Deng, Megan
Tjandrasuwita, Andrew Spielberg, Crystal Elaine Owens, Peter Yichen Chen, et al. How can large
language models help humans in design and manufacturing? arXiv preprint arXiv:2307.14377,
2023.

Zohar Manna and Richard Waldinger. A deductive approach to program synthesis. ACM Transactions
on Programming Languages and Systems (TOPLAS), 2(1):90–121, 1980.

Zohar Manna and Richard J Waldinger. Toward automatic program synthesis. Communications of
the ACM, 14(3):151–165, 1971.

Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela Mishkin, and Mark Chen. Point-e: A system
for generating 3d point clouds from complex prompts. arXiv preprint arXiv:2212.08751, 2022.

OpenAI. Gpt-4 technical report, 2023.

Joon Sung Park, Joseph C O’Brien, Carrie J Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. arXiv preprint
arXiv:2304.03442, 2023.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. arXiv preprint arXiv:2209.14988, 2022.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport: What and where pathways for robotic
manipulation. In Conference on Robot Learning, pp. 894–906. PMLR, 2022.

10

Marta Skreta, Naruki Yoshikawa, Sebastian Arellano-Rubach, Zhi Ji, Lasse Bjørn Kristensen, Kourosh
Darvish, Alán Aspuru-Guzik, Florian Shkurti, and Animesh Garg. Errors are useful prompts:
Instruction guided task programming with verifier-assisted iterative prompting. arXiv preprint
arXiv:2303.14100, 2023.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain
randomization for transferring deep neural networks from simulation to the real world. In 2017
IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 23–30. IEEE,
2017.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023.

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Paired open-ended trailblazer (poet):
Endlessly generating increasingly complex and diverse learning environments and their solutions.
arXiv preprint arXiv:1901.01753, 2019.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instructions.
arXiv preprint arXiv:2212.10560, 2022.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Arenas,
Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language to rewards
for robotic skill synthesis. arXiv preprint arXiv:2306.08647, 2023.

Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria Attarian, Travis
Armstrong, Ivan Krasin, Dan Duong, Vikas Sindhwani, et al. Transporter networks: Rearranging
the visual world for robotic manipulation. In Conference on Robot Learning, pp. 726–747. PMLR,
2021.

Jenny Zhang, Joel Lehman, Kenneth Stanley, and Jeff Clune. Omni: Open-endedness via models of
human notions of interestingness. arXiv preprint arXiv:2306.01711, 2023.

11

CONTENTS

1 Introduction 1

2 Automated Task Generation for Policy Learning 3

2.1 Task Creator . 3

2.2 Task Library . 3

2.3 LLM Supervised Multitask Policy . 4

3 Experiments 5

3.1 Evaluating LLM Robotic Simulation Task Generation 5

3.2 Task-Level Generalization . 6

3.3 Adapting Pretrained Model to the Real world . 7

3.4 Additional Analysis . 8

4 Conclusion and Future Works 8

5 Acknowledgement 8

A Detailed Related Work 13

B LLM Experiment Details 13

B.1 Simulation Task Generation Details . 13

B.2 Embedding Analysis . 14

B.3 Task Statistics . 14

B.4 Training Details . 14

B.5 Task Creation Limitations . 14

C Simulation Training Experiment 16

D Real World Experiment 16

E Language Qualitative Results 16

E.1 Task Description Example . 17

E.2 Prompt Details . 19

E.2.1 Task Proposal Prompt Details . 19

E.2.2 Task Memory Prompt Details . 20

E.3 Example Task Library Conversations . 21

E.4 Task Code Example . 22

E.5 Top-Down Evaluation Example . 25

12

Task Single-Task Multi-Task

build-car 84.1 85.4
color-coordinated-
sphere-insertion 99.2 93.0

cylinder-ring-
stack 82.0 81.0

multi-level-block-
construction 67.8 49.0

stack-blocks-
in-container 99.0 98.8

Task Single-Task Multi-Task

insert-blocks-lineup 84.1 80.0
move-piles-along-

line 27.7 32.7

manipulating-two-
ropes 30.8 40.2

color-ordered-
insertion 93.0 94.0

align-cylinders-
in-zones 91.2 87.8

Table 2: Success rates (%) of the trained policy on example GPT4-generated tasks.

A DETAILED RELATED WORK

Reasoning and Coding via LLMs. There have been impressive emerging abilities of LLMs,
including zero-shot prompting and intricate reasoning (Wei et al., 2022; Chowdhery et al., 2022)
in the past few years. For example, Park et al. (2023); Zhang et al. (2023) use language models in
explorations of new tasks. Our work, which uses separate LLM critics to evaluate the generated
programs and a memory for storing and reflecting previous outputs, is also related to the rich line
of work on parameterizing agents with LLMs (Li et al., 2023; Wang et al., 2023). On the other
hand, program synthesis has a long line of research in NLP (Manna & Waldinger, 1971; 1980; Chen
et al., 2021; Wang et al., 2019; Chen et al., 2018). LLM models, such as Codex (Chen et al., 2021)
make program synthesis accessible by only requiring a specification of docstring or incomplete code.
Execution-based code generation (Ellis et al., 2019; Chen et al., 2018) uses execution outcomes at
the code compiler level to iterate code generation. Skreta et al. (2023) uses a rule-based verifier
to improve program generation and Wang et al. (2023) incorporates environment feedback and
self-verification in Minecraft into the pipeline. Our work benchmarks simulation task creation with
both open-source and closed-source LLM code models. In addition, our method also leverages
multiple verification methods as feedback for simulation task scripts in robotic simulations.

Task and Scene Generation for Simulation. In robotic simulations, recent works have explored
domain randomizations (Tobin et al., 2017; Fang et al., 2022) and procedural asset generations
(Deitke et al., 2022; Makatura et al., 2023) and text to 3D (Jun & Nichol, 2023; Nichol et al., 2022;
Poole et al., 2022). Few works have also explored parametric task generations (Fang et al., 2020)
to generate goal-conditioned tasks. In this work, we treat each task as the code implementation and
expand the original 10 tasks in the Ravens benchmark (Zeng et al., 2021; Shridhar et al., 2022) to over
100 novel tasks and associated expert demonstrations through LLM. Consequently, different from
previous works that study compositional generalization (Jiang et al., 2022) or object-level (Shridhar
et al., 2022) generalization, we study the task-level generalization of policy learning.

Language Models in Robotics. In robotics, large language models have been applied to policy
learning (Driess et al., 2023), task and motion planning(Lin et al., 2023; Huang et al., 2022),
summarizing logs (Liu et al., 2023), as well as synthesizing policy programs (Liang et al., 2022)
and optimization programs (Yu et al., 2023). Past work has also explored LLM’s physical grounded
capability (Liu et al., 2022) and concurrent work explores using LLM together with task and motion
planners to create expert demonstrations (Ha et al., 2023). Ahn et al. (2022); Lynch et al. (2023)
attempted to collect huge-scale real-world interactions but are only focused on specific task families.
Instead of interacting in expensive real-world settings, we explored how to create increasingly complex
simulation tasks and demonstrations jointly with LLM, and show improved policy generalizations
through training on GPT-generated tasks.

B LLM EXPERIMENT DETAILS

B.1 SIMULATION TASK GENERATION DETAILS

The held-out simulation task list used to compare and evaluate LLM models is “align-rainbow-along-
line”, “cylinder-in-colorful-container”, “splitting-piles”, “stack-cylinder-pyramid”, “build-pyramid-in-
zone”, “block-on-“cylinder-on-pallet”, “align-cylinder-in-zone”, “construct-symmetric-block-wall”,

13

“insert-blue-on-red-cylinder”, “rainbow-pyramid”. We will prompt different LLMs with these task
names and run targeted task generation evaluation experiments on code generation three times.

We have also experimented with a longer LLM pipeline with components such as API reviews
and common error reviews. In these two stages, we provide the base task definition of the Ravens
benchmark and summarize several syntax errors that GPT tends to make when designing and
implementing tasks. We empirically observed these to generate more stable codes for challenging
tasks, but require more budgets.

B.2 EMBEDDING ANALYSIS

In Figure 5, we visualize the GPT embedding of the generated task codes using PCA to project to 50
dimensions and then use TSNE for visualization on 2D. We then apply KNN clustering to discover 6
clusters of the generated tasks. As shown in the plot, different colors of clusters represent different
groups of tasks such as specific objects or specific types of motions. For instance, the purple color
represents mostly the tasks involving rope, and the blue color represents mostly the tasks that involve
building some structures using primitive shapes. Inspecting, expanding, and cleaning this task library
is also straightforward because of the nature of the code.

B.3 TASK STATISTICS

Although we focus on the task-level diversity and generalization of simulation in LLM, in this section,
we investigate some task statistics of the 120 generated tasks by LLM. Shown in Figure 9 (a), we
observe an interesting balance of colors, assets, actions, and number of instances generated by the
LLM models. For example, common colors such as “red, blue, yellow, green” show up in many tasks.
Due to our prompt, overall GPT generates multiple objects in the scene. In Figure 13, we also showed
a gallery of the generated tasks. We can easily generate and scale more of the simulation tasks if the
budget permits. See project website for animated rendering of the tasks.

B.4 TRAINING DETAILS

In addition to the prompting pipeline, we explored different training and finetuning schemes on
LLMs. We use the 112 tasks as the dataset for finetuning experiments. We use the task names with
a short prompt as input tokens and the task code as output tokens for autoregressive training. For
closed-source LLM models such as GPT-3 (davinci), GPT-3.5, we use OpenAI’s finetuning API for
training and inferencing. For Code-LLama experiments (Rozière et al., 2023), we use the open-source
Code-LLaMA-Instruct 7B and Code-LLaMA-Instruct 13B models. We use Huggingface transformers
for LoRA (Hu et al., 2021) finetuning with quantization and parameter-efficient finetuning for 10
epochs on 2 V-100 GPUs. The training on GPT4 generated dataset with batch size=1 takes around 4
hours to finish 3000 iterations. Generated examples for these open-sourced models can be found in
§E.

In evaluating the open-sourced code-llama model, we were not able to get sensible results with
just prompting. Specifically, it generates the example code in the prompt for all prompts in the
few-shot case or random answers in the zero-shot case. With finetuning, the model writes much
more structured code and can achieve similar performance as GPT-3.5. Overall we see improved
code generation with the finetuning models and leave self-bootstrapping and training on more code
examples for future work.

B.5 TASK CREATION LIMITATIONS

There are several common failure modes in the task description and implementations generated by
LLM that need to be aware of. These raise attention for inspections before potential downstream
applications and also hopefully shed light on future directions. We recommend users to play with
to get a sense of the generation process and limitations. Here, we provide detailed descriptions and
examples below.

1. Repeated Tasks: GPT can generate tasks that have different names (and even different im-
plementations) but represent the same tasks, such as “color-sequenced-block-insertion”, “put-
block-in-bowl” and “color-coordinated-ball-insertion-in-bowls”, which all aim to instruct

14

https://gen-sim.github.io
https://huggingface.co/spaces/Gen-Sim/Gen-Sim

Repeated Tasks Mismatched Languages Ungrounded Actions

Put-block-in-bowl Color-coordinated-
cylinder-stand-in-line

Push-block-into-container

Figure 10: Visualization of common failure cases.

the robot to put some colored blocks into colored bowls. Similarly, “color-linked-ball-bowl-
ordering”, “color-coordinated-sphere-and-bowl-match” and “colored-bowl-ball-sorting” are
also same tasks.

2. Mismatched Language Instructions: GPT can generate mismatched language descriptions
for tasks. For instance, for task “color-coordinated-cylinder-stand-in-line”, the language
instructions try to set goals for each step to put the corresponding colored cylinder on the
stand, such as “place the red cylinder on the red stand”. However, the task implementation
tries to stack as many cylinders as possible onto the same block. This problem is also not
captured by the metric used in the benchmark.

3. Ungrounded Motion Sequence:. For instance, the task “color-coordinated-bowl-stacking”
has the description “put each block in the bowl of the same color and stack the bowls from
largest to smallest in the sequence of red, blue, green, and yellow”, and yet the action to
stack bowls, is neither implemented nor achievable in the benchmark. Similarly in task
“ball-in-container” with language instruction “Use the spatula to lift a ball over a wall of
boxes and drop it into a container”, the action of using a spatula to lift an object is not
grounded well. Finally in “push-block-into-container”, the motion of pushing a block into
some other objects are unlikely to succeed.

4. Noisy Descriptions:. There are usually some noises in the task names, task descriptions,
and language instructions. For instance “ball-in-bowl-obstacle-course” has “obstacle-course”
which is not capturing the task goal. The task descriptions also contain sentences such
as “The task requires the robot to pick up four balls of different colors (red, blue, green,
yellow) and place each of them into the corresponding colored bowls strategically positioned
at different corners of the maze, without knocking over any blocks, demanding careful
navigation and color coordination”, which is not in its most concise form. Similarly,
“rearrange, sort, insert, place” are usually used interchangeably by LLM.

5. Imbalanced Tasks:. Due to the bootstrapping process, LLMs has a certain bias towards the
majority of the tasks in the task library, especially if the LLM reflection/filtering is turned
off. For instance, we usually see “color-coordinated” and pick-place motions in the task
generation whereas tasks involving rope and piles are more rarely. For improved success
rates, we also do not consider tasks that are overly complicated such as palletizing boxes
and tower of haoni. Moreover, the definition of a task is still subjective in robotics. Different
tasks such as ”arrange,insertion,put” end up using the pick and place motions, and the hope
is LLM can help distinguish among different tasks. We limit the benchmark to 100 tasks for
a balance of diversity and control of quality.

6. Task Complexity: Overall this work only explores top-down pick and place tasks where the
demonstration action can be parametrized by pick and place actions. More dexterous tasks
in robotics (higher degrees of freedom, more contact-rich motions etc) and reward designs
for automatically figuring out how to solve these tasks will be interesting future works.

We have seen some limitations in enabling LLM to design tasks and demonstrations in robotic
simulation. The generated code still contains basic syntax errors and suffers from hallucinations and
a lack of grounding in physical and geometric details. Another problem is that the code generation
evaluation metric is imperfect (such as misaligned language description) and therefore the generated
tasks can require some manual filtering before policy training. Finally, we have only explored

15

table-top pick-and-place task generation, and generating dexterous and complex robotic tasks could
be more challenging. We hope these limitations shed some light on future attempts at simulation
code creations with LLMs. One interesting future direction is to explore asset generation jointly with
program synthesis, potentially with VLM, to create more diverse tasks and apply the framework to
more dexterous robotic tasks. Another future direction is to explore algorithms to train multitask
policies to efficiently fit these larger-scale generated task benchmarks.

C SIMULATION TRAINING EXPERIMENT

We follow the original CLIPort(Shridhar et al., 2022) setup for training. All simulated experiments
are performed using a Universal Robot UR5e equipped with a suction gripper. This setup offers a
systematic and replicable environment for evaluation, particularly for benchmarking the capacity
to ground semantic concepts like colors and object categories. The input observation is derived
from top-down RGB-D images captured via a RealSense camera. We downscale the original image
dimensions from 640× 480 to 320× 160 for policy input. To enhance the transition from simulation
to reality, we incorporate data augmentation techniques such as color jittering.

Note that our implementation supports multiple samples in a batch (the original version only supports
batch size 1) which speeds up training. We train on 4/8 GPUs for 2 days for the multitask setup and
train for 10000 iterations for the single-task setup. For larger-scale pretraining experiments, 100 tasks
can take up to 5 days with 8 GPUs.

When training language-conditioned multitask policies, the relations among tasks need to be consid-
ered in the joint dataset. For instance, the tasks “put-block-in-bowl” and “place-red-in-green” both
involve putting colored blocks into colored bowls with similar language instructions. This could
potentially lead to conflicting data points that instruct placing the red block into the green bowl or
into bowls of other colors. Conversely, there could be many tasks that involve the term “pyramid” in
instructions, but this could refer to varying layers of the block pyramid. This ambiguity could pose
a challenge when training a single policy for multiple tasks. The question of whether training with
certain tasks can help generalization can be best addressed by the bias-variance trade-off fundamental
in machine learning. Tasks that are semantically closed have a higher likelihood of being beneficial,
and vice versa. During the evaluation on our GPT-generated tasks, we exclude specific tasks that fall
outside of the task generation domains, such as the tower of Hanoi and inserting kittings.

D REAL WORLD EXPERIMENT

For our real-world experiments, we employ an XArm-7 robot equipped with a suction gripper. A
bird’s-eye-view camera, mounted overhead and oriented downwards, is used to capture RGB-D
observations. We leverage workspace boundaries and background subtraction to generate a mask on
the depth images. See Figure 11 for a detailed setup. In the real world, we observe the following
failure cases: (1) manipulate with the wrong color of objects. (2) imprecise picking and placing. To
tackle the challenge of scene-level generalization, we use data augmentation such as color jittering,
and also data relabeling where we increase the data multiple times and relabel the language prompt
based on the objects on the table. Our labeling tools on pick and place motion do not require a
real robot and can efficiently label up to 100 images within 2 minutes. Real-world training takes
50 epochs of the augmented data and usually takes less than 3 hours to complete. The tasks are
selected with a focus on long-horizon tasks and task-level generalization, i.e. how well the policy
generalizes to new tasks rather than different colors or object instances in a compositional sense. We
have experimented with providing both the per-step instruction or high-level goal of the tasks, and
did not find much performance difference in the single-task setting. We thus share similar limitations
on the policy side as in Shridhar et al. (2022).

E LANGUAGE QUALITATIVE RESULTS

16

camera

F/T sensor

RGB-D Input

Figure 11: Realworld Setup. We have an overhead camera for observing top-down rgb-d images
similar to the simulation setup.

“first place the blue bowl in the yellow zone, then place the green block in
the blue bowl”

“move the block to the corresponding zone” “place the purple and green blocks around the white cylinder,
to form a wheel shape”

“put the blocks on the four corners of the zone”

“place the blue block in the green bowl” “place the blue and red block along the green line side by side”

“stack the red block on the blue block” “move the spheres from the zone to the bowl”

Start End Start End

“make the top row with the yellow block, mid row with
purple and bottom row with green blocks”

“Stack a block tower at the corner”

Figure 12: We show the start and goal of each of the 10 tasks that we use in the real world experiments.

E.1 TASK DESCRIPTION EXAMPLE

We attach a few generated task description examples from GPT-4.

17

Task: Build-Car

• task-name: build-car

• task-description: Construct a simple car structure using blocks and cylinders.

• assets-used: [block/block.urdf, ball/ball-template.urdf]

Task: Color-Coordinated-Ball-Insertion-In-Boxes

• task-name: color-coordinated-ball-insertion-in-boxes

• task-description: Pick up four balls of different colors (red, blue, green, and yellow) and
insert them into four separate boxes of matching colors. The boxes are located inside corners
of a square structure and the task requires precise insertion, color coordination, and careful
navigation around the square structure.

• assets-used: [ball/ball-template.urdf, box/box-template.urdf, square/square-template.urdf]

Task: Color-Coordinated-Zone-Arrangement

• task-name: color-coordinated-zone-arrangement

• task-description: On the tabletop, there are nine blocks of three different colors (three red, three
blue, and three green) and three pallets of matching colors (one red, one blue, one green). The
task is to pick up each block and place it on the pallet of the same color, arranging the blocks on
each pallet in a line. However, there are a few small blocks randomly scattered on the tabletop,
which the robot has to navigate around without knocking them over while transporting the
blocks to the corresponding pallets. The challenge lies in the precise navigation, placement of
the blocks, color matching, and maintaining the balance on the pallets.

• assets-used: [block/block.urdf, pallet/pallet.urdf, block/small.urdf]

Task: Place-Blue-On-Line-Ends

• task-name: place-blue-on-line-ends

• task-description: Pick up each blue box and accurately place it at the end of a green line.

• assets-used: [line/line-template.urdf, box/box-template.urdf]

Task: Move-Kit-From-Zone-To-Cylinder

• task-name: move-kit-from-zone-to-cylinder

• task-description: Place the specific kit from a zone to a cylinder.

• assets-used: [cylinder/cylinder-template.urdf, zone/zone.urdf, kitting/object-template.urdf]

Task: Put-Blues-Around-Red

• task-name: put-blues-around-red

• task-description: Place the blue blocks around the red block.

• assets-used: [block/block-for-anchors.urdf]

Task: Multicolor-Block-Bridge

• task-name: multicolor-block-bridge

• task-description: Build a bridge by stacking three red, three blue, and three green blocks on
a pallet. Arrange in a sequence from left to right: red, blue, and green. Then, place three
cylinders of corresponding colors on top of the stacked blocks, forming a bridge. The cylinders
should roll from the top block to the pallet, creating a challenge of precision and control.

• assets-used: [block/block.urdf, pallet/pallet.urdf, cylinder/cylinder-template.urdf]

18

E.2 PROMPT DETAILS

E.2.1 TASK PROPOSAL PROMPT DETAILS

To reach this level of lengthy code generation, we break the prompt of the agent into several steps
to enforce its logical structure: task description generation, API and common mistake summary,
few-shot reference code selection, and code generation. The input prompt to GPT-4 task generation
stage consists of several components:

(1) available assets that are in the codebase
(2) samples of reference tasks from the task library to act as few-shot examples
(3) past task names to make sure the agent does not provide overlapped tasks.
(4) some examples of bad tasks and the reasons such as not physically feasible.
(5) some additional rules (such as do not use unavailable assets) and the output format.

This stage has temperature=1 to encourage diversity and the rest components would have tempera-
ture=0 to have some robustness. The simplified task description prompt can be found below.

Bottom Up Task Creation Prompt

You are an AI in robot simulation code and task design. I will provide you some example tasks,
code implementation, and some guidelines for how to generate tasks and then you will help me
generate a new task. My goal is to design diverse and feasible tasks for tabletop manipulation. I
will first ask you to describe the task in natural languages and then will let you write the code for
it.

Here are all the assets. Use only these assets in the task and code design.
...

Here are some examples of good tasks. Try to learn from these structures but avoid overlapping
with them.
...

Here are some tasks that you have come up with before. Try to learn from these structures but
avoid overlapping with these tasks. For instance, ‘bowl-ball-placement‘ and ‘sort-balls-in-bowls‘
are the same task. ‘pile-boxes-in-corner‘ and ‘stack-blocks-into-pallet‘ are similar tasks, ‘align-
cylinder-in-corner‘ and ‘align-cylinder-corner‘ are similar.
PAST-TASKNAME-TEMPLATE

Here are some bad example task instances with explanations.
...
reasons: not interesting because it overlaps with the current task ‘put-block-in-bowl‘.
...

Now please describe the new task in natural languages and explain its novelty and challenges.
Format the answer in a python dictionary with keys ”task-name” and value type string, ”task-
description” (one specific sentence) and value type string, and ”assets-used” and value type list
of strings. Note that
- Do not use assets that are not in the list above.
- Tasks that have more colors and shapes are interesting.
- Be as specific as possible about the number, shape, and color of each asset in the descriptions.
- The task need to obey physics and remain feasible.

Top Down Task Creation Prompt

You are an AI in robot simulation code and task design. I will provide you some example tasks,
code implementation, and some guidelines for how to generate tasks and then you will help me
generate a new task. My goal is to design creative and feasible simpler tasks to eventually
help solve the task ‘TARGET-TASK-NAME‘. I will first ask you to describe the task in natural
languages and then will let you write the code for it.

19

Here are all the assets. Use only these assets in the task and code design.
...

Here are some examples of good tasks. Try to learn from these structures but avoid overlapping
with them.
...

Here are some tasks that you have come up with before. Try to learn from these structures but
avoid overlapping with these tasks. For instance, ‘bowl-ball-placement‘ and ‘sort-balls-in-bowls‘
are the same task. ‘pile-boxes-in-corner‘ and ‘stack-blocks-into-pallet‘ are similar tasks, ‘align-
cylinder-in-corner‘ and ‘align-cylinder-corner‘ are similar.
PAST-TASKNAME-TEMPLATE

Here are some bad example task instances with explanations.
...
reasons: not interesting because it overlaps with the current task ‘put-block-in-bowl‘.
...

The goal is to solve the task ‘TARGET-TASK-NAME‘ eventually. Due to its complexity, let’s
think step-by-step about what simpler task can be useful to achieve this goal. Please describe
the new task, which is not ‘TARGET-TASK-NAME‘ but can help training a policy to gener-
alize torwards it, in natural languages in a clear and detailed way. Think step by step how
this task can help contribute to the skills that are quired to solve TARGET-TASK-NAME.
Then format the answer in a python dictionary with keys ”task-name” and value type string with
lower-case and separated by hyphens, ”task-description” (one sentence and do not mention urdf
paths) and value type string, and ”assets-used” and value type list of strings. Note that
- Do not use assets that are not in the list above.
- Tasks that have more colors and shapes are interesting.
- Be as specific as possible about the number, shape, and color of each asset in the descriptions.
- The task need to obey physics and remain feasible.

The simplified task code prompt can be found below.

Task Implementation Prompt

Now I will provide you some reference code and you can write the code for the task ”TASK-
NAME-TEMPLATE”.

””” Code Ignored ”””

Do not use libraries, functions, and assets that you don’t know. For each object, try to describe
its color, size, category in the task first before you write the code. You do not need extra helper
functions. Comment the code liberally to explain what each piece does and why it’s written that
way.
Now write the code for the task ”TASK-NAME-TEMPLATE” in python code block starting with
“‘python. Reminder: TASK-STRING-TEMPLATE

E.2.2 TASK MEMORY PROMPT DETAILS

In addition to storing existing generated tasks in the memory, the task reflection stage prompt has the
following component:

(1) the generated task description and code
(2) the current tasks in the library
(3) some examples of accepting and rejecting new task

Then LLM is prompted to answer whether to accept this new task and this improvement will also be
in the context window in the next round of the agent task design. Note that to improve the robustness
of this stage, we prompt GPT three times in parallel to get diverse answers with temperature 0.5,
and only accept the task if there is an agreement. The simplified task reflection prompt can be found
below.

20

Task Reflection Prompt

Do you think your task is sufficiently interesting to be added as a new task for future tasks given
that we already have the following task name and descriptions? Moreover, does the simulation
code achieve the goal and the language descriptions in the task? Be as rigorous and high-standard
as possible.

Reminder: your task: TASK-STRING-TEMPLATE
TASK-CODE-TEMPLATE
current task list: CURRENT-TASK-NAME-TEMPLATE

Reply explain your reasons and then say True or False, formatted in a python dictionary, do not
miss commas or add extra spaces. Here are some examples.

Please incorporate these feedbacks when you design new task!

The finetuned model usually only requires less tokens and complex prompt as input. Here is an
example of the prompt for the finetuned model.

Finetuned Model Task Implementation Prompt

Write the pybullet simulation task class [TASK NAME TEMPLATE]. Provide answers in a python
code block starting with “‘python

E.3 EXAMPLE TASK LIBRARY CONVERSATIONS

We have observed interesting reference task selection in the task memory to show how the memory
can benefit the task creation process.

Task Reference Conversations for “Color-Coordinated-Arch-Construction”

Question: Please pick 4 task python files that you would like to use as reference. Format them in a
python list.

Answer: Sure, based on the task description, the following tasks seem to be the most relevant:

[color-coordinated-block-tower.py, stack-color-coordinated-blocks.py, construct-colorful-arch.py, color-
coordinated-insertion.py]

We also have observed interesting task descriptions and code critics from the task memory. This shows
that the critic has looked into the code implementations and reaching an agreement indeed requires the
task to be sufficiently high-standard. In this example, the task “color-coordinated-insertion-rearrange”
is described as a new task that would rearrange the blocks into a different fixture, but the code and its
purpose is exactly the same as the “color-coordinated-insertion”. The first critic thinks that the task is
repeated with minor differences, while the second critic catches the coding error and refuses to add it
to the task library.

21

Task Reflection Conversations for “Sphere-Insertion”

Input:

• task-name: color-coordinated-insertion-rearrange

• task-description: There are four colored ell objects (red, blue, green, yellow) inserted in
randomly ordered fixtures on the tabletop. The task is to remove each ell object from its
current fixture and insert it into a new fixture in a specific color order: from left to right, insert
red, blue, green, and finally yellow.

• assets-used: [insertion/ell.urdf, insertion/fixture.urdf]

Critic 0:
Add to task library?: No
Reasons: The task is very similar to “color-ordered-insertion” which also involves inserting colored ell
objects into fixtures in a specific order. The only difference is that in the existing task, the ell objects are
matched with fixtures of the same color, while in the proposed task, the ell objects are rearranged in
fixtures of different colors. However, this difference is minor and does not add significant novelty or
complexity to the task. Therefore, it may not be necessary to add the proposed task to the task list.

Critic 1:
Add to task library?: No
Reasons: The task is similar to “color-ordered-insertion” but adds a new challenge of rearranging the
ell objects. This task would require more complex manipulation skills and could be interesting for
developing advanced robotic skills. However, the simulation code does not seem to ensure the color
order from left to right as described in the task. It randomly places the fixtures and ell objects, and the
goals are added in the order of the colors array, not according to their positions on the tabletop

E.4 TASK CODE EXAMPLE

We attach a few generated code examples from LLM (library imports ignored). The generated task
visualizations are also attached.

22

Task: Color-Colored-Insertion

class ColorOrderedInsertion(Task):
"""Insert differently-colored ell objects into the matching

color fixture in a specific order."""

def __init__(self):
super().__init__()
self.max_steps = 20
self.lang_template = "put the {color} L shape block in

the L shape hole"
self.task_completed_desc = "done with insertion."
self.additional_reset()

def reset(self, env):
super().reset(env)

Define colors and their order
colors = [’red’, ’blue’, ’green’, ’yellow’]
color_order = {color: i for i, color in

enumerate(colors)}

Add fixtures.
fixture_size = (0.12, 0.12, 0.02)
fixture_urdf = ’insertion/fixture.urdf’
fixtures = []
for color in colors:

fixture_pose = self.get_random_pose(env,
fixture_size)

fixture_id = env.add_object(fixture_urdf,
fixture_pose, color=utils.COLORS[color],
category=’fixed’)

fixtures.append(fixture_id)

Add ell objects.
ell_size = (0.04, 0.04, 0.04)
ell_urdf = ’insertion/ell.urdf’
ells = []
for color in colors:

ell_pose = self.get_random_pose(env, ell_size)
ell_id = env.add_object(ell_urdf, ell_pose,

color=utils.COLORS[color])
ells.append(ell_id)

Goal: each ell is inserted into the matching color
fixture in the correct order.

for i, ell in enumerate(ells):
self.add_goal(objs=[ell], matches=np.ones((1, 1)),

targ_poses=[p.getBasePositionAndOrientation(
fixtures[i])], replace=False,

rotations=True, metric=’pose’, params=None,
step_max_reward=1 / len(ells),

language_goal=self.lang_template.format(
color=colors[i]))

23

Task: Four-Corner-Pyramid-Challenge

class FourCornerPyramidChallenge(Task):
"""Construct a pyramid of blocks in each zone with a

specific color sequence."""

def __init__(self):
super().__init__()
self.max_steps = 20
self.lang_template = "build a pyramid of blocks in each

zone with the sequence red, blue, green, and yellow
from bottom to top"

self.task_completed_desc = "done building pyramids."
self.additional_reset()

def reset(self, env):
super().reset(env)

Add zones.
zone_size = (0.12, 0.12, 0)
zone_urdf = ’zone/zone.urdf’
zone_poses = []
for _ in range(4):

zone_pose = self.get_random_pose(env, zone_size)
env.add_object(zone_urdf, zone_pose, ’fixed’)
zone_poses.append(zone_pose)

Block colors.
colors = [

utils.COLORS[’red’], utils.COLORS[’blue’],
utils.COLORS[’green’], utils.COLORS[’yellow’]

]

Add blocks.
block_size = (0.04, 0.04, 0.04)
block_urdf = ’block/block.urdf’
blocks = []
for i in range(4):

for _ in range(4):
block_pose = self.get_random_pose(env,

block_size)
block_id = env.add_object(block_urdf,

block_pose, color=colors[i])
blocks.append(block_id)

Associate placement locations for goals.
place_pos = [(0, -0.05, 0.03), (0, 0, 0.03),

(0, 0.05, 0.03), (0, -0.025, 0.08),
(0, 0.025, 0.08), (0, 0, 0.13)]

targs = [(utils.apply(zone_pose, i), zone_pose[1]) for
i in place_pos for zone_pose in zone_poses]

Goal: blocks are stacked in a pyramid in each zone.
for i in range(4):

self.add_goal(objs=blocks[i*4:(i+1)*4],
matches=np.ones((4, 4)),
targ_poses=targs[i*4:(i+1)*4], replace=False,

rotations=True, metric=’pose’, params=None,
step_max_reward=1 / 4,
symmetries=[np.pi/2]*4,
language_goal=self.lang_template)

24

E.5 TOP-DOWN EVALUATION EXAMPLE

In this section, we showcase different LLM’s output for an example task in the top-down evaluation.

Task:cylinder-in-colorful-container (Zero-Shot Prompt Before Code-LLAMA-Instruct Fine-
tuning)

class CylinderInColorfulContainer(p.Task):
def __init__(self, cylinder_radius, cylinder_height,

container_size, container_color):
self.cylinder_radius = cylinder_radius
self.cylinder_height = cylinder_height
self.container_size = container_size
self.container_color = container_color

def create_cylinder(self):
cylinder_id = p.create_cylinder(self.cylinder_radius,

self.cylinder_height)
return cylinder_id

def create_container(self):
container_id = p.create_box(self.container_size,

self.container_color)
return container_id

def add_cylinder_to_container(self, cylinder_id,
container_id):
p.add_object_to_container(cylinder_id, container_id)

def run(self):
cylinder_id = self.create_cylinder()
container_id = self.create_container()
self.add_cylinder_to_container(cylinder_id,

container_id)
p.step_simulation()
return cylinder_id, container_id

25

Task:cylinder-in-colorful-container (Few-Shot Prompt Before Code-LLAMA-Instruct Fine-
tuning)

class CylinderInColorfulContainer(Task):
def __init__(self):

super().__init__()
self.max_steps = 3
self.lang_template = "put the cylinder in the colorful

container"
self.task_completed_desc = "done with insertion."
self.additional_reset()

def get_random_pose(self, env, obj_size):
pose = super().get_random_pose(env, obj_size)
pos, rot = pose
rot = utils.eulerXYZ_to_quatXYZW((0, 0, np.pi / 2))
return pos, rot

def reset(self, env):
super().reset(env)

"""Add cylinder."""
size = (0.1, 0.1, 0.04)
urdf = ’insertion/cylinder.urdf’
pose = self.get_random_pose(env, size)
cylinder_id = env.add_object(urdf, pose)

"""Add colorful container to place cylinder."""
size = (0.1, 0.1, 0.04)
urdf = ’insertion/container.urdf’
targ_pose = self.get_random_pose(env, size)
env.add_object(urdf, targ_pose, ’fixed’)

self.add_goal(objs=[cylinder_id],
matches=np.int32([[1]]), targ_poses=[targ_pose],
replace=False,

rotations=False, metric=’pose’, params=None,
step_max_reward=1, symmetries=[2 * np.pi],

language_goal=self.lang_template)

26

Task: cylinder-in-colorful-container (After Code-LLAMA-Instruct Finetuning)

import numpy as np
from cliport.tasks import Primitive
from cliport.tasks.task import Task
from cliport.utils import utils

class CylinderInColorfulContainer(Task):
"""Pick up each cylinder and place it into the container of

the same color, in a specific color sequence."""

def __init__(self):
super().__init__()
self.max_steps = 20
self.lang_template = "place the {color} cylinder in the

{color} container"
self.task_completed_desc = "done placing cylinders in

containers."
self.additional_reset()

def reset(self, env):
super().reset(env)

Define the color sequence
color_sequence = [’red’, ’blue’, ’green’, ’yellow’]

Add containers.
container_size = (0.12, 0.12, 0.12)
container_urdf = ’container/container-template.urdf’
container_poses = []
for color in color_sequence:

container_pose = self.get_random_pose(env,
container_size)

env.add_object(container_urdf, container_pose,
’fixed’, color=color)

container_poses.append(container_pose)

Add cylinders.
cylinder_size = (0.04, 0.04, 0.04)
cylinder_urdf = ’cylinder/cylinder-template.urdf’
cylinders = []
for color in color_sequence:

cylinder_pose = self.get_random_pose(env,
cylinder_size)

cylinder_id = env.add_object(cylinder_urdf,
cylinder_pose, color=color)

cylinders.append(cylinder_id)

Goal: each cylinder is in the container of the same
color, in the specified color sequence.

for i in range(len(cylinders)):
self.add_goal(objs=[cylinders[i]],

matches=np.ones((1, 1)),
targ_poses=[container_poses[i]], replace=False,

rotations=True, metric=’pose’, params=None,
step_max_reward=1/len(cylinders),

language_goal=self.lang_template.format(color=color_sequence[i]))

27

Task: cylinder-in-colorful-container (GPT 3 (davinci) Finetuned)

import numpy as np
import os
import pybullet as p
import random
from cliport.tasks import primitives
from cliport.tasks.grippers import Spatula
from cliport.tasks.task import Task
from cliport.utils import utils
import numpy as np
from cliport.tasks import primitives
from cliport.tasks.grippers import Spatula
from cliport.tasks.task import Task
from cliport.utils import utils

class CylinderInColorfulContainer(Task):
"""Put a cylinder into a container of a specific color"""

def __init__(self):
super().__init__()
self.max_steps = 10
self.lang_template = "put the cylinder into the {color}

container"
self.task_completed_desc = "done putting cylinder in

container."
self.additional_reset()

def reset(self, env):
super().reset(env)

Add cylinder.
cylinder_size = (0.02, 0.02, 0.05)
cylinder_urdf = ’cylinder/cylinder.urdf’
cylinder_pose = self.get_random_pose(env, cylinder_size)
cylinder_id = env.add_object(cylinder_urdf,

cylinder_pose)

Add containers.
container_size = (0.1, 0.1, 0.1)
container_urdf = ’cylinder/container.urdf’

Colors of containers.
IMPORTANT: RETRIEVE THE ACTUAL COLOR VALUES
container_colors = [utils.COLORS[c] for c in

utils.COLORS if c != ’red’]

container_poses = []
container_ids = []
for i in range(3):

container_pose = self.get_random_pose(env,
container_size)

container_id = env.add_object(container_urdf,
container_pose, color=container_colors[i])

container_poses.append(container_pose)
container_ids.append(container_id)

Goal: cylinder is in the red container.
self.add_goal(objs=[cylinder_id], matches=np.ones((1,

3)), targ_poses=container_poses, replace=True,
rotations=False, metric=’pose’, params=None,

step_max_reward=1)
self.lang_goals.append(self.lang_template.format(color="red"))

28

Task: cylinder-in-colorful-container (GPT3.5 Prompting)

import numpy as np
from cliport.tasks.task import Task
from cliport.utils import utils

class CylinderInColorfulContainer(Task):
def __init__(self):

super().__init__()
self.max_steps = 10
self.lang_template = "Place the {color} cylinder in the

{color} container"
self.task_completed_desc = "Cylinders placed in

containers."
self.additional_reset()

def reset(self, env):
super().reset(env)

Define colors and corresponding containers
colors = [’red’, ’blue’, ’green’, ’yellow’]
containers = [’red’, ’blue’, ’green’, ’yellow’]

Shuffle the colors and containers to avoid always
picking the same combination

np.random.shuffle(colors)
np.random.shuffle(containers)

Add containers
container_size = (0.1, 0.1, 0.1)
container_template = ’container/container-template.urdf’
container_poses = []
for color in containers:

container_pose = self.get_random_pose(env,
container_size)

container_urdf =
container_template.replace(’COLOR’, color)

env.add_object(container_urdf, container_pose,
’fixed’)

container_poses.append(container_pose)

Add cylinders
cylinder_size = (0.05, 0.05, 0.1)
cylinder_template = ’cylinder/cylinder-template.urdf’
cylinders = []
for i, color in enumerate(colors):

cylinder_pose = self.get_random_pose(env,
cylinder_size)

cylinder_urdf = cylinder_template.replace(’COLOR’,
color)

cylinder_id = env.add_object(cylinder_urdf,
cylinder_pose)

cylinders.append(cylinder_id)

Add goals
for i, color in enumerate(colors):

language_goal =
self.lang_template.format(color=color)

self.add_goal(objs=[cylinders[i]],
matches=np.ones((1, 1)),
targ_poses=[container_poses[i]], replace=False,

rotations=True, metric=’pose’,
params=None, step_max_reward=1,
language_goal=language_goal)

29

Task: cylinder-in-colorful-container (GPT3.5 Finetuned)

import numpy as np
import os
import pybullet as p
import random
from cliport.tasks import primitives
from cliport.tasks.grippers import Spatula
from cliport.tasks.task import Task
from cliport.utils import utils

class CylinderInColorfulContainer(Task):
"""Pick up a cylinder of a specific color and place it into

a container of the same color."""

def __init__(self):
super().__init__()
self.max_steps = 20
self.lang_template = "put the {color} cylinder in the

{color} container"
self.task_completed_desc = "done placing cylinders in

containers."
self.additional_reset()

def reset(self, env):
super().reset(env)

Define colors and their corresponding containers and
cylinders.

colors = [’red’, ’blue’, ’green’, ’yellow’]
containers = []
cylinders = []
for color in colors:

Add container.
container_size = (0.12, 0.12, 0.12)
container_pose = self.get_random_pose(env,

container_size)
container_id =

env.add_object(’container/container-template.urdf’,
container_pose, color=utils.COLORS[color])

containers.append(container_id)

Add cylinder.
cylinder_size = (0.04, 0.04, 0.04)
cylinder_pose = self.get_random_pose(env,

cylinder_size)
cylinder_id =

env.add_object(’cylinder/cylinder-template.urdf’,
cylinder_pose, color=utils.COLORS[color])

cylinders.append(cylinder_id)

Goal: each cylinder is in a container of the same
color.

for i in range(len(colors)):
self.add_goal(objs=[cylinders[i]],

matches=np.ones((1, 1)), targ_poses
=[p.getBasePositionAndOrientation(

containers[i])], replace=False,
rotations=True, metric=’pose’, params=None,
step_max_reward=1/len(colors),

language_goal=self.lang_template.format(color=colors[i]))

30

Task: cylinder-in-colorful-container (GPT 4)

import numpy as np
import os
import pybullet as p
import random
from cliport.tasks import primitives
from cliport.tasks.grippers import Spatula
from cliport.tasks.task import Task
from cliport.utils import utils
import numpy as np
from cliport.tasks.task import Task
from cliport.utils import utils

class CylinderInColorfulContainer(Task):
"""Pick up four cylinders of distinct colors (red, blue,

green, yellow) and place each of them into a container
of the same color."""

def __init__(self):
super().__init__()
self.max_steps = 4
self.lang_template = "put the {} cylinder in the {}

container"
self.task_completed_desc = "done placing cylinders in

containers."
self.additional_reset()

def reset(self, env):
super().reset(env)

Define colors
colors = [’red’, ’blue’, ’green’, ’yellow’]

Add containers.
container_size = (0.12, 0.12, 0.12)
container_template = ’container/container-template.urdf’
container_poses = []
for color in colors:

container_pose = self.get_random_pose(env,
container_size)

env.add_object(container_template, container_pose,
category=’fixed’, color=utils.COLORS[color])

container_poses.append(container_pose)

Add cylinders.
cylinder_size = (0.04, 0.04, 0.12)
cylinder_template = ’cylinder/cylinder-template.urdf’
cylinders = []
for color in colors:

cylinder_pose = self.get_random_pose(env,
cylinder_size)

cylinder_id = env.add_object(cylinder_template,
cylinder_pose, color=utils.COLORS[color])

cylinders.append(cylinder_id)

Goal: each cylinder is in a container of the same color.
for i in range(len(cylinders)):

self.add_goal(objs=[cylinders[i]],
matches=np.ones((1, 1)),
targ_poses=[container_poses[i]], replace=False,

rotations=True, metric=’pose’,
params=None,
step_max_reward=1/len(cylinders))

self.lang_goals.append(self.lang_template.format(
colors[i], colors[i]))

31

Figure 13: Gallery of generated tasks by GPT-4.
32

“Put the {color} L shape block in the L
shape hole”

“Build a pyramid of blocks in each zone with
the sequence red, blue, green, and yellow from
bottom to top”

Figure 14: The simulation task visualizations for “color-ordered-insertion” and “four-corner-pyramid-
challenge” correspond to the implementations below.

33

	Introduction
	Automated Task Generation for Policy Learning
	Task Creator
	Task Library
	LLM Supervised Multitask Policy

	Experiments
	Evaluating LLM Robotic Simulation Task Generation
	Task-Level Generalization
	Adapting Pretrained Model to the Real world
	Additional Analysis

	Conclusion and Future Works
	Acknowledgement
	Detailed Related Work
	LLM Experiment Details
	Simulation Task Generation Details
	Embedding Analysis
	Task Statistics
	Training Details
	Task Creation Limitations

	Simulation Training Experiment
	Real World Experiment
	Language Qualitative Results
	Task Description Example
	Prompt Details
	Task Proposal Prompt Details
	Task Memory Prompt Details

	Example Task Library Conversations
	Task Code Example
	Top-Down Evaluation Example

